高中数学第三章空间向量与立体几何3.2.3直线与平面的夹角3.2.4二面角及其度量课件新人教B版选修2_1
课件2:3.2.3直线与平面的夹角
知 AC 为平面 BB1D1D 的一个法向量, 设 AP 与平面 BB1D1D 所成的角为 θ.
则 sin θ=| AP·AC |= | AP|| AC |
2· 22+m2=
2 2+m2.
cos θ= 1-sin2θ= 2+m m2,
依题意 m2=3 2,
解得 m=13,
故当 m=13时,直线 AP 与平面 BDD1B1 所成角的正切值为
[一点通] 求线面角关键是确定斜线在平面上射影的位 置,只有确定了射影,才能将空间角转化为平面角.在本例 中,也可以直接作AH⊥BC于H,进而证明AH⊥平面α,从 而证明H是点A在平面α内的射影.解法二则灵活应用公式 cos θ=cos θ1·cos θ2求线面角,也是常用的方法.
3.PA、PB、PC是由点P出发的三条射线,两两夹角为
2= 6
36.
∴cos θ=
1-sin2θ=
1-69=
3 3.
即 AD 与平面 BMD1N 所成角的余弦值为 33.
6.如图,在棱长为1的正方体ABCD— A1B1C1D1中,P是侧棱CC1上的一点, CP=m,试确定m,使直线AP与平面 BDD1B1所成角的正切值为3 2.
解:建立如图所示的空间直角坐标系. 则 A(1,0,0),B(1,1,0),P(0,1, m),C(0,1,0),D(0,0,0),B1(1,1,1), D1(0,0,1), 所以 BD=(-1,-1,0),BB1 =(0,0, 1), AP=(-1,1,m), AC =(-1,1,0), 又由 AC ·BD=0, AC ·BB1 =0,
设向量 AB 在平面α内的射影为 AB ,且直线AB与平 面α的夹角为θ,则〈 AB , AB 〉=θ,| AB | = | AB|cos θ .
高中数学 2-1 3.2.3空间向量与空间角 3.2.4空间向量与空间距离 教案
3.2.3空间向量与空间角(一)教学目标1.知识与技能:掌握空间立体几何中用向量方法求角度问题2.过程与方法:通过分析、推导让学生掌握空间立体几何中用向量方法求角度问题。
3。
情感、态度与价值观:通过学生对问题的探究思考,广泛参与,提高学习质量,会用空间想像思维解决生活中实际问题。
(二)教学重点与难点重点:掌握空间立体几何中用向量方法求角度问题难点:掌握空间立体几何中用向量方法求角度问题(三)教学过程活动一:创设情景、引入课题问题1:在空间中,用空间向量解决立体几何的步骤? 问题2:空间中的距离有多少种?用空间向量如何解决?今天我们将在前面学习的基础上,进一步学习空间向量来表示并进行解决一些角度的应用.点题:今天我们学习“用空间向量方法求角度问题”活动二:师生交流、进入新知问题3:回忆立体几何中有那些空间角?求空间角有那些步骤?1 异面直线所成的角 范围 0°<θ≤90°方法 ①平移法;②补形法2 直线与平面所成的角 范围 0°≤θ≤90°方法 关键是作垂线,找射影3 二面角方法 ①定义法;②三垂线定理及其逆定理;③垂面法4、空间角的计算步骤 一作、二证、三算问题4:想一想平面向量中两个向量的数量积的定义呢?a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ⋅⋅,可求两个向量的数量积或夹角问题;新课:三种空间角的向量法计算公式: ⑴线线角:异面直线,a b 所成的角θ:cos cos ,a b θ=<>;⑵线面角:直线a 与平面α(法向量n )所成的角θ:sin cos ,a n θ=<>;⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量.活动三:合作学习、探究新知利用向量知识求线线角,线面角,二面角的大小。
(1)异面直线a、b所成的角:在空间中任取一点O,过点O分别引/a∥a,/b∥b,则/a,/b所成的锐角(或直角)叫做两条异面直线所成的角。
高中数学第三章空间向量与立体几何3.2空间向量在立体几何中的应用课件1新人教B版选修2_1
各抒己见 百家争鸣
链接高考202X
强化作业: 在直三棱柱ABC-
A1B1C1中,∠ACB=90°,2AC=AA1= BC=2,D为AA1上一点.
(1)若D为AA1的中点,求证:平面B1CD⊥平面B1C1D; (2)若二面角B1-DC-C1的大小为60°,求AD的长
前置作业反馈
立体几何中的向 量方法
如果a⊥,那么向量a叫做平面的法向量.
l a
二、怎样求平面法向量?
利用空间向量求空间角
题型一:线线角
异面直线所成角的范围:
0,
2
C
D
A D1
B
结论: cos | cos CD, AB |
题题型型二二::线线面面角角
直线与平面所成角的范围: [0, ]
1、用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间 向量表示问题中涉及的点、直线、平面,把立体几 何问题转化为向量问题; (化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
具有大小和方向的量 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k(a b) ka+kb
2
An
直线AB与平面α所成
B O
的角θ可看成是向量与 平面α的法向量所成的 锐角的余角,所以有
【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
高中数学教材人教B版目录(详细版).doc
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
高二数学选修课件:3-2-3直线与平面的夹角
a
2
a +22=
5 2 a.
第三章
空间向量与立体几何
[例 2]
已知正方体 ABCD—A1B1C1D1 的棱长为 4,
人 教 B 版 数 学
点 E、F、G、H 分别在棱 CC1、DD1、BB1、BC 上,且 1 1 1 CE=2CC1,DF=BG=4DD1,BH=2BC.求 AH 与平面 AFEG 的夹角.
人 教 B 版 数 学
第三章
空ቤተ መጻሕፍቲ ባይዱ向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
1.如图:
人 教 B 版 数 学
cosθ=________. 2.最小角定理 斜线和________所成的角,是斜线和这个平面内所有 直线所成角中的最小角.
第三章
空间向量与立体几何
3.直线与平面的夹角
(1)如果一条直线与一个平面垂直,这条直线与平面的 夹角为________. (2)如果一条直线与一个平面平行或在平面内,这条直 线与平面的夹角为________.
[说明]
10 解 答 本 题 易 出 现 由 sinθ = 得 θ= 10
10 10 arcsin 10 或 θ=π-arcsin 10 的错误, 导致此种错误的原 因是忽视了斜线与平面夹角的范围.
第三章
空间向量与立体几何
在如图所示的几何体中,EA⊥平面ABC,DB⊥平面 ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点. (1)求证:CM⊥EM. (2)求CM与平面CDE所成的角.
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
人 教 B 版 数 学
第3章3.23.2.3直线与平面的夹角
1.直线和平面所成的角
4
90° 0° 射影
栏目导航
5
思考:直线 l 的方向向量 s 与平面的法向量 n 的夹角一定是直线 和平面的夹角吗?
[提示] 不是.直线和平面的夹角为π2-〈s,n〉.
栏目导航
2.最小角定理
6
cos θ= cos θ1﹒cos θ2
射影
最小的角
栏目导航
7
1.若直线 l 的方向向量与平面 α 的法向量的夹角等于 120°,则
1
第三章 空间向量与立体几何
3.2 空间向量在立体几何中的应用 3.2.3 直线与平面的夹角
栏目导航
2
学习目标
核心素养
1.理解斜线和平面所成的角的定
义,体会夹角定义的唯一性、合理 通过空间线面角提升学生的数
性. 学运算、逻辑推理素养.
2.会求直线与平面的夹角.(重点、
难点)
栏目导航
3
自主预习 探新知
ABCD-A1B1C1D1 中,E 为 CC1 的中点,则直线 A1B 与平面 BDE 所成的角为( )
π
π
A.6
B.3
π
5π
C.2
D. 6
11
栏目导航
12
B [以 D 为原点,D→A,D→C,D→D1的方向为 x 轴,y 轴,z 轴正 方向建立空间直角坐标系(图略),则 D(0,0,0),A1(1,0,1),B(1,1,0), E0,1,12,
AC=AB·sin 60°=2a× 23= 3a,
所以 PC= 3a2+4a2= 7a,设∠ACP=θ,
则 AE=AC·sin θ=AC×APCP
=
3a×
2a =2 7a
2017-2018版高中数学第3章空间向量与立体几何3.2.3空间的角的计算学案版2-1
3.2。
3 空间的角的计算[学习目标] 1。
理解直线与平面所成角的概念.2.能够利用向量方法解决线线、线面、面面的夹角问题。
3。
掌握用空间向量解决立体几何问题的基本步骤.知识点一 两条异面直线所成的角(1)定义:设a 、b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,则a ′与b ′所成的锐角(或直角)叫做a 与b 所成的角.(2)范围:两条异面直线所成角θ的取值范围是0<θ≤π2.(3)向量求法:设直线a ,b 的方向向量分别为a ,b ,其夹角为φ,则a ,b 所成角的余弦值为cos θ=|cos φ|=错误!.知识点二 直线与平面所成的角(1)定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.(2)范围:直线和平面所成角θ的取值范围是0≤θ≤错误!.(3)向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|=错误!或cos θ=sin φ。
知识点三 二面角(1)二面角的取值范围:[0,π].(2)二面角的向量求法:①若AB,CD分别是二面角α—l-β的两个面内与棱l 垂直的异面直线(垂足分别为A,C),如图,则二面角的大小就是向量错误!与错误!的夹角.②设n1、n2是二面角α-l—β的两个面α,β的法向量,则向量n1与向量n2的夹角(或其补角)就是二面角的平面角的大小.题型一两条异面直线所成角的向量求法例1如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.求异面直线A1B与C1D所成角的余弦值.解以A为坐标原点,分别以AB,AC,AA1为x,y,z轴建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以错误!=(2,0,-4),错误!=(1,-1,-4).因为cos〈错误!,错误!>=错误!=错误!=错误!,所以异面直线A1B与C1D所成角的余弦值为错误!。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖
则点 P0 到直线 l 的距离 d= =|1a| |P→P0|·|a|2-|P→P0·a|2.
|P→P0|2-P→P|a0|·a2
11/64
(2)点到平面距离 用空间向量法求点到平面距离详细步骤以下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的法向量上的射影长.如图,设 n=(a,b,c)是平面 α 的一个法向量, P0(x0,y0,z0)为 α 外一点,P(x,y,z)是平面 α 内
答案 解析
A. 2
√B. 3
C. 5
D.3
以O为坐标原点,建立如图所表示空间直角坐标系.
由题意可知A(1,0,0),B(0,2,0),C(0,0,2),
∴A→B=(-1,2,0),B→C=(0,-2,2),
|A→B|=
1+4+0=
→→ 5,|AB→·BC|=
2.
|BC|
∴点 A 到直线 BC 的距离 d= 5-2= 3.
∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线
A1B与AO1所成角余弦值大小.
解答
14/64
反思与感悟
在处理立体几何中两异面直线所成角问题时,若能构建空间直角坐标系, 则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向 量所成角与异面直线所成角区分.
√D.
615或-
15 6
0,-1,3·2,2,4 由 1+9× 4+4+16 =
-2+12 10× 24=
615,
知这个二面角的余弦值为 615或- 615,故选 D.
1 2 3 4 555/64
2.已知三棱锥O-ABC,OA⊥OB,OB⊥OC,OC⊥OA,且OA=1,OB
高中数学(人教B版 选修2-1)教师用书第3章 空间向量与立体几何 3.2.3 4
直线与平面的夹角
二面角及其度量
.理解直线与平面所成角的概念.(重点)
.会用向量法求线线、线面、面面的夹角.(重点、难点) .正确区分向量夹角与所求线线角、面面角的关系.(易错点)
[基础·初探]
教材整理直线与平面的夹角
阅读教材~“例”以上部分内容,完成下列问题.
.直线与平面所成的角
.最小角定理
【解析】设与α所成的角为θ,则θ=〈,〉=,∴θ=°.
【答案】°
.,,是由点出发的三条射线,两两夹角为°,则与平面所成角的余弦值为.
【解析】设与平面所成的角为θ,则°=θ °,得θ=.
【答案】
教材整理二面角及其度量
阅读教材~“例”以上部分内容,完成下列问题.
.二面角的相关概念
()二面角及其平面角。
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
高中数学人教B版教材目录
高中数学人教B版教材目录高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算本章小结阅读与欣赏聪明在于学习,天才由于积累──自学成才的华罗庚第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(Ⅰ)2.4函数与方程本章小结(1)阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(Ⅱ)实习作业本章小结阅读与欣赏对数的发明对数的功绩附录1科学计算自由软件──SCILAB简介附录1部分中英文词汇对照表后记高中数学(B版)必修二第一章立体几何初步1.1空间几何体实习作业1.2点、线、面之间的位置关系本章小结第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例本章小结附录参考程序第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性实习作业本章小结阅读与欣赏附录随机数表第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用本章小结阅读与欣赏后记高中数学(B版)必修四第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质数学建模活动本章小结阅读与欣赏第二章平面向量2.1向量的线性运算2.2 向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用本章小结阅读与欣赏第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化积本章小结阅读与欣赏附录部分中英文词汇对照表后记高中数学(B版)必修五第一章解直角三角形1.1正弦定理和余弦定理1.2应用举例实习作业本章小结阅读与欣赏第二章数列2.1数列2.2等差数列2.3等比数列本章小结阅读与欣赏第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题本章小结附录部分中英文词汇对照表后记高中课标实验教材B版选修1-1选修1-1扉页本册导引编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线级其标准方程2.3.2 抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用本章小结阅读与欣赏微积分与极限思想附录部分中英文词汇对照表后记高中课标实验教材B版选修1-2封面扉页编写人员版权页本册导引目录第一章统计案例1.1 独立性检验1.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法本章小结阅读与欣赏复平面与高斯第四章框图4.1 流程图4.2 结构图本章小结阅读与欣赏冯·诺伊曼附录部分中英文词汇对照表后记高中课标实验教材B版选修2-1选修2-1扉页本册引导编写人员版权页目录第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏向量的叉积及其性质附录部分中英文词汇对照表后记高中课标实验教材B版选修2-2选修2-2版权页编写内容本册引导目录第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯附录部分中英文词汇对照表后记高中课标实验教材B版选修2-3选修2-3扉页本册导引版权页目录编写人员第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
2019-2020人教B版数学选修2-1第3章 3.2 3.2.4 二面角及其度量
3.2.4二面角及其度量1.二面角的概念(1)半平面:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l,两个面分别为α,β的二面角,记作α-l-β,若A∈α,B∈β,则二面角也可以记作A-l-B,也可记作2∠l,二面角的范围为[0,π].(3)二面角的平面角:在二面角α-l-β的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角α-l-β的平面角.思考:如何找二面角的平面角?[提示](1)定义法由二面角的平面角的定义可知平面角的顶点可根据具体题目选择棱上一个特殊点,求解用到的是解三角形的有关知识.(2)垂面法作(找)一个与棱垂直的平面,与两面的交线就构成了平面角.(3)三垂线定理(或逆定理)作平面角,这种方法最为重要,其作法与三垂线定理(或逆定理)的应用步骤一致.2.用向量的夹角度量二面角设二面角的大小为θ,n 1,n 2为两个非零向量.(1)当n 1∥α,n 2∥β,n 1⊥l ,n 2⊥l ,且n 1,n 2的方向分别与半平面α,β的延伸方向相同,则θ=〈n 1,n 2〉.(2)当n 1⊥α,n 2⊥β,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉.1.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是( )A .相等B .互补C .相等或互补D .不能确定C [由二面角的概念,知这两个二面角大小相等或互补.]2.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π3,则二面角A -BD -C 的大小为( )A.π3B.2π3C.π3或2π3D.π6或π3C [当二面角A -BD -C 为锐角时,它就等于〈n 1,n 2〉=π3;当二面角A -BD -C 为钝角时,它应等于π〈n 1,n 2〉=π-π3=2π3.]3.已知点A (1,0,0),B (0,2,0),C (0,0,3),则平面ABC 与平面xOy 所成锐二面角的余弦值为________.27 [由题得AB →=(-1,2,0),AC →=(-1,0,3).设平面ABC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,知⎩⎨⎧-x +2y =0,-x +3z =0.令x =2,得y =1,z =23,则平面ABC的一个法向量为n =⎝ ⎛⎭⎪⎫2,1,23.平面xOy 的一个法向量为OC →=(0,0,3).由此易求出所求锐二面角的余弦值为|cos θ|=⎪⎪⎪⎪⎪⎪⎪⎪OC →·n |OC →|·|n |=23×73=27.]【例1】 如图所示,ABCD 是正方形,V 是平面ABCD 外一点,且VA =VB =VC =AB ,求二面角A -VB -C 的余弦值.[思路探究] 先判断△VAB ,△VBC 为等边三角形,取VB 的中点E ,连接AE ,CE ,再证明∠AEC 是二面角的平面角.[解] 取VB 的中点为E , 连接AE ,CE .∵VA =VB =VC =AB , ∴AE ⊥VB ,CE ⊥VB .∴∠AEC 是二面角A -VB -C 的平面角. 设AB =a ,连接AC ,在△AEC 中,AE =EC =32a ,AC =2a ,由余弦定理可知:cos ∠AEC =⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-(2a )22×32a ×32a=-13,∴所求二面角A -VB -C 的余弦值为-13.用定义求二面角的步骤(1)作(找)出二面角的平面角(作二面角时多用三垂线定理); (2)证明所作平面角即为所求二面角的平面角; (3)解三角形求角.1.如图所示,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 夹角的正切.[解] (1)证明:∵平面VAD ⊥平面ABCD ,交线为AD . AB ⊂平面ABCD ,AB ⊥AD .∴AB ⊥平面VAD .(2)如图,取VD 的中点E ,连接AE ,BE . ∵△VAD 是正三角形, ∵AE ⊥VD ,AE =32AD . ∵AB ⊥平面VAD ,∴AB ⊥AE . 又由三垂线定理知BE ⊥VD .因此,∠AEB 是所求二面角的平面角. 于是tan ∠AEB =AB AE =233,即平面VAD 与平面VDB 夹角的正切为233.1.构成二面角的平面角有几个要素?[提示] (1)角的顶点在二面角的棱上;(2)角的两边分别在表示二面角的两个半平面内;(3)角的两边分别和二面角的棱垂直.2.二面角的大小与其两个半平面的法向量的夹角有何关系? [提示]1111=O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[思路探究] (1)充分利用图形中的垂直关系,用传统的方法(综合法)可证. (2)利用垂直关系建立空间直角坐标系,用法向量求二面角的余弦值. [解] (1)因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD ,因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC ⊥BD ,又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1→,m ⊥OC 1→,所以3x +2z =0,y +2z =0,取z =-3,则x =2,y =23, 所以m =(2,23,-3),所以cos 〈m ,n 〉=m·n |m||n|=2319=25719.由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为25719.1.(改变问法)本例条件不变,求二面角B -A 1C -D的余弦值. [解] 如图建立空间直角坐标系.设棱长为2,则A 1(0,-1,2),B (3,0,0),C (0,1,0),D (-3,0,0). 所以BC →=(-3,1,0),A 1C →=(0,2,-2),CD →=(-3,-1,0). 设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ n 1·A 1C →=0,n 1·BC →=0,即⎩⎨⎧2y 1-2z 1=0,-3x 1+y 1=0,取x 1=3,则y 1=z 1=3, 故n 1=(3,3,3).设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·A 1C →=0,n 2·CD →=0,即⎩⎨⎧2y 2-2z 2=0,-3x 2-y 2=0,取x 2=3,则y 2=z 2=-3,故n 2=(3,-3,-3).所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-1521=-57.由图形可知二面角B -A 1C -D 的大小为钝角,所以二面角B -A 1C -D 的余弦值为-57.2.(变换条件、改变问法)本例四棱柱中,∠CBA =60°改为∠CBA =90°,设E ,F 分别是棱BC ,CD 的中点,求平面AB 1E 与平面AD 1F 所成锐二面角的余弦值.[解] 以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1,则A (0,0,0),B 1(1,0,1),E ⎝ ⎛⎭⎪⎫1,12,0,D 1(0,1,1),F ⎝ ⎛⎭⎪⎫12,1,0,AE →=⎝ ⎛⎭⎪⎫1,12,0,AB 1→=(1,0,1),AF→=⎝ ⎛⎭⎪⎫12,1,0,AD 1→=(0,1,1). 设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB 1→=0,n 1·AE →=0,即⎩⎪⎨⎪⎧x 1+z 1=0,x 1+12y 1=0,令y 1=2,则x 1=-1,z 1=1, 所以n 1=(-1,2,1).设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·AD 1→=0,n 2·AF →=0,即⎩⎪⎨⎪⎧y 2+z 2=0,12x 2+y 2=0.令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为|n 1·n 2||n 1||n 2|=|(-1,2,1)·(2,-1,1)|(-1)2+22+12·22+(-1)2+12=|(-1)×2+2×(-1)+1×1|6×6=12.利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图.用坐标法的解题步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系. (2)求法向量:在建立的坐标系下求两个面的法向量n 1,n 2. (3)计算:求n 1与n 2所成锐角θ,cos θ=|n 1·n 2||n 1|·|n 2|. (4)定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ. 提醒:确定平面的法向量是关键.=2AB =4,E ,F 分别在线段BC ,AD 上(异于端点),EF ∥AB .将四边形ABEF 沿EF 折起,连接AD ,AC ,BC .(1)若BE =3,在线段AD 上取一点P ,使AP =12PD ,求证:CP ∥平面ABEF ;(2)若平面ABEF ⊥平面EFDC ,且线段FA ,FC ,FD 的长成等比数列,求平面EAC 和平面ACF 夹角的大小.[解] (1)在梯形ABCD 中,AD ∥BC ,EF ∥AB ,BE =3, ∴AF =3.又AD =6,BC =4,∴EC =1,FD =3,在线段AF 上取点Q ,使AQ =12QF ,连接PQ ,QE ,∵AP =12PD ,∴PQ 綊13DF ,∵CE 綊13DF ,∴CE 綊PQ ,∴四边形ECPQ 为平行四边形,∴CP ∥EQ ,∵CP ⊄平面ABEF ,EQ ⊂平面ABEF ,∴CP ∥平面ABEF .(2)在梯形ABCD 中,AB ⊥AD ,AB ∥EF ,∴EF ⊥AF ,EF ⊥FD ,∵平面ABEF ⊥平面EFDC ,平面ABEF ∩平面EFDC =EF ,AF ⊂平面ABEF ,∴AF ⊥平面EFDC .设FA =x (0<x <4),∵EF =AB =2,∴FD =6-x ,EC =4-x ,∴FC =4+(4-x )2, ∵线段FA ,FC ,FD 的长成等比数列, ∴FC 2=FA ·FD ,即4+(4-x )2=x (6-x ), 化简得x 2-7x +10=0,∴x =2或x =5(舍去). 以点F 为坐标原点,FE ,FD ,FA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则F (0,0,0),E (2,0,0),C (2,2,0),A (0,0,2), ∴EC →=(0,2,0),EA →=(-2,0,2),设n 1=(x 1,y 1,z 1)是平面EAC 的法向量, 则⎩⎪⎨⎪⎧n 1·EC →=0n 1·EA →=0,即⎩⎨⎧2y 1=0-2x 1+2z 1=0, 取z 1=1,则x 1=1,y 1=0,∴平面EAC 的一个法向量为n 1=(1,0,1). 又FC →=(2,2,0),FA →=(0,0,2),设n 2=(x 2,y 2,z 2)是平面ACF 的法向量, 则⎩⎪⎨⎪⎧n 2·FC →=0n 2·FA →=0,即⎩⎨⎧2x 2+2y 2=02z 1=0,取x 2=1,则y 2=-1,z 2=0,∴平面ACF 的一个法向量为n 2=(1,-1,0).∴cos〈n1,n2〉=n1·n2|n1|·|n2|=12×2=12.∵平面EAC和平面ACF的夹角为锐角,∴平面EAC和平面ACF的夹角为60°.1.与空间角有关的翻折问题与最值问题的解法(1)翻折问题:要找准翻折前后的图形中的不变量及变化的量,再结合向量知识求解相关问题.(2)三视图问题:关于三视图问题,关键是通过三视图观察直观图中的对应线段的长度.2.关于空间角的探索问题的处理思路利用空间向量解决空间角中的探索问题,通常不需要复杂的几何作图,论证,推理,只需先假设结论成立,设出空间的坐标,通过向量的坐标运算进行推断,把是否存在问题转化为点的坐标是否有解的问题来处理.2.如图所示,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD.(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC夹角的余弦值.[解](1)因为ABCD为矩形,故AB⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD,故AB⊥PD.(2)过点P作PO⊥AD于点O,则PO⊥平面ABCD,过点O作OM⊥BC于点M,连接PM.则PM⊥BC,因为∠BPC=90°,PB=2,PC=2,所以BC=6,PM=23 3,设AB =t ,则在Rt △POM 中,PO =43-t 2, 所以V P -ABCD =13·t ·6·43-t 2 =13-6⎝ ⎛⎭⎪⎫t 2-232+83, 所以当t 2=23,即t =63时, V P -ABCD 最大为269.如图, 此时PO =AB =63,且PO ,OA ,OM 两两垂直,以OA ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系Oxyz ,则P ⎝ ⎛⎭⎪⎫0,0,63,D ⎝ ⎛⎭⎪⎫-263,0,0, C ⎝ ⎛⎭⎪⎫-263,63,0,B ⎝ ⎛⎭⎪⎫63,63,0. 所以PD →=⎝ ⎛⎭⎪⎫-263,0,-63,PC →=⎝ ⎛⎭⎪⎫-263,63,-63,PB →=⎝ ⎛⎭⎪⎫63,63,-63. 设平面PCD 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·PC →=0,m ·PD →=0,即⎩⎨⎧-2x 1+y 1-z 1=0,-2x 1-z 1=0,令x 1=1,则m =(1,0,-2),|m |=5;同理设平面PBC 的一个法向量n =(x 2,y 2,z 2),⎩⎪⎨⎪⎧ n ·PC →=0,n ·PB →=0,即⎩⎨⎧-2x 2+y 2-z 2=0,x 2+y 2-z 2=0, 令y 2=1,则n =(0,1,1),|n |=2,设平面PBC 与平面DPC 夹角为θ,显然θ为锐角,且cos θ=|m·n ||m||n |=25×2=105.1.思考辨析(1)二面角的范围是⎣⎢⎡⎦⎥⎤0,π2. ( )(2)若二面角α-l -β的两个半平面的法向量分别为n 1,n 2,则二面角的平面角与两法向量夹角〈n 1,n 2〉一定相等.( ) (3)二面角的大小通过平面角的大小来度量.( )[提示] (1)× 不是.是[0,π].(2)× 不一定.可能相等,也可能互补.(3)√2.在正方体ABCD -A 1B 1C 1D 1中,二面角A 1-BC -A 的余弦值为( ) A.12 B.23 C.22 D.33C [易知∠A 1BA 为二面角A 1 -BC -A 的平面角,cos ∠A 1BA =AB A 1B =22.] 3.若直线l 的方向向量a =(-2,3,1),平面α的一个法向量n =(4,0,1),则直线l 与平面α所成角的正弦值等于________.23834[设直线l 与平面α所成角为θ,则 sin θ=|cos 〈a ,n 〉|=|a·n ||n||a|=|-8+1|14·17=23834.] 4.在正方体ABCD -A 1B 1C 1D 1中,二面角A 1-BD -C 1的余弦值是________.13[如图,建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),B (1,1,0),A 1(1,0,1),DA 1→=(1,0,1),DB →=(1,1,0). 设n =(x ,y ,z )是平面A 1BD 的一个法向量,则⎩⎪⎨⎪⎧ n ·DA 1→=0,n ·DB →=0,即⎩⎨⎧x +z =0,x +y =0,令x =1,则y =-1,z =-1,∴n =(1,-1,-1). 同理,求得平面BC 1D 的一个法向量m =(1,-1,1),则cos 〈m ,n 〉=m·n |m||n|=13, 所以二面角A 1-BD -C 1的余弦值为13.]。
原创2:3.2.4 二面角及其度量
[0,π]
.
,
走进教材
二.二面角的向量求法
角的分类
向量求法
若AB、CD分别是二面角α-l-β的两个面内
与棱l垂直的异面直线(垂足分别为A、C),
则二面角的大小就是AB与CD的夹角
二面角
cos θ= cos<AB,CD>
设二面角α-l-β的平面角为θ,平面α、β的
法向量为n1,n2,则|cos θ|= |cos<n1,n2>|
第三章 空间向量与立体几何
§3.2.4 二面角及其度量
高中数学选修2-1·精品课件
复习引入
角的分类
异面直线
所成的角
直线与平面
所成的角
定义
范围
设a,b是两条异面直线,过空间任一点O作
a′∥a,b′∥b,则a′与b′所夹的锐角或
(0°,90°]
直角叫做a与b所成的角.
直线与它在这个平面内的射影所成的角.
图形
自主练习
1.若直线l的方向向量与平面α的法向量的夹角等于120°,
则直线l与平面α所成的角等于( C )
A.120°
C.30°
B.60°
D.以上均错
自主练习
2.向量a=(0,-1,3),b=(2,2,4)分别在二面角的两个半平面内,
15
±
且都与二面角的棱垂直,则这个二面角的余弦值为________.
AE=( , − , ),AC=(b,0,0).
2
2 2
D
C x
y
典例导航
设平面AEC的法向量为m=(x,y,z).
由m·AE=0, m ·AC=0得
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法第一课时空间向量与平行、垂直关系a21
(3)根据法向量的定义建立关于x,y,z的方程组:
n n
a b
0, 0.
(4)解方程组,取其中的一组解,即得该平面的一个法向量.由于平面的法
向量有无数个,故可在方程组的解中取一个较简单的作为平面的法向量.
7.利用空间向量表示立体几何中的平行与垂直关系 因为直线的方向向量与平面的法向量可以确定直线与平面的位置关系,所 以我们可以利用直线的方向向量与平面的法向量来研究空间直线、平面 的平行(或垂直)问题. 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则
4.已知直线l的方向向量为(2,m,1),平面α的法向量为(1, 1 ,2),且l∥α,
2
则m=
.
答案:-8
5.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的
值为
.
答案:-10
课堂探究
题型一 求平面的法向量 【例1】 如图所示,在四棱锥S-ABCD中,底面是直角梯形,∠ABC=90°, SA⊥底面ABCD,且SA=AB=BC=1,AD= 1 ,建立适当的空间直角坐标系,求平面 SCD与平面SBA的一个法向量. 2
法三
因为 MN
= C1N
- C1M
=
1 2
D1
A1
-
1 2
D1D
=
1 2
(
DB +
BA )-
1 2
(
D1 A1
+
A1D
)=
1 2
DB
+
1 2
BA
-
1 2
D1 A1
-
1 2
A1D
=
1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.作直线与平面夹角的一般方法:在直线上找一点,通过这个点作平面的 垂线,从而确定射影,找到要求的角.其中关键是作平面的垂线,此方法简称为 “一作,二证,三计算”. 2.用定义求二面角的步骤: (1)作(找)出二面角的平面角(作二面角时多用三垂线定理); (2)证明所作平面角即为所求二面角的平面角; (3)解三角形求角.
1.在正方体ABCDA1B1C1D1中,二面角A1BCA的余弦值为( 1 A.2 2 C. 2
2 AB cos∠A1BA=A B= 2 . 1 【答案】 C
)
2 B.3 3 D. 3
【解析】 易知∠A1BA为二面角A1BCA的平面角,
3 2.已知△ABC和△BCD均为边长为a的等边三角形,且AD= 2 a,则二面角 ABCD的大小为( ) 【导学号:15460077】 A.30° C.60° B.45° D.90°
(2)二面角的范围 设二面角为α,则0° ≤α≤180° . 2.直二面角 平面角是 直角 的二面角叫做直二面角. 3.二面角的度量 (1)分别在二面角αlβ的面α,β内,作向量n1⊥l,n2⊥l,则可以用〈n1,n2〉 来度量二面角αlβ. (2)设m1⊥α,m2⊥β,则〈m1,m2〉与二面角αlβ大小 相等 或 互补 .
所以,D1E就是D1B1在平面A1BCD1内的射影, 从而∠B1D1E就是D1B1与平面A1BCD1所成的角. EB1 在Rt△B1D1E中,有sin∠B1D1E=D B . 1 1
2 D1B1= A1B2 + A D 1 1 1= 16+9=5,
1 1 又S△A1BB1=2A1B· EB1=2A1B1· BB1, A1B= 25+16= 41, 4×5 20 4 41 ∴EB1= = ,∴sin∠B1D1E= 41 . 41 41
【解析】 设PC与平面PAB所成的角为θ,则cos 60° =cos θcos 30° ,得cos θ 3 =3.
【答案】
3 3
教材整理2 二面角及其度量 阅读教材P108~P109“例1”以上部分内容,完成下列问题. 1.二面角的相关概念 (1)二面角及其平面角
平面内的一条直线把平面分为两部分, 其中的每一部分 都 半平面 叫做半平面 从 一条直线出发的两个半平面 所组成的图形叫做二面角, 这条直线 每个半平面 叫做二面角的棱, 叫做二面角的面.棱为 l,两 二面角 个面分别为α,β的二面角,记作α-l-β,若A∈α,B∈β,则 二面角也可以记作________ AlB O 在二面角α-l-β的棱上 任取一点 ,在两半平面内分别作射 平面角 线OA⊥l,OB⊥l,则 ∠AOB 叫做二面角α-l-β的平面角
阶 段 一
阶 段 三
3.2.3 3.2.4
阶 段 二
直线与平面的夹角 二面角及其度量
学 业 分 层 测 评
1.理解直线与平面所成角的概念.(重点) 2.会用向量法求线线、线面、面面的夹角.(重点、难点) 3.正确区分向量夹角与所求线线角、面面角的关系.(易错点)
[基础· 初探] 教材整理1 直线与平面的夹角 阅读教材P106~P107“例”以上部分内容,完成下列问题. 1.直线与平面接AE,DE,
由题意得AE⊥BC,DE⊥BC, 3 3 且AE=DE= 2 a,又AD= 2 a, ∴∠AED=60° ,即二面角ABCD的大小为60° .
【答案】 C
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________________ 解惑:________________________________________________________ 疑问2:________________________________________________________ 解惑:________________________________________________________ 疑问3:________________________________________________________ 解惑:________________________________________________________
2.最小角定理
1.已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉 3 =- 2 ,则l与α所成的角为_______________.
3 【解析】 设l与α所成的角为θ,则sin θ=|cos〈m,n〉|= 2 ,∴θ=60° . 【答案】 60°
2.PA,PB,PC是由点P出发的三条射线,两两夹角为60° ,则PC与平面PAB 所成角的余弦值为________.
[再练一题] 1.如图3224,ABCD是正方形,V是平面ABCD外一点,且VA=VB=VC= AB,求二面角AVBC的余弦值.
图3224
【解】 取VB的中点为E, 连接AE,CE.
∵VA=AB=BC=VC, ∴AE⊥VB,CE⊥VB. ∴∠AEC是二面角AVBC的平面角.
3 设AB=a,连接AC,在△AEC中,AE=EC= 2 a,AC= 2 a,由余弦定理可 知
[小组合作型]
利用空间角的定义求空间角
在长方体ABCDA1B1C1D1中,AB=4,BC=3,AA1=5,试求B1D1与 平面A1BCD1所成角的正弦值.
【精彩点拨】 作出B1点在平面A1BCD1内的射影,从而得到B1D1在平面 A1BCD1内的射影.
【自主解答】 作B1E⊥A1B,垂足为E,又因为A1D1⊥平面ABB1A1, ∴A1D1⊥B1E. 由B1E⊥A1B及B1E⊥A1D1得B1E⊥平面A1BCD1,