(完整版)空间向量与立体几何题型归纳

合集下载

高考数学压轴专题新备战高考《空间向量与立体几何》全集汇编及答案解析

高考数学压轴专题新备战高考《空间向量与立体几何》全集汇编及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳一、选择题1.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.2.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).A 10B .3:1C .2:1D 102【答案】A【解析】【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值.【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长22910l r r r =+=, ∴圆锥SC 的侧面积为210rl r ππ=;圆柱OM 的底面半径为2r ,高为h ,又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM 的侧面积之比为2210:10:1r r ππ=.故选:A .【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.3.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .32⎣D .62⎣ 【答案】D【解析】【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y . ()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r 由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-.所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 62AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以62AP ≤≤u u u r 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.4.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36πB .16πC .12πD .163π 【答案】B【解析】【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.【详解】由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-==g ,解得22AB = 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点,11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.5.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( )A .若//a α,//b α,则//a bB .若a α⊥,//a b ,则b α⊥C .若a α⊥,a b ⊥r r ,则//b αD .若//a α,a b ⊥r r ,则b α⊥ 【答案】B【解析】【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解.【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确; 若a α⊥,a b ⊥r r ,则//b α或b α⊂,故C 错误;若//a α,a b ⊥r r ,则//b α,或b α⊂,或b 与α相交,故D 错误.故选:B .【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .3πB .πC .3πD .12π【答案】C【解析】【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积.【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示该几何体是棱长为1的正方体中的三棱锥1A BCD AB BC BD -===,.所以该三棱锥的外接球即为此正方体的外接球,球的直径2r 为正方体体对角线的长. 即22221113r =++=.所以外接球的表面积为243r ππ=.故选:C .【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.7.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C 【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.8.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64 B .62C 3D 3【答案】A【解析】【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α.【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=, ∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE , 且1136222BDE S BD OE ∆==g , 即α6 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.9.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8πB .12πC .83πD .123π 【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结在高中数学的学习中,空间向量与立体几何是一个重要且具有一定难度的板块。

通过空间向量的方法,我们能够更加简便地解决立体几何中的许多问题。

接下来,让我们一起通过一些例题来深入理解,并总结相关的知识点。

一、空间向量的基本知识点1、空间向量的概念:空间中具有大小和方向的量称为空间向量。

2、空间向量的表示:可以用有向线段表示,也可以用坐标表示。

3、空间向量的运算:包括加法、减法、数乘以及数量积。

加法和减法满足三角形法则和平行四边形法则。

数乘:λ(a + b) =λa +λb数量积:a·b =|a|·|b|·cosθ(θ为两向量的夹角)二、空间向量在立体几何中的应用1、证明线线平行设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a =λb(λ 为非零实数),则 l₁∥ l₂。

例 1:在长方体 ABCD A₁B₁C₁D₁中,E,F 分别为棱 AA₁,CC₁的中点,求证:BE ∥ DF 。

解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。

设长方体的长、宽、高分别为 a,b,c 。

则 B(a,b,0),E(a,0,c/2),D(0,0,0),F(0,b,c/2)BE =(0,b,c/2),DF =(0,b,c/2)因为 BE = DF ,所以 BE ∥ DF 。

2、证明线线垂直设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a·b = 0,则 l₁⊥l₂。

例 2:在正方体 ABCD A₁B₁C₁D₁中,M,N 分别为棱 AB,CC₁的中点,求证:DM ⊥ MN 。

解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。

设正方体的棱长为 2。

则 D(0,0,0),M(2,1,0),N(0,2,1)DM =(2,1,0),MN =(-2,1,1)DM·MN =-4 + 1 + 0 =-3 ≠ 0 ,所以 DM 与 MN 不垂直。

高中数学 2空间向量与立体几何(带答案)

高中数学 2空间向量与立体几何(带答案)

空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a 平行于b 记作a ∥b。

推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。

在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。

注意:向量a∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。

①式叫做平面MAB 的向量表示式。

又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。

用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结一、空间向量的基本知识点在立体几何中,空间向量是一个非常有力的工具。

首先,我们来了解一下空间向量的一些基本概念。

空间向量是具有大小和方向的量,它可以用有向线段来表示。

如果两个空间向量的大小和方向都相同,那么这两个向量就是相等的。

向量的加法和减法遵循三角形法则和平行四边形法则。

例如,对于向量\(\overrightarrow{a}\)和\(\overrightarrow{b}\),它们的和\(\overrightarrow{a} +\overrightarrow{b}\)可以通过将两个向量首尾相连得到,而差\(\overrightarrow{a} \overrightarrow{b}\)则是\(\overrightarrow{a}\)加上\(\overrightarrow{b}\)的相反向量。

空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b}\)等于\(\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos\theta\),其中\(\theta\)是\(\overrightarrow{a}\)和\(\overrightarrow{b}\)之间的夹角。

数量积的结果是一个标量。

空间向量的坐标表示:在空间直角坐标系中,向量\(\overrightarrow{a} =(x, y, z)\),其中\(x\)、\(y\)、\(z\)分别是向量在\(x\)轴、\(y\)轴、\(z\)轴上的分量。

二、空间向量在立体几何中的应用接下来,通过一些具体的例题来看看空间向量是如何解决立体几何问题的。

例 1:证明线线平行已知直线\(l_1\)和\(l_2\)的方向向量分别为\(\overrightarrow{v_1} =(2, -1, 3)\)和\(\overrightarrow{v_2} =(4, -2, 6)\),证明\(l_1 \parallel l_2\)。

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。

空间向量法解决立体几何问题全面总结

空间向量法解决立体几何问题全面总结
n
a α
b
(1)求平面的法向量的坐标的一般步骤:
• 第一步(设):设出平面法向量的坐标为n=(x,y,z). • 第二步(列):根据n· a = 0且n· b = 0可列出方程组 x1 x y1 y z1z 0 x2 x y2 y z2 z 0 • 第三步(解):把z看作常数,用z表示x、y. • 第四步(取):取z为任意一个正数(当然取得越特 殊越 好),便得到平面法向量n的坐标.
1
• (3)平面与平面的位置关系 • 平面α的法向量为n1 ,平面β的法向量为n2 • n α • n α • n
1 1
n2
2
β
β
• ①若n1∥n2,即n1=λn2,则α∥β • ②若n1⊥n2,即n1 · n2= 0,则α⊥β
• 例4 正方体ABCD-A1B1C1D1中,E、F分别是 BB1、CD的中点,求证:平面AED⊥平面A1FD
• (2)直线与平面的位置关系 • 直线L的方向向量为a,平面α的法向量为n, 且L α. • ①若a∥n,即a =λn,则 L⊥ α • ②若a⊥n,即a· n = 0,则a ∥ α.
n a L n a
α L
α
• • • •
例3棱长都等于2的正三棱柱ABC-A1B1C1, D,E分别是AC,CC1的中点,求证: (1)A1E ⊥平面DBC1; A1 (2)AB1 ∥ 平面DBC1
z C1 B1 A E D C x B y
• 解:以D为原点,DA为x轴,DB为y轴建立空 间直角坐标系D-xyz.则 • A(-1,0,0), B(0, 3 ,0), E(1,0,1), A1(-1,0,2), B1(0, 3,2), C1(1,0,2). • 设平面DBC1的法向量为n=(x,y,z),则 x 2 z x 2z 0 • 3 y 0 解之得 y 0 , • 取z = 1得n=(-2,0,1) • (1) A1E (2,0,1) =- n,从而A1E ⊥平面DBC1 • (2) AB1 (1, 3,2) ,而 AB n =-2+0+2=0 • ∴AB1 ∥平面DBC1

(完整版)空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案

(完整版)空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案

空间向量在立体几何中的应用莎【考纲说明】1能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2•会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算1、向量的几何运算(1)向量的数量积:已知向量,贝U 叫做的数量积,记作,即空间向量数量积的性质:①;②;③•r r r r r r(2)向量共线定理:向量a a 0与b共线,当且仅当有唯个实数,使b a .2、向量的坐标运算(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(2)若,,则;(3)夹角公式:(4)两点间的距离公式:若,,贝U二、空间向量在立体几何中的应用2利用空间向量证明平行问题对于平行问题,一般是利甲线向量和共面向量定理进行证明.二3•利用空间向量证明垂直问题’对于垂直问题,一般是利用进行证明;4•利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(线线角的范围[0°,900])(3)二面角的求法:设n i,n2分别是二面角其补角的大小(如图)的两个面,的法向量,则就是二面角的平面角或5•利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a, b垂直,其数量积为零,列出两个三元一组解,即得到平面的一个法向量(如图) 。

次方程,联立后取其(2)利用法向量求空间距离(a) 点A到平面的距离:(b) 直线与平面之间的距离:(c) 两平行平面之间的距离:,其中,是平面的法向量。

,其中,是平面的法向量。

,其中,是平面的法向量。

【经典例题】【例1】(2010全国卷1理)正方体ABCD-AB i C i D i 中,B B i 与平面AC D i 所成角的余弦值为(【解析】D【例2】(20i0全国卷2文)已知三棱锥SA =3,那么直线AB 与平面SBC 所成角的正弦值为( ABC 为边长等于2的等边三角形,SA 垂直于底面)(20i2重庆)如图,在直三棱柱 ABC-A i B i C i 中,AB=4 , AC=BC=3 , D 为AB 的中点。

立体几何的空间向量例题以及解答与考点总结

立体几何的空间向量例题以及解答与考点总结

D. 166a2
上一页
返回导航
下一页
第八章 立体几何与空间向量
32
解析:选 D.如图①②所示的实际图形和直观图,
由②可知,A′B′=AB=a,O′C′=12OC= 43a,在图②中作 C′D′⊥A′B′于 D′, 则 C′D′= 22O′C′= 86a.所以 S△A′B′C′=12A′B′·C′D′=12×a× 86a=166a2.故选 D.
3
上一页
返回导航
下一页
第八章 立体几何与空间向量
4
2.直观图 (1)画法:常用斜二测画法. (2)规则:①原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x′轴,y′轴的夹角为 __4_5_°__(_或__1_3_5_°__)___,z′轴与 x′轴和 y′轴所在平面垂直.②原图形中平行于坐标轴的线段, 直观图中仍平行于坐标轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度不变,平行 于 y 轴的线段长度在直观图中_变__为__原__来__的__一__半___.
答案:②③④
上一页
返回导航
下一页
第八章 立体几何与空间向量
26
空间几何体概念辨析问题的常用方法
上一页
返回导航
下一页
第八章 立体几何与空间向量
27
考点二 空间几何体的直观图(基础型)
复习指导
会用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易
组合)的直观图.
核心素养:直观想象
上一页
答案:③⑤
上一页
返回导航
下一页
第八章 立体几何与空间向量
11
2.已知圆锥的表面积等于 12π cm2,其侧面展开图是一个半圆,则底面圆的半径为 ________cm. 解析:由题意,得 S 表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得 r2=4,所以 r=2(cm). 答案:2

(完整版)空间向量和立体几何典型例题

(完整版)空间向量和立体几何典型例题
∵PC 平面PCD,
∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP,
∴△APC≌△BPC.
又PC⊥AC,
∴PC⊥BC.
又∠ACB=90°,即AC⊥BC,
且AC∩PC=C,
∴AB=BP,
∴BE⊥AP.
∵EC是BE在平面PAC内的射影,
∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE= ,
空间向量与立体几何典型例题
一、选择题:
1.(2008全国Ⅰ卷理)已知三棱柱 的侧棱与底面边长都相等, 在底面 内的射影为 的中心,则 与底面 所成角的正弦值等于(C)
A. B. C. D.
1.解:C.由题意知三棱锥 为正四面体,设棱长为 ,则 ,棱柱的高 (即点 到底面 的距离),故 与底面 所成角的正弦值为 .
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB= ,
, ,
, .
是二面角 的平面角.
, , ,

二面角 的大小为 .
(Ⅲ) ,
在平面 内的射影为正 的中心 ,且 的长为点 到平面 的距离.
如(Ⅱ)建立空间直角坐标系 .

点 的坐标为 . .
点 到平面 的距离为 .
5.(2008福建文)如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。

(完整版)空间向量与立体几何题型归纳

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC(1)证明AB丄平面VAD(2)求面VAD与面VDB所成的二面角的大小2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点.(1)求直线AC与PB所成角的余弦值;(2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动.证明:DE 丄AD;当E 为AB 的中点时,求点 A 到面ECD 的距离;7TAE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 ,和 那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC=2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60°(1)求证:EF //平面 ADD 1A 1;⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值.N : 5 题到 11 题都是运用基底思想解题5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。

(1) (2) (3) A B6. 三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,/ A1AB=45 , / A1AC=60 ,求.面角B-AA1-C的平面角的余弦值。

空间向量与立体几何知识点与例题

空间向量与立体几何知识点与例题

空间向量与立体几何知方法总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b ; BA OA OB a b ; OP a( R)运算律:⑴加法交换律: a b b a⑵加法结合律:(a b) c a (b c)⑶数乘分配律:(a b) a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作a // b 。

(2)共线向量定理:空间任意两个向量a、b (b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A、B、C 三点共线<=> AB AC<=> OC xOA yOB(其中x y 1)(4)与a共线的单位向量为a a4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量a,b 不共线,p 与向量a,b 共面的条件是存在实数x, y 使p xa yb 。

(3)四点共面:若A、B、C、P 四点共面<=> AP xAB yAC<=> OP xOA yOB zOC (其中x y z 1)5. 空间向量基本定理:如果三个向量a,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x, y, z,使p xa yb zc 。

若三向量a,b,c不共面,我们把{a,b,c} 叫做空间的一个基底,a,b, c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

1推论:设 O, A,B,C 是不共面的四点,则对空间任一点 P ,都存在唯一的三个有序实数x, y, z ,使OPxOA yOB zOC 。

空间向量解立体几何(含综合题习题)

空间向量解立体几何(含综合题习题)

空间向量解立体几何(含综合题习题)利用空间向量解立体几何问题一、基础知识1.刻画直线与平面方向的向量直线的方向向量可由直线上的两个点来确定。

例如,若有点A(2,4,6)和点B(3,0,2),则直线AB的方向向量为AB=(1,-4,-4)。

平面的法向量来刻画平面的倾斜程度。

法线的方向向量就是平面的法向量。

要求出指定平面的法向量,需要平面上的两条不平行的直线。

设平面的法向量为n=(x,y,z),若平面上所选两条直线的方向向量分别为a=(x1,y1,z1)和b=(x2,y2,z2),则可列出方程组:x1x+y1y+z1z=0和x2x+y2y+z2z=0,解出x,y,z的比值即可。

例如,若a=(1,2,0)和b=(2,1,3),求a,b所在平面的法向量,则设n=(x,y,z),有方程组:x+2y=0,2x+y+3z=0,解得:x:y:z=-2:1:1,故n=(-2,1,1)。

2.空间向量可解决的立体几何问题1)判定类线面平行:a∥b当且仅当a∥b。

线面垂直:a⊥XXX且仅当a⊥b。

面面平行:α∥β当且仅当m∥n。

面面垂直:α⊥β当且仅当m⊥n。

2)计算类两直线所成角:cosθ=cos(a,b)=(a·b)/(|a||b|)。

线面角:sinθ=sin(a,m)=(a·m)/(|a||m|)。

二面角:cosθ=cos(m,n)(法向量夹角关系而定)或cosθ=-cos(m,n)。

点到平面距离:设A为平面α外一点,P为平面α上任意一点,则A到平面α的距离为d=|AP·n|/|n|,即AP在法向量n上投影的绝对值。

3)点的存在性问题在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件。

解决该问题时,可以先设出所求点的坐标(x,y,z),再想办法利用条件求出坐标。

为底面,以AD为高,构造平面ADE,可知平面ADE与平面ABCD- A1垂直,且平面ADE与平面EF所成角为所求角,故EF与平面ADE垂直。

空间向量与立体几何题型总结

空间向量与立体几何题型总结

空间向量与立体几何题型总结
空间向量与立体几何是数学中重要的概念和工具,用于研究和解决与三维空间相关的几何问题。

以下是空间向量与立体几何的一些常见题型总结:
1. 空间向量的表示与计算:题目可能涉及给定多个点的坐标,在空间中构建向量,进行向量的运算,如加法、减法、数量乘法、点积和叉乘等。

2. 向量共线与线性相关性:要求判断给定的向量是否共线,或通过线性相关性判断某向量是否可以表示为其他向量的线性组合。

3. 向量垂直与正交性:题目可能要求判断给定的向量是否垂直或正交,通过向量的点积判断向量之间的关系。

4. 平面与直线的位置关系:需要确定一条直线与一个平面的位置关系,如直线是否平行于平面、直线是否在平面内,或找到直线与平面的交点等。

5. 平面的方程与性质:要求根据给定的条件建立平面方程,如点法式、两直线式、两平面式等,并通过方程确定平面的性质,如法向量、倾斜角等。

6. 空间图形的体积与表面积计算:题目可能给出空间图形的参数,要求计算其体积或表面积,如立方体、圆锥体、球体等。

7. 空间坐标与距离计算:需要根据给定的空间点坐标计算两点之间的距离,或确定一个点到直线、平面的距离。

8. 空间二面角与线面夹角的计算:题目可能要求计算空间中的二面角或线面夹角,要根据给定的图形和参数进行计算。

以上是一些常见的空间向量与立体几何的题型总结,但在实际中还可能会涉及更复杂的问题。

熟练掌握相关的概念、公式和方法,结合几何直觉能力,有助于解答这些问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与立体几何
1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD;
(2)求面VAD与面VDB所成的二面角的大小
2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点.
(1)求直线AC与PB所成角的余弦值;
(2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)
3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.
(1)证明:D 1E ⊥A 1D ;
(2)当E 为AB 的中点时,求点A 到面ECD 1的距离;
(3)AE 等于何值时,二面角D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里?)
4. 如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°.
(1)求证:EF ∥平面ADD 1A 1;
(2)若2
21
BB ,求A 1F 与平面DEF 所成角的正弦值.
N:5题到11题都是运用基底思想解题
5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。

6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。

7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长
8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。

9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。

(1)计算DE的长;
(2)求点O到平面ABC的距离。

10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

11.如图,平行六面体ABCD-A′B′C′D′中,底面ABCD是边长为a的正方形,侧棱AA′的长为b,且∠A′AB=∠A′AD=120°,求(1)AC′的长;(2)直线BD′与AC夹角的余弦值。

N:12题到14题为建系问题
12.已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,求
(1)直线AD与平面BCD所成角的大小;
(2)直线AD与直线BC所成角的大小;
(3)二面角A-BD-C的余弦值.
13.在如图的试验装置中,正方形框架的边长都是1,且平面ABCD与平面ABEF互相垂直.活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BM=a(0<a<√2).
(1)求MN的长;(2)a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成二面角的余弦值.
14.如图,把正方形纸片ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O 是原正方形ABCD的中心,求折纸后的∠EOF大小.。

相关文档
最新文档