空间向量题型归纳总结
空间向量题知识点总结
空间向量题知识点总结一、向量的表示1. 向量的定义在三维空间中,任意两个不同点P(x1,y1,z1)与Q(x2,y2,z2)之间所确定的线段PQ,我们称之为向量。
一般用字母a、b、c等表示。
2. 向量的表示在空间直角坐标系中,向量AB可用有向线段表示,并写成AB或AB。
3. 向量的模向量AB的模记作|AB|,其计算公式为|AB| = √(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2。
4. 向量的方向向量AB的方向是指从点A到点B的方向。
5. 向量的方向角向量AB与x轴、y轴、z轴的正方向之间的夹角分别称为向量AB的方向角α、β和γ。
二、向量的加法1. 向量的加法设有两个向量A(x1,y1,z1)和B(x2,y2,z2),定义A与B的和向量C为C(x1+x2, y1+y2,z1+z2)。
2. 向量的减法设有两个向量A(x1,y1,z1)和B(x2,y2,z2),定义A与B的差向量C为C(x1-x2, y1-y2, z1-z2)。
三、向量的数量积1. 数量积的定义两个向量A(x1,y1,z1)和B(x2,y2,z2)的数量积定义为A·B = x1*x2 + y1*y2 + z1*z2。
2. 数量积的几何意义A·B = |A|*|B|*cosθ,其中θ为A与B的夹角。
3. 计算数量积A·B = x1*x2 + y1*y2 + z1*z2。
四、向量的叉积1. 叉积的定义两个向量A(x1,y1,z1)和B(x2,y2,z2)的叉积定义为A×B = (y1*z2 - y2*z1, z1*x2 - z2*x1,x1*y2 - x2*y1)。
2. 叉积的几何意义A×B = |A|*|B|*sinθ*n,其中θ为A与B的夹角,n为A、B所张平面的法向量。
3. 计算叉积A×B = (y1*z2 - y2*z1, z1*x2 - z2*x1, x1*y2 - x2*y1)。
空间向量知识点总结题型
空间向量知识点总结题型一、基本概念1. 空间中的向量空间中的向量是指具有大小和方向的量,在数学中以有向线段的形式表示,通常用字母加上一个箭头来表示向量,如a→。
2. 向量的运算空间中的向量可以进行加法、减法、数乘等运算。
加法运算是将两个向量的对应分量相加;减法运算是将两个向量的对应分量相减;数乘运算是将一个向量的每个分量都乘以一个实数。
3. 向量的模向量的模是指向量的大小,用||a||来表示,其计算公式为:||a|| = √(a1^2 + a2^2 + a3^2)。
二、向量的表示1. 分量表示空间中的向量可以用分量表示法来表示,即将向量投影到坐标轴上,得到三个分量。
例如,向量a可以表示为a = (a1, a2, a3)。
2. 向量的坐标向量的坐标通常用方向余弦来表示,即向量与坐标轴的夹角的余弦值。
向量a的坐标可表示为cosα,cosβ,cosγ。
三、向量的数量积和向量积1. 向量的数量积向量的数量积也称为点积,表示为a·b,其计算公式为a·b = a1b1 + a2b2 + a3b3。
其几何意义为:a·b = ||a|| ||b|| cosθ,其中θ为a与b之间的夹角。
2. 向量的向量积向量的向量积也称为叉积,表示为a×b,其计算公式为a×b = (a2b3 - a3b2, a3b1 - a1b3,a1b2 - a2b1)。
其几何意义为:a×b的大小为平行四边形的面积,方向垂直于平行四边形,满足右手定则。
四、空间中的直线和平面1. 空间中的直线空间中的直线可以用点和方向向量来表示,通常表示为l:r = a + λb,其中a为直线上的一个点,b为直线的方向向量,λ为参数。
2. 空间中的平面空间中的平面可以用一个点和法向量来表示,通常表示为Ax + By + Cz + D = 0,其中A、B、C为法向量的分量,D为平面到原点的距离。
五、空间向量的应用空间向量在物理、工程、计算机图形学等领域有广泛的应用,如力的合成、三维坐标系的运动、三维图形的计算等。
利用空间向量求空间角考点与题型归纳
利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B D ′A C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B CP D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B CP D 为钝角, 所以二面角B CP D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC A 1B 1C 1中,AA 1=2,二面角B AA 1C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F OE A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F OE A 为锐角, 所以二面角F OE A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz .当三棱锥M ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M P A C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B OB 1C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B OB 1C 是锐二面角, ∴二面角B OB 1C 的余弦值为2121. 2.如图,在四棱锥P ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。
专题1.9 空间向量与立体几何全章十大压轴题型归纳(拔尖篇)(原卷版)
= 0,,1,)/;¨mu8*
-1 =
1
A2
223-24
2
1
B5
3
D3
1
1
·!"©ª·?@AB'(、、、.kl,cd*E)/-< = 3 + 2 +
-0、、、)/d*-1f t EJG
A4
2
C3
1
1
B−8
C6
3
D−4
323-24 [·_`«>·?@AB67-;U*.}E89:*+−1111,-,
ST;C1,1
11Βιβλιοθήκη -<1 = 31, = 31-<∠1 = ∠1 = ∠ = 60∘.
(1)Iw
,,1,d*K
1
(2)¬ .J®-1 ⊥ 1K
(1)0//-< ⋅ = 28-IEÇÈK
(2)0 ⊥ -< > 0, > 0-IE¹»J
423-24 [·_`M·?@AB'(kl,o/(2,0,−2)-(1,−1,−2)-(3,0,−4)-Ã = =
(1)0|| = 6-<∥-IabK
A 42
3
B 3
C 22
6
D 6
323-24 m[·ÎÏ·?@AB;CD. 2 EFR+—1111,-E-F-M-N ST.
-1-1-11,/
(1)Iw
//8*11K
(2)InË8*1EÌÍ
423-24 [·Å·?@AB67-FR+−1111ECD. 2-M GC AB E,/-P GC
11
E/.
(1)In DB1 8*1EFJ.
空间向量与立体几何例题和知识点总结
空间向量与立体几何例题和知识点总结在高中数学的学习中,空间向量与立体几何是一个重要且具有一定难度的板块。
通过空间向量的方法,我们能够更加简便地解决立体几何中的许多问题。
接下来,让我们一起通过一些例题来深入理解,并总结相关的知识点。
一、空间向量的基本知识点1、空间向量的概念:空间中具有大小和方向的量称为空间向量。
2、空间向量的表示:可以用有向线段表示,也可以用坐标表示。
3、空间向量的运算:包括加法、减法、数乘以及数量积。
加法和减法满足三角形法则和平行四边形法则。
数乘:λ(a + b) =λa +λb数量积:a·b =|a|·|b|·cosθ(θ为两向量的夹角)二、空间向量在立体几何中的应用1、证明线线平行设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a =λb(λ 为非零实数),则 l₁∥ l₂。
例 1:在长方体 ABCD A₁B₁C₁D₁中,E,F 分别为棱 AA₁,CC₁的中点,求证:BE ∥ DF 。
解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。
设长方体的长、宽、高分别为 a,b,c 。
则 B(a,b,0),E(a,0,c/2),D(0,0,0),F(0,b,c/2)BE =(0,b,c/2),DF =(0,b,c/2)因为 BE = DF ,所以 BE ∥ DF 。
2、证明线线垂直设直线 l₁和 l₂的方向向量分别为 a 和 b,如果 a·b = 0,则 l₁⊥l₂。
例 2:在正方体 ABCD A₁B₁C₁D₁中,M,N 分别为棱 AB,CC₁的中点,求证:DM ⊥ MN 。
解:以 D 为原点,分别以 DA,DC,DD₁所在直线为 x,y,z 轴,建立空间直角坐标系。
设正方体的棱长为 2。
则 D(0,0,0),M(2,1,0),N(0,2,1)DM =(2,1,0),MN =(-2,1,1)DM·MN =-4 + 1 + 0 =-3 ≠ 0 ,所以 DM 与 MN 不垂直。
空间向量知识点与题型归纳总结
空间向量知识点与题型归纳总结知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =. 模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l 的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式.6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立. 三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义Aaaα图 8-154O已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---.这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标. (3)两个向量的夹角及两点间的距离公式. ①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++;cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b ⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型1 空间向量及其运算 思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .解析 1122OM OA a ==,()()1122ON OB OC b c =+=+,()()111222MN ON OM b c a b c a =-=+-=+-.变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z === .B 111,,336x y z ===.C 111,,363x y z === .D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式 3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++ .C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.解析 因为//m n 且0m ≠,所以n m λ=,即()()182324x a b yc a b c λ+++=--.又因为,,a b c 不共面,所以138224x y λλλ+=⎧⎪=-⎨⎪=-⎩,解得138x y =-⎧⎨=⎩.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据2222111a a x y z ==++;求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A 2a .B 21.2B a 21.4C a 23.4D a 解析 依题意,点,EF 分别是,BC AD 的中点,如图8-160所示,AE ⋅AF ()1122AB AC AD =+⋅()14AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a =︒+︒=. 故选C . 变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .分析 求CD 的长度转化为求空间向量CD 的模.解析 因为CD CA AB BD =++,故()22CD CA AB BD =++ 222222CA AB BD CA AB AB BD CA BD =+++⋅+⋅+⋅1110211cos1352CA BD =++++⨯⨯⨯︒+⋅,设点C 在β内的射影为H ,则HA AB ⊥,,135HA BD =︒.故()CA BD CH HA BD CH BD HA BD ⋅=+⋅=⋅+⋅10cos1351cos 45cos1352HA BD =+︒=⨯︒︒=-.故222CD =,则22CD =-变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到β3Q 到α的距离为3,P Q 两点之间距离的最小值为( )..2.2B .23C .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( )..6A .42B .23C .211D例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解析 由题设可知,以1,,DA DC DD 为单位正交基底,建立如图8-165所示的空间直角坐标系D xyz -,则有()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D . 由()11,1,1D B =-,()11,,D P D B λλλλ==-,()()()111,0,1,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---. 显然APC ∠不是平角,所以APC ∠为钝角,cos cos ,0PA PC APC PA PC PA PC⋅∠==<,等价于0PA PC ⋅<,即()()()()()21110λλλλλ--+--+-<,得113λ<<.因此,λ的取值范围是1,13⎛⎫⎪⎝⎭.评析 利用向量知识将APC ∠为钝角转化为cos ,0PA PC <求解是本题的关键.变式 1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ).1.24A 1.18B 1.9C 1.12D 例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).解析 取AD 的中点O ,以OA 为x 轴,垂直于OA 的OE 为y 轴,OP 为z 轴,建立空间直角坐标系如图8-167所示.设(),,0M x y ,正方形的边长为a ,30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭,,,02a C a ⎛⎫- ⎪⎝⎭, 则()222a MC x y a ⎛⎫=++- ⎪⎝⎭,22234MP x y a =++,MP MC =,得()22222324a a x y a x y ⎛⎫++-=++ ⎪⎝⎭,即202a x y -+=.所以点M 在正方形ABCD 内的轨迹为一条线段,且过D 点和AB 的中点.故选A .评注 本题利用空间线面位置关系求解也很快.由题意知空间内与两定点距离相等的点均在线段中垂面内,即M 在线段PC 的中垂面内.又M 为底面ABCD 内一动点,则M 的轨迹为两平面的交线落在底面内的部分,排除C 、D .又BP BC >,故排除B .故选A .变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..33A - .323B - .63C - .3D题型2 空间向量在立体几何中的应用 思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=.例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.解析 以D 为坐标原点建立空间直角坐标系-D xyz ,如图8-169所示.不妨设DA a =,DC b =,1DD c =,则0,0,2c M ⎛⎫ ⎪⎝⎭,(),,0B a b ,,,224a b c E ⎛⎫ ⎪⎝⎭,()1,0,A a c ,2,,033a b N ⎛⎫⎪⎝⎭,则13,,224a b c A E ⎛⎫=-- ⎪⎝⎭,122,,33a b A N c ⎛⎫=-- ⎪⎝⎭,因为1143A N A E =,故1A ,E ,N 三点共线.变式 1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.解析 由平面ABEF ⊥平面ABCD ,又AF AB ⊥,平面ABEF 平面ABCD AB =,得AF ⊥平面ABCD ,以A 为坐标原点,建立空间直角坐标系A xyz -,如图8-172所示.设AB a =,BC b =,BE c =,则(),0,0B a ,(),,0C a b ,()0,2,0D b ,(),0,E a c ,()0,0,2F c .()0,,CE b c =-,()0,2,2DF b c =-,因为2DF CE =,所以//DF CE ,则,CE DF 确定一个平面,即,,,C D E F 四点共面.变式1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .解析 以点D 为坐标原点,建立空间直角坐标系D xyz -,如图8-175所示.设正方体的棱长为a ,则()1,0,A a a ,(),0,0A a ,()0,,0C a ,(),,0B a a ,()10,0,D a .设(),,z MN x y =,由MN 是异面直线1A D 与AC 的公垂线段,得1MN A D ⊥,MN AC ⊥,又()1,0,A D a a =--,(),,0AC a a =-,故100MN A D MN AC ⎧⋅=⎪⎨⋅=⎪⎩,00ax az ax ay --=⎧⎨-+=⎩, 令1x =,则1z =-,1y =,所以()1,1,1MN =-,()1,,BD a a a aMN =--=-,即1//BD MN .因此1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .解析 因为11D E DE DD =-,11DD AA =,E 是DC 的中点,12DE DC AB ==,所以111D E AB AA A B =-=.又因为1D E ⊄平面1A BD ,11//D E A B ,所以1//D E 平面1A BD .评注 利用空间向量证明线面平行,已知直线的方向向量为a ,只要在平面内找到一条直线的方向向量为b ,问题转化为证明a b λ=即可.变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .解析 解法一:以1D 为坐标原点,11D A 为x 轴,11D C 为y 轴,1D D 为z 轴,建立空间直角坐标系1D xyz -,如图8-179所示.设正方体的棱长为a ,则()1,0,0A a ,()0,0,D a ,()10,,0C a ,()0,,C a a ,()1,,0B a a ,0,,2a M a ⎛⎫ ⎪⎝⎭,0,,02a P ⎛⎫ ⎪⎝⎭,,,02a N a ⎛⎫⎪⎝⎭,()1,0,A D a a =-,11,0,222aa MN A D ⎛⎫=-=- ⎪⎝⎭,所以1//MN A D ,即1//MN A D ,(),,0BD a a =--,1,,0222a a PN BD ⎛⎫==- ⎪⎝⎭,所以//PN BD ,即//PN BD .因为MNPN N =,1A DBD D =,所以平面//MNP 平面1A BD .解法二:设平面MNP 的法向量为()1111,,n x y z =,由1MN n ⊥,1PN n ⊥,得1111022022a a x z a a x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令11z =,得111111x y z =⎧⎪=-⎨⎪=⎩, 所以()11,1,1n =-.设平面1A BD 的法向量为()2222,,n x y z =,由12A D n ⊥,2BD n ⊥,得222200ax az ax ay -+=⎧⎨--=⎩,令21z =,得222111x y z =⎧⎪=-⎨⎪=⎩, 所以()21,1,1n =-.因为12//n n ,所以平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点. 求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.分析 平面ABC ⊥平面BCDE ,在平面ABC 内作AO BC ⊥AO ⇒⊥平面BCDE ,以点O 为坐标原点建立空间直角坐标系.解析 作AO BC ⊥,垂足为O ,则AO ⊥平面BCDE ,且O 为BC 的中点,以O 为坐标原点,OC 为x 轴,建立如图8-182所示的直角坐标系O xyz -.设()0,0,A a ,由已知条件知()1,0,0C ,()1,2,0D ,()1,2,0E -,()2,2,0CE =-,()1,2,AD a =-.因为0CE AD=⋅,所以CE AD ⊥。
高考空间向量知识点总结
高考空间向量知识点总结空间向量是高中数学中的重要概念之一,也是高考中常考的知识点。
掌握好空间向量的相关知识对于解题和理解几何概念都非常重要。
本文将为您总结高考空间向量的相关知识点,帮助您更好地备考高考。
一、空间向量的定义和表示方法空间向量是有大小和方向的量,通常用有序三元组表示。
设有两点A(x₁,y₁,z₁)和B(x₂,y₂,z₂),则向量AB可以表示为:AB = (x₂-x₁, y₂-y₁, z₂-z₁)二、空间向量的模、方向余弦和共线性1. 向量的模:向量AB的模表示为|AB|,计算方式为:|AB| = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]2. 向量的方向余弦:设向量AB与坐标轴的夹角分别为α、β、γ,则方向余弦分别为:cosα = (x₂-x₁) / |AB|cosβ = (y₂-y₁) / |AB|cosγ = (z₂-z₁) / |AB|3. 向量的共线性:若两个向量平行或反向平行,则称其共线。
当两个向量的坐标比例相等时,它们共线。
三、空间向量的运算1. 向量的加法:设有两个向量AB和CD,其和可以表示为:AB + CD = (x₂-x₁+x₄-x₃, y₂-y₁+y₄-y₃, z₂-z₁+z₄-z₃)2. 向量的数量乘法:设有一个向量AB和实数k,其数量乘积为:kAB = (kx, ky, kz),其中x, y, z分别为向量AB的坐标3. 向量的点乘和叉乘:(1) 点乘:设有两个向量AB和CD,其点乘结果为:AB · CD = |AB||CD|cosθ,其中θ为两个向量夹角的余弦值(2) 叉乘:设有两个向量AB和CD,其叉乘结果为:AB × CD = (i, j, k),其中i表示x轴分量,j表示y轴分量,k表示z 轴分量四、空间向量的应用1. 向量在平面内的投影:设有一个向量AB和平面α,向量AB在平面α上的投影为向量AC,计算公式为:AC = |AB|cosθ,其中θ为向量AB与平面α的夹角的余弦值2. 平面的方程:设平面α过点A(x₁,y₁,z₁)且法向量为n(a,b,c),则平面α的方程为:ax + by + cz = d,其中d = ax₁ + by₁ + cz₁3. 空间向量的夹角:设有两个向量AB和CD,它们的夹角θ可以通过以下公式计算:cosθ = (AB · CD) / (|AB||CD|)五、空间向量的坐标表示和平行四边形法则1. 坐标表示:空间中的向量可以通过坐标表示,即将向量的尾点移到坐标原点,将向量的起点坐标作为表示该向量的坐标。
用空间向量解立体几何问题方法归纳
用空间向量解立体几何问题方法归纳(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量, 则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求P A 长. (2)学审题由(1)―→AD,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC ,∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC . (2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC . 如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m |n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°. 由余弦定理知AE =12+⎝ ⎛⎭⎪⎫122-2×1×12cos 60°=32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2, 即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎫1,-12,0, D ⎝ ⎛⎭⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎨⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·AC |n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值.解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE ⊥BD , ∴Rt △AOD ∽Rt △BAD ,∴DO AD =ADBD ,∴DO =4,∴BO =5. 在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2, ∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧ n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x =25得n 1=(25,4,5).又n 2=(0,1,0)为平面AEP 的一个法向量, ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=461×1=46161, 故二面角E -AP -B 的余弦值为46161.5.如图,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQQD 的值;若不存在,请说明理由.解:(1)在△P AD 中,P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量, cos 〈PB ,OA 〉=PB ·OA | PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ), 则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =(λ+1)y +(1-λ)z =0.取z =λ+1,得m =(1-λ,λ-1,λ+1), 又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍), 所以存在点Q ,且PQ QD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0). 设平面SCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1, 于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM ⊄平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪(1,0,0)·(2,-1,1)1·6=⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1). 又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪(x ,2x -3,-1)·(1,0,0)x 2+(2x -3)2+(-1)2·1=⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎫1x 2-12⎝ ⎛⎭⎪⎫1x +5=110⎝ ⎛⎭⎪⎫1x -352+75 .当1x =35,即x =53时,(sin θ)max =357.7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠F AB =∠DAB =90°,AF =AB =BC =2,AD =1,F A ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵F A ⊥AB ,F A ⊥CD ,AB 与CD 相交,∴F A ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·DF =0,n ·DC =0⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1. 则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点. (1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面P AB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ). 由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面P AB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧ n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝ ⎛⎭⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即 34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23). 设EC 与平面P AB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面P AB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0),则⎩⎪⎨⎪⎧ n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +(2-t )y =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。
空间向量与立体几何例题和知识点总结
空间向量与立体几何例题和知识点总结一、空间向量的基本知识点在立体几何中,空间向量是一个非常有力的工具。
首先,我们来了解一下空间向量的一些基本概念。
空间向量是具有大小和方向的量,它可以用有向线段来表示。
如果两个空间向量的大小和方向都相同,那么这两个向量就是相等的。
向量的加法和减法遵循三角形法则和平行四边形法则。
例如,对于向量\(\overrightarrow{a}\)和\(\overrightarrow{b}\),它们的和\(\overrightarrow{a} +\overrightarrow{b}\)可以通过将两个向量首尾相连得到,而差\(\overrightarrow{a} \overrightarrow{b}\)则是\(\overrightarrow{a}\)加上\(\overrightarrow{b}\)的相反向量。
空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b}\)等于\(\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos\theta\),其中\(\theta\)是\(\overrightarrow{a}\)和\(\overrightarrow{b}\)之间的夹角。
数量积的结果是一个标量。
空间向量的坐标表示:在空间直角坐标系中,向量\(\overrightarrow{a} =(x, y, z)\),其中\(x\)、\(y\)、\(z\)分别是向量在\(x\)轴、\(y\)轴、\(z\)轴上的分量。
二、空间向量在立体几何中的应用接下来,通过一些具体的例题来看看空间向量是如何解决立体几何问题的。
例 1:证明线线平行已知直线\(l_1\)和\(l_2\)的方向向量分别为\(\overrightarrow{v_1} =(2, -1, 3)\)和\(\overrightarrow{v_2} =(4, -2, 6)\),证明\(l_1 \parallel l_2\)。
空间向量专题讲义一------小题题型突破
题型六:空间向量的综合类问题 1(多选).关于空间向量,以下说法正确的是( ) A.空间中的三个向量,若有两个向量共线,则这三个向量一定共面
B.若对空间中任意一点 O ,有 OP = 1 OA + 1 OB + 1 OC ,则 P , A , B , C 四点共面 632
C.设 a,b, c 是空间中的一组基底,则 a + b,b + c,c + a 也是空间的一组基底
1
→
AB−
2
→
AD
2 23
3、在空间四边形 ABCD 中,则 AB CD + AC DB + AD BC 的值为( )
A.-1
B.0
C.1
D.2
4.已知空间四边形 ABCD 的每条边和对角线的长都等于 a ,点 E, F 分别是 BC, AD 的中点,则 AE AF
的值为( )
A. a2
B. 1 a2 2
A.9
B.-9
C.-3
D.3
2/6
题型三、利用空间向量解决直线与平面的位置关系 ①直线与直线:注意直线与直线的垂直包括两类:共面垂直与异面垂直
异面直线之间的夹角
0,
2
,两条直线平行或重合的充要条件是它们的方向向量共线
1.若两条不重合直线 l1 和 l2 的方向向量分别为1 = (1, 0, -1) , 2 = (−2, 0, 2) ,则 l1 和 l2 的位置关系是( )
2、空间向量坐标化
设 a = ( x1, y1, z1 ),b = ( x2, y2, z2 ).
向量表示
数量积
ab
共线
a = b(b 0)
垂直
( ) a b = 0 a 0,b 0
用空间向量研究距离、夹角问题6题型分类(讲+练)(学生版) 24-25学年高二必修一数学同步知识题型
1.4.2用空间向量研究距离、夹角问题6题型分类一、空间向量研究距离问题1.点P 到直线l 的距离:已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设向量AP →在直线l 上的投影向量为AQ →=a ,则点P 到直线l (如图).2.点P 到平面α的距离:设平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点,则点P 到平面α的距离为|AP →·n||n|(如图).3.两平行直线间的距离:一条直线上任一点到另一条直线的距离.4.直线到平面的距离:直线上任一点到这个平面的距离.5.两平行平面间的距离:一平面上任一点到另一平面的距离.二、空间向量研究夹角问题1.两个平面的夹角:平面α与平面β的夹角:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.2.空间角的向量法解法角的分类向量求法范围线线角设两异面直线l 1,l 2所成的角为θ,其方向向量分别为u ,v ,则cos θ=|cos 〈u ,v 〉|=|u ·v ||u ||v |(0,π2]线面角设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos〈u ,n 〉|=|u ·n ||u ||n |[0,π2]面面角设平面α与平面β的夹角为θ,平面α,β的法向量分别为n 1,n 2,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|[0,π2](一)点到直线的距离1、用向量法求点到直线的距离的一般步骤:(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.2、用向量法求点到直线的距离时需注意以下几点:(1)不必找点在直线上的垂足以及垂线段;(2)在直线上可以任意选点,但一般选较易求得坐标的特殊点;(3)直线的方向向量可以任取,但必须保证计算正确.题型1:利用空间向量求点到直线的距离1-1.(2024高二上·北京大兴·期中)如图,已知正方体1111ABCD A B C D -的棱长为1,O 为正方形11ADD A 的中心,若P 为平面1OD B 内的一个动点,则P 到直线11A B 的距离的最小值为( )A .22B .12C .64D .331-2.(2024高二上·河南新乡·期末)已知空间三点()()()2,1,0,2,1,1,1,0,1A B C -,则点C 到直线AB 的距离为.1-3.(2024高二·全国·课后作业)如图,在棱长为1的正方体1111ABCD A B C D -中,点B 到直线1AC 的距离为( )A .63B .66C .65D .2631-4.(2024·广东佛山·模拟预测)如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长都是a ,且AB AD ^,1160A AB A AD Ð=Ð=°,E 为1CC 的中点,则点E 到直线1AC 的距离为( )A .510a B .55a C .54a D .53a(二)点到平面的距离与直线到平面的距离1、用向量法求点面距的步骤:(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.(3)求向量:求出相关向量的坐标(AP →,α内两不共线向量,平面α的法向量n ).(4)求距离d =|AP →·n ||n |.2、求点到平面的距离的主要方法:(1)作点到平面的垂线,点到垂足的距离即为点到平面的距离.(2)在三棱锥中用等体积法求解.(3)向量法:d=|n ·MA ||n |(n 为平面的法向量,A 为平面上一点,MA 为过点A 的斜线段).题型2:利用空间向量求点到平面的距离2-1.(2024高二上·陕西西安·期末)在直角梯形ABCD 中,,2222,90AD BC BC AD AB ABC ===Ð=°∥,O 为BD 中点,如图(1).把ABD △沿BD 翻折,使得平面ABD ^平面BCD ,如图(2).(1)求证:OA CD ^;(2)若M 为线段BC 的中点,求点M 到平面ACD 的距离.2-2.(2024高三下·江西鹰潭·阶段练习)如图,在三棱柱11ABC A B C -中,1CC ^平面ABC ,AC BC ^,14BC AC CC ===,D 为1AB 的中点,1CB 交1BC 于点E .(1)证明:11CB C D ^;(2)求点E 到平面11B C D 的距离.2-3.(2024高二上·河南新乡·期末)如图,在四棱锥P ABCD -中,PD ^底面ABCD ,底面ABCD 是矩形,4524,,5AB AD PD E ===是PA 的中点,2FB PF =uuu r uuu r ,则点C 到平面DEF 的距离为( )A .3105B .2105C .105D .10102-4.(2024高二下·云南楚雄·期中)如图,在正三棱柱111ABC A B C -中,E 是线段1BC 上靠近点B 的一个三等分点,D 是1AC 的中点.(1)证明:1A D //平面1AB E ;(2)若16AA AB ==,求点1A 到平面1AB E 的距离.(三)两条异面直线所成的角1、求异面直线夹角的方法(1)传统法:作出与异面直线所成角相等的平面角,进而构造三角形求解.(2)向量法:在两异面直线a 与b 上分别取点A ,B 和C ,D ,则AB → 与CD →可分别为a ,b 的方向向量,则cos θ=|AB → ·CD →||AB → ||CD →|.注:用空间向量求两条直线l 1,l 2夹角θ的步骤与方法:(1)化为向量问题:转化为求两直线l 1,l 2的方向向量u ,v 的夹角;(2)进行向量运算:计算cos ⟨u ,v⟩=u∙v|u |∙|v |的值;(3)回到图形问题:两条直线l 1,l 2夹角θ的余弦值cos θ=|cos ⟨u ,v⟩|.题型3:利用空间向量求异面直线的夹角3-1.(2024高二下·全国·课后作业)如图,在直三棱柱111ABC A B C -中,1,1,2AB BC AB BC CC ^===,建立适当的空间直角坐标系,并求1A B uuu r 与1B C uuur的夹角余弦值.3-2.(2024高二上·天津南开·期中)如图,平行六面体1111ABCD A B C D -中,1111,60AB AD AA A AB A AD BAD ===Ð=Ð=Ð=°.(1)证明:1AC BD ^;(2)求1AC 的长;(3)求直线1BD 与AC 所成角的余弦值.3-3.(2024高一下·浙江宁波·期中)在正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为直线1BB 上的异于点B 的动点,则异面直线1A B 与MN 所成的角的最小值为q ,则sin q =( )A .1010B .105C .31010D .21053-4.(2024高二下·江苏连云港·阶段练习)如图,在四棱锥P ABCD -中,已知PA ^平面ABCD ,且四边形ABCD 为直角梯形,π2Ð=Ð=ABC BAD ,3PA AD ==,1AB BC ==.点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,则线段BQ 的长为(四)直线与平面所成的角利用平面的法向量求直线与平面夹角的基本步骤(1)建立空间直角坐标系;(2)求直线的方向向量u ;(3)求平面的法向量n ;(4)设线面角为θ,则sin θ=|u ·n ||u ||n |.题型4:利用空间向量求直线与平面所成的角4-1.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一)数学试题)在三棱柱111ABC A B C -中,平面11A B BA ^平面ABC ,侧面11A B BA 为菱形,1π3ABB Ð=,1A B AC ^,2AB AC ==,E 是AC 的中点.(1)求证:1A B ^平面1AB C ;(2)点P 在线段1A E 上(异于点1A ,E ),AP 与平面1A BE 所成角为π4,求1EP EA 的值.4-2.(2024·吉林通化·二模)已知四棱锥P ABCD -的底面为平行四边形,2AD =,4DC =,60BAD Ð=o ,PD ^平面ABCD ,直线PD 与平面PAC 所成角为30o ,则PD =( )A .22B .475C .677D .74-3.(2024高二下·甘肃金昌·期中)如图,已知AE ^平面ABCD ,//CF AE ,//AD BC ,AD AB ^,1AB AD ==,2BC =.若2AE =,1CF =,则BF 与平面BDE 所成角的余弦值为.4-4.(2024高二下·四川成都·期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA ^平面ABCD ,M 为PC 中点.(1)求证://PA 平面MBD ;(2)若2AB AD PA ===,求直线BM 与平面AMD 所成角的正弦值.4-5.(2024高二下·四川成都·期中)如图,在长方体1111ABCD A B C D -中,2AB =,4=AD ,13AA =,1B C 交1BC 于点E .(1)证明:直线1//D E 平面1A BD ;(2)求AD 与平面1A BD 所成角的正弦值.4-6.(2024·陕西商洛·二模)在四棱锥P ABCD -中,PA ^底面ABCD ,底面ABCD 是边长为1的正方形,2AP =,则直线PB 与平面PCD 所成角的正弦值为( )A .255B .25C .23D .334-7.(2024高二下·江苏徐州·期中)如图,圆台的下底面圆1O 的直径为AB ,圆台的上底面圆2O 的直径为PQ ,C 是弧AB 上一点,且222PA AC PC BC PB =====,.(五)两个平面的夹角求两平面夹角的两种方法(1)定义法:在两个平面内分别找出与两平面交线垂直的直线,这两条直线的夹角即为两平面的夹角.也可转化为求与两平面交线垂直的直线的方向向量的夹角,但要注意其异同.(2)法向量法:分别求出两平面的法向量n 1,n 2,则两平面的夹角为〈n 1,n 2〉(当〈n 1,n 2〉∈[0,π2]时)或π-〈n 1,n 2〉注:利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.题型5:利用空间向量求二面角5-1.(山东省滨州市2023-2024学年高二上学期期末数学试题)如图,在四棱锥P ABCD -中,PC ^底面ABCD ,四边形ABCD 是直角梯形,AD DC ^,//AB DC ,222PC AB AD CD ====,点E 在棱PB 上.(1)证明:平面EAC ^平面PBC ;(2)当2BE EP =uuu r uuu r时,求二面角P AC E --的余弦值.5-2.(2024·河南·模拟预测)如图,四边形ABCD 为菱形,ED ^平面ABCD ,FB ED P ,222BD ED FB ==.(1)证明:平面EAC ^平面FAC ;(2)若60BAD Ð=°,求二面角F AE C --的大小.5-3.(2024高二上·湖北·期末)如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ^,AB DC P ,PA ^底面ABCD ,点E 为棱PC 的中点,22AD DC AP AB ====.(1)证明://BE 平面PAD ;(2)在棱PC 上是否存在点F ,使得二面角F AD C --的余弦值为1010,若存在,求出PF PC 的值,若不存在,请说明理由.5-4.(2024高三下·河南·阶段练习)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,平面1D BC ^平面1D BD .(1)求证:BC BD ^;(2)若1224AA BD BC ===,探索在棱1AA 上是否存在一点E ,使得二面角1E BD D --的大小为30o ?若存在,求出1AEAA 的值;若不存在,请说明理由.5-5.(2024高二下·江苏南通·阶段练习)在四棱锥S ABCD -中,四边形ABCD 为正方形,2AB =,1DS =,平面ASD ^平面ABCD ,SD AD ^,点E 为DC 上的动点,平面BSE 与平面ASD 所成的二面角为(q q 为锐角), 则当q 取最小值时,DE =.题型6:利用空间向量求两个平面的夹角6-1.(2024高二上·湖南郴州·期末)如图2,在ABCD Y 中,2AB =,3BC =,30ABC Ð=°.将DAC △沿AC 翻折,使点D 到达点P 位置(如图3),且平面PAC ^平面PBC .(1)求证:平面PAC ^平面ABC ;(2)设Q 是线段PB 上一点,满足PQ mPB =uuu r uuu r,试问:是否存在一个实数m ,使得平面QAC 与平面PAB 的夹角的余弦值为24,若存在,求出m 的值;若不存在,请说明理由.6-2.(2024高二上·云南昆明·期末)如图,在直三棱柱111ABC A B C -中,侧面11ACC A 为正方形,90CAB Ð=°,2AC AB ==,M ,N 分别为AB 和1BB 的中点,D 为棱AC 上的点.(1)证明:1A M DN ^;(2)是否存在点D ,使得平面1C DN 与平面11ABB A 夹角的余弦值为53?如果不存在,请说明理由;如果存在,求线段AD 的长.6-3.(2024高二下·福建福州·期中)如图,圆O 是ABC V 的外接圆,CE ^平面ABC ,AB 是圆O 的直径,30CAB Ð=°,2CE BD =uuu r uuu r,且2CE AB ==.(1)求证:平面ACE ^平面BCED ;(2)若2ME DM =,求平面ACM 与平面ACE 夹角的余弦值.6-4.(2024·广东·模拟预测)如图,在四棱锥P ABCD -中,BD PC ^,四边形ABCD 是菱形,60ABC Ð=°,1AB PA ==,2PB =,E 是棱PD 上的中点.(1)求三棱锥C BDE -的体积;(2)求平面PAB 与平面ACE 夹角的余弦值.6-5.(2024高一上·吉林·阶段练习)如图①所示,长方形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -.(1)求四棱锥P ABCM -的体积的最大值;(2)设P AM D --的大小为q ,若π0,2q æùÎçúèû,求平面PAM 和平面PBC 夹角余弦值的最小值.6-6.(2024高二上·云南昆明·期末)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,2π3ADC Ð=,24PD DC BC ===,点E 是线段AD 的中点,点F 在线段AP 上且满足AF AP l =uuu r uuu r ,PD ^面ABCD .(1)当13l =时,证明:PC //平面BFE ;(2)当l 为何值时,平面BFE 与平面PBD 所成的二面角的正弦值最小?一、单选题1.(2024高二下·四川成都·期中)在长方体1111ABCD A B C D -中,11,AB BC AA ===,则1AD uuuu v 与1DB uuuu v夹角的余弦值为( )A B C .15D .2.(2024高二上·贵州铜仁·期末)已知正四棱柱1111ABCD A B C D -中,2AB =,14AA =,点E ,F 分别是11B C和1BB 的中点,M 是线段1D F 的中点,则直线AM 和CE 所成角的余弦值为( )A B C D 3.(2024高二上·广东惠州·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,分别取棱1AA ,11A D 的中点E ,F ,点G 为EF 上一个动点,则点G 到平面1ACD 的距离为( )A B C .1D 4.(2024高二上·河北邯郸·期末)在四棱锥P ABCD -中,底面ABCD 为菱形,PB ^底面ABCD ,AB =2BD PB ==,则PCD △的重心到平面PAD 的距离为( )A .29B .13C .49D .5185.(2024高二下·福建福州·期中)如图在长方体1111ABCD A B C D -中,11,AD DD AB ===E ,F ,G 分别是1,,AB BC CC 棱的中点,P 是底面ABCD 内一个动点,若直线1//D P 平面EFG 平行,则线段BP 的最小值为( )A B .1C D .126.(2024高二下·江苏南京·期中)已知两平面的法向量分别为(0,1,1)m =u r ,(1,1,1)n =r ,则两平面所成的二面角的正弦值为( )A B C .13D 6.3.4空间距离的计算(1))已知平面α的一个法向量(2,2,1)n =--r,点(1,3,0)A -在α内,则(2,1,4)P -到α的距离为( )A .10B .3C .83D .1038.(2024高二下·福建龙岩·期中)如图,在圆锥SO 中,AB 是底面圆O 的直径,4SO AB ==,AC BC =,D 为SO 的中点,N 为AD 的中点,则点N 到平面SBC 的距离为( )A .43B .53C .1D .29.(2024高二下·江西景德镇·期中)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AD ,BC 的中点,M 为线段EF 上的一动点,则直线1A D 与1B M 所成角的余弦值的取值范围是( )A .12éêëB .C .D .35éêë10.(2024高二下·浙江·阶段练习)如图,已知四棱台的底面ABCD 是直角梯形,90BAD o Ð=,//AD BC ,111222AD AB BC DD A D ====,1DD ^平面ABCD ,E 是侧棱1BB 所在直线上的动点,AE 与1CA 所成角的余弦值的最大值为( )A B C D 11.(2024高二下·全国·单元测试)三棱锥O ABC -中,,,OA OB OC 两两垂直且相等,点,P Q 分别是线段BC 和OA 上移动,且满足12BP BC £,12AQ AO £,则PQ 和OB 所成角余弦值的取值范围是( )A .B .C .D .12.(2024高二下·河南周口·阶段练习)在正四棱锥P ABCD -中,2PA AB ==,M 为棱PC 的中点,则异面直线AC ,BM 所成角的余弦值为( )A B C D 13.(2024高二上·河南平顶山·期末)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,13D D =,M ,N 分别是11B C ,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )A B C D 14.(2024高二下·浙江·期中)在正三棱柱111ABC A B C -中,12,3AB AA ==,点D 为棱BC 的中点,点E 为线段1AC (不与C 点重合)上的点,且满足1(0)A E mEC m =>uuur uuu r ,当二面角E AD C --的平面角为π4时,实数m 的值为( )A .1B .2C .3D .415.(2024高二上·浙江金华·期末)襄阳一桥全称“襄阳江汉大桥”,于1970年正式通车,在和襄阳城长达53年的相处里,于襄阳人来说一桥早已无可替代.江汉大桥由主桥架、上下水平纵向联结系、桥门架和中间横撑架以及桥面系组成,下面是一桥模型的一段,它是由一个正方体和一个直三棱柱构成.其中AB =BH ,那么直线AH 与直线IG 所成角的余弦值为( )A .BC .12-D .1216.(2024高二下·浙江·学业考试)如图,棱长均相等的三棱锥P ABC -中,点D 是棱PC 上的动点(不含端点),设CD x =,二面角A BD C --的大小为q .当x 增大时,( )A .q 增大B .q 先增大后减小C .q 减小D .q 先减小后增大17.(2024·新疆阿勒泰·一模)四棱锥P ABCD -中,AB BC ==1,则直线PA 与直线BC 所成角的余弦值为( )A .13B C D 18.(2024高二下·江苏宿迁·期中)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,90BAD Ð=°,112PA AB BC AD ====,//BC AD ,已知Q 是棱PD 上靠近点P 的四等分点,则CQ 与平面PAB 所成角的正弦值为( ).A B C D .1619.(2024高二下·陕西汉中·期末)如图,在正方体1111ABCD A B C D -中,P 为体对角线1B D 上一点,且12DP PB =,则异面直线1AD 和CP 所成角的余弦值为( )A .0B .35C .45D 二、多选题20.(江苏省淮安市淮海中学2023-2024学年高二上学期收心考试数学试题)如图,在棱长为1的正方体1111ABCD A B C D -中( )A .AC 与1BD 的夹角为60°B .二面角1D ACD --C .1AB 与平面1ACD D .点D 到平面1ACD 21.(2024高二上·山东青岛·期中)如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为AD ,AB ,11B C 的中点,以下说法正确的是( )A .三棱锥C EFG -的体积为1B .1AC ^平面EFGC .11//AD 平面EFGD .平面EGF 与平面ABCD 22.(2024高二下·江西宜春·开学考试)点M 在z 轴上,它与经过坐标原点且方向向量为()1,1,1s =-r的直线l,则点M 的坐标是( )A .()0,0,3-B .()0,0,3C .(D .(0,0,23.(2024高二上·浙江宁波·阶段练习)如图,在三棱锥A BCD -中,平面ABC ^平面BCD ,ABC V 与BCD △均为等腰直角三角形,且90BAC BCD Ð=Ð=°,2BC =,P 是线段AB 上的动点(不包括端点),若线段CD 上存在点Q ,使得异面直线PQ 与AC 成30o 的角,则线段PA 的长度可能为( )A B C D 24.(2024高二上·河南·期中)在三棱锥A BCD -中,平面ABD ^平面BCD ,BD CD ^,BD CD ==ABD为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE 与BF ,则AF 的值可能为( )A .23B .1C .43D .5325.(2024高二下·江苏淮安·期中)布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转换成图3所示的空间几何体.若图3中每个正方体的棱长为1,则下列结论正确的是( )A .点1C 到直线CQB .122CQ AB AD AA =--+uuu r uuu r uuu r uuu rC .平面ECG 与平面1BCD 的夹角余弦值为13D .异面直线CQ 与BD 26.(海南省海口市龙华区海南华侨中学2023届高三一模数学试题)如图,在棱长为1的正方体1111ABCD A B C D -中,Q 是棱1DD 上的动点,则下列说法正确的是( )A .不存在点Q ,使得11//C Q A CB .存在点Q ,使得11C Q A C^C .对于任意点Q ,Q 到1AC 的距离的取值范围为D .对于任意点Q ,1A CQ △都是钝角三角形三、填空题27.(2024高二上·黑龙江哈尔滨·期末)如图,在长方体1111ABCD A B C D -中,2AB AD ==,14DD =,则11A B 与平面11A C D 所成的角的正弦值为 .28.(2024高二下·福建宁德·期中)如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别为1DD ,BD ,1BB 的中点,则1C E 与FG 所成的角的余弦值为 .29.(2024·浙江绍兴·一模)如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M = .30.(2024高二上·黑龙江齐齐哈尔·期中)在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点,则直线FC 到平面1AEC 的距离为 .31.(2024高二上·黑龙江齐齐哈尔·期中)如图,在长方体1111ABCD A B C D -中,12AA AB ==,1BC =,E 、F 、H 分别是AB 、CD 、11A B 的中点,则直线EC 到平面AFH 的距离为 .32.(2024高二上·山东枣庄·期末)在棱长为1的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为 .33.(2024高一·全国·课后作业)正方体1111ABCD A B C D -中,二面角11A CC B --的大小为 .34.(2024高三·全国·课后作业)已知PA ^平面ABCD ,四边形ABCD 是矩形,PA AD =为定长,当AB 的长度变化时,异面直线PC 与AD 所成角的取值范围是 .35.(2024高一下·浙江温州·期末)“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美,如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则直线MN 与平面ABCD 所成角的正弦值为 .四、解答题36.(2024高二上·天津·期中)如图,在四棱锥P ABCD -中,PA ^平面ABCD ,底面ABCD 是菱形,2AB =,60BAD Ð=o .(1)求证:BD ^平面PAC ;(2)若PA AB =,求PB 与AC 所成角的余弦值.37.(2024高二下·广东广州·阶段练习)如图,四棱锥P ABCD -中,CD ^平面PAD ,//AB CD ,1AB =,2CD =,M 为棱PC 上一点.(1)若M 为PC 的中点,证明://BM 平面PAD ;(2)若2PA PD AD ===,且//PA 平面BMD ,求直线PC 与平面BMD 所成角的正弦值.38.(2024高二下·江苏常州·阶段练习)如图,正方体1111ABCD A B C D -的棱长为2,点E 为1BB 的中点.(1)求点D 到平面1AD E 的距离为d ;(2)求1BC 到平面1AD E 的距离.39.(2024高二上·吉林长春·期末)如图,在正三棱柱111ABC A B C -中,点D 为1A B 的中点,1AA ==(1)证明:BC ∥平面1AC D ;(2)求直线BC 到平面1AC D 的距离.40.(2024高二上·辽宁沈阳·阶段练习)如图,在三棱锥P ABC -中,PA ^底面ABC ,90BAC Ð=o ,点D 、E 分别为棱PA ,PC 的中点,M 是线段AD 的中点,N 是线段BC 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ;(2)求直线MN 到平面BDE 的距离.41.(2024高二下·全国·课后作业)如图,矩形ADFE 和梯形ABCD 所在平面互相垂直,AB ∥CD ,∠ABC =∠ADB =90°,CD =1,BC =2,DF =1.(1)求证:BE ∥平面DCF ;(2)求点B 到平面DCF 的距离.42.(2024高二上·浙江杭州·期中)如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面PAC ^平面ABC ,PAC V 为正三角形,E ,F 分别是棱,PC PB 上的点,且满足(01)PE PF PC PBl l ==<<.(1)求证:BC AE ^;(2)是否存在l ,使得直线AP 与平面AEF l 的值;若不存在,请说明理由.43.(2024·新疆·模拟预测)如图所示,四棱锥P ABCD -中,PA ^菱形ABCD 所在的平面,60ABC Ð=°,点E 、F 分别是BC 、PC 的中点,M 是线段PD 上的点.(1)求证:平面AEM ^平面PAD ;(2)当AB AP =时,是否存在点M ,使直线EM 与平面ABF ?若存在,请求出PM PD 的值,若不存在,请说明理由.44.(2024高二下·福建莆田·阶段练习)如图,四棱锥P ﹣ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥AD ,PA ⊥平面ABCD ,AD =5,BC =2AB =4,M 为PC 的中点.(1)求证:平面PAC ⊥平面PCD ;(2)若AM ⊥PC ,求直线PB 与面PCD 所成角的正弦值.45.(2024高二下·江苏常州·期中)如图,直角梯形ABCD 与等腰直角三角形ABP 所在的平面互相垂直,且//AB CD ,AB BC ^,AP PB ^,2AB =,1BC CD ==.(1)求证:AB PD ^;(2)求直线PC 与平面ABP 所成角的余弦值;(3)线段PA 上是否存在点E ,使得//PC 平面EBD ?若存在,求出AE AP的值;若不存在,请说明理由.46.(2024高二下·江苏南京·期末)如图所示,在三棱锥P ABC -中,已知PA ^平面ABC ,平面PAB ^平面PBC .(1)证明:^BC 平面PAB ;(2)6PA AB ==,3BC =,在线段PC 上(不含端点),是否存在点D ,使得二面角B AD C --的余弦值为D 的位置;若不存在,说明理由.47.(2024··模拟预测)如图,四边形ACC 1A 1与四边形BCC 1B 1是全等的矩形,1AB AA ==.(1)若P 是AA 1的中点,求证:平面PB 1C 1⊥平面PB 1C ;(2)若P 是棱AA 1上的点,直线BP 与平面ACC 1A 1求二面角B 1﹣PC ﹣C 1的余弦值.48.(2024·福建福州·二模)如图1,在ABC V 中,2π2,,3AB AC BAC E Ð===为BC 的中点,F 为AB 上一点,且EF AB ^.将BEF △沿EF 翻折到B EF ¢V 的位置,如图2.(1)当AB ¢=B AE ¢^平面ABC ;(2)已知二面角B EF A ¢--的大小为π4,棱AC 上是否存在点M ,使得直线B E ¢与平面B MF ¢所成角的正弦值M 的位置;若不存在,请说明理由.49.(2024·江苏·二模)如图,在三棱台111ABC A B C -中,BA BC ^,平面11A B BA ^平面ABC ,二面角1B BC A --的大小为45°,2AB =,1111BC A B AA ===.(1)求证:1AA ^平面ABC ;(2)求异面直线1BA 与1B C 所成角的余弦值.50.(2024·黑龙江哈尔滨·三模)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,AB BC =,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的动点.11BF A B ^.(1)证明:BF DE ^;(2)求平面11BB C C 与平面DEF 所成的二面角正弦值的最小值及此时点D 的位置.51.(2024·河南郑州·模拟预测)在底面ABCD 为梯形的多面体中.AB CD ∥,BC ⊥CD ,2AB CD ==,∠CBD =45°,BC =AE =DE ,且四边形BDEN 为矩形.(1)求证:BD ⊥AE ;(2)线段EN 上是否存在点Q ,使得直线BE 与平面QAD 所成的角为60°?若不存在,请说明理由.若存在,确定点Q 的位置并加以证明.52.(2024高二下·江苏常州·期中)如图,圆锥SO ,S 为顶点,O 是底面的圆心,AE 为底面直径,AE AS =,圆锥高SO =6,点P 在高SO 上,ABC V 是圆锥SO 底面的内接正三角形.(1)若PO ,判断PA 和平面PBC 是否垂直,并证明;(2)点P 在高SO 上的动点,当PE 和平面PBC 所成角的正弦值最大时,求三棱锥P-ABC 的体积.53.(2024高二下·江苏盐城·期中)如图,在Rt AOB V 中,π2AOB Ð=,4AO =,2BO =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 在线段AB 上.(1)当D 为AB 的中点时,求异面直线AO 与CD 所成角的余弦值;(2)求CD 与平面AOB 所成角的正弦值的最大值.54.(2024·江苏淮安·模拟预测)如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,PA PD =,底面ABCD 是边长为2的正方形,点E 在棱PC 上,2CE PE =.(1)证明:平面BDE ^平面ABCD ;(2)当直线DE 与平面PBD 所成角最大时,求四棱锥P ABCD -的体积.55.(2024高二下·四川成都·期末)如图,在四棱锥Q ABCD -中,底面ABCD 是矩形,若2AD QD QA ===,1CD QC ==,(1)证明:平面QAD ^平面ABCD ;(2)若E F ,分别是QC QD ,的中点,动点P 在线段EF 上移动,设q 为直线BP 与平面ABCD 所成角,求sin q 的取值范围.。
高中数学(理)空间向量知识点归纳总结及综合练习
空间向量知识点归纳总结知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:(2)空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ⋅=++, 112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=。
高二数学复习考点知识与题型专题讲解3---空间向量基本定理
高二数学复习考点知识与题型专题讲解1.2 空间向量基本定理【考点梳理】考点一空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.考点二空间向量的正交分解1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量x i,y j,z k使得a=x i+y j+z k. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.考点三证明平行、共线、共面问题(1) 对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2) 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.考点三求夹角、证明垂直问题(1)θ为a,b的夹角,则cos θ=a·b|a||b|.(2)若a ,b 是非零向量,则a ⊥b ⇔a ·b =0. 知识点三 求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB → ).【题型归纳】题型一:空间向量基底概念1.(2021·广东·广州市海珠中学高二期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(2021·云南师大附中高二期中)已知{},,a b c 能构成空间的一个基底,则下面的各组向量中,不能构成空间基底的是( ) A .,,a b b c +B .,,a a b c -C .,,a c b c a b ---D .,,a b a b c ++3.(2021·湖南·周南中学高二)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +-B .{,,}a b b a b +- C .{,,}a b b a c +-D .{,,}a b c a b c +++ 题型二:空间基底表示向量4.(2022·四川·成都外国语学校高二阶段练习(理))如图,在三棱锥O ABC -中,设,,,OA a OB b OC c ===,若,2AN NB BM MC ==,则MN =( )A .112263a b c +-B .112263a b c -+ C .111263a b c --D .111263a b c ++5.(2022·江苏常州·高二期中)在四面体OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( ) A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c ++6.(2022·湖北·武汉市第十九中学高二期末)如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,则MN 等于( )A .111322a b c ++B .111322a b c -+ C .111322a b c +-D .111322a b c -++ 题型三:空间向量基本定理判断共面7.(2022·全国·高二)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是( )A .OP OA OB OC =++B .2OP OA OB OC =-- C .111532OP OA OB OC =++D .111333OP OA OB OC =++8.(2022·全国·高二)对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111236OP OA OB OC =++ C .1122OP OA OB OC =++D .以上都错9.(2022·全国·高二)下列向量关系式中,能确定空间四点P ,Q ,R ,S 共面的是( )A .AP AQ AR AS →→→→=++B .23AP AQ AR AS →→→→=++ C .23AP AQ AR AS →→→→=+-D .243AP AQ AR AS →→→→=-+ 题型四:空间向量共面求参数10.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-611.(2022·江苏·高二课时练习)已知i ,j ,k 是三个不共面的向量,22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-,且A ,B ,C ,D 四点共面,则λ的值为( ).A .1-B .1C .2-D .212.(2021·山东省实验中学高二期中)已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++,则A ,B ,C ,M 四点共面的充要条件是( ) A .1730λ=B .1330λ=C .1730λ=-D .1330λ=-题型五:空间向量基本定理的应用13.(2022·四川·阆中中学高二阶段练习(理))已知存在非零实数λ使得AP BC λ=,且(,0)OP OA xOB yOC x y =-++>,则62x y +的最小值为( )A .4+.8C .6.6+14.(2022·安徽蚌埠·高二期末)在下列命题中正确的是( ) A .已知,,a b c 是空间三个向量,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++ B .若,C AB D 所在的直线是异面直线,则,C AB D 不共面 C .若三个向量,,a b c 两两共面,则,,a b c 共面D .已知A ,B ,C 三点不共线,若111236OD OA OB OC =++,则A ,B ,C ,D 四点共面15.(2021·吉林·长春市第二十九中学高二)已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是( )A .111222OM OA OB OC =++B .1313O OB OC M OA =-+ C .OM OA OB OC =++D .2OM O OB OC A =-- 题型六:空间向量基本定理16.(2022·全国·高二课时练习)如图所示,已知1111ABCD A B C D -是平行六面体.(1)化简1AA BC AB ++;(2)设M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的34分点,设1MN AB AD AA αβγ=++,试求α,β,γ的值.17.(2021·河北·石家庄市第六中学高二期中)如图,已知正方体'ABCD A B C D -'''.点E是上底面''''A B C D 的中心,取{,,}AB AD AA ' 为一个基底,在下列条件下,分别求,,x y z的值.(1)BD x AD y AB z AA =+'+'; (2)AE x AD y AB z AA =+'+.【双基达标】一、单选题18.(2022·四川省成都市新都一中高二期中(理))已知M ,A ,B ,C 为空间中四点,任意三点不共线,且2OM OA xOB yOC =-++,若M ,A ,B ,C 四点共面,则x y +的值为( ) A .0B .1C .2D .319.(2022·江苏·涟水县第一中学高二阶段练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++D .1OG =111888OA OB OC ++ 20.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则( )A .1OG OA OB OC =++B .1111333OG OA OB OC =++ C .1111444OG OA OB OC =++D .1111999OG OA OB OC =++21.(2022·四川省绵阳南山中学高二期中(理))已知O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC 不能构成空间的一个基底,则一定有( ) A .OA ,OB ,OC 共线B .O ,A ,B ,C 中至少有三点共线 C .OA OB +与OC 共线D .O ,A ,B ,C 四点共面22.(2022·江苏宿迁·高二期中)已知P 是ABC 所在平面外一点,M 是PC 中点,且BM x AB y AC z AP =++,则x y z ++=( )A .0B .1C .2D .323.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =( ) A .521632a b c +-B .121632a b c ---C .121632a b c ++D .521632a b c --+24.(2022·全国·高二课时练习)设x a b =+,y b c =+,z c a =+,且{},,a b c 是空间的一个基底,给出下列向量组:①{},,a b x ;②{},,x y z ;③{},,b c z ;④{},,x y a b c ++,则其中可以作为空间的基底的向量组有( ) A .1B .2C .3D .425.(2022·广东深圳·高二期末)如图,在三棱柱111ABC A B C -中,E ,F 分别是BC ,1CC 的中点,2AG GE =,则GF =( )A .1121332AB AC AA -+B .1121332AB AC AA ++C .1211332AB AC AA -+-D .1121332AB AC AA -++26.(2022·全国·高二课时练习)在平行六面体ABCD A B C D ''''-中,已知BA ,BC ,BB '为三条不共面的线段,若23AC x AB yBC zC C ''=++,则x y z ++的值为( ). A .1B .76C .56D .11627.(2022·四川省内江市第六中学高二阶段练习(理))已知空间的一组基底{},,a b c ,若m a b c =-+与n xa yb c =++共线,则x y +的值为( ). A .2B .2-C .1D .0【高分突破】一:单选题28.(2022·吉林·长春吉大附中实验学校高二期末)已知空间向量a ,b ,c ,下列命题中正确的个数是( ) ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若a ,b ,c 非零且共面,则它们所在的直线共面;⑧若a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一有序实数组(),,x y z ,使得p xa yb zc =++;④若a ,b 不共线,向量(),,0c a b R λμλμλμ=+∈≠,则{},,a b c 可以构成空间的一个基底. A .0B .1C .2D .329.(2022·江苏省阜宁中学高二期中)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,A C BB 的中点,G 是MN 的中点,若1AG xAB yAA zAC =++,则x y z ++=( )A .1B .12C .32D .3430.(2022·安徽芜湖·高二期末)下列命题中正确的个数为( ) ①若向量a ,b 与空间任意向量都不能构成基底,则a b ∥;②若向量a b +,b c +,c a +是空间一组基底,则a ,b ,c 也是空间的一组基底; ③{},,a b c 为空间一组基底,若()0,,xa yb zc x y z R ++=∈,则2220x y z ++=;④对于任意非零空间向量()123,,a a a a =,()123,,b b b b =,若a b ∥,则312123aa ab b b ==.A .1B .2C .3D .4 二、多选题31.(2022·福建福州·高二期中)如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,AA c '=.若CM MD '=,12A C A P ''=,则( )A .a A C b c =++'B .1122AM a b c =++C .A ,P ,D 三点共线D .A ,P ,M ,D 四点共面32.(2022·河北邯郸·高二期末)已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z ===B .a ,b ,c 两两共面,但a ,b ,c 不共面C .一定存在实数x ,y ,使得a xb yc =+D .a b +,b c -,2c a +一定能构成空间的一个基底33.(2022·广东惠州·高二期末)下面四个结论正确的是( )A .空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P 、A 、B 、C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅34.(2021·浙江·金华市曙光学校高二阶段练习)已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n =C .12m =-,1n =-D .32m =,1n =35.(2021·湖南·郴州市第三中学高二期中)下列结论正确的是( )A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a ,b 是两个不共线的向量,且(c a b λμλ=+,R μ∈且0)λμ≠,则{a ,b ,}c 构成空间的一个基底D .若OA ,OB ,OC 不能构成空间的一个基底,则O ,A ,B ,C 四点共面36.(2021·浙江省杭州第二中学高二期中)已知{},,a b c 是空间中的一个基底,则下列说法正确的是( )A .存在不全为零的实数x ,y ,z ,使得0xa yb zc ++=B .对空间任一向量p ,存在唯一的有序实数组(),,x y z ,使得p xa yb zc =++C .在a ,b ,c 中,能与a b +,a b -构成空间另一个基底的只有cD .不存在另一个基底{},,a b c ''',使得2323a b c a b c '''++=++37.(2021·重庆·高二阶段练习)下列命题中,正确的有( )A .空间任意向量,a b 都是共面向量B .已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++,则1t =-C .在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若向量,,a b b c c a +++是空间一组基底,则,,a b c 也是空间的一组基底38.(2022·湖南省临湘市教研室高二期末)已知M ,A ,B ,C 四点互不重合且任意三点不共线,则下列式子中能使{,,}MA MB MC 成为空间的一个基底的是( )A .111345OM OA OB OC =++B .2MA MB MC =+C .23OM OA OB OC =++D .32MA MB MC =-三、填空题39.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若AB a =,BC b =,1AA c =,则BM =______.(用a 、b 、c 表示)40.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.41.(2022·全国·高二)已知,a b 是平面α上的两个向量,有以下命题:①平面α上任意一个向量(),p a b R λμλμ=+∈;②若存在,R λμ∈,使0a b λμ+=,则0λμ==;③若,a b 不共线,则空间任意一个向量(),p a b R λμλμ=+∈;④若,a b 不共线,且p 与,a b 共面,则都有(),p a b R λμλμ=+∈.请填上所有真命题的序号___________.42.(2022·广东珠海·高二期末)已知四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC =,若DE OA OB OC αβγ=++,则αβγ++=________.43.(2021·福建·三明一中高二)如图所示,M 是四面体OABC 的棱BC 的中点,点N在线段OM 上,点P 在线段AN 上,且AP =3PN ,23ON OM =,设OA a =,,OB b OC c ==,则OP =________(用,,a b c 来表示)44.(2022·全国·高二期末)已知三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于_____________.45.(2022·全国·高二)已知关于向量的命题,(1)a b a b -=+是a ,b 共线的充分不必要条件;(2)若//a b ,则存在唯一的实数λ,使a b λ=;(3)0a b ⋅=,0b c ⋅=,则a c =; (4)若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一基底; (5)()a b c a b c ⋅⋅=⋅⋅.在以上命题中,所有正确命题的序号是________.四、解答题46.(2022·江苏·徐州市王杰中学高二)如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用OA ,OB ,OC 表示向量OG ;(2)若2OA =,3OB =,4OC =,60AOC BOC ∠=∠=︒,90AOB ∠=︒,求OG AB ⋅的值.47.(2022·全国·高二)如图,在平行六面体1111ABCD A B C D -中,12C C EC =,13AC FC =.(1)求证:A 、F 、E 三点共线;(2)若点G 是平行四边形11B BCC 的中心,求证:D 、F 、G 三点共线.48.(2022·江苏·扬州中学高二阶段练习)如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.49.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .【答案详解】1.C【详解】对于A,任何三个不共面的向量都可构成空间的一个基底,所以A错误,B错误;对于C,两两垂直的三个非零向量不共面,可构成空间的一个基底,C正确;对于D,直线的方向向量有无数个,所以D错误.故选:C2.C【详解】由图形结合分析---,,a cbc a b三个向量共面,不构成基底,故选:C3.C选项A:由于()()2+--=,三个向量共面,故不能作为空间的一个基底;a b b a a选项B:由于()()2++-=,三个向量共面,故不能作为空间的一个基底;a b b a b选项C :若,,a b b a c +-三个向量共面,则存在,x y R ∈,使得()()()()c x a b y b a x y a x y b =++-=-++,则向量,,a b c 共面,矛盾,故,,a b b a c +-三个向量不共面,因此可以作为空间的一个基底;选项D :由于()a b c a b c ++=++,三个向量共面,故不能作为空间的一个基底; 故选:C4.A【详解】连接,,OM ON 111()()()223MN ON OM OA OB OC CM OA OB OC CB =-=+-+=+--=11112112()()23263263OA OB OC OB OC OA OB OC a b c +---=+-=+-. 故选:A5.B【解析】【分析】利用空间向量的线性运算,空间向量基本定理求解即可.【详解】解:点M 在线段OA 上,且2OM MA =,N 为BC 中点,∴23OM OA =,111()222ON OB OC OB OC =+=+, ∴122113122223a b c MN ON OM OB OC OA =-=+-+=-+. 故选:B .6.D【解析】【分析】利用空间向量的加法与减法可得出OM 关于a 、b 、c 的表达式.【详解】()()21113232MN MA AB BN OA OB OA BC OB OA OC OB =++=+-+=-+- 111322a b c =-++. 故选:D.7.D【解析】【分析】根据点P 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OP xOA yOB zOC =++,若点P 与点,,A B C 共面,则1x y z ++=,对于选项A :11131x y z ++=++=≠,不满足题意;对于选项B :21101x y z ++=--=≠,不满足题意;对于选项C :11131153230x y z ++=++=≠,不满足题意; 对于选项D :1111333x y z ++=++=,满足题意.故选:D.8.B【解析】【分析】证明出若OP xOA yOB zOC =++且1x y z ++=,则P 、A 、B 、C 四点共面,进而可得出合适的选项.【详解】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-, 则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111236OP OA OB OC =++,1111236++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =++,1112122++=≠,P 、A 、B 、C 四点不共面.故选:B.9.D【解析】【分析】由243AP AQ AR AS →→→→=-+,得23RP RQ RS →→→=+,即得解. 【详解】由243AP AQ AR AS →→→→=-+,得23AP AR AQ AR AS AR →→→→→→⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭,即23RP RQ RS →→→=+,所以RP →,,RQ RS →→为共面向量, 故,,,P Q R S 四点共面. 故选:D . 10.D 【解析】 【分析】根据向量共面列方程,化简求得2m t +. 【详解】2111-≠-,所以,a b 不共线, 由于a ,b ,c 共面, 所以存在,x y ,使c xa yb =+, 即()()()21,2,22,,1,11,t x m y -=--+,()()(),,21,2,22,,t x x y x y y m -+-=-, ()()1,2,22,,2y t x y x x m y ---+=+,21222x y x y mx y t-+=-⎧⎪-=⎨⎪+=⎩,()()13123222x y m t mx y t =-⎧⎪=-⇒⋅-+⋅-=⎨⎪+=⎩, 即26m t +=-.故选:D 11.B 【解析】 【分析】根据已知条件用i ,j ,k 表示AC ,AD ,再由空间共面向量定理设AD x AB y AC =+,再列方程组,解方程组即可求解. 【详解】因为22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-所以3AC AB BC i j k =+=-- ,()326A AC D CD i j k λ+==++-, 由空间共面向量定理可知,存在实数,x y 满足AD x AB y AC =+, 即()()()326232i j k x i j k i j k y λ++-=-+-+-,所以332262x y x y x y λ+=+⎧⎪=--⎨⎪-=-⎩,解得221x y λ=-⎧⎪=⎨⎪=⎩,所以λ的值为1,故选:B. 12.B 【解析】 【分析】由四点共面的充要可得21156λ++=,求解即可. 【详解】O 是平面ABC 外任意一点,且2156OM OA OB OC λ=++,若A ,B ,C ,M 四点共面的充要条件是21156λ++=,即1330λ=. 故选:B. 13.A 【解析】 【分析】根据向量的共面定理,得到2x y +=,再结合基本不等式,即可求解. 【详解】由题意,存在非零实数λ使得AP BC λ=,可得//AP BC ,即,,,P A B C 四点共面, 因为(,0)OP OA xOB yOC x y =-++>,根据向量的共面定量,可得11x y -++=,即2x y +=,又由621621621()()(62)(84222y x x y x y x y x y +=⋅++=⋅+++≥+=+当且仅当62y x x y=时,即x =时,等号成立,所以62x y +的最小值为4+故选:A. 14.D 【解析】 【分析】对于A ,利用空间向量基本定理判断,对于B ,利用向量的定义判断,对于C ,举例判断,对于D ,共面向量定理判断 【详解】对于A ,若,,a b c 三个向量共面,在平面α,则空间中不在平面α的向量不能用,,a b c 表示,所以A 错误,对于B ,因为向量是自由向量,是可以自由平移,所以当,C AB D 所在的直线是异面直线时,,C AB D 有可能共面,所以B 错误,对于C ,当三个向量,,a b c 两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C 错误,对于D ,因为A ,B ,C 三点不共线,111236OD OA OB OC =++,且1111236++=,所以A ,B ,C ,D 四点共面,所以D 正确, 故选:D 15.B 【解析】 【分析】证明出当1x y z ++=,且OM xOA yOB zOC =++,则点M 、A 、B 、C 共面.然后逐项验证可得合适的选项. 【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-, 即xCA yCB CM =+,所以,点M 、A 、B 、C 共面. 对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面; 对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面; 对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面. 故选:B. 16.(1)1AC ; (2)12α=,14,34γ=. 【解析】 【分析】(1)利用平行六面体的性质及向量的线性运算即得;(2)利用向量线性运算的几何表示可得1113244AB A MN AA D =++,进而即得. (1)∵1111ABCD A B C D -是平行六面体, ∴1111111AA BC AB AA BC A B AC ++=++= (2)∵MN =MB BN +11324DB BC =+()()11324AB AD AA AD =-++ 1113244AB AD AA =++,又1MN AB AD AA αβγ=++, ∴12α=,14,34γ=. 17.(1)1,1,1x y z ==-= (2)11,,122x y z === 【解析】 【分析】(1)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (2)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (1)解:BD BA AA A D ''''=++,AD AB AA '=-+,又因为BD x AD y AB z AA =+'+', 所以1,1,1x y z ==-=; (2)AE AA A D D E =+''''+,12AA AD DB ='++,()12AA AD AB AD =++-', 1122AD AB AA =+'+, 又因为AE x AD y AB z AA =+'+, 所以11,,122x y z ===. 18.D 【解析】 【分析】根据四点共面结论:若,,,A B C D 四点共面,则OD aOA bOB cOC =++且1a b c ++=, 【详解】若M ,A ,B ,C 四点共面,则21x y -++=,则3x y += 故选:D . 19.B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++ 故选:B 20.D 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112111333333999OG OG OA AG OA OB OC OA OA OB OC ⎛⎫==+=++-=++ ⎪⎝⎭ 故选:D 21.D 【解析】 【分析】根据空间向量基本定理即可判断 【详解】由于向量OA ,OB ,OC 不能构成空间的一个基底知OA ,OB ,OC 共面,所以O ,A ,B ,C 四点共面 故选:D 22.A 【解析】 【分析】利用向量减法的三角形法则进行计算即可. 【详解】因为M 是PC 中点,()()()1122BM PM PB PC AB AP AC AP AB AP ∴=-=--=--- 1122AB AC AP =-++,又BM x AB y AC z AP =++, 111,,22x y z ∴=-==,∴0x y z ++=. 故选:A. 23.B 【解析】 【分析】利用向量加法的平行四边形法则,减法的三角形法则即可求解 【详解】因为E 为1CD 中点, 所以()()11111112222AE AD AC AA AD AD AB AA AD AB =+=+++=++ ()11333AC AF AF AC AD AB =⇒==+ 所以1111111213322632EF AF AE AD AB AA AD AB AB AD AA =-=+---=--- 即121362a b c EF =--- 故选:B 24.C 【解析】 【分析】以A 为顶点作AB a =,AD b =,1AA c =,作出平行六面体1111ABCD A B C D -,根据空间向量的加法法则作出,,,,x y z a b c ++,然后判断各组向量是否共面可得结论. 【详解】如图,作平行六面体1111ABCD A B C D -,AB a =,AD b =,1AA c =, 则AC a b =+,1AD b c =+,1AB c a =+,1AC a b c =++,由平行六面体知,,,a b x 共面,,,x y z 不共面,,,b c z 不共面,,,x y a b c ++不共面, 因此可以作为空间的基底的有3组. 故选:C .25.D 【解析】 【分析】根据空间向量线性运算的几何意义进行求解即可. 【详解】23GF AF AG AC CF AE =-=+-()11121121232332AC AA AB AC AB AC AA =+-⨯+=-++, 故选:D . 26.B 【解析】 【分析】根据向量的加法法则及共面向量的基本定理即可求解. 【详解】根据向量的加法法则可得AC AB BC CC AB BC C C '''=++=+-,又23AC x AB yBC zC C ''=++,且,,AB BC C C '不共面,所以 1 2=1 3=-1x y z =⎧⎪⎨⎪⎩,解得111,,23x y z ===-,所以1171236x y z ++=+-=. 故选:B. 27.D 【解析】 【分析】根据m 与n 共线,由()xa yb c z a b c ++=-+,即可求解. 【详解】因为m 与n 共线,空间的一组基底{},,a b c , 所以()xa yb c z a b c ++=-+,所以,,1,x z y z z =⎧⎪=-⎨⎪=⎩解得1,1.x y =⎧⎨=-⎩,所以x +y =0. 故选:D. 28.B 【解析】【分析】用向量共线或共面的基本定理即可判断. 【详解】若 a 与b ,b 与c 共线,0b = ,则不能判定a c λ= , 故①错误;若非零向量,,a b c 共面,则向量c 可以在一个与,a b 组成的平面平行的平面上, 故②错误;,,a b c 不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;c a b λμ=+,∴ c 与,a b 共面,故,,a b c 不能组成一个基底,故④错误; 故选:C. 29.C 【解析】 【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案. 【详解】连接,AM AN 如下图:由于G 是MN 的中点,()12AG AM AN =+∴ 11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++. 根据题意知1AG xAB yAA zAC =++.32x y z ∴++=. 故选:C. 30.C 【解析】 【分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④. 【详解】①:向量a b ,与空间任意向量都不能构成一个基底,则a 与b 共线或a 与b 其中有一个为零向量,所以//a b ,故①正确;②:由向量a b b c c a +++,,是空间一组基底,则空间中任意一个向量d ,存在唯一的实数组()x y z ,,使得d ()()()()()()x a b y b c z c a x z a x y b y z c =+++++=+++++,所以a b c ,,也是空间一组基底,故②正确;③:由{}a b c ,,为空间一组基底,若0()xa yb zc x y z R ++=∈,,, 则0x y z ===,所以2220x y z ++=,故③正确;④:对于任意非零空间向量123()a a a a =,,,123()b b b b =,,,若//a b ,则存在一个实数λ使得=a b λ,有112233a b a b a bλλλ=⎧⎪=⎨⎪=⎩,又123b b b ,,中可以有为0的,分式没有意义,故④错误. 故选:C 31.BD 【解析】 【分析】根据空间向量运算判断AB 选项的正确性,根据三点共线、四点共面的知识判断CD 选项的正确性. 【详解】A C AC AB AD a b c A A AA '=-=+-='+'-,A 选项错误. ()()11112222AM AC A AB AD AD a b c D AA =+=+++='++',B 选项正确. 12A C A P ''=则P 是A C '的中点, ()()()111222c AP AC AA AB AD A b A a ''=+=++++=, c AD b AD AA ''=+=+,则不存在实数λ使AP AD λ'=,所以C 选项错误.()1112212122P a b c a b c b M AM AP AD +==⎛⎫=--= ⎪⎝++⎭+,由于,P M ∉直线AD ,所以,,,A P M D 四点共面,所以D 选项正确. 故选:BD 32.ABD 【解析】 【分析】利用空间向量的基底的概念及空间向量基本定理逐项分析即得. 【详解】∵a ,b ,c 是空间的一个基底,则a ,b ,c 不共面,且两两共面、不共线, ∴若0xa yb zc ++=,则0x y z ===,A 正确,B 正确;若存在x ,y 使得a xb yc =+,则a ,b ,c 共面,与已知矛盾,C 错误;设()()()22a b x b c y c a ya xb y x c +=-++=++-,则21,1,0,y x y x =⎧⎪=⎨⎪-=⎩,此方程组无解,∴a b +,b c -,2c a +不共面,D 正确. 故选:ABD. 33.ABC 【解析】 【分析】空间向量垂直的数量积表示可判断A ;由向量四点共面的条件可判断B ;由空间向量基底的定义可判断C ; a b ⋅是一个数值,c b ⋅也是一个数值,说明a 和c 存在倍数关系,或者说共线,可判断D. 【详解】空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=,故A 正确; 对空间中任意一点O ,有111632OP OA OB OC =++,且1111632++=,则P 、A 、B 、C 四点共面,故B 正确;因为{},,a b c 是空间的一组基底,所以,,a b c 不共面,m a c =+,则,,+a b a c 也不共面, 即{},,a b m 也是空间的一组基底,故C 正确;任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅,由于a b ⋅是一个数值,c b ⋅也是一个数值, 则说明a 和c 存在倍数关系,或者说共线,不一定相等,故D 错误. 故选:ABC. 34.CD 【解析】 【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可. 【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点, 所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=, 而12OP OA mOB nOC =+-,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能; 当32m =,1n =时,12m n -=,所以选项D 可能, 故选:CD 35.ABD 【解析】 【分析】根据空间向量基本定理即可判断出各个选项的正误. 【详解】解:对于选项A :三个非零向量能构成空间的一个基底,则三个非零向量不共面,所以选项A 正确,对于选项B :三个非零向量不共面,则此三个向量可以构成空间的一个基底, 若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面, 则已知的两个向量共线,所以选项B 正确, 对于选项C :(c a b λμλ=+、R μ∈且λ、0)μ≠,∴a ,b,c 共面,不能构成基底,所以选项C 错误,对于选项D :OA 、OB 、OC 共起点,若O 、A 、B 、C 四点不共面,则必能作为空间的一个基底,所以选项D 正确, 故选:ABD .36.BC【解析】【分析】根据空间向量基底概念分别判断即可.【详解】对于A,若存在不全为零的实数x,y,z,使得x y za b c,++=0{a,b,}c不能构成空间的一个基底,所以A错;对于B,因为{a,b,}c构成空间的一个基底,所以对空间任一向量p,总存在唯一的有序实数组(x,y,)z,使得p xa yb zc=++,所以B对;对于C,因为2()()b a b a b=+--,=++-,2()()a ab a b所以a,b,不能与a b+,a b-构成空间另一个基底;又因为设x,y,z R∈若()()0++-+=x a b y a b zc⇒++-+=⇒===,x y a x y b zc x y z()()00所以c与a b+,a b-构成空间另一个基底;所以在a,b,c中,能与a b+,a b-构成空间另一个基底的只有c,所以C对;对于D,存在,根据向量运算几何意义,++表示以O为顶点,以1a,2b,3c为相邻三边的长方体对角线,a b c23绕此对角线长方体旋转,基底也变为另一基底{a',b',}c',都满足2323++='+'+',所以D错误.a b c a b c故选:BC37.ACD【解析】【分析】利用空间向量共面定理及数量积运算,逐一分析判断即可.【详解】解:对于A ,空间任意向量,a b 都是共面向量,所以A 正确;对于B ,已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++, 则211t ++=,解得2t =-,所以B 错误;对于C ,在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则()()2PA BC PB BA PC PB PB PC PB BA PC BA PB ⋅=+⋅-=⋅-+⋅-⋅ ()2PB PC PB BA PB PB PC PB BA =⋅--⋅=⋅--0PB AC =⋅=,所以C 正确; 对于D ,因为向量,,,a b b c c a +++是空间一组基底,则对于空间任一向量()d x y z =,,,都存在实数m ,n ,p ,使得()()()()d x y z m a b n b c p c a ==+++++,,,即()()()d m p a m n b n p c =+++++,所以,,a b c 也是空间的一组基底,所以D 正确. 故选:ACD .38.AC【解析】【分析】根据基底的性质,结合各选项中向量的线性关系、空间向量基本定理判断M 、A 、B 、C 是否共面,即可知{,,}MA MB MC 是否能成为空间基底.【详解】A :因为111345OM OA OB OC =++,且1111345++≠,利用平面向量基本定理知:点M 不在平面ABC 内,向量,,MA MB MC 能构成一个空间基底;B :因为2MA MB MC =+,利用平面向量基本定理知:向量,,MA MB MC 共面,不能构成一个空间基底;C :由23,1231OM OA OB OC =++++≠,利用平面向量基本定理和空间平行六面体法知:OM 是以点O 为顶点的对角线,向量,,MA MB MC 能构成一个空间基底;D :由32MA MB MC =-,根据平面向量的基本定理知:向量,,MA MB MC 共面,不能构成空间的一个基底.故选:AC.39.1122a b c -++ 【解析】【分析】利用空间向量的线性运算,结合题意,求解即可.【详解】根据题意,()1111111122BM BA AA A M AB AA AC AB AA AB BC =++=-++=-+++ 11122AB BC AA =-++=1122a b c -++. 故答案为:1122a b c -++.40.0【解析】 【分析】由2=PM MC 可得出BM 关于{},BP BC 的表达式,再利用空间向量的减法可求得x 、y 、z 的值,即可得解.【详解】因为2=PM MC ,则()2BM BP BC BM -=-, 所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++, 所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.41.④【解析】【分析】通过反例可知①②错误;根据平面向量基本定理、空间向量基本定理可判断出③④正误.【详解】对于①,若0a b ==,则对于平面内任意一个向量p ,无法得到(),p a b R λμλμ=+∈,①错误;对于②,若0a b ==,则,λμ为任意实数,②错误;对于③,若p 与,a b 不共面,则对于空间任意一个向量p ,无法得到p a b λμ=+(),R λμ∈,③错误;对于④,由平面向量基本定理可知④正确.故答案为:④.42.13-【解析】连接OD ,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接OD∵四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC = ∴()2111232223DE OE OD OC OA OB OA OB OC =-=-+=--+∴121223αβγ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴13αβγ++=-.故答案为:13-43.111444a b c ++【解析】【分析】利用空间的基底结合空间向量的线性运算计算即可得解.,,OA a OB b OC c ===,而M 是四面体OABC 的棱BC 的中点,则1()2OM OB OC =+1122b c =+, 因AP =3PN ,23ON OM =,则33()44OP OA AP OA AN OA ON OA =+=+=+-132111443444OA OM a b c =+⋅=++, 所以111444OP a b c =++. 故答案为:111444a b c ++44.()12c a b -- 【解析】【分析】根据给定条件利用空间向量的线性运算即可得解.【详解】三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,则()11112222MN MB BO ON AB OB OC OB OA OB OC =++=-+=--+()11112222OC OA OB c a b =--=--, 所以MN 等于()12c a b --. 故答案为:()12c a b --. 45.(1)(4)【解析】根据共线向量,向量垂直,向量的基本定理,向量数量积的定义与性质,逐一分析5个命题的真假,即可得解.【详解】(1)若a b a b -=+,则a ,b 反向共线,即满足充分条件,但当非零向量a ,b 同向共线时,不存在a b a b -=+,即满足不必要条件,故(1)正确;(2)若向量a ,b 中有一个零向量,则存在无数个实数λ,使a b λ=,即(2)错误;(3)若0a b ⋅=,0b c ⋅=,说明a b ⊥,b c ⊥,不一定存在a c =,即(3)错误;(4)令()()a b b c c a λμ+=+++,则()a b a b c μλλμ+=+++,所以110λμλμ=⎧⎪=⎨⎪+=⎩,无解,即a b +,b c +,c a +不共面,所以{},,a b b c c a +++构成空间的另一基底,即(4)正确; (5)()()cos ,a b c a b c a b c a b ⋅⋅=⋅⋅=⋅⋅,即(5)错误.命题(1)(4)正确.故答案为:(1)(4).46.(1)111333OG OA OB OC =++(2)73【解析】【分析】(1)根据空间向量线性运算法则计算可得;(2)由(1)可得111()()333OG AB OA OB OC OB OA ⋅=++⋅-,根据空间向量数量积的运算律及定。
空间向量知识点总结及典型题
空间向量知识点总结及典型题一、空间向量知识点总结。
(一)空间向量的概念。
1. 定义。
- 在空间中,具有大小和方向的量叫做空间向量。
2. 表示方法。
- 用有向线段表示,如→AB,其中A为起点,B为终点;也可以用字母→a,→b,→c·s表示。
3. 向量的模。
- 向量的大小叫做向量的模,对于向量→AB,其模记为|→AB|;对于向量→a,其模记为|→a|。
(二)空间向量的运算。
1. 加法。
- 三角形法则:→AB+→BC=→AC;平行四边形法则:对于不共线的向量→a 和→b,以→a和→b为邻边作平行四边形,则这两个向量之和为平行四边形的对角线所对应的向量。
- 运算律:→a+→b=→b+→a(交换律);(→a+→b)+→c=→a+(→b+→c)(结合律)。
2. 减法。
- →a-→b=→a+(-→b),其中-→b是→b的相反向量。
3. 数乘向量。
- 实数λ与向量→a的乘积λ→a仍是一个向量。
- 当λ> 0时,λ→a与→a方向相同;当λ<0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。
- 运算律:λ(μ→a)=(λμ)→a;(λ+μ)→a=λ→a+μ→a;λ(→a+→b)=λ→a+λ→b。
(三)空间向量的坐标表示。
1. 坐标定义。
- 在空间直角坐标系O - xyz中,设→i,→j,→k分别是x,y,z轴正方向上的单位向量。
对于空间向量→a,若→a=x→i+y→j+z→k,则(x,y,z)叫做向量→a的坐标,记为→a=(x,y,z)。
2. 坐标运算。
- 设→a=(x_1,y_1,z_1),→b=(x_2,y_2,z_2),则→a+→b=(x_1+x_2,y_1+y_2,z_1+z_2);→a-→b=(x_1-x_2,y_1-y_2,z_1-z_2);λ→a=(λx_1,λ y_1,λ z_1)。
- 向量的模|→a|=√(x^2)+y^{2+z^2}。
- 设A(x_1,y_1,z_1),B(x_2,y_2,z_2),则→AB=(x_2-x_1,y_2-y_1,z_2-z_1)。
空间向量与立体几何题型总结
空间向量与立体几何题型总结
空间向量与立体几何是数学中重要的概念和工具,用于研究和解决与三维空间相关的几何问题。
以下是空间向量与立体几何的一些常见题型总结:
1. 空间向量的表示与计算:题目可能涉及给定多个点的坐标,在空间中构建向量,进行向量的运算,如加法、减法、数量乘法、点积和叉乘等。
2. 向量共线与线性相关性:要求判断给定的向量是否共线,或通过线性相关性判断某向量是否可以表示为其他向量的线性组合。
3. 向量垂直与正交性:题目可能要求判断给定的向量是否垂直或正交,通过向量的点积判断向量之间的关系。
4. 平面与直线的位置关系:需要确定一条直线与一个平面的位置关系,如直线是否平行于平面、直线是否在平面内,或找到直线与平面的交点等。
5. 平面的方程与性质:要求根据给定的条件建立平面方程,如点法式、两直线式、两平面式等,并通过方程确定平面的性质,如法向量、倾斜角等。
6. 空间图形的体积与表面积计算:题目可能给出空间图形的参数,要求计算其体积或表面积,如立方体、圆锥体、球体等。
7. 空间坐标与距离计算:需要根据给定的空间点坐标计算两点之间的距离,或确定一个点到直线、平面的距离。
8. 空间二面角与线面夹角的计算:题目可能要求计算空间中的二面角或线面夹角,要根据给定的图形和参数进行计算。
以上是一些常见的空间向量与立体几何的题型总结,但在实际中还可能会涉及更复杂的问题。
熟练掌握相关的概念、公式和方法,结合几何直觉能力,有助于解答这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量题型归纳总结
类型一:空间向量的概念
1.给岀下列命题:
① 若a//b ,则存在为唯一的实数
•,使得a =;$.b
② 若a//b,b//c ,则a 与c 所在直线平行
③ 已知 a _b ,则 a (b ■ c ) ■ c (b _a )二b c
④ A, B, M ,N 为空间四点,若 BA, BM , BN 不构成空间一个基底,则 A,B,M ,N 共面
已知{a, b,c }是空间的一个基底,则基向量 a, b 可以与向量m=a 亠c 构成空间一个基底 则正确的命题的序号为:
—
3 " 1 ' 1 —
2.若A,B,C 不共线,对于空间任意一点 0都有OP OA OB 0C ,贝U P,A, B,C 四点(
)
4 8 8
] ] ] 1
I
3.已知A,B,C 三点不共线,对平面 ABC 外一点0,给出下列表达式: OM =xOA - yOB 0C ,其中
3 x, y 是实数,若
点M 与A, B,C 四点共面,贝U x y 二 _____________
类型二:空间向量的运算(1代数运算,2坐标运算)
4.在四面体OABC 中,G 是底面^ABC 的重心,则OG 等于()
1 — 1 — 1 — OA OB OC
B. 2 2 2
111 ■ —OA+—OB+— OC D. 3 3 3
A.不共面
B.共面
C.共线
D.不共线
A. OA OB OC
C. 1 ■ 1 - —OA —OB 2 3
5.已知空间四边形 OABC ,其对角线为 OB,AC,M,N 分别是边OA,CB 的中点,点G 在线段MN 上,且 使 MG =2GN ,
用向量OA,OB,OC 表示OG 是()
6.设O -ABC 是正三棱锥,G i 是AABC 的重心,G 是OG i 上的一点,且OG =3GG i ,若
OG =xOA yOB zOC ,
则(x, y,z )为()
7.空间四边形OABC ,各边及对角线长都相等, E,F 分别为AB,OC 的中点,求OE 与BF 所成的角
8.如图,空间四边形 OABC 中,O A 二a,OB =b,OC =c ,点M 在线段OA 上,且OM =2MA ,点N 为
BC 的中点,
则 MN 二()
9.在四棱柱ABC^A 1B 1C 1D 1中,M 为AC 与BD 的交点,若 AB 1 =a ,&D 1二b ,"A 二c ,则下列
向量中与B 1M 相等的向量是()
A. OG J O A —OB !OC
6 3
3
2 — 2 —
C. OG =OA OB OC
3 3
—
1 —-
1 —
2 — B. OG OA — OB OC
6
3
3
— 1 —- 2 ■ 2 —
D. OG OA OB OC
B.
D.
1 一 1 ■ 1 - C. — a b c
2 2 2
2 2 1 L D.—a b c
3
3
2 A.
B.
3
2 2
1 〜1 + - D. a b 」c
2 2
10.平行六面体 ABCD —ABGD i 中,AB =2, AA - =2
, AD =1,且 AB,AD,AA 的夹角都是 60 ,则
AC - BC 1 —
11.已知空间向量a =(1,n,2),b = (21,2),若2a -b 与b 垂直,则|a|等于()
B. -21
.37 2
类型四:空间向量的应用(证明平行,垂直,相等,求边,夹角和面积)
12. ABC 的顶点分别为 A(1,-1,2),B(5,-6,2),C(1,3,-1),贝U AC 边上的高 BD 等于()
A. 5
C. 4
13.已知 A(1,0,3),B(1,2,1),C(0,2,1),三角形 ABC 的面积为()
A. 1
B. . 2
C. 2 •、2
D. 4
14.设A(1,2,-1), B(0,3,1),C( -2,1,2)是平行四边形的三个顶点,则此平行四边形的面积为
1 • 1 • • a b 」c
2 2
A.
D. 2 .5
15. 若A(1,-2,1),B(4,2,3),C(6,-9,4),则则. ABC 的形状为()
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
16. 已知A(2,0,0),B(0,1,0),C(0,0,2),则P(2,1,4)到平面ABC 的距离是_________
17.已知向量F i =(1,2,-3), F2 = (~2,3,―1), F3 = (3,-4,5),若F i, F2, F3共同作用在一
个物体上,使物体从
点M1(1,_2,1)
移到点M 2 (3,1,2),则合力所做的功为___________________
18.已知i, j,k为两两垂直的单位向量,非零向量a =a1i亠a2 j亠a3k(a1, a2忌:=R),若向量a与向量i, j, k
的夹角分别为
.-:•;,「,,则u COS2壽‘COS2匸'cos2_______________ =
19.正三棱柱ABC - ABC1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合
口.
(I)当CF =1时,求证:EF丄A1C ;
(u)设二面角C - AF - E的大小为,求tan二的最小值.
C。