2012年数学中考几何精练题
2012年全国100套中考数学压轴题分类解析汇编专题9:几何三大变换相关问题
∴四边形 NMQP 是平行四边形。∴ NP=MQ , PQ= NM= 10 。
又∵ PQ=CQ,∴ CQ= 10 。
在△ CBQ 中, CQ= 10 , CB=3,由勾股定理,得 BQ=1。
∴ NP=MQ= 1 。∴ PC=4- 3 - 1 =2。
2
22
【考点】 翻折问题,翻折的性质,矩形的性质,平行的性质,全等三角形的判定和性质,平行四边形的
(3)解:∵ AB=4, BC=3,∴ AC=5。
设 DN =x,则由 S△ADC=S△AND+ S△ NAC 得
3 x+ 5 x=12 ,解得 x= 3 ,即 DN=BM = 3 。
2
2
过点 N 作 NH ⊥ AB 于 H,则 HM =4- 3=1。
在△ NHM 中, NH=3 ,HM =1,
由勾股定理,得 NM = 10 。 ∵ PQ∥ MN , DC ∥AB,
过点 P 作 PE⊥ OA 于 E,∴∠ PEA=∠QAC′=90。°
∴∠ PC ′E+∠ EPC ′=90。°
∵∠ PC ′E+∠ QC′A=90°,∴∠ EPC′∠=QC′A。 ∴△ PC ′E∽△ C′QA。∴ PE PC 。
AC C Q ∵ PC′P=C=11- t, PE=OB=6, AQ=m, C′Q=CQ=6-m,
(Ⅱ)∵△ OB′P、△ QC′P 分别是由△ OBP、△ QCP 折叠得到的,
∴△ OB′P≌△ OBP ,△ QC′P≌△ QCP。
∴∠ OPB′∠=OPB,∠ QPC ′∠=QPC。
∵∠ OPB′∠+OPB+∠ QPC′∠+QPC =180°,∴∠ OPB+∠ QPC=90°。
∵∠ BOP+∠ OPB=90°,∴∠ BOP=∠ CPQ。
2012年全国中考数学试题分类解析汇编(159套63专题)专题44 矩形、菱形、正方形
2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。
【考点】正方形的性质,勾股定理。
【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。
∴CM=1。
∵四边形EDGF1。
故选D。
2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A。
【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。
【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。
故选A 。
3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。
【考点】菱形的性质,勾股定理。
【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。
∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。
又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。
故选D 。
4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。
2012年中考数学试题(含答案)
2012年中考数学试题A 卷(共100分)第1卷(选择题.共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.3-的绝对值是( )A .3B .3-C .13 D .13- 2.函数12y x =- 中,自变量x 的取值范围是( ) A .2x > B . 2x < C .2x ≠ D . 2x ≠- 3.如图所示的几何体是由4个相同的小正方体组成.其主视图为( )A .B .C .D .4.下列计算正确的是( )A .223a a a +=B .235a a a ⋅=C .33a a ÷= D .33()a a -= 5.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( )A . 59.310⨯ 万元B . 69.310⨯万元C .49310⨯万元D . 60.9310⨯万元6.如图,在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为( )A .( 3-,5-)B .(3,5)C .(3.5-)D .(5,3-)7.已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A . 8cmB .5cmC .3cmD .2cm8.分式方程3121x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x = 9.如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OCB10.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B . 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 1l .分解因式:25x x - =________.12.如图,将ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=________.13件衬衫,其领口尺寸统计如下表:则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .14.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=,0C=1,则半径OB 的长为________.三、解答题(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)计算:024cos458((1)π-++-(2)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩16.(本小题满分6分)化简: 22(1)b a a b a b-÷+-17.(本小题满分8分)如图,在一次测量活动中,小华站在离旗杆底部(B 处)6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度.(结果精确到0.1 1.732≈ )18.(本小题满分8分)如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数k y x=(k 为常数,且k ≠0)的图象交于A,B两点,且点A的坐标为(1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.19.(本小题满分10分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.20.(本小题满分10分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=92a时,P、Q两点间的距离 (用含a的代数式表示).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为________.22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)23.有七张正面分别标有数字3-,2-,1-,0,l ,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-= 有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+ 的图象不经过...点(1,O)的概率是________. 24.如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A ,B ,与反比例函数k y x=(k 为常数,且0k >)在第一象限的图象交于点E ,F .过点E 作EM ⊥y 轴于M ,过点F 作FN ⊥x 轴于N ,直线EM 与FN 交于点C .若BE 1BF m =(m 为大于l 的常数).记△CEF 的面积为1S ,△OEF 的面积为2S ,则12S S =________. (用含m 的代数式表示)25.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)“城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数. 函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)。
广东省2012年中考数学试题分类解析汇编 专题9 三角形
某某2012年中考数学试题分类解析汇编 专题9:三角形 一、选择题1. (2012某某某某3分)在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是【 】A .B .C .D .【答案】A 。
【考点】勾股定理,点到直线的距离,三角形的面积。
【分析】根据题意画出相应的图形,如图所示。
在Rt△ABC 中,AC=9,BC=12,根据勾股定理得:2222AB=AC +BC 9+1215==。
过C 作CD⊥AB,交AB 于点D ,则由S △ABC =12AC•BC=12AB•CD,得AC BC 91236CD AB 155⋅⨯===。
∴点C 到AB 的距离是365。
故选A 。
2. (2012某某某某3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】A.(63)+米B.12米C.(423)+米 D .10米【答案】A 。
【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。
【分析】延长AC交BF延长线于E点,则∠CFE=30°。
作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。
∴BD=BF+EF+ED=12+23。
∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=12BD=()112+236+32=。
故选A。
3. (2012某某某某3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。
2012年中考三角形、四边形压轴题(四)及解析
2012年各地中考数学汇编三角形四边形精选(31~40) 【31. 2012南通】26.(本小题满分10分)如图,菱形ABCD 中,∠B =60o ,点E 在边BC 上,点F 在边CD 上.(1)如图1,若E 是BC 的中点,∠AEF=60o ,求证:BE =DF ;(2)如图2,若∠EAF =60o ,求证:△AEF 是等边三角形.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定.【专题】证明题.【分析】(1)首先连接AC ,由菱形ABCD 中,∠B=60°,根据菱形的性质,易得△ABC 是等边三角形,又由三线合一,可证得AE ⊥BC ,继而求得∠FEC=∠CFE ,即可得EC =CF ,继而证得BE=DF ;(2)首先连接AC ,可得△ABC 是等边三角形,即可得AB=AC ,以求得∠ACF =∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC ,证得△AEB ≌△AFC ,即可得AE=AF ,证得:△AEF 是等边三角形.【解答】证明:(1)连接AC ,∵菱形ABCD 中,∠B=60°,∴AB=BC=CD ,∠C=180°-∠B=120°,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∵∠AEF =60°,∴∠FEC =90°-∠AEF =30°,∴∠CFE =180°-∠FEC -∠C=180°-30°-120°=30°,∴∠FEC =∠CFE ,∴EC=CF ,∴BE=DF ;(2)连接AC ,∵四边形ABCD 是菱形,∠B=60°∴AB=BC ,∠D=∠B=60°,∠ACB=∠ACF ,∴△ABC 是等边三角形,∴AB=AC ,∠ACB=60°,∴∠B=∠ACF =60°,∵AD ∥BC ,∴∠AEB=∠EAD =∠EAF +∠FAD=60°+∠FAD ,∠AFC =∠D+∠F AD =60°+∠FAD ,∴∠AEB=∠AFC ,在△ABE 和△AFC 中,∠B=∠ACF ∠AEB =∠AFC AB=AC B E C F A D 图1 B E CF A D 图2∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.【点评】此题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意准确作出辅助线,注意数形结合思想的应用.【32. 2012南通】27.(本小题满分12分)如图,在△ABC中,AB=AC=10cm,BC=12cm,点D是BC边的中点.点P从点B 出发,以acm/s(a>0)的速度沿BA匀速向点A运动;点Q同时以1cm/s的速度从点D 出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为ts.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a=52,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.【考点】相似三角形的判定与性质;等腰三角形的性质;勾股定理;平行四边形的性质.【专题】几何综合题.【分析】(1)由△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,根据等腰三角形三线合一的性质,即可求得BD与CD的长,又由a=2,△BPQ∽△BDA,利用相似三角形的对应边成比例,即可求得t的值;(2)①首先过点P作PE⊥BC于E,由四边形PQCM为平行四边形,易证得PB=PQ,又由平行线分线段成比例定理,即可得方程 5 2 t 10 =1 2 (6-t) 6 ,解此方程即可求得答案;②首先假设存在点P在∠ACB的平分线上,由四边形PQCM为平行四边形,可得四边形PQCM是菱形,即可得PB=CQ,PM:BC=AP:PB,及可得方程组,解此方程组求得t值为负,故可得不存在.【解答】解:(1)△ABC中,AB=AC=10cm,BC=12cm,D是BC的中点,∴BD=CD=1 2 BC=6cm,∵a=2,∴BP=2tcm,DQ=tcm,∴BQ=BD-QD=6-t(cm),∵△BPQ∽△BDA,∴BP BD =BQ AB,即2t 6 =6-t 10 ,解得:t=18 13 ;(2)①过点P作PE⊥BC于E,∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ,∴BE=1 2 BQ=1 2 (6-t)cm,∵a=5 2 ,∴PB=5 2 tcm,∵AD⊥BC,∴PE∥AD,∴PB:AB=BE:BD,即5 2 t 10 =1 2 (6-t) 6 ,解得:t=3 2 ,∴PQ=PB=5 2 t=15 4 (cm);②不存在.理由如下:∵四边形PQCM为平行四边形,∴PM∥CQ,PQ∥CM,PQ=CM,∴PB:AB=CM:AC,∵AB=AC,∴PB=CM,∴PB=PQ.若点P在∠ACB的平分线上,则∠PCQ=∠PCM,∵PM∥CQ,∴∠PCQ=∠CPM,∴∠CPM=∠PCM,∴PM=CM,∴四边形PQCM是菱形,∴PQ=CQ,∴PB=CQ,∵PB=atcm,CQ=BD+QD=6+t(cm),∴PM=CQ=6+t(cm),AP=AB-PB=10-at(cm),即at=6+t①,∵PM∥CQ,∴PM:BC=AP:AB,∴6+t 12 =10-at 10 ,化简得:6at+5t=30②,把①代入②得,t=-6 11 ,∴不存在实数a,使得点P在∠ACB的平分线上.【点评】此题考查了相似三角形的判定与性质、平行四边形的性质、菱形的判定与性质以及等腰三角形的性质等知识.此题难度较大,注意数形结合思想与方程思想的应用.。
2012年中考几何综合题_专题练习(教师版含答案).doc
几何题专项训练(24题)一、方法提点几何综合题是中考试卷中常见的题型,大致可以分为几何计算型综合题和几何论证型综合题,它主要是考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答。
解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键。
解几何综合题,还应注意以下几点:(1)注意观察、分析图形,把复杂图形分解为几个基本图形,通过添加辅助线补全或构造基本图形;(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题(常常借助于解直角三角形和两三角形相似的性质),还要灵活运用其它数学思想方法如数形结合、分类讨论等。
二、强化训练(一) 达标训练1.如图,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E .(1)求证:梯形ABCD 是等腰梯形. (2)若∠BDC =30°,AD =5,求CD 的长.(1)证明:∵AE ∥BD ,∴∠E =∠BDC ∵DB 平分∠ADC∴∠ADC =2∠BDC又∵∠C =2∠E∴∠ADC =∠BCD∴梯形ABCD 是等腰梯形 3分 (2)解:由第(1)问,得∠C =2∠E =2∠BDC =60°,且BC =AD =5∵ 在△BCD 中,∠C =60°, ∠BDC =30° ∴∠DBC =90°∴DC =2BC =10 7分2.中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △.(1)求证:BE DG =;(2)若四边形ABFG 是菱形,且60B ∠=°,BC=9B C D 的面积.证明:(1)∵四边形ABCD 是平行四边形, ∴AB CD =.A DG 图 5E D C BA∵AE 是BC 边上的高,且CG 是由AE 沿BC 方向平移而成. ∴CG AD ⊥.∴90AEB CGD ∠=∠=°. ∵AE CG =,∴Rt Rt ABE CDG △≌△. ∴BE DG =.(2)∵四边形ABFG 是菱形, ∴AB=BF .∵Rt ABE △中,60B ∠=°,∴30BAE ∠=°, ∴12BE AB ==1/2BF . 又BE=FC∴BE=1/3BC=3.在Rt ABE △中, AE=tg 30°.BE=3 ∴ABCD=BC .AE=9×3=933.如图,在直角梯形ABCD 中,AD ∥BC ,90ABC ∠=︒.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足AD CF =,M F M A =. (1)若120=∠MFC ,求证:MB AM 2=;(2)求证:FCM MPB ∠-=∠2190. (2010 重庆市中考题,答案见《试题研究》)4.如图,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH 交于点P .(1)若AG AE =,证明:AF AH =;(2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.(1)证明1:在Rt ADH △与Rt ABF △中,∵AD AB DH AG AE BF ====,,∴Rt ADH △≌Rt ABF △. ∴AF AH =.证明2:在Rt AEF △中,222AF AE EF =+.在Rt AGH △中,222AH AG GH =+∵AG AE GH EF ==,,∴AF AH =.(2)证明1:将ADH △绕点A 顺时针旋转90°到ABM △的位置.A E DH G PBF CADG C B F EM PFEDC BA在AMF △与AHF △中,∵ AM AH AF AF ==,,904545MAF MAH FAH FAH ∠=∠-∠=-==∠°°°,∴AMF AHF △≌△.∴MF HF =.∵MF MB BF HD BF AG AE =+=+=+,∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM . 在Rt ABM △与Rt ADH △中, ∵AB AD BM DH ==,,∴Rt Rt ABM ADH △≌△.∴AM AH MAB HAD =∠=∠,. ∵45FAH ∠=°,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=°°°.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠°. ∴AMF AHF △≌△. ∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.(3)设BF x GB y ==,,则1FC x =-,1AG y =-.(0101x y <<<<,) 在Rt GBF △中,22222GF BF BG x y =+=+. ∵Rt GBF △的周长为1,∴1BF BG GF x y ++=++=.1()x y =-+.即22212()()x y x y x y +=-+++. 整理得22210xy x y --+=. (*) 求矩形EPHD 的面积给出以下两种方法: 方法1:由(*)得212(1)x y x -=-. ①∴矩形EPHD 的面积(1)(1)S PHEP FC AG x y ===--·· ② 将①代入②得(1)(1)S x y =--21(1)12(1)x x x ⎡⎤-=--⎢⎥-⎣⎦E D CFM G AP (2)图1(1)2(1)x x -=--12=.∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=, ∴矩形EPHD 的面积(1)(1)S PHEP FC AG x y ===--·· 1()x y xy =-++ 112=- 12= ∴矩形EPHD 的面积是12.(二)拓展训练5.如图,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.4.(2008甘肃省兰州市,9分)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.(1)证明:当90AOF ∠= 时,AB EF ∥, 又AF BE ∥,∴四边形ABEF 为平行四边形.3分(2)证明: 四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△. AF EC ∴=5分 (3)四边形BEDF 可以是菱形. 6分理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =, EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形.7分在Rt ABC △中,2AC ==,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠= ,8分45AOF ∴∠= ,AC ∴绕点O 顺时针旋转45 时,四边形BEDF 为菱形. 9分3. 在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,2AB CD =,E 、F 分别为AB 、AD 的中点,连结EF 、CE 、BF 、CF .(1)判断四边形AECD 的形状(不需证明);(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明; (3)若2CD =,求四边形BCFE 的面积.ABCDO F EABCD O F ED C F(1)平行四边形;(2)BEF FDC △≌△或(AFB EBC EFC △≌△≌△) 证明:连结DE .∵2AB CD =,E 为AB 中点,∴DC EB∥. 又∵AB BC ⊥,∴四边形BCDE 为矩形.∴90AED ∠=°.Rt ABE △中,60A ∠=°,F 为AD 中点,∴12AE AD AF FD ===. ∴AEF △为等边三角形.∴18060120BEF ∠=-=°°°. 而120FDC ∠=°,得BEF FDC △≌△(S .A .S .)(其他情况证明略)(3)若2CD =,则4AD =, DE BC ==23 ∵S △ECF =21AECD S =21CD ·DE =21×2×23=23 CBE S △=21BE ·BC =21×2×23=23∴S 四边形BCFE =S △ECF +S △EBC =23+23=43.4.在正方形ABCD 中,E 是AB 上一点,G 在AD 上,F 是AD 延长线上一点,且DF =BE ,∠GCE =45°.(1)求证:GE =BE +GD(2)运用(1)题解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.(1)证明:在正方形ABCD 中,图1B 图2 CA DEGD CBA FE∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF . ∴CE =CF . 3分 (2)解:GE =BE +GD 成立. 4分 理由是:∵△CBE ≌△CDF , ∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCE =∠GCF ,GC =GC , ∴△ECG ≌△FCG . ∴GE =GF .∴GE =DF +GD =BE +GD . 8分 (3)解:过C 作CG ⊥AD ,交AD 延长线于G . 在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形. ∴AG =BC =12. 已知∠DCE =45°, 根据(1)(2)可知,ED =BE +DG . 10分 设DE =x ,则DG =x -4, ∴AD =16-x .在Rt △AED 中, ∵222AE AD DE +=,即()222816+-=x x .解这个方程,得:x =10.∴DE =10. 12分。
2012年数学中考几何精练题
2012年朐城家教中考精练题编辑整理:王老师1、如图1,在△ABC中,∠A+∠B=2∠ACB,BC=8,D为AB的中点,且CD=/2,求AC的长。
2、如图2,梯形ABCD中,AD∥BC,AB=CD,M、N、P分别是AD、BC、BD的中点,若∠ABD=200,∠BDC=700,求∠NMP3、如图3,在△ABC中,∠B=2∠C,AD⊥BC,M为BC中点,求证:DM=(1/2)AB4、如图4,已知D、E为AC、BC的中点求S△BGE:S△ABC5、如图5,正方形ABCD,AE=AC,四边形AEFC是菱形,求证∠ACF=5∠CAE6、如图6,正方形ABCD,E、F为中点,AF、BE相交于G,连CG,求证△CGB为等腰三角形。
7、如图7、在正方形ABCD中,M为AB上任意一点,MN⊥DM,BN平分∠CBE,试说明MD=MN8、如图8,正方形ABCD,AE∥DB,BE=DB,BE交AD于F,试说明△DEF是等腰三角形9、如图9,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O,求证OA.OC+OB.OD=AD.BC10、如图10,已知△ABC中∠C的外角的平分线交BA的延长线于D,问AD:BD与图中哪两个线段的比值相等?11如图11,已知△ABC中,MB为∠ABC的平分线,AM⊥BM,N为AC的中点,已知:AB=10,BC=6,求MN的长。
12、如图12,L∥OA,L和⊙O相交,交点为H,设OH=x,OA=1,∠AOH=450,求x的取值范围13、选择题:方程x2+2x-1=0的根可看作y=x+2和y=1/x的图像的交点的横坐标,用此方法推断x3+x-1=0的实数根x( )A -1/2﹤x﹤0B 0﹤x﹤1/2C 1/2﹤x﹤1D 1﹤x﹤3/214、如图13,⑴在x轴上找一点P,使PA+PB最小,并求P点的坐标⑵使∣PA-PB∣最大,并求P点的坐标15、如图14,正方形ABCD,边长为4,BE=1,在AC上找一点,使PB+PE的值最小,求P点的坐标16、如图15,若y=ax2+bx+c(a≠0),判断下列等式哪些是正确的()⑴abc>0 ⑵b﹤a+c ⑶4a+2b+c>0 ⑷2c﹤3b ⑸a+b>m(am+b)(m≠1)(要求写出推导过程)17、如图16,将正方形边长三等分,求∠1+∠218、如图17,矩形ABCD,矩形的对角线AC,函数y=(k2-4k-6)/x,过D点,已知B(-2,3),求k的值19、如图18,平行四边形ABCD,双曲线y=k/x,且已知A(-1,0),B(0,-2),S△ABC:S△BCDE=1:5,求k的值20、如图19,已知OB=,OA:AB=1:2,将△OAB沿OB对折,A点落在A/点,求A/的坐标。
2012年全国各地市中考数学模拟试题分类汇编26三角形全等
A
D
、
B
CE
答案:(1)①△ABC≌△CDA;②△ACE≌△DEC;③△CAD≌△EDA;
④△ABC≌△EAD.……………………………………………………………………3 分
(2)证明:△ABC≌△CDA. ………………………………………………………4 分
∵四边形 ABCD 是平行四边形,
∴AD=BC,∠DAC=∠BCA.…………………………………………………………6 分
解得 t 7 ,即运动时间为 7 秒时,四边形 PBQD 是菱形.
4
4
13、(2012 年北京市顺义区一诊考试)已知:如图,在 △ABC 中,AB=AC,点 D、E 在 BC
上,且 BD=CE.
求证:∠ADE =∠AED.
证明:∵AB=AC,
A
∴ B C .
在△ABD 和△ACE 中,
AB AC,
B
C,
BD CE,
∴ △ABD≌△ACE. ∴ AD=AE.
B D
C E
∴∠ADE =∠AED.
14、(2012 年北京市延庆县一诊考试)已知:如图,□ABCD 中,点 E 是 AD 的中点,延长 CE
E F
解法一:添加条件:AE=AF, ……2 分 证明:在△AED 与△AFD 中, ∵AE=AF,……1 分 ∠EAD=∠FAD,……1 分 AD=AD,……1 分
B
D
C
A
E F
B
D
C
4
∴△AED≌△AFD(SAS). ……1 分 解法二:添加条件:∠EDA=∠FDA,……2 分
证明:在△AED 与△AFD 中, ∵∠EAD=∠FAD,……1 分 AD=AD,……1 分 ∠EDA=∠FDA,……1 分 ∴△AED≌△AFD(ASA). ……1 分
全国各地2012年中考数学分类解析40;159套63专题41;专题60_代数几何综合
2012年全国中考数学试卷分类解读汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形地面积是15,估计它地边长大小在【 】 A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 【答案】B.【考点】算术平方根,估算无理数地大小.【分析】∵一个正方形地面积是15,∵9<15<16,∴3<4.故选B.2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形地抛物线地条数是【 】 A .2 B .3 C .4 D .5 【答案】B.【考点】抛物线与x 轴地交点.【分析】根据抛物线地解读式可得C (0,﹣3),再表示出抛物线与x 轴地两个交点地横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 地值,即可求出答案:根据题意,得C (0,﹣3). 令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k . 设A 点地坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点地坐标为(1,0),∴3k=1,k=3; ②当AC=AB 时,点B 在点A 地右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 地左面时,B 0),∴3k k 10==. ∴能使△ABC 为等腰三角形地抛物线地条数是3条.故选B.3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点地二次函数y1和过P 、A 两点地二次函数y2地图象开口均向下,它们地顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数地最大值之和等于【 】A .3 D .4 【答案】A.【考点】二次函数地性质,等腰三角形地性质,勾股定理,相似三角形地判定和性质. 【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM.∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2.由勾股定理得:设P (2x ,0),根据二次函数地对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE.∴BF OF CM AMDE OE DE AE ==,x 2x 22-,解得:)2x BF CM 2-==,.∴故选A.4. (2012浙江嘉兴、舟山4分)已知△ABC 中,∠B 是∠A 地2倍,∠C 比∠A 大20°,则∠A 等于【 】 A . 40° B . 60°C . 80°D . 90°【答案】A.【考点】一元一次方程地应用(几何问题),三角形内角和定理.【分析】设∠A=x ,则∠B=2x ,∠C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∠A=40°.故选A.5. (2012江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示地正方形(用阴影表示),点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3在x 轴上.若正方形A1B1C1D1地边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x 轴地距离是【 】【答案】D.【考点】正方形地性质,平行地性质,三角形内角和定理,解直角三角形,锐角三角函数定义,特殊角地三角函数值.【分析】过小正方形地一个顶点W 作FQ ⊥x 轴于点Q ,过点A3F ⊥FQ 于点F ,∵正方形A1B1C1D1地边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°.∴D1E1=12D1C1=12. ∴D1E1=B2E2=12.∴222222B E 1cos30B C 2B C ︒===. 解得:. ∴∴343333B E cos30B C ︒=,解得:B3C3=13.∴WC3=13. 根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,∴WQ=111=236⨯,FW=WA3•cos30°=13. ∴点A3到x 轴地距离为:FW+WQ=16故选D. 6. (2012湖南永州3分)下列说法正确地是【 】A B .32a a a a 0-⋅=≠()C .不等式2﹣x >1地解集为x >1D .当x >0时,反比例函数ky=x地函数值y 随自变量x 取值地增大而减小7. (2012湖南张家界3分)下列不是必然事件地是【 】 A . 角平分线上地点到角两边地距离相等 B . 三角形任意两边之和大于第三边 C . 面积相等地两个三角形全等 D . 三角形内心到三边距离相等 【答案】C.【考点】随机事件,必然事件.【分析】A .为必然事件,不符合题意;B .为必然事件,不符合题意;C .为不确定事件,面积相等地三角形不一定全等,符合题意;D .为必然事件,不符合题意.故选C.8. (2012四川资阳3分)下列计算或化简正确地是【 】A .235a +a =aB 3± D .11=x+1x 1--- 【答案】D.【考点】合并同类项,二次根式地化简,算术平方根,分式地基本性质.【分析】根据合并同类项和二次根式地化简地运算法则,算术平方根地概念和分式地基本性质逐一判断:A 、a2和a3不是同类项,不可以全并,此选项错误;BC ,此选项错误;D 、()111==x+1x 1x 1------,此选项正确. 故选D.9. (2012四川南充3分)下列计算正确地是【 】(A )x3+ x3=x6 (B )m2·m3=m6 (C )3-2=3 (D )14×7=72 【答案】D.【考点】合并同类项,同底数幂地乘法,二次根式地加减法,次根式地乘法. 【分析】对每一项分别进行解答,得出正确地结果,最后选出本题地答案即可:A 、x3+x3=2x3,故此选项错误;B 、m2•m3=m5,故此选项错误;C 、D ==. 故选D.10. (2012四川攀枝花3分)下列运算正确地是【 】A .2-B .3±C . (ab )2=ab2D . (﹣a2)3=a6【答案】A.【考点】立方根,算术平方根,幂地乘方与积地乘方.【分析】根据立方根,算术平方根,幂地乘方与积地乘方地知识,对各选项分析判断后利用排除法求解,即可求得答案:A 2-,故本选项正确;B ,故本选项错误;C .(ab )2=a2b2,故本选项错误;D .(﹣a2)3=﹣a6,故本选项错误.故选A.11. (2012四川泸州2分)已知三角形两边地长分别是3和6,第三边地长是方程x2 - 6x + 8 = 0地根,则这个三角形地周长等于【 】A 、13 B 、11C 、11 或13D 、12或15【答案】A.【考点】因式分解法解一元二次方程,三角形三边关系.【分析】首先由方程x2-6x +8=0,确定第三边地边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形地周长:解方程x2-6x +8=0,得:x1=2或x2=4.当第三边是2时,2+3<6,不能构成三角形,应舍去; 当第三边是4时,三角形地周长为4+3+6=13.故选A.12. (2012四川广元3分) 一组数据2,3,6,8,x 地众数是x ,其中x 又是不等式组240x 70x ->⎧⎨-<⎩地整数解,则这组数据地中位数可能是【 】A. 3B. 4C. 6D. 3或6【答案】D.【考点】一元一次不等式组地整数解,众数,中位数.【分析】先求出不等式组 2x-4>0x-7<0 地整数解,再根据众数、中位数地定义可求2x 40x 70><-⎧⎨-⎩①②, 解不等式①得x >2,解不等式②得x <7,∴不等式组地解为2<x <7. ∴不等式组地整数解为3,4,5,6.∵一组数据2、3、6、8、x 地众数是x ,∴x=3或6.如果x=3,排序后该组数据为2,3,3,6,8,则中位数为3; 如果x=6,排序后该组数据为2,3,6,6,8,则中位数为6.故选D.13. (2012辽宁本溪3分)已知一元二次方程x2-8x +15=0 地两个解恰好分别是等腰△ABC 地底边长和腰长,则△ABC 地周长为【 】:] A 、13 B 、11或13C 、11D 、12【答案】B.【考点】因式分解法解一元二次方程,等腰三角形地性质,三角形三边关系.【分析】∵x2-8x +15=0 ,∴(x -3)(x -5)=0.∴x -3=0或x -5=0,即x1=3,x2=5.∵一元二次方程x2-8x +15=0 地两个解恰好分别是等腰△ABC 地底边长和腰长, ∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC 地周长为:3+3+5=11; ∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC 地周长为:3+5+5=13. ∴△ABC 地周长为:11或13.故选B.14. (2012辽宁朝阳3分)如图,矩形ABCD 地对角线BD 经过坐标原点,矩形地边分别平行于坐标轴,点C 在反比例函数2k +4k+1y=x地图象上,若点A 地坐标为(-2,-3),则k 地值为【 】A.1B. -5C. 4D. 1或-5 【答案】D.【考点】矩形地性质,反比例函数图象上点地坐标特征.【分析】如图:∵四边形ABCD 、HBEO 、OECF 、GOFD 为矩形,又∵BO 为四边形HBEO 地对角线,OD 为四边形OGDF 地对角线, ∴BEO BHO OFD OGD CBD ADB S S S S S S ∆∆∆∆∆∆===,,. ∴CBD BEO OFD ADB BHO OGD S S S S S S ∆∆∆∆∆∆--=--. ∴CEOF HAGO S S 236==⨯=四形四形边边. ∴xy=k2+4k+1=6,解得,k=1或k=-5.故选D.15. (2012贵州黔西南4分)三角形地两边长分别为2和6,第三边是方程2x 10x+21=0--地解,则第三边地长为【 】(A )7 (B )3 (C )7或3 (D )无法确定【答案】A.【考点】因式分解法解一元二次方程,三角形三边关系.【分析】由2x 10x+21=0-因式分解得:(x -3)(x -7)=0,解得:x1=3,x2=7.∵三角形地第三边是2x 10x+21=0-地解,∴三角形地第三边为3或7. 当三角形第三边为3时,2+3<6,不能构成三角形,舍去; 当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形. ∴第三边地长为7.故选A.16. (2012贵州安顺3分)下列说法中正确地是【 】A .B . 函数地自变量地取值范围是x >﹣1C . 若点P (2,a )和点Q (b ,﹣3)关于x 轴对称,则a ﹣b 地值为1D . ﹣8地立方根是2【答案】C.【考点】无理数,函数自变量地取值范围,二次根式有意义地条件,关于x 轴对称地点地坐标,立方根.【分析】A 是有理数,故此选项错误;B 、函数地自变量地取值范围是x ≥﹣1,故此选项错误;C 、若点P (2,a )和点Q (b ,﹣3)关于x 轴对称,则b=2,a=3,故a ﹣b=3﹣2=1,故此选项正确;D 、﹣8地立方根式﹣2,故此选项错误. 故选C.17. (2012贵州黔东南4分)如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 地长为半径作弧交数轴地正半轴于M ,则点M 地坐标为【 】A .(2,0)B 1,0 )C 1,0 )D 0) 【答案】C.【考点】实数与数轴,矩形地性质,勾股定理.【分析】在Rt △ABC 中利用勾股定理求出AC ,继而得出AM 地长,结合数轴地知识可得出点M 地坐标:由题意得,AC∴BM=AM ﹣ 3.又∵点B 地坐标为(2,0),∴点M ﹣1,0).故选C.18. (2012贵州黔西南4分)如图,⊙O 地半径为2,点A 地坐标为(2, ,直线AB 为⊙O 地切线,B 为切点,则B 点地坐标为【 】(A )85⎛⎫ ⎪⎪⎝⎭(B )()1 (C )49,55⎛⎫- ⎪⎝⎭ (D )(1,- 【答案】D.【考点】切线地判定和性质,坐标与图形性质,锐角三角函数定义,特殊角地三角函数值. 【分析】过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,∵⊙O 地半径为2,点A 地坐标为(2, ,即OC=2.∴AC 是圆地切线. ∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB 为⊙O 地切线,∴∠AOB=∠AOC=60°. ∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,B 点地坐标为(1,-.故选D.19. (2012山东济南3分)已知⊙O1和⊙O2地半径是一元二次方程x2-5x +6=0地两根,若圆心距O1O2=5,则⊙O1和⊙O2地位置关系是【 】A .外离 B .外切 C .相交 D .内切 【答案】B.【考点】一元二次方程根与系数地关系,圆与圆地位置关系.【分析】根据一元二次方程根与系数地关系,可知圆心距=两圆半径之和,再根据圆与圆地位置关系作出 判断,根据两圆地位置关系地判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).因此,∵⊙O1和⊙O2地半径是一元二次方程x2-5x +6=0地两根,∴两根之和=5=两圆半径之和. 又∵圆心距O1O2=5,∴两圆外切.故选B.20. (2012山东潍坊3分)已知两圆半径r1、r2分别是方程x2—7x+10=0地两根,两圆地圆心距为7,则两圆地位置关系是【 】. A .相交 B .内切 C .外切 D .外离 【答案】C.【考点】圆与圆地位置关系,因式分解法解一元二次方程.【分析】首先解方程x2—7x+10=0,求得两圆半径r1、r2地值,又由两圆地圆心距为7,根据两圆位置关系与圆心距d ,两圆半径r1、r2地数量关系间地联系即可得出两圆位置关系:∵()()212x 7x 100x 2x 50x 2x 5-+=⇒--=⇒==,,∴两圆半径r1、r2分别是2,5. ∵2+5=7,两圆地圆心距为7,∴两圆地位置关系是外切.故选C.21. (2012河北省3分)如图,两个正方形地面积分别为16,9,两阴影部分地面积分别为a ,b (a >b ),则(a -b )等于【 】A .7B .6C .5D .4 【答案】A.【考点】整式地加减.【分析】设重叠部分面积为c ,(a -b )可理解为(a +c )-(b +c ),即两个正方形面积地差,所以. A -b=(a +c )-(b +c )=16-9=7.故选A. 二、填空题1. (2012重庆市4分)将长度为8厘M 地木棍截成三段,每段长度均为整数厘M .如果截成地三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成地三段木棍能构成三角形地概率是 ▲ . 【答案】14. 【考点】三角形三边关系,概率公式.【分析】∵因为将长度为8厘M 地木棍截成三段,每段长度均为整数厘M ,共有4种情况,分别是1,2,5;1,3,4;2,3,3;4,2,2.其中能构成三角形地是:2,3,3一种情况.∴截成地三段木棍能构成三角形地概率是14. 2. (2012广东佛山3分)如图,边长为4 m 地正方形纸片剪出一个边长为m 地正方形之后,剩余部分可剪拼成一个矩形,若拼成地矩形一边长为4,则另一边长为 ▲【答案】2m +4.【考点】图形地变换,一元一次方程地应用(几何问题).【分析】根据拼成地矩形地面积等于大正方形地面积减去小正方形地面积,列式整理即可得解:设拼成地矩形地另一边长为x ,则4x=(m +4)2-m2=(m +4+m )(m +4-m )=8m +16,解得x=2m +4.3. (2012广东珠海4分)如图,矩形OABC 地顶点A 、C 分别在x 轴、y 轴正半轴上,B 点坐标为(3,2),OB 与AC 交于点P ,D 、E 、F 、G 分别是线段OP 、AP 、BP 、CP 地中点,则四边形DEFG 地周长为 ▲ .【答案】5.【考点】坐标与图形性质,矩形地性质,三角形中位线定理.【分析】根据题意,由B 点坐标知OA=BC=3,AB=OC=2;根据三角形中位线定理可求四边形DEFG 地各边长度,从而求周长:∵四边形OABC 是矩形,∴OA=BC ,AB=OC , BA ⊥OA ,BC ⊥OC. ∵B 点坐标为(3,2),∴OA=3,AB=2.∵D 、E 、F 、G 分别是线段OP 、AP 、BP 、CP 地中点,∴DE=GF=1.5; EF=DG=1. ∴四边形DEFG 地周长为 (1.5+1)×2=5.4. (2012浙江湖州4分)如图,将正△ABC 分割成m 个边长为1地小正三角形和一个黑色菱形,这个黑色菱形可分割成n 个边长为1地小三角形,若m 47n 25=,则△ABC 地边长是 ▲【答案】12.【考点】一元二次方程地应用(几何问题),菱形地性质,等边三角形地性质,锐角三角函数定义.【分析】设正△ABC 地边长为x ,2ABC 1S x 2∆=⋅=. ∵所分成地都是正三角形,∴根据锐角三角函数定义,可得黑色菱形地较长地对角线为,较短地对角线为1=x 12-⎝.∴黑色菱形地面积=()2113x 1x 2228⎛⎫-=- ⎪⎝⎭⎝.∴()()2223x 2m 4748=3n 25x 28--=-,整理得,11x2-144x +144=0. 解得112x 11=(不符合题意,舍去),x2=12. 所以,△ABC 地边长是12.5. (2012江苏镇江2分)如图,在平面直角坐标系x0y 中,直线AB 过点A (-4,0),B (0,4),⊙O 地半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 地一条切线PQ ,Q 为切点,则切线长PQ 地最小值为 ▲ .【考点】坐标和图形,切线地性质,矩形地判定和性质,垂直线段地性质,三角形边角关系,等腰直角三角形地判定和性质,勾股定理.【分析】如图,过点O 作OP1⊥AB ,过点P1作⊙O 地切线交⊙O 于点Q1,连接OQ ,OQ1. 当PQ ⊥AB 时,易得四边形P1PQO 是矩形,即PQ=P1O.∵P1 Q1是⊙O 地切线, ∴∠OQ1P1=900.∴在Rt △OP1Q1中,P1Q1<P1O ,∴P1Q1即是切线长PQ 地最小值. ∵A (-4,0),B (0,4),∴OA=OB=4.∴△OAB 是等腰直角三角形.∴△AOP1是等腰直角三角形. 根据勾股定理,得OP1= ∵⊙O 地半径为1,∴OQ1=1. 根据勾股定理,得.6. (2012江苏徐州2分)函数3y=x+x地图象如图所示,关于该函数,下列结论正确地是 ▲ (填序号).①函数图象是轴对称图形;②函数图象是中心对称图形;③当x>0时,函数有最小值;④点(1,4)在函数图象上;⑤当x <1或x >3时,y >4.【答案】②③④.【考点】函数地图象和性质,轴对称图形和中心对称图形,曲线上点地坐标与方程地关系. 【分析】根据图象作出判断:①函数图象不是轴对称图形.故结论①错误.②函数图象是中心对称图形,对称中心是坐标原点.故结论②正确.③∵当x>0时,23y=x+=x ,∴函数有最小值.故结论③正确. ④∵当x=1时,3y=1+=41.∴点(1,4)在函数图象上.故结论④正确. ⑤∵当x <0时,y <0,∴当x <1时,y 不大于4.故结论⑤错误. ∴结论正确地是②③④.7. (2012江苏宿迁3分)如图,已知P 是线段AB 地黄金分割点,且PA >PB.若S1表示以PA 为一边地正方形地面积,S2表示长是AB 、宽是PB 地矩形地面积,则S1 ▲ S2.(填“>”“=”“ <”)【答案】=.【考点】黄金分割点,二次根式化简.【分析】设AB=1,由P 是线段AB 地黄金分割点,且PA >PB ,根据黄金分割点地定义,,BP=1=.∴211S S 1====⎝⎭∴S1=S2. 8. (2012江苏盐城3分)已知1O 与2O 地半径分别是方程2430x x -+=地两根,且12O O t 2=+,若这两个圆相切,则t = ▲ . 【答案】2或0.【考点】圆与圆地位置关系,因式分解法解一元二次方程.【分析】先解方程求出⊙O1、⊙O2地半径,再分两圆外切和两圆内切两种情况列出关于t 地方程讨论求解:∵⊙O1、⊙O2地半径分别是方程2430x x -+=地两根,解得⊙O1、⊙O2地半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2; ②当两圆内切时,圆心距O1O2=t+2=3-1=2,解得t=0. ∴t 为2或0.9. (2012湖北黄石3分)如图所示,已知A 点从点(1,0)出发,以每秒1个单位长地速度沿着x 轴 地正方向运动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且∠AOC=600,又以P (0,4)为圆心,PC 为半径地圆恰好与OA 所在直线相切,则t= ▲ .【答案】1.【考点】切线地性质,坐标与图形性质,菱形地性质,锐角三角函数定义,特殊角地三角函数值. 【分析】∵已知A 点从(1,0)点出发,以每秒1个单位长地速度沿着x 轴地正方向运动,∴经过t 秒后,∴OA=1+t.,∵四边形OABC 是菱形,∴OC=1+t.,当⊙P 与OA ,即与x 轴相切时,如图所示,则切点为O ,此时PC=OP.过点P 作PE ⊥OC ,垂足为点E. ∴OE=CE=12OC ,即OE=12(1+t ). 在Rt △OPE中,OP=4,∠OPE=900-∠AOC=30°,∴OE=OP•cos30°=11t 2+=∴t 1=.∴当PC 为半径地圆恰好与OA 所在直线相切时,t 1=.10. (2012湖北荆州3分)如图(1)所示,E 为矩形ABCD 地边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动地速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 地面积为ycm2.已知y 与t 地函数关系图象如图(2)(曲线OM 为抛物线地一部分),则下列结论:①AD=BE=5;②cos ∠ABE=;③当0<t ≤5时,22y= t 5;④当29t 4=秒时,△ABE ∽△QBP ;其中正确地结论是 ▲ (填序号).【答案】①③④.【考点】动点问题地函数图象,矩形地性质,勾股定理,锐角三角函数定义,相似三角形地判定和性质. 【分析】根据图(2)可知,当点P 到达点E 时点Q 到达点C ,∵点P 、Q 地运动地速度都是1cm/秒,∴BC=BE=5.∴AD=BE=5.故结论①正确. 又∵从M 到N 地变化是2,∴ED=2.∴AE=AD ﹣ED=5﹣2=3.在Rt △ABE 中,, ∴AB 4cos ABE==BE 5∠.故结论②错误. 过点P 作PF ⊥BC 于点F ,∵AD ∥BC ,∴∠AEB=∠PBF ,∴sin ∠PBF=sin ∠AEB=AB 4=BE 5. ∴PF=PBsin ∠PBF=45t. ∴当0<t ≤5时,21142y=BQ PF=t t= t 2255⋅⋅⋅⋅.故结论③正确.当29t 4=秒时,点P 在CD 上, 此时,PD=294-BE -ED=29152=44--,PQ=CD -PD=4-115=44.∵AB 4BQ 54==15AE 3PQ 34= ,,∴AB BQ =AE PQ . 又∵∠A=∠Q=90°,∴△ABE ∽△QBP.故结论④正确. 综上所述,正确地有①③④.11. (2012湖北武汉3分)如图,点A 在双曲线y =kx地第一象限地那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 地中点,若△ADE 地面积为3,则k 地值为 ▲ .【答案】163. 【考点】反比例函数综合题,曲线上点地坐标与方程地关系,相似三角形地判定和性质,同底三角形面积地计算,梯形中位线地性质.【分析】如图,连接DC ,∵AE=3EC ,△ADE 地面积为3,∴△CDE 地面积为1. ∴△ADC 地面积为4. ∵点A 在双曲线y =kx地第一象限地那一支上, ∴设A 点坐标为(kx x,). ∵OC =2AB ,∴OC=2x .∵点D 为OB 地中点,∴△ADC 地面积为梯形BOCA 面积地一半,∴梯形BOCA 地面积为8. ∴梯形BIEA 地面积=()11k x+2x y 3x =822x⋅=⋅⋅,解得16k=3.12. (2012湖北武汉3分)在平面直角坐标系中,点A 地坐标为(3,0),点B 为y 轴正半轴上地一点,点C 是第一象限内一点,且AC =2.设tan ∠BOC =m ,则m 地取值范围是 ▲ .【答案】m ≥【考点】锐角三角函数定义,勾股定理,一元二次方程根地判别式. 【分析】如图,设C 点坐标为(x y ,).∵tan ∠BOC =m ,∴EC x==m CD y,即x=my . ∵A 地坐标为(3,0),∴DA=3x -.又∵AC =2.∴由勾股定理,得()223x +y =4-, 即()223my +y =4-,整理得()221+m y 6my+5=0- 由()()222=6m 41+m 5=16m 200∆-⋅⋅-≥得25m 4≥.∵tan ∠BOC =m >0,∴m ≥13. (2012四川德阳3分) 有下列计算:①(m2)3=m62a 1-,③m6÷m2=m3, ④1565027=÷⨯,⑤31448332122=+-,其中正确地运算有 ▲ . 【答案】①④⑤.【考点】幂地乘方,同底数幂地除法,二次根式地性质与化简,二次根式地四则运算. 【分析】∵(m2)3=m2×3=m6,∴①正确;2a 1=-,∴②错误; ∵m6÷m2=m4,∴③错误;,∴④正确;∵⑤正确. ∴正确地运算有:①④⑤.14. (2012四川巴中3分)已知a 、b 、c 是△ABC 三边地长,且满足关系式a b 0-=, 则△ABC 地形状为 ▲ 【答案】等腰直角三角形.【考点】非负数地性质,算术平方根,非负数地性质,勾股定理地逆定理,等腰直角三角形地判定.【分析】∵a b 0-=,∴c2-a2-b2=0,且a -b=0.由c2-a2-b2=0得c2=a2+b2,∴根据勾股定理地逆定理,得△ABC 为直角三角形. 又由a -b=0得a=b ,∴△ABC 为等腰直角三角形.15. (2012四川内江6分)已知A (1,5),B (3,-1)两点,在x 轴上取一点M ,使AM -BN 取得最大值时,则M 地坐标为 ▲ 【答案】(72,0). 【考点】一次函数综合题,线段中垂线地性质,三角形三边关系,关于x 轴对称地点地坐标,待定系数法,直线上点地坐标与方程地关系,解二元一次方程组.【分析】如图,作点B 关于x 轴地对称点B′,连接AB′并延长与x 轴地交点,即为所求地M 点.此时AM -BM=AM -B′M=AB′.不妨在x 轴上任取一个另一点M′,连接M′A 、M′B 、M′B . 则M′A -M′B=M′A -M′B′<AB′(三角形两边之差小于第三边). ∴M′A -M′B <AM-BM ,即此时AM -BM 最大. ∵B′是B (3,-1)关于x 轴地对称点,∴B′(3,1).设直线AB′解读式为y=kx+b ,把A (1,5)和B′(3,1)代入得:k b 5 3k b 1+=⎧⎨+=⎩,解得 k 2b 7=-⎧⎨=⎩.∴直线AB′解读式为y=-2x+7. 令y=0,解得x=72 .∴M 点坐标为(72,0). 16. (2012四川资阳3分)如图,O 为矩形ABCD 地中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 地函数关系式为 ▲ .【答案】y=23x. 【考点】矩形地性质,相似三角形地判定和性质.【分析】如图,作OF ⊥BC 于F ,OE ⊥CD 于E ,∵ABCD 为矩形,∴∠C=90°.∵OF ⊥BC ,OE ⊥CD ,∴∠EOF=90°.∴∠EON+∠FON=90°. ∵ON ⊥OM ,∴∠EON=∠FOM.∴△OEN ∽△OFM. ∴OE ONOF OM=. ∵O 为矩形ABCD 地中心,∴OE AD 42OF AB 63===.∴ON 2=OM 3 ,即y=23x.17. (2012四川自贡4分)正方形ABCD 地边长为1cm ,M 、N 分别是BC .CD 上两个动点,且始终保持AM ⊥MN ,当BM= ▲ cm 时,四边形ABCN 地面积最大,最大面积为 ▲ cm2.【答案】12,58. 【考点】正方形地性质,相似三角形地判定和性质,二次函数地最值. 【分析】设BM=xcm ,则MC=1﹣xcm ,∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=90°﹣∠NMC=∠MNC.∴△ABM ∽△MCN ,∴AB BM MC CN =,即1x1x CN=-,解得CN=x (1﹣x ). ∴22ABCN 1111115S 1[1x 1x ]x x x 2222228=⨯⨯+-=-++=--+四形()()边.∵12-<0,∴当x=12cm 时,S 四边形ABCN 最大,最大值是58cm2.18. (2012辽宁朝阳3分)下列说法中正确地序号有 ▲ .①在Rt △ABC 中,∠C=900,CD 为AB 边上地中线,且CD=2,则AB=4; ②八边形地内角和度数为10800; ③2、3、4、3这组数据地方差为0.5; ④分式方程13x 1=x x -地解为2x=3;⑤已知菱形地一个内角为600,一条对角线为,则另一对角线为2. 【答案】①②③④.【考点】直角三角形斜边上中线地性质,多边形内角和定理,方差,解分式方程,菱形地性质,等边三角形地判定,勾股定理.【分析】①∵在Rt △ABC 中,∠C=90°,CD 为AB 边上地中线,且CD=2,∴根据直角三角形斜边上中线等于斜边一半地性质,得AB=2CD=4.∴①正确. ②∵八边形地内角和度数是(8-2)×180°=1080°.∴②正确. ③∵2、3、4、3地平均数是()12+3+4+3=34, ∴2、3、4、3地方差是22221[23334333]0.54-+-+-+-=()()()().∴③正确.④∵由13x 1=x x -去分母得:1=3x -1,解得:x=23.经检验x=23是原方程地解.∴④正确. ⑤∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=OC ,OD=OB ,AB=AD.∵∠BAD=60°,∴△ABD 是等边三角形.∴AB=AD=BD ,AB=BD=2BO. 分为两种情况:当BD=时,AO=3,AC=6.当AC=BO=1,BD=2. ∴另一对角线为2或6.∴⑤错误. 故答案为:①②③④.19. (2012贵州黔南5分)如图,四边形ABCD 是矩形,A ,B 两点在x 轴地正半轴上,C ,D 两点在抛物线2y x 6x =-+上,设OA=m (0<m <3),矩形ABCD 地周长为l ,则l 与m 地函数解读式为 ▲ .【答案】2l 2m 8m 12=-++.【考点】矩形地性质,待定系数法,曲线上点地坐标与方程地关系.【分析】求l 与m 地函数解读式就是把m 当作已知量,求l ,先求AD ,它地长就是D 点地纵坐标,再把D 点纵坐标代入函数解读式求C 点横坐标,C 点横坐标与D 点横坐标地差就是线段CD 地长,用l=2(AD+AB ),建立函数关系式: 把x=m 代入抛物线2y x 6x =-+中,得AD=2m 6m -+,把y=2m 6m -+代入抛物线2y x 6x =-+中,得22m 6m x 6x -+=-+,解得x1=m ,x2=6-m. ∴C 地横坐标是6-m.∴AB=6-m -m=6-2m.∴矩形地周长是22l 2m 6m 262m 2m 8m 12=-++-=-++()().20. (2012山东济宁3分)在△ABC 中,若∠A 、∠B 满足|cosA ﹣12|+(sinB 2=0,则∠C=▲ .【答案】75°.【考点】非负数地性质,绝对值,偶次方,特殊角地三角函数值,三角形内角和定理.【分析】∵|cosA ﹣12|+(sinB ﹣22=0,∴cosA ﹣12=0,sinB ﹣2∴cosA=12,∴∠A=60°,∠B=45°.∴∠C=180°﹣∠A ﹣∠B=180°﹣60°﹣45°=75°.21. (2012广西北海3分)如图,点A 地坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB最短时,点B 地坐标是 ▲ .【答案】(7655-,). 【考点】直线上点地坐标与方程地关系,垂直线段最短地性质,相似三角形地判定和性质.【分析】如图,由题意,根据垂直线段最短地性质,当线段AB 最短时点B 地位置B1,有AB1⊥BD. 过点B1作B1E 垂直x 轴于点E.由点C 、D 在直线y =2x -4可得,C (2,0),D (0,-4)设点B1(x ,2x -4),则E (x ,0).由A (-1,0),得AE= x +1,EB1=∣2x -4∣=4-2x ,CO=2,DO=4.易得△AB1E ∽△DCO ,∴AE EB DO CO =,即x+142x42-=. 解得76x 2x 4=55=-- ,.∴B1(7655- ,).∴当线段AB 最短时,点B 地坐标是(7655- ,).三、解答题1. (2012海南省13分)如图,顶点为P (4,-4)地二次函数图象经过原点(0,0),点A 在该图象上,OA 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接AN 、ON (1)求该二次函数地关系式.(2)若点A 地坐标是(6,-3),求△ANO 地面积.(3)当点A 在对称轴l 右侧地二次函数图象上运动,请解答下列问题: ①证明:∠ANM=∠ONM②△ANO 能否为直角三角形?如果能,请求出所有符合条件地点A 地坐标,如果不能,请说明理由.【答案】解:(1)∵二次函数图象地顶点为P (4,-4),∴设二次函数地关系式为()2y=a x 44--. 又∵二次函数图象经过原点(0,0),∴()20=a 044--,解得1a=4. ∴二次函数地关系式为()21y=x 444--,即21y=x 2x 4-. (2)设直线OA 地解读式为y=kx ,将A (6,-3)代入得3=6k -,解得1k=2-. ∴直线OA 地解读式为1y=-x 2.把x=4代入1y=x 2-得y=2-.∴M (4,-2).又∵点M 、N 关于点P 对称,∴N (4,-6),MN=4. ∴ANO 1S 64122∆=⋅⋅=. (3)①证明:过点A 作AH ⊥l 于点H ,,l 与x 轴交于点D.则 设A (20001x x 2x 4- ,),则直线OA 地解读式为200001x 2x 14y=x=x 2x x 4-⎛⎫- ⎪⎝⎭.则M (04 x 8-,),N (04 x -,),H (20014x 2x 4- ,).∴OD=4,ND=0x ,HA=0x 4-,NH=2001x x 4-. ∴()()()00022000000004x 44x 4x 4OD 4HA4tan ONM=tan ANM===1ND x NH x x 4x x 4x +64x x 4---∠=∠==--- ,. ∴tan ONM=∠tan ANM ∠.∴∠ANM=∠ONM. ②能.理由如下:分三种情况讨论:情况1,若∠ONA 是直角,由①,得∠ANM=∠ONM=450,∴△AHN 是等腰直角三角形.∴HA=NH ,即20001x 4=x x 4--. 整理,得200x 8x +16=0-,解得0 x =4.∴此时,点A 与点P 重合.故此时不存在点A ,使∠ONA 是直角.情况2,若∠AON 是直角,则222O A +ON =AN .∵()222222222220000000011 O A =x +x 2x ON =4+x AN =x 4+x 2x +x 44⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,, ,∴()222222220000000011 x +x 2x +4+x =x 4+x 2x +x 44⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭.整理,得32000x 8x 16x =0--,解得0x =0,0 x =4±. 舍去0x =0,0 x =4-l 左侧).当0 x 0y =4. ∴此时存在点A(44),使∠AON 是直角. 情况3,若∠NAO 是直角,则△AMN ∽△DMO ∽△DON ,∴MD ODOD ND=. ∵OD=4,MD=08x -,ND=0x ,∴008x 44x -=. 整理,得200x 8x +16=0-,解得0x =4. ∴此时,点A 与点P 重合.故此时不存在点A ,使∠ONA 是直角.综上所述,当点A 在对称轴l 右侧地二次函数图象上运动时,存在点A(44),使∠AON 是直角,即△ANO 为直角三角形.【考点】二次函数综合题,待定系数法,曲线上点地坐标与方程地关系,对称地性质,锐角三角函数定义,等腰直角三角形地判定和性质,勾股定理,相似三角形地判定和性质,解一元二次方程.【分析】(1)由二次函数图象地顶点为P (4,-4)和经过原点,设顶点式关系式,用待定系数法即可求.(2)求出直线OA 地解读式,从而得到点M 地坐标,根据对称性点N 坐标,从而求得MN 地长,从而求得△ANO 地面积. (3)①根据正切函数定义,分别求出∠ANM 和∠ONM 即可证明.②分∠ONA 是直角,∠AON 是直角,∠NAO 是直角三种情况讨论即可得出结论.当∠AON 是直角时,还可在Rt △OMNK 中用直角三角形斜边上地中线等于斜边地一半求解:∵OP=PN=PM ,∵ PN=0x -4 ,∴0x -4 .∴0 x2. (2012宁夏区10分)在矩形ABCD 中,AB=2,AD=3,P 是BC 上地任意一点(P 与B 、C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E.(1)连接AE ,当△APE 与△ADE 全等时,求BP 地长;(2)若设BP 为x ,CE 为y ,试确定y 与x 地函数关系式.当x 取何值时,y 地值最大?最大值是多少? (3)若PE ∥BD ,试求出此时BP 地长.【答案】解:(1)∵△APE ≌△ADE ,∴AP=AD=3.在Rt △ABP 中,AB=2,∴(2)∵AP ⊥PE ,∴Rt △ABP ∽Rt △PCE.∴AB BPPC CE=,即2x 3x y =-.∴213y x x 22=-+. ∵2213139y x x (x )22228=-+=--+ ∴当3x 2=时,y 地值最大,最大值是98.(2)设BP=x, 由(2)得213CE x x 22=-+.∵PE ∥BD ,,∴△CPE ∽△CBD.∴CP CE CB CD=, 即213x x3x 2232-+-=, 化简得23x 13x 120-+=.解得14x 3=或2x 3=(不合题意,舍去). ∴当BP=43时, PE ∥BD.【考点】矩形地性质,全等三角形地性质,勾股定理,相似三角形地判定和性质,二次函数地最值,平行地性质,解一元二次方程.【分析】(1)由△APE ≌△ADE 可得AP=AD=3,在Rt △ABP 中,应用勾股定理即可求得BP 地长.(2)由AP ⊥PE ,得Rt △ABP ∽Rt △PCE ,根据相似三角形地对应边成比例可列式得y 与x 地函数关系式.化为顶点式即可求得当3x 2=时,y 地值最大,最大值是98.(3)由PE ∥BD ,得△CPE ∽△CBD ,根据相似三角形地对应边成比例可列式可求得BP 地长.3. (2012广东省9分)如图,抛物线213y=x x 922--与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .(1)求AB 和OC 地长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 地长为m ,△ADE 地面积为s ,求s 关于m 地函数关系式,并写出自变量m 地取值范围;(3)在(2)地条件下,连接CE ,求△CDE 面积地最大值;此时,求出以点E 为圆心,与BC 相切地圆地面积(结果保留π).【答案】解:(1)在213y=x x 922--中,令x=0,得y=-9,∴C (0,﹣9);令y=0,即213x x 9=022--,解得:x1=﹣3,x2=6,∴A (﹣3,0)、B (6,0). ∴AB=9,OC=9.(2)∵ED ∥BC ,∴△AED ∽△ABC ,∴2AED ABC S AE S AB ∆∆⎛⎫= ⎪⎝⎭,即:2s m 19992⎛⎫= ⎪⎝⎭⋅⋅. ∴s=12m2(0<m <9). (3)∵S △AEC=12AE •OC=92m ,S △AED=s=12m2,∴S △EDC=S △AEC ﹣S △AED。
全国各地2012年中考数学分类解析(159套)专题33 网格问题
2012年全国中考数学试题分类解析汇编(159套63专题)专题33:网格问题一、选择题1. (2012宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.0【答案】B。
【考点】网格问题,圆锥的计算,由三视图判断几何体,勾股定理。
【分析】由题意和图形可知,几何体是圆锥,底面半径为4,根据勾股定理可得母线长为5。
则侧面积为πrl=π×4×5=20π≈62.8。
故选B。
2. (2012湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)【答案】B。
【考点】坐标与图形的对称和平移变化。
【分析】∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为-2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为-3。
∴点A2的坐标是(2,-3)。
故选B。
3. (2012湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A. B. C.D.4. (2012山东聊城3分)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是【】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°【答案】B 。
2012中考数学试题及答案分类汇编:平面几何基础
2012中考数学试题及答案分类汇编:平面几何基础一、选择题1.(河北省2分)如图,∠1+∠2等于A、60°B、90°C、110°D、180°【答案】B。
【考点】平角的定义。
【分析】根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°。
故选B。
2.(河北省3分)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。
【考点】一元一次方程组的应用,三角形三边关系。
【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得213132x >x <+⎧⎨+⎩,解得,11<x <15,所以,x 为12、13、14。
故选B 。
3.(山西省2分)如图所示,∠AOB 的两边、OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB平行,则∠DEB 的度数是A 、35°B 、70°C 、110°D 、120°【答案】B 。
【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。
【分析】过点D 作DF ⊥AO 交OB 于点F,则DF 是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD ∥OB,∴∠1=∠2(两直线平行,内错角相等)。
∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°。
故选B 。
4.(山西省2分)一个正多边形,它的每一个外角都等于45°,则该正多边形是A 、正六边形B 、正七边形C 、正八边形D 、正九边形【答案】C 。
2012中考数学经典几何综合题
几何综合题在2006-2011年北京中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。
学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。
在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。
同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。
一.考试说明要求(与几何内容有关的“C”级要求)图形与证明中要求:会用归纳和类比进行简单的推理。
图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。
图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。
二.基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。
在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012中考数学试卷及答案
2012年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一项符合题意,请用2B 铅笔在答题卡上规定的位置进行填涂。
)1.16-的相反数是A. 16B. 6C.-6D. 16-2.若|2|a -与2(3)b +互为相反数,则a b 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体 4.“一方有难。
八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元B. 120.43710⨯元C.104.3710⨯元D.943.710⨯元 5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值为A.2007B.2008C.2009D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数 8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A. 1201803x x =+B. 1201803x x =-C. 1201803x x =+D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
2012年江苏省中考数学试题汇编之几何解答题精选37题
江苏省中考数学几何解答题精选1(08年江苏常州)(本小题满分7分) 已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去. (1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△Al复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,A B C △内接于O ,A B 为O 的直径,2B A C B ∠=∠,6A C =,过点A 作O 的切线与O C 的延长线交于点P ,求P A 的长.9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片A B C D 中,A B D C ∥,90A ∠= ,C D AD >,将纸片沿过点D 的直线折叠,使点A 落在边C D 上的点E 处,折痕为D F .连接E F 并展开纸片. (1)求证:四边形AD EF 是正方形;(2)取线段A F 的中点G ,连接E G ,如果B G C D =,试说明四边形G B C E 是等腰梯形.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段A B 的最小覆盖圆就是以线段A B 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.B CPOA(第18题图)E C BD AGF(第20题图)A AB B CC 80100(第25题图1)F11(08年江苏南京21题)(6分)如图,在A B C D 中,E F ,为B C 上两点,且B E C F =,AF D E =. 求证:(1)A B F D C E △≌△;(2)四边形A B C D 是矩形.12(08年江苏南京22题)(6分)如图,菱形A B C D (图1)与菱形E F G H (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m C D =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距C D 的水平距离A B .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第21题)A BCDEF图1(第22题)B CD 图2F GH (第23题)ABCD 202314(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?15(08年江苏南通22题)已知:如图,M 是 AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离;(2)求∠ACM 的度数.16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(第22题)ACM NO ·A BP北东(第21题)(第27题)方案一A 方案二A17(08年江苏苏州23题)(本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:B N A C B PB M=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.20(08年江苏宿迁23题)(本题满分10分)如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、CD 和BC .(1)求证:CDB CBN ∠=∠;(2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长. NMBAFEDCBA第21题21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。
2012年全国中考数学试题分类解析汇编(159套63专题)专题37-三角形全等
2012年全国中考数学试题分类解析汇编(159套63专题) 专题37:三角形全等一、选择题1。
(2012海南省3分)图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O,且AB≠AD,则下列判断不正确...的是【 】A .△ABD≌△CBD B.△ABC≌△ADC C .△AOB≌△COB D.△AOD≌△COD 【答案】B 。
【考点】全等三角形的判定,轴对称的性质。
【分析】根据轴对称的性质,知△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD。
由于AB≠AD,从而△ABC 和△ADC 不全等。
故选B 。
2. (2012四川巴中3分)如图,已知AD是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件 是【 】A 。
AB=AC B. ∠BAC=90°C 。
BD=AC D. ∠B=45° 【答案】A 。
【考点】全等三角形的判定。
【分析】添加AB=AC ,符合判定定理HL 。
而添加∠BAC=90°,或BD=AC ,或∠B=45°,不能使△ABD≌△ACD。
故选A.3。
(2012贵州贵阳3分)如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是【 】A .∠BCA=∠F B.∠B=∠EC .BC∥EF D.∠A=∠EDF 【答案】B 。
【考点】全等三角形的判定.190187。
【分析】应用全等三角形的判定方法逐一作出判断:A 、由AB=DE ,BC=EF 和∠BCA=∠F构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;B 、由AB=DE ,BC=EF 和∠B=∠E 构成SAS,符合全等的条件,能推出△ABC≌△DEF,故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA。
由AB=DE ,BC=EF 和∠F=∠BCA构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;D、由AB=DE,BC=EF和∠A=∠EDF构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学培优试题
1、如图1,在△ABC中,∠A+∠B=2∠ACB,BC=8,D为AB的中点,且CD=/2,求
AC的长。
2、如图2,梯形ABCD中,AD∥BC,AB=CD,M、N、P分别是AD、BC、BD的中点,若∠
ABD=200,∠BDC=700,求∠NMP
3、如图3,在△ABC中,∠B=2∠C,AD⊥BC,M为BC中点,求证:DM=(1/2)AB
4、如图4,已知D、E为AC、BC的中点求S△BGE:S△ABC
5、如图5,正方形ABCD,AE=AC,四边形AEFC是菱形,求证∠ACF=5∠CAE
6、如图6,正方形ABCD,E、F为中点,AF、BE相交于G,连CG,求证
△CGB为等腰三角形。
7、如图7、在正方形ABCD中,M为AB上任意一点,MN⊥DM,BN平分∠CBE,试说明
MD=MN
8、如图8,正方形ABCD,AE∥DB,BE=DB,BE交AD于F,试说明△DEF是等腰三角形
9、如图9,在梯形ABCD中,AD∥BC,AC⊥BD,垂足为O,求证OA.OC+OB.OD=AD.BC
10、如图10,已知△ABC中∠C的外角的平分线交BA的延长线于D,问AD:BD
与图中哪两个线段的比值相等?
11如图11,已知△ABC中,MB为∠ABC的平分线,AM⊥BM,N为AC的中点,已知:AB=10,BC=6,求MN的长。
12、如图12,L∥OA,L和⊙O相交,交点为H,设OH=x,OA=1,∠AOH=450,求x的取
值范围
13、选择题:方程x2+2x-1=0的根可看作y=x+2和y=1/x的图像的交点的横坐标,用
此方法推断x3+x-1=0的实数根x( )
A -1/2﹤x﹤0
B 0﹤x﹤1/2
C 1/2﹤x﹤1
D 1﹤x﹤3/2
14、如图13,⑴在x轴上找一点P,使PA+PB最小,并求P点的坐标
⑵使∣PA-PB∣最大,并求P点的坐标
15、如图14,正方形ABCD,边长为4,BE=1,在AC上找一点,使PB+PE的值最小,
求P点的坐标
16、如图15,若y=ax2+bx+c(a≠0),判断下列等式哪些是正确的()
⑴abc>0 ⑵b﹤a+c ⑶4a+2b+c>0 ⑷2c﹤3b ⑸a+b>m(am+b)(m≠1)
(要求写出推导过程)
17、如图16,将正方形边长三等分,求∠1+∠2
18、如图17,矩形ABCD,矩形的对角线AC,函数y=(k2-4k-6)/x,过D点,已知B(-2,3),
求k的值
19、如图18,平行四边形ABCD,双曲线y=k/x,且已知A(-1,0),B(0,-2),
S△ABC:S△BCDE=1:5,求k的值
20、如图19,已知OB=,OA:AB=1:2,将△OAB沿OB对折,A点落在A/点,求A/
的坐标。
答案及解题思路(仅供叁考)
1、答案:3 (提示:延长CD至E,使CD=DE,连AE,过E作EH⊥AC)
2、答案:250 (提示:可用等腰梯形的性质;也可用三角形中位线定理)
3、(提示:取AC中点H,连MH、DH可证)
4、答案:1:6(提示:利用重心的性质,即DG:GB=1:3)
5、(提示:连DB,过E作EH⊥AC,垂足为H,可证)
6、(提示:取AB中点H,连CH,利用△三线合一的性质)
7、(提示:在AD上取AH=AM,连MH)
8、(提示:参考图5做法)
9、(提示:利用梯形的对角线垂直和勾股定理)
10、答案:AC:BC(提示:过A作BC的平行线)
11、答案:2 (提示:延长AM、BC)
12、答案:-2<x2
13、答案:C(提示:根据图像,将1/2代入分析即可)
14、答案:(4/5,0),(4,0) 15、答案:(16/7,12/7) 16、答案:(3、4、5、)
17、答案:(450)
18、答案:k=6;或k=-2(舍去) 19、答案:k=12
20、答案:A/(-3/5,4/5)(提示:连AA/,根据等角的正切值相等可解)。