应用于机械加工测量的尺寸链计算方法
机械精度设计及检测19第11章尺寸链的精度设计基础
偏差 为
A1
101
0.35 0
A2
50
0.25 0
A3
A5
50 0.048
⑤ 用中间计算方法计算A4的上、下偏差 ES0 ESA1() ESA2() 2EIA3() EI A4()
EIA4() ESA1() ESA2() 2EI A3() ES0
0.35 (0.25) 2(0.048) (0.75)
A3
(4) 校核计算结果
19
∵ ES0=-0.01 , EI0=-0.08 (A1=Φ70 ,
T0 ES0 EI0 = 0.07
41
Ti TA1 TA2 TA3
i 1
2
2
= 0.02+0.03+0.02 = 0.07
3
T0 Ti 0.07
1
∴ 计算无误,则壁厚
A2/2 A0
A2=Φ60 A3=0±0.01)
Ai 的方向与封闭环A0
的方向相同为Ai (-) 。
图11.4尺寸链图
由图可见: A1为A1() , A2、A3为A2()、A3()
例11.2 加工顺序(见图11.5):
9
(1)镗孔A1,(2)插键槽A2,(3)磨内孔A3。 解:(1)按加工顺序画尺寸链图。oA3/2 A1/ Nhomakorabea A2 A0
(2)
判断
对包容面(即孔): 下偏差为零(EI=0)。
如
Φ30
对被包容面(轴): 上偏差为零(es=0)。
Φ30
29
例11.7 图11.10为对开齿轮箱的一部分。 A0=1~1.75, A1=101、A2=50、A3=A5=5、A4=140。 计算各组成环的公差和上、下偏差。
尺寸链在机械精度设计中的应用研究
研究意义
尺寸链是机械制造和设备设计中的重要环节,对其应用进行深入研究,有助于提高我国机械制造水平,促进机械制造业的发展。
目的和背景
研究现状
发展动态
发展趋势
研究现状和发展动态
02
尺寸链基本理论
尺寸链是在产品或部件的设计和制造过程中,由相互关联的尺寸组成的封闭链,其中每一个尺寸都对产品的功能和性能产生影响。
进一步加强尺寸链分析与机器工作性能之间的关系研究,将有助于更好地理解机器精度的实质,从而优化设计。
未来需要加强尺寸链分析软件的开发和推广,提高尺寸链分析的效率和精度,以更好地服务于机械精度设计领域。
目前,尺寸链分析主要关注静态精度,对动态精度和机器工作过程中的精度研究不足,未来需要加强这方面的研究。
尺寸链的计算方法
CAD技术
CAD技术是机械精度设计中常用的计算机辅助技术,可以通过三维建模和仿真技术对产品或部件进行精确的建模和模拟,提高尺寸链计算的准确性和效率。
尺寸链的计算机辅助技术
CAM技术
CAM技术是将CAD模型转换为实际制造过程中的数字化指导,通过CAM技术可以实现自动化制造和检测,进一步提高了尺寸链的制造精度和效率。
轴承精度的重要性
轴承尺寸链的设计是轴承精度的基础,通过合理地设计尺寸链,可以保证轴承的精度和质量。
轴承尺寸链的设计
利用计算机辅助设计软件,可以对轴承进行精确的模拟和优化设计,提高轴承的精度和质量。
轴承精度的计算机辅助设计
案例三:尺寸链在轴承精度设计中的应用
05
结论与展望
1
研究结论
2
3
尺寸链分析在机械精度设计中具有重要应用价值,可有效提高机器的精度和稳定性。
检测数据处理
尺寸链概率法计算
尺寸链概率法计算摘要:1.尺寸链概率法计算的概念及意义2.尺寸链概率法计算的基本原理3.尺寸链概率法计算的步骤与方法4.尺寸链概率法计算的优缺点分析5.应用案例与实践正文:一、尺寸链概率法计算的概念及意义尺寸链概率法计算是一种基于概率论的尺寸链计算方法,它主要应用于机械工程、仪器仪表等领域。
在实际应用中,尺寸链概率法计算可以帮助工程师更准确地分析和控制产品的尺寸公差,提高产品的质量和性能。
二、尺寸链概率法计算的基本原理尺寸链概率法计算的基本原理是:根据尺寸链的组成环公差和封闭环公差,计算各个组成环的概率分布,然后通过概率分布求出尺寸链的概率分布,从而得到尺寸链的尺寸公差。
三、尺寸链概率法计算的步骤与方法1.分析尺寸链的组成环,确定各个组成环的公差。
2.计算各个组成环的概率分布。
3.根据各个组成环的概率分布,求出尺寸链的概率分布。
4.根据尺寸链的概率分布,计算尺寸链的尺寸公差。
四、尺寸链概率法计算的优缺点分析优点:1.简便、可靠的计算方法,易于工程师掌握和应用。
2.可以考虑多个组成环的公差,更准确地计算尺寸链的尺寸公差。
缺点:1.当封闭环公差较大时,计算结果可能会出现偏差。
2.计算过程中需要考虑多个因素,可能会增加计算的复杂度。
五、应用案例与实践尺寸链概率法计算在实际应用中具有广泛的应用价值。
例如,在机械零件的加工过程中,可以通过尺寸链概率法计算来控制零件的尺寸公差,以保证零件的精度和质量。
在仪器仪表的制造过程中,也可以通过尺寸链概率法计算来控制仪器的尺寸公差,提高仪器的性能和可靠性。
总之,尺寸链概率法计算是一种简便、可靠的尺寸链计算方法,可以帮助工程师更准确地分析和控制产品的尺寸公差,提高产品的质量和性能。
尺寸链计算及公差分析
尺寸链计算及公差分析一、尺寸链计算1.确定基准尺寸:首先需要确定产品的基准尺寸,这是其他尺寸的参考值。
2.确定功能尺寸:根据产品的功能要求,确定与之相关的尺寸。
例如,一个机械零件的功能要求是与其他组件配合,那么相关的尺寸即为功能尺寸。
3.确定辅助尺寸:辅助尺寸是与功能尺寸无关的尺寸,通常用于产品的加工和装配。
例如,孔的直径和深度就是辅助尺寸。
4.确定公差:在确定各个尺寸之后,需要为它们设置公差。
公差是指允许的尺寸变化范围,它的大小取决于产品的制造工艺和功能要求。
5.进行尺寸链计算:根据产品的功能和制造要求,依次计算各个尺寸的数值。
计算时需要考虑公差的影响,确保产品在允许的范围内可以正常工作。
二、公差分析公差分析是确定产品尺寸的变化范围,即各个尺寸的上下限。
公差分析可以帮助工程师评估产品的质量,确定工艺参数,并优化产品设计。
1.确定公差类型:公差分为基本公差和几何公差两种类型。
基本公差是根据工艺要求和产品功能确定的,例如直径公差、平行度公差等;几何公差是根据产品的形状和配合要求确定的,例如圆度公差、轴线位置公差等。
2.进行公差叠加:公差叠加是将各个尺寸的公差叠加在一起,得到产品整体的公差。
这可以通过数学模型或专业软件进行计算。
3.进行公差分析:在确定产品整体的公差后,可以进行公差分析。
公差分析可以通过模拟或实验的方式进行,用于评估产品在实际使用中尺寸变化的影响。
4.优化设计:通过公差分析可以了解产品尺寸变化的情况,如果发现一些尺寸变化太大,可能会导致产品的功能受到影响,需要对设计进行优化。
优化设计可以包括调整公差、改变加工工艺等。
总结起来,尺寸链计算及公差分析是确定产品尺寸和形状的重要方法,它可以帮助工程师评估产品的质量和性能,指导产品的制造和装配。
在实际应用中,需要充分考虑产品的功能要求、制造工艺和使用环境等因素,合理确定尺寸链和公差,以确保产品的质量和性能达到要求。
尺寸链公差计算
一.尺寸链公差计算
“公差的计算公式:尺寸公差δ=最大极限尺寸D(d)max-最小极限尺寸
D(d)min=ES(es)-EI(ei)。
公差就是零件尺寸允许的变动范围,合理分配零件的公差,优化产品设计,可以以最小的成本和最高的质量制造产品。
公差的计算方法:1、极值法这种方法是在考虑零件尺寸最不利的情况下,通过尺寸链中尺寸的最大值或最小值来计算目标尺寸的值。
2、均方根法这种方法是一种统计分析法,其实就是把尺寸链中的各个尺寸公差的平方之和再开根而得到目标尺寸的值。
尺寸链(dimensional chain ),是分析和技术工序尺寸的有效工具,在制订机械加工工艺过程和保证装配精度中都起着很重要的作用。
在零件加工或机器装配过程中,由互相联系的尺寸按一定顺序首尾相接排列而成的封闭尺寸组。
组成尺寸链的各个尺寸称为尺寸链的环。
其中,在装配或加工过程最终被间接保证精度的尺寸称为封闭环,其余尺寸称为组成环。
组成环可根据其对封闭环的影响性质分为增环和减环。
若其他尺寸不变,那些本身增大而封闭环也增大的尺寸称为增环,那些本身增大而封闭环减小的尺寸则称为减环。
极值法计算尺寸链的方法
极值法计算尺寸链的方法极值法作为一种常见的计算尺寸链的方法,在机械设计和制造领域具有广泛的应用。
本文将详细介绍极值法的原理和具体计算步骤,帮助读者更好地理解和掌握这一方法。
一、极值法概述极值法是一种基于数学统计原理的计算尺寸链的方法。
它通过分析各尺寸之间的相互关系,确定尺寸链中各尺寸的变动范围,从而计算出合理的尺寸公差。
极值法适用于具有一定数量尺寸的封闭尺寸链,能够确保零件在装配过程中的互换性和功能性。
二、极值法的计算步骤1.确定尺寸链首先,根据零件的装配关系和功能要求,确定尺寸链中各尺寸的名称、数量和顺序。
尺寸链中的尺寸应包括基本尺寸、公差、形位公差等。
2.建立尺寸链模型根据尺寸链中各尺寸的相互关系,建立尺寸链模型。
通常,尺寸链模型可以表示为一个封闭的多边形,各尺寸分别对应多边形的各边。
3.确定尺寸变动范围分析尺寸链中各尺寸的公差,确定各尺寸的变动范围。
变动范围通常包括上极限尺寸、下极限尺寸和基本尺寸。
4.计算封闭尺寸链的公差根据极值法的原理,封闭尺寸链的公差等于尺寸链中各尺寸公差之和。
计算公式如下:封闭尺寸链公差= Σ(各尺寸公差)5.判断尺寸链的合理性比较封闭尺寸链的公差与设计要求的公差,判断尺寸链是否满足设计要求。
若不满足,需对尺寸链进行调整,直至满足设计要求。
6.确定尺寸链中各尺寸的公差根据封闭尺寸链的公差和各尺寸的变动范围,分配各尺寸的公差。
分配公差时,应遵循以下原则:- 尺寸链中各尺寸的公差应相等或相近;- 尺寸链中各尺寸的公差应满足功能要求和加工工艺要求;- 尺寸链中各尺寸的公差应便于测量和检验。
三、总结极值法计算尺寸链的方法具有以下优点:1.简便易行,适用于各种类型的尺寸链;2.能够确保零件在装配过程中的互换性和功能性;3.有助于提高零件的加工质量和降低生产成本。
通过以上介绍,相信读者已经对极值法计算尺寸链的方法有了更深入的了解。
尺寸链公差计算案例
尺寸链公差计算案例摘要:一、引言二、尺寸链公差计算方法1.尺寸链概念2.尺寸链公差计算公式3.尺寸链公差计算实例三、尺寸链公差在工程中的应用1.零件加工中的应用2.产品设计中的应用四、总结正文:一、引言在机械制造领域,尺寸链公差计算是一项基础且重要的工作。
尺寸链是由一系列相互关联的尺寸组成的,它们在加工和装配过程中相互影响。
为了保证产品的质量和性能,掌握尺寸链公差的计算方法至关重要。
本文将详细介绍尺寸链公差的计算方法及其在工程中的应用。
二、尺寸链公差计算方法1.尺寸链概念尺寸链是指在零件加工和装配过程中,由一系列相互关联的尺寸组成的链式结构。
这些尺寸之间存在一定的相对位置关系,并相互影响。
尺寸链的公差是指各个尺寸之间的允许偏差范围。
2.尺寸链公差计算公式尺寸链公差计算公式为:T=max(Δi)+min(Δj)其中,T表示尺寸链的公差,Δi表示第i个尺寸的允许偏差,Δj表示第j 个尺寸的允许偏差。
3.尺寸链公差计算实例以一个简单的尺寸链为例,假设有一个零件的尺寸分别为A、B、C,它们的允许偏差分别为±0.1mm、±0.2mm、±0.3mm。
根据公式,可以计算出尺寸链的公差为:T=max(ΔA, ΔB, ΔC)+min(ΔA, ΔB,ΔC)=0.3mm+0.1mm=0.4mm。
三、尺寸链公差在工程中的应用1.零件加工中的应用在零件加工过程中,尺寸链公差计算有助于确定加工工艺和检验标准。
根据尺寸链公差,加工人员可以合理选择加工设备和工艺参数,以确保零件加工质量。
2.产品设计中的应用在产品设计阶段,尺寸链公差计算有助于优化设计方案,提高产品的可靠性和性能。
设计人员可以根据尺寸链公差,合理设置产品的尺寸参数,使其在满足功能要求的同时,具有良好的制造性和装配性。
四、总结尺寸链公差计算在机械制造领域具有重要的意义。
掌握尺寸链公差的计算方法,有助于保证产品的质量和性能,提高制造过程的效率。
尺寸链及尺寸链计算
一、尺寸链及尺寸链计算公式1、尺寸链的定义在工件加工和机器装配过程中,由相互联系的尺寸,按一定顺序排列成的封闭尺寸组,称为尺寸链。
尺寸链示例2、工艺尺寸链的组成环:工艺尺寸链中的每一个尺寸称为尺寸链的环。
工艺尺寸链由一系列的环组成。
环又分为:(1)封闭环(终结环):在加工过程中间接获得的尺寸,称为封闭环。
在图b所示尺寸链中,A0是间接得到的尺寸,它就是图b所示尺寸链的封闭环。
(2)组成环:在加工过程中直接获得的尺寸,称为组成环。
尺寸链中A1与A2都是通过加工直接得到的尺寸,A1、A2都是尺寸链的组成环。
1)增环:在尺寸链中,自身增大或减小,会使封闭环随之增大或减小的组成环,称为增环。
表示增环字母上面用--> 表示。
2)减环:在尺寸链中,自身增大或减小,会使封闭环反而随之减小或增大的组成环,称为减环。
表示减环字母上面用<-- 表示。
3)怎样确定增减环:用箭头方法确定,即凡是箭头方向与封闭环箭头方向相反的组成环为增环,相同的组成环为减环。
在图b所示尺寸链中,A1是增环,A2是减环。
4)传递系数ξi:表示组成环对封闭环影响大小的系数。
即组成环在封闭环上引起的变动量对组成环本身变动量之比。
对直线尺寸链而言,增环的ξi=1,减环的ξi=-1。
3.尺寸链的分类4.尺寸链的计算尺寸链计算有正计算、反计算和中间计算等三种类型。
已知组成环求封闭环的计算方式称作正计算;已知封闭环求各组成环称作反计算;已知封闭环及部分组成环,求其余的一个或几个组成环,称为中间计算。
尺寸链计算有极值法与统计法(或概率法)两种。
用极值法解尺寸链是从尺寸链各环均处于极值条件来求解封闭环尺寸与组成环尺寸之间关系的。
用统计法解尺寸链则是运用概率论理论来求解封闭环尺寸与组成环尺寸之间关系的。
5.极值法解尺寸链的计算公式(4)封闭环的中间偏差(5)封闭环公差(6)组成环中间偏差Δi=(ES i+EI i)/2(7)封闭环极限尺寸(8)封闭环极限偏差6.竖式计算法口诀:封闭环和增环的基本尺寸和上下偏差照抄;减环基本尺寸变号;减环上下偏差对调且变号。
尺寸链确定..
确定增环和减环
A0封闭环,A1、 A4、A5减环, A2、A3、A6增 环
确定增环和减环
A0封闭环,A2z增环,A1j减环
确定增环和减环
B0封闭环,B3z增环,B1j、B2j减环
确定增环和减环
箭头方法确定 凡是箭头方向与封闭环同向变动的组成环,减环 与封闭环反向变动的组成环,增环
确定增环和减环
尺寸链计算——例1
A3封闭环、A1增环、A2减环
二、尺寸链计算例题
尺寸链计算例题
尺寸链计算例题
尺寸链计算例题
尺寸链计算例题
尺寸链计算例题
A3
A0
A1
A2 2)计算:A0=A1+A3-A2 A0=25+0.15-0.15 A1=25.250 -0.05 A2=53.480-0.1 A3基本尺寸=53.48-(25.25-25)=5.23mm A0max= A1max-( A2min-A3max) 求得A3max =53.28 mm A0min= A1min-( A2max-A3min) 求得A3min =53.13 mm A3=53.23+0.05-0.10 mm 按入体原则得:A3=53.280-0.15 mm A3为工序尺寸
A0封闭环,A1z、A2z增环、A3j 减环
三、尺寸链的分类——按应用范围
工艺尺寸链
零件尺寸链
装配尺寸链
尺寸链的分类——按空间位置
直线尺寸链
平面尺寸链
尺寸链的分类——按空间位置
空间尺寸链
尺寸链的分类——按几何特征
长度尺寸链
角度尺寸链
尺寸链的代号
长度尺寸链:拉丁字母,如A、B 角度尺寸链:希腊字母,如α、β 封闭环加下角标0,如A0 组成环加下角标序数1,2,3,...,如A1, A2
尺寸链计算及公差分析(简体)
工艺过程的组成
所谓之工作行程指: 加工工具在工件上一次所完成的工步部分.(如折沿边料过程中的一个来回)
1
如果工艺过程中只有一道工序,工序中又只有一步工步,工步由一个工作行程组成,那么它们实际是相当.
2
工艺过程文件化
将工艺过程的操作方法等按一定的格式用文件的形式规定下来,便成了工艺规程,即所说的SOP.
03
尺寸链的解读
尺寸链的分类: 2、按尺寸链各环的相互位置分:
直线尺寸链:是全部组成环平行于封闭环的尺寸链,如图(1),(2),(3) 平面尺寸链:全部组成环位于一个或几个平行平面内,但某些组成环不平行于封闭环的尺寸链,如图(四)所示,两孔之间的尺寸构成了一平面尺寸链
尺寸链的计算
添加标题
概率法解尺寸链
添加标题
先估计
添加标题
若T(Ai)的平均值基本上满足经济精度的要求,则可按组成环加工的难易程度合理调配公差.概率法的好处是求得的组成环公差比极值法的要大 倍.
添加标题
已知封闭环公差计组成环公差之概率法:
基本概念
公差分析
概述------实际加工所得到的零件形状和几何体的相对位置相对于理想的形状和位置关系存在差异,这就是形位误差。实际生产中是不可避免的。
基本概念
边界 形位公差所涉及的主要术语及定义
最大实体边界(MMB)和最小实体边界(LMB) 由设计给定的具有理想形状的极限包容面。 尺寸为最大(小)实体尺寸的边界。 最大实体实效边界(MMVB)和最小实体实效边界(LMVB) 尺寸为最大(小)实体实效尺寸的边界。
形位公差所涉及的主要术语及定义
11.最大实体要求(MMR)和最小实体要求(LMR)
形位公差的符号及标注
双基准
尺寸链计算
一、 计算参数 有关尺寸、偏差、公差及计算系数等参数的符号见下表:
页码,3/10
file://F:\模具\其他公司图纸\东江公司\samkey-design2\aaa\ug_std\标准... 2009-4-10
《尺寸链计算方法》培训
页码,4/10
有关尺寸、偏差、公差及计算系数等各参数间的关系见下图: file://F:\模具\其他公司图纸\东江公司\samkey-design2\aaa\ug_std\标准... 2009-4-10
得: 由上可得出同样的组成环精度,用概率法解出的封闭环精度高于完全互换法。
例题3.采用中间计算,求某一组成环的基本尺寸及偏差。如图一,模具零件中,加工顺序
为先车外圆:
,锣槽深A2,然后再车外圆:
,要求车完外圆后保持槽深:
。问锣槽深度A2是多少。
解:经分析A0为封闭环,A2,A3/2为增环,A1/2为减环 。 如工艺尺寸链图:
在解尺寸链时又可根据不同的产品设计要求、结构特征、精度等级、生产批量和互换性 要求而分别采用完全互换法、概率法、分组互换法、修配法和调整法。
后附表中详细列出这几种方法其各自的特点和使用。
对照例题请仔细区分修配法和调整法的相同点与不同点。
修配法
1.平均偏差 实际偏差的平均值。
四、尺寸链的计算参数
调整法
《尺寸链计算方法》培训
页码,5/10
计算公式:尺寸链的计算,主要计算封闭环与组成环的基本尺寸、公差及极限偏差之间的关 系。
尺寸链的计算公式
file://F:\模具\其他公司图纸\东江公司\samkey-design2\aaa\ug_std\标准... 2009-4-10
《尺寸链计算方法》培训
尺寸链的分析计算
L0 = f (L i)
T0 60 6
Ci2
2 i
Ci2Ti 2
0 Cii
ES0 = μ0 + T0 /2 EI0 = μ0 - T0 /2
L ES0 0EI 0
26 / 33
尺寸链 RSS计算
L0 = f (L i)
27 / 33
尺寸链 RSS计算
=T3 + T1 + T2= 0.12+0.06+0.02=0.20 mm
L0
30 0.06 0.14
mm
L0
T1 = 60 μm μ1 = (ES1 + EI1 ) /2 = -10 μm T2 = 20 μm μ2 = 30 μm T3 = 120 μm μ3 = -20 μm
L0 = L3 – L1 – L2 C3 =1 C2 =C1 =-1
EI0 = EI3 – ES1 – ES2
L0
L1
L2
T0 = T3 + T1 + T2
23 / 33
尺寸链 尺寸概率分布
L0 = f (L i)
24 / 33
尺寸链 尺寸概率分布
L ESi i EIi
Ti = 6σi μi = (ESi + EIi ) /2
L0 = f (L i)
25 / 33
分为增环和减环
11 / 33
尺寸链 组成环
Component link
A0
A3
A1
A2
A0 A1
A3
A2
增环 increasing link 与封闭环同向变动的组成环。
即当其他组成环尺寸不变时,该组成环尺寸增大(或减 小)而封闭环尺寸也随之增大(或减小),
尺寸链计算方法及案例详解
尺寸链计算方法及案例详解尺寸链计算方法是指根据产品的尺寸要求和特定的工艺流程,通过一系列的计算和分析来确定产品各个部件的尺寸和配合关系的方法。
尺寸链计算方法主要应用于机械设计、工程制图、零部件加工等领域,是确保产品尺寸精度和装配质量的重要手段。
首先,尺寸链计算方法需要明确产品设计的功能要求和工艺要求,包括产品的使用环境、受力情况、材料特性等。
然后,根据这些要求,确定产品各个部件之间的配合关系和尺寸范围。
接着,通过计算和分析,确定各个部件的尺寸,并建立尺寸链,保证各个部件在装配时能够满足设计要求。
在实际应用中,尺寸链计算方法通常涉及到几个方面的内容,包括尺寸配合计算、公差分配、尺寸链分析等。
在尺寸配合计算中,需要根据配合要求和公差要求,确定配合尺寸的上限和下限。
公差分配则是根据产品功能和装配要求,合理地分配公差,确保产品的性能和装配质量。
尺寸链分析则是通过建立尺寸链图,分析各个部件之间的尺寸关系,找出影响产品尺寸精度的关键因素,从而指导产品设计和加工。
举个简单的案例来说明尺寸链计算方法的应用。
比如,某机械零件的装配要求是要求两个轴承孔的中心距离在一定范围内,并且轴承孔的直径要求在一定的公差范围内。
在这种情况下,就需要通过尺寸链计算方法来确定轴承孔的尺寸和配合关系。
首先根据轴承的尺寸和公差要求,确定轴承孔的上限和下限尺寸。
然后根据轴承孔的位置和受力情况,确定轴承孔中心距离的范围。
最后通过尺寸链计算方法,确定轴承孔的尺寸和配合关系,以保证产品的装配质量和性能。
总之,尺寸链计算方法是一种重要的工程技术方法,通过合理的计算和分析,能够确保产品的尺寸精度和装配质量,对于提高产品的质量和竞争力具有重要意义。
尺寸链公差计算案例
尺寸链公差计算案例摘要:I.尺寸链公差计算的背景和意义II.尺寸链公差计算的案例分析A.计算公式和基本概念B.具体案例分析1.组成环的确定2.公差的计算3.结果分析III.尺寸链公差计算在实际应用中的优势和意义正文:尺寸链公差计算在机械加工领域具有重要的意义。
在产品设计和制造过程中,通过计算尺寸链公差,可以保证产品的加工精度和质量,优化工艺路线,减少资源浪费和降低产品的返修率。
本文将通过一个具体的案例分析,详细介绍尺寸链公差计算的方法和步骤。
首先,我们需要了解尺寸链公差计算的基本概念和公式。
尺寸链公差计算是基于组成环和封闭环的概念。
组成环是指直接保证产品尺寸的各个环节,而封闭环则是间接保证产品尺寸的环节。
尺寸链公差的计算公式为:上偏差= 所有增环的上偏差之和- 所有减环的下偏差之和;下偏差= 所有增环的下偏差之和- 所有减环的上偏差之和。
接下来,我们通过一个具体的案例来分析尺寸链公差计算的过程。
假设有一个产品,其尺寸为100mm,公差要求为±1mm。
我们需要计算组成环和封闭环,以及公差。
1.组成环的确定:组成环是直接保证产品尺寸的环节。
在这个案例中,组成环为直接加工的环节,即加工100mm 的环节。
因此,组成环为100mm。
2.公差的计算:根据公式,我们可以计算出上偏差和下偏差。
上偏差= 100mm * 1mm = 100mm;下偏差= 100mm * (-1mm) = -100mm。
3.结果分析:根据计算结果,我们可以得出产品尺寸的上偏差为100mm,下偏差为-100mm。
这意味着在加工过程中,产品的尺寸可以在100mm 的基础上增加100mm,或者减少100mm,仍能满足公差要求。
尺寸链公差计算在实际应用中具有很大的优势。
通过计算公差,工程师可以在设计和制造过程中更好地掌握产品的尺寸变化,优化工艺路线,减少浪费和返工。
尺寸链计算-等公差等级法-平均公差等级系数a的详解
1.标准公差系列标准公差(IT)是国家标准规定的极限制中列出的任一公差数值。
表2.4列出了国家标准(GB/T 1800.3—1998)规定的机械制造行业常用尺寸(尺寸至500mm)的标准公差数值。
由表2.4可知:标准公差的数值与标准公差等级和基本尺寸分段有关。
表2.4 标准公差数值表1) 标准公差等级及其代号标准公差等级是指确定尺寸精确程度的等级。
为了满足机械制造中各零件尺寸不同精度的要求,国家标准在基本尺寸至500mm范围内规定了20个标准公差等级,用符号IT和数值表示:IT01、IT0、IT1、IT2~IT18。
其中,IT01精度等级最高,其余依次降低,IT18等级最低。
在基本尺寸相同的条件下,标准公差数值随公差等级的降低而依次增大,详见表2.4。
同一公差等级(例如IT6)对所有基本尺寸的一组公差被认为具有同等精确程度。
2) 公差等级系数公差等级系数α是IT5~IT18各级标准公差所包含的公差单位数。
它采用R5优先数系中的常用数值。
高精度的IT01、IT0、IT1的标准公差与基本尺寸呈线性关系。
公差等级IT2~IT4的标准公差数值在IT1和IT5的数值之间大致按等比数列递增,其公比q= (IT5/IT1)14,见表2.5。
表2.5 基本尺寸不大于500mm的标准公差数值计算公式3) 标准公差因子标准公差因子是用以确定标准公差的基本单位,它是基本尺寸的函数。
尺寸公差是用来控制加工误差和测量误差的,因此其公差值大小应符合加工误差和测量误差的变化规律,这样才能经济合理。
根据生产实际经验和统计分析表明,当工件的基本尺寸不大于500mm时,在一定的工艺系统加工条件下,加工误差与基本尺寸之间呈立方抛物线关系,而测量误差与基本尺寸之间呈线性关系。
即标准公差因子i的计算公式表达为i+ 0.001D(d) (2-2) 式中:D(d)——孔(轴)的基本尺寸(mm)。
若按式(2-2)计算标准公差数值,则每一个基本尺寸D(d)就有一个相对应的公差数值。
机械尺寸链计算方法
机械尺寸链计算方法主要包括以下步骤:
1. 确定设计要求:明确所需尺寸范围、相对位置要求等,作为计算依据。
2. 确定基准尺寸:根据设计要求,选择一个容易确定的尺寸作为计算的起点。
3. 确定尺寸链关系:根据设计要求和构件之间的功能关系,确定尺寸链的关系。
4. 绘制尺寸链图:按照加工顺序,将尺寸链中的各个尺寸标注在图纸上。
5. 正计算(校核计算):已知各组成环的公称尺寸和极限偏差,求封闭环的公称尺寸和极限偏差。
6. 反计算(设计计算):已知封闭环的公称尺寸和极限偏差,求各组成环的公差和极限偏差。
7. 中间计算:已知封闭环及某些组成环的公称尺寸和极限偏差,求某组成环的公称尺寸和极限偏差。
8. 根据组成环的基本尺寸和极限偏差,计算封闭环的基本尺寸和极限偏差。
9. 根据组成环的上下偏差,计算封闭环的上下偏差。
10. 根据组成环的公差,计算封闭环的公差。
11. 概率法计算:根据各组成环尺寸分布情况,按统计公差公式进行计算。
需要注意的是,在进行机械尺寸链计算时,要遵循“入体”原则,即包容面尺寸为上偏差为0,被包容面尺寸下偏差为0。
同时,要综合考虑加工精度、测量精度等因素对计算结果的影响。
封闭尺寸链计算
封闭尺寸链计算
摘要:
一、封闭尺寸链计算的定义
二、封闭尺寸链计算的应用领域
三、封闭尺寸链计算的方法
四、封闭尺寸链计算的优缺点分析
五、封闭尺寸链计算的发展趋势与展望
正文:
封闭尺寸链计算是一种计算方法,它主要通过数学模型和算法来解决封闭尺寸链问题。
封闭尺寸链是指一个物体由多个环节组成,每个环节都有其特定的尺寸,要求求出满足所有环节尺寸限制的物体尺寸。
这种计算方法广泛应用于机械加工、建筑设计、制造业等领域。
封闭尺寸链计算的方法主要有以下几种:
1.穷举法:对于每一个环节的尺寸,列举所有可能的取值,逐一检验是否满足其他环节的尺寸限制,直到找到符合条件的解或者确定无解。
2.递推法:根据尺寸链的特性,从前往后或者从后往前推导,逐步求解每个环节的尺寸。
3.数值优化法:通过数学模型将尺寸链问题转化为最优化问题,利用数值优化算法求解。
4.遗传算法:模拟自然界生物进化过程,通过基因编码、交叉、变异等操作,搜索到满足条件的解。
封闭尺寸链计算的优点在于能够有效地解决复杂尺寸链问题,为实际工程应用提供理论支持。
然而,这种计算方法也存在一定的局限性,例如计算复杂度高、求解速度慢等。
随着计算机技术的不断发展,封闭尺寸链计算方法也在不断地改进与优化。
未来,封闭尺寸链计算有望在更多领域得到应用,同时计算效率和准确度也将得到进一步提升。
尺寸链计算
1、尺寸链的概念
尺寸链:在机械加工或装配过程中,由相互关联的尺寸形成封闭尺寸组,这样的尺寸组就成为尺寸链。
尺寸链包括封闭环、增环及减环,一个尺寸链中只有一个封闭环。
封闭环:在机械加工或装配过程中,最后形成(间接获得)的尺寸,成为封闭环。
增环:在其他组成环不变的情况下,当某一组成环的尺寸增大时,封闭环也随之增大,则这一组成环成为增环。
减环:在其他组成环不变的情况下,当某一组成环的尺寸增大时,封闭环随之减小,则这一组成环成为减环。
2、增环、减环的判定技巧
由尺寸链任一环的基面出发,绕其轮廓线顺时针或逆时针旋转一周,回到这个基面,按旋转方向给每一环标上箭头,与封闭环箭头方向相反的为增环,反之,为减环。
增环:A1、A2、A3、A5
减环:A4、A6
3、尺寸链的计算方法
封闭环基本尺寸=所有增环基本尺寸之和-所有减环基本尺寸之和
封闭环最大极限尺寸=所有增环最大极限尺寸之和-所有减环最小极限尺寸之和
封闭环最小极限尺寸=所有增环最小极限尺寸之和-所有减环最大极限尺寸之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角度尺 寸链 和直 线尺寸 链 计算类似 。
AL 一
计算尺寸链的算法有 :极值解法和概率
外 圆的 同轴 度 公莘 巾0 0rm以内 , 在该零 .2 a 需 件 上铣 削三个 等距离 且半 径为 R 8 。 二 - 岫 mm 的 圆弧槽 , 要求 圆弧槽 的 中心落住 外 网0 并 ~
B n鞠 峨 ea l r h s os e _ n f y a 加 Xn e e o N 唧 8 l  ̄ ,rt d t o d fa 0l
由于封闭环的上偏差等于各增环的上偏差
之和减 去 各减 环的 下偏 差之和 ,封 闭 环的 下
偏差等于各增环的下偏差之和减去各减环的上
偏差之羊 ,即 【 1
成 ,将这 一 寸记 为 A 罔 l} 尺 ¨网弧槽 与内 J
孔 的擘 厚的 尺 寸很容 易测 量 ,记为 A ,外 圆 半径 、内孔 半径 和 圆弧 槽半 径分 别记 为 A 、
c (p l n 吣№m 秆 m cl g pO s  ̄ 1 ah 协 rc  ̄№ I P ue .T o n e n o cd w  ̄d 蝴 瑚 o x rm m 8{{ n r i y sl o 8 f et u 0 t n td p  ̄b t o n I e uo o l i ∞i ue o = u s g n u mn -u _ gv y sd t C cl i ,a d sm i q Cn g p s i b e
维普资讯
中国科技信息 2 0 年 第 2 期 06 4
C I CEC N E  ̄ L G NO M TO e . 0 HN S I EA D TO' O Y I R A I Dc2 S A N F N 0
应用于机械加工测量的尺寸链计算方法
岳奎 合肥 工业 大学机械 与汽车工程 学院 2 0 0 309
法 ,四 环以 外 采 用概 率 解法 I。 。 。 I
2.应 用实例
如 图 l 所 永 I I 零 件 外 圆 寸 为 ,
杆 法进 行计 算 。 并比 较 了计 算 结 幂
足 寸健 m, 1o( ) ( ∞m 内圆尺寸为45J0 m, ) 0m 内 4( . 4
据称 为基 准 。基 准根 据作 用不 同可分 为 设计 基准 和 工艺基准 两大 类 ,工艺基 准包 括 工序
A 和 A ,外圆和内孔的 轴度尺寸记为A , 、
见I 冬 2所示 J
( ) 3
Ⅵ , SA一E eE A" S 2 E A- A= 0E 4 S lI E A- S s ES -
则 ,A4 o AI 一 , 95 A A2A3 A 一t .mm。 I
3.工艺尺寸链 的换算
( )确 定封 闭环 和 各组 成环 1
②求 工 艺尺 寸 A 的 上 、 下偏等 ES 、
E A I d
“ 圆弧槽的中心落在外圆0 .rm内” ~0 2 a
的 要求 ,在加 工时 很难 直接 控 制羊J l 测最 若 实 现 这 一 要 求 ,应 通 过 』 寸链 的 计 算 来 完
cb at te  ̄ clU g rsl . o l 略 h ua n eu s t
由 丁封闭环的基本尺 叶 ‘ 等丁各组 成环 基本
尺 寸的 代 数 和 ,即
A0 A2 … A) A4 A AI 十 +
中 凰分粪号; Hl 文献标识码: T 6 A
(1 )
02 .mm 内。
( 3) 概 率 解 法
与实际加工脱节以及零部件与产品装配脱节,
再 由于受机 床 、夹具 以及机 械加 工的 方便性
A—A 厂 \
、
~
等方面的限制,这时的工艺基准与设汁基准
不重合 ,在这 种情 况 ,必 须进 行工艺 尺 、 J
、掣 { ⑩ \
链 的换算 ,/ E j 准确 地 确保 加』零 件 的测最 唷 =
一
O2 一 .3 _.l_.2_.8 00 mm .十(0O ) 0O_00_00 = .6 _
E^ I
EI4 E ^+E A A一 I I S l I2 I - I E A E
一
0 0 (O0)0 0 00r + .1 .1 m。 … a
基准 、定位基准、测量基准和装配基准。在
E A EA EA E^ E -I SO S2 S3 S^ Q/E^ - 一 + + + l
( ) 2
EI0 EI: ̄ A+EI A A EI 3 A+EI : ESA A l
1.引 言
在机械加工过程中,必须以零件的某 一
个 或几 个表 面 为依 据 来加 T测 量 其 它表面 , 以保 证零 件 图纸 所规 定的技 术要 求 ,这些 依
设 计 、 加 工 、测 景 和 装 配 时 ,尽 量保 证 基 准 重合 ,避 免 产生 基 准不 萤合 误 差 。但 是 , 在 实际情 况是 :设计与 加 工脱节 、制订 工 艺
③工艺 r A
图 2尺 寸链
根 据题 意 ,A 是 间 接保 证 的 ,是 封 闭
Ar
用极值解法计算得:A =1. 95 mm。
解 法 。 ・ 情 况 下 ,阴 环 以 内采 用 极 值 解 般 通 过实例介 绍 了在机 械零件 加工过 程中 ,足
寸链的 求解过 程 分别 用 了极位 解油和 概率
环 根据 回路法 I,可以 判断 }组 成 环 A, I H 、
A ,A 和 A 是 增 环 ,组 成 环 A 是减 环 。 ( )檄 值 解 法 2 ①求 工 艺尺 寸 A 的基本 尺寸 4