相关回归分析

合集下载

简要说明相关分析与回归分析的区别

简要说明相关分析与回归分析的区别

相关分析与回归分析的区别和联系
一、回归分析和相关分析主要区别是:
1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;
2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x 可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;
3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.
二、回归分析与相关分析的联系:
1、回归分析和相关分析都是研究变量间关系的统计学课题。

2、在专业上研究上:
有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关分析和回归分析。

3、从研究的目的来说:
若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.
三、扩展资料:
1、相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。

例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。

2、回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

运用十分广泛。

回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。

回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。

回归分析可以分为线性回归和非线性回归两种。

线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。

回归分析可用于预测、解释和控制因变量。

回归分析的应用非常广泛。

例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。

回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。

相关分析是一种用来衡量变量之间相关性的方法。

相关分析通过计算相关系数来度量变量之间的关系的强度和方向。

常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。

Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。

相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。

相关分析的应用也非常广泛。

例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。

相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。

回归分析与相关分析的主要区别在于它们研究的对象不同。

回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。

此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。

综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。

回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。

回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。

第七章相关与回归分析

第七章相关与回归分析

第七章 相关与回归分析一、本章学习要点(一)相关分析就是研究两个或两个以上变量之间相关程度大小以及用一定函数来表达现象相互关系的方法。

现象之间的相互关系可以分为两种,一种是函数关系,一种是相关关系。

函数关系是一种完全确定性的依存关系,相关关系是一种不完全确定的依存关系。

相关关系是相关分析的研究对象,而函数关系则是相关分析的工具。

相关按其程度不同,可分为完全相关、不完全相关和不相关。

其中不完全相关关系是相关分析的主要对象;相关按方向不同,可分为正相关和负相关;相关按其形式不同,可分为线性相关和非线性相关;相关按影响因素多少不同,可分为单相关和复相关。

(二)判断现象之间是否存在相关关系及其程度,可以根据对客观现象的定性认识作出,也可以通过编制相关表、绘制相关图的方式来作出,而最精确的方式是计算相关系数。

相关系数是测定变量之间相关密切程度和相关方向的代表性指标。

相关系数用符号“γ”表示,其特点表现在:参与相关分析的两个变量是对等的,不分自变量和因变量,因此相关系数只有一个;相关系数有正负号反映相关系数的方向,正号反映正相关,负号反映负相关;计算相关系数的两个变量都是随机变量。

相关系数的取值区间是[-1,+1],不同取值有不同的含义。

当1||=γ时,x 与y 的变量为完全相关,即函数关系;当1||0<<γ时,表示x 与y 存在一定的线性相关,||γ的数值越大,越接近于1,表示相关程度越高;反之,越接近于0,相关程度越低,通常判别标准是:3.0||<γ称为微弱相关,5.0||3.0<<γ称为低度相关,8.0||5.0<<γ称为显著相关,1||8.0<<γ称为高度相关;当0||=γ时,表示y 的变化与x 无关,即不相关;当0>γ时,表示x 与y 为线性正相关,当0<γ时,表示x 与y 为线性负相关。

皮尔逊积距相关系数计算的基本公式是: ∑∑∑∑∑∑∑---==])(][)([22222y y n x x n y x xy n y x xy σσσγ 斯皮尔曼等级相关系数和肯特尔等级相关系数是测量两个等级变量(定序测度)之间相关密切程度的常用指标。

相关分析与回归分析

相关分析与回归分析

客观现象的相互联系,可以通过一定的数量关系反映出来。
(2)回归分析是相关分析的深入和继续。
一、表格法(相关表法)
(一)简单相关表
n x y x y 编制方法:先将自变量的值按照从小到大的顺序排列出来,然后将因变量的值对应列上而排列成表格。
以x为自变量,y为因变量建立直线回归方程,并说明回归系数的经济意义。
※●很显复示 相明x关和:显y自事变:正量相两r关的个还以是取上负。相值关;为正或为负取决于分子。
1、协方差 的作用 3=1、0+两2个x 变量完全r相=0关. 时,则相2 关系数为(

6、下列回归方程中,肯定错xy 误的是(

A.x的数值增大时,y值也随之增大
显示x和y事正相关还是负相关; (5※、2)产回品归单分位析成是本相与关产分品析产的量深之入间和的继关续系。一般来说是( ) 第※※三绝显节 对值示回在归0x分. 析和与一y元相线性关回归程度的大小; 1一2x、、相关相关r=系关0.的概系念和数种类计算的简便公式
第二节 相关关系的判断
(二)相关系数的计算
rxy2
(xx)(yy) n
xy
(xx)2
(yy)2
n
n
n :资料项数
x
(xx)2 表示 x变量的标准差 n
y
(yy)2 表示 y变量的标准差 n
2 xy
(xx)(yy)表示 x、y两个变量数列的协方 n
第二节 相关关系的判断
r (xx)(yy) (xx)2 (yy)2
第一节 相关分析的意义和种类
3、根据相关的形式不同划分,分为线性相关和非线性相关。 ●线性相关:即直线相关。 ●非线性相关:即曲线相关。 4、根据相关的程度分为不相关、完全相关(函数关系)和不完全 相关。 三、相关分析的主要内容 1、确定现象之间有无关系。 2、确定相关关系的表现形式。 3、测定相关关系的密切程度和方向。

相关分析和回归分析

相关分析和回归分析

相关分析和回归分析相关分析和回归分析是统计学中最基础的两种分析方法,它们都用于研究数据变量之间的关系。

因为它们都是研究两个变量之间关系的,所以它们常常会被混淆起来,但它们其实在原理上是不同的,有不同的应用场景。

一、相关分析相关分析是一种简单的统计分析,用来检验不同变量之间是否存在相互关系。

它可以通过计算出变量之间的相关系数,来判断变量之间是线性关系还是非线性关系。

另外,它还可以度量两个变量的线性关系的相关程度,用来度量不同变量之间的关系强度。

相关分析的应用非常广泛,它可以帮助研究者了解数据之间的关系,也可以用来预测数据的变化趋势。

比如,可以用相关分析来研究一个地区的薪水水平和就业水平之间的关系,用来预测未来就业水平和薪资水平会有怎样的变化趋势。

二、回归分析回归分析是一种统计分析,用以研究两个变量之间的数量关系,并建立起变量之间的数量模型。

它用于预测和分析数据,从而探索数据之间的关系。

比如,从客户收入、购买频率等多个因素来建立一个回归模型,从而预测客户的未来购买意愿。

回归分析也是一种非常有用的统计方法,它可以用来研究数据之间的关系,并预测数据未来的变化趋势。

另外,它还可以用来预测特定变量的值,比如预测未来股市的涨跌情况。

总结以上就是相关分析和回归分析的基本内容介绍。

相关分析用于研究数据变量之间的关系,可以帮助研究者了解数据之间的关系,并预测数据的变化趋势;而回归分析是一种统计分析,用以研究两个变量之间的数量关系,可以用来预测特定变量的值,也可以研究数据之间的关系,并预测数据未来的变化趋势。

相关分析和回归分析可以说是统计学中最基础的两种分析方法,它们都具有重要的应用价值,广泛用于各种数据分析工作。

统计学中的相关性和回归分析

统计学中的相关性和回归分析

统计学中的相关性和回归分析统计学中,相关性和回归分析是两个重要的概念和方法。

它们旨在揭示变量之间的关系,并可以用来预测和解释观察结果。

本文将介绍相关性和回归分析的基本原理、应用及其在实践中的意义。

一、相关性分析相关性是指一组变量之间的关联程度。

相关性分析可以帮助我们理解变量之间的关系,以及这种关系的强度和方向。

常用的相关性指标有皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。

皮尔逊相关系数是最常见的衡量变量之间线性关系的指标。

它的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关。

例如,在研究身高和体重之间的关系时,如果相关系数为0.8,则说明身高和体重呈现较强的正相关。

斯皮尔曼相关系数则不要求变量呈现线性关系,而是通过对变量的序列进行排序,从而找到它们之间的关联程度。

它的取值也在-1到1之间,含义与皮尔逊相关系数类似。

判定系数是用于衡量回归模型的拟合程度的指标。

它表示被解释变量的方差中可由回归模型解释的部分所占的比例。

判定系数的取值范围在0到1之间,越接近1表示模型对数据的拟合越好。

二、回归分析回归分析是一种用于建立变量之间关系的统计方法。

它通过建立一个数学模型来解释和预测依赖变量和自变量之间的关系。

回归模型可以是线性的,也可以是非线性的。

线性回归是最常见的回归分析方法之一。

它假设自变量和因变量之间存在着线性关系,并通过最小二乘法来估计模型中的参数。

线性回归模型通常表示为y = β0 + β1x1 + β2x2 + ... + βnxn,其中y为因变量,x1、x2等为自变量,β0、β1等为模型的参数。

非线性回归则适用于自变量和因变量之间存在非线性关系的情况。

非线性回归模型可以是多项式回归、指数回归、对数回归等。

回归分析在实践中有广泛的应用。

例如,在市场营销中,回归分析可以用来预测销售量与广告投入之间的关系;在医学研究中,回归分析可以用来探究疾病发展与遗传因素之间的联系。

相关分析与回归分析

相关分析与回归分析
一强行介入法Enter一次性进入
这是一种不检验F和Tolerance,一次将全部自变量无条件地
纳入回归方程。
二强行剔除Remove一次性剔除
指定某些变量不能进入方程。这种方法通常同别的方法联合
使用,而不能首先或单独使用,因为第一次使用或单独使用
将意味着没有哪个变量进入方程。
三逐步进入Stepwise
▪ 回归分析是研究客观事物变量间的关系,它是建立在对客
观事物进行大量试验和观察的基础上,通过建立数模型寻
找不确定现象中所存在的统计规律的方法。回归分析所研
究的主要问题就是研究因变量y和自变量x之间数量变化规
律,如何利用变量X,Y的观察值样本,对回归函数进行
统计推断,包括对它进行估计及检验与它有关的假设等。

▪ “Plots”
该对话框用于设置要绘制的图形的参数。
“X”和“Y”框用于选择X轴和Y轴相应的变量。
左上框中各项的意义分别为:
• “DEPENDNT”因变量。
• “ZPRED”标准化预测值。
• “ZRESID”标准化残差。
• “DRESID”删除残差。
• “ADJPRED”调节预测值。
• “SRESID”声氏化残差。
利用的是非参数检验的方法。
定序变量又称为有序ordinal变量顺序变
量,它取值的大小能够表示观测对象的某种顺
序关系等级方位或大小等,也是基于“质”因
素的变量。例如,“最高历”变量的取值是:
一—小及以下二—初中三—高中中专技校四—
大专科五—大本科六—研究声以上。由小到大
的取值能够代表历由低到高。
Spearman等级相关系数为
– 四. Multinomial Logistic 多元逻辑分析。

相关与回归分析

相关与回归分析
通过卡方检验,可以就自变量X和因变量Y的关联性给出判断。 在确定了存在关系之后,进一步要问的是它们之间的相关关系 的强弱程度如何。 在社会统计中,表达相关关系的强弱,消减误差比例的概念是 非常有价值的。消减误差比例的原理是,如果两变量间存在着 一定的关联性,那么知道这种关联性,必然有助于我们通过一 个变量去预测另一变量。其中关系密切者,在由一变量预测另 一变量时,盲目性必然较关系不密切者为小。
对相关系数的说明
(1)相关系数受样本容量n的影响,样本容量要求以 n≥30为宜。
(2)相关系数不是等距量表值,更不是等比量表值。不 能说r=0.5是r=0.25的两倍。 (3)存在相关关系不一定存在因果关系。 (4)计算相关系数要求成对数据,任意两个个体之间的 观测值不能求相关。
(5)没有线性相关,不一定没有关系,可能是非线性的。
第十二章 相关与回归分析
一、相关分析概述
客观事物之间的关系大致可归纳为两大类,即 函数关系:两事物之间的一种一一对应的关系,如商品的 销售额和销售量之间的关系。 共变关系:两事物之间本身没有直接的关系,但它们都受 第三种现象的影响而发生变化。例如春天出生的婴儿与春 天栽种的小树,就其高度而言,表面上看来都在增长,好 像有关,其实,这二者都是受时间因素影响在发生变化, 在它们之间并没有直接的关系。 相关关系:两事物之间的一种非一一对应的关系,例如家 庭收入和支出、子女身高和父母身高之间的关系等。它们 之间存在联系,但又不能直接做出因果关系的解释。相关 关系又分为线性相关和非线性相关。 相关分析是分析事物之间相关关系的数量分析方法。
职工的工作种类与工作价值
工作价值 Y 经济取向型 成就取向型 人际关系取向型 合计:FX
工作种类 X
工人 100 30 20 150 技术人员 70 60 10 140 管理人员 50 20 40 110

相关分析和回归分析的区别

相关分析和回归分析的区别

相关分析和回归分析的区别:1, 在相关分析中,解释变量X与被解释变量Y之间处于平等的位置。

而回归分析中,解释变量与被解释变量必须是严格确定的。

2 相关分析中,被解释变量Y与解释变量X全是随机变量。

而回归,被解释变量Y是随机的,解释变量X可能是随机的,可能是非随机的确定变量。

3 相关的研究主要主要是为刻画两变量间线性相关的密切程度。

而回归不仅可以揭示解释变量X和被解释变量Y的具体影响形式,而且还可以由回归方程进行预测和控制。

如果两变量间互为因果关系,解释变量与被解释变量互换位置,相关分析结果一样,回归分析结果不同。

样本回归函数与总体回归函数的区别: 1 总体是未知的,是客观唯一存在的。

样本是根据样本数据拟合的,每抽取一个样本,变可以拟合一条样本回归线。

2 总体中的β0和β1是未知参数,表现为常数。

而样本中的是随机变量,其具体数值随样本观测值的不同而变化。

3 随机误差ui是实际Yi值与总体函数均值E(Yi)的离差,即Yi与总体回归线的纵向距离,是不可直接观测的。

而样本的残差ei是yi与样本回归线的纵向距离,当拟合了样本回归后,可以计算出ei的具体数值。

一元的五个基本假定:1 随机扰动项ui的均值为零,即E(ui)=02 随机扰动项ui的方差为常数Var(ui)=E[ui-E(ui)]^2=E(ui^2)=σ^23 任意两个随机扰动项ui和uj互不(i不等于j)互不相关,其其协方差为0Cov(ui,uj)=04 随机扰动项ui与解释变量Xi线性无关Cov(ui,Xi)=05 随机扰动项服从正态分布,即ui~N(0,σ^2)样本分段比较法适用于检验样本容量较大的线性回归模型可能存在的递增或递减型的异方差性,思路是首先量样本按某个解释变量从大到小或小到大顺序排列,并将样本均匀分成两段,有时为增强显著性,可去掉中间占样本单位1/4或1/3的部分单位;然后就各段分别用普通最小二乘法拟合回归直线,并计算各自的残差平方和,大的用RSS1,小的用RSS2表示,如果数值之比明显大于1,则存在异方差异方差性的后果:1 参数估计值虽然是无偏的,但却不是有效的。

回归分析与相关分析联系区别

回归分析与相关分析联系区别

回归分析与相关分析联系区别
一、定义:
1.回归分析:回归分析是一种用于研究变量之间关系的统计方法,旨
在通过一个或多个自变量与一个因变量的关系来预测和解释因变量的变化。

2.相关分析:相关分析是一种用于度量两个变量之间线性关系的统计
方法,通过计算相关系数来判断变量之间的相互关联程度。

二、应用领域:
1.回归分析:回归分析广泛应用于社会科学、经济学、市场营销等领域,常用于预测、解释和因果推断等研究中,也可以用于探索性数据分析
和模型诊断。

2.相关分析:相关分析适用于自然科学、医学、环境科学等领域,可
用于分析变量之间的关联,评估变量之间的相关性以及预测未来的变化趋势。

三、应用步骤:
1.回归分析的应用步骤通常包括:确定研究问题、收集数据、选择适
当的回归模型、进行模型拟合和参数估计、模型诊断和解释回归结果等。

2.相关分析的应用步骤通常包括:明确研究目的、收集数据、计算相
关系数、进行假设显著性检验、解释相关结果和绘制相关图等。

四、结果解释:
1.回归分析的结果解释主要包括判断拟合度(如R-squared)、解释
变量的显著性和系数大小、诊断模型的合理性、进行预测和因果推断等。

2.相关分析的结果解释主要包括相关系数的显著性、方向(正相关或负相关)和强度(绝对值的大小),还可通过散点图等图形来展示变量之间的线性相关关系。

第七章__相关与回归分析

第七章__相关与回归分析
统 计 学
第九章 相关与回归分析
第一节 相关分析的一般问题 第二节 相关关系的判断 第三节 回归分析的一般问题 第四节 回归模型的建立与检测
2019年7月30日2时18

1
统 计
学 第一节 相关分析
一、相关分析的意义 二、相关关系的测定
2019年7月30日2时18

2
变量间的关系
变量间的关系有两种类型:函数关系和相关关系。 函数关系—— 是一一对应的确定关系。
按模型形态分,有线性回归和非线性回归。
2019年7月30日2时18

19
二、一元线性回归方程的确定
具有线性相关关系的两个变量的关系可 表示为:

y = α+ bx
线性部分反映了由于 x 的变化而引起的 y 的变化.
α 和 b 称为模型的两个待定参数。
2019年7月30日2时18

20
(总体)回归方程
x
y

a

x
+
b

x
2
b

nxy x y n x 2 ( x)2

a

y
bx

y n
b
x n
2019年7月30日2时18

24
三、回归估计标准误差 S yx
(一)回归估计标准误差的概念
实际观察值y与估计值 yˆ 之间差异的平
均程度,是用来说明回归方程推算结果

4
相关关系的例子
商品的消费量(y)与居民收入(x)之间的关系 商品销售额(y)与广告费支出(x)之间的关系 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、

回归分析与相关分析

回归分析与相关分析

回归分析与相关分析回归分析是一种通过建立数学模型来预测或解释因变量与自变量之间关系的方法。

它的核心思想是通过对已有数据建立一个函数,通过这个函数可以推断其他未知数据的值。

常见的回归模型包括线性回归、多项式回归、逻辑回归等。

线性回归是最为常见的回归模型之一,其基本原理是通过拟合一条直线来描述自变量与因变量之间的关系。

在线性回归中,常常使用最小二乘法来确定最佳拟合直线。

最小二乘法通过使得残差平方和最小来确定回归系数。

回归系数表示了自变量与因变量之间的关系强度和方向。

除了线性回归,还有多项式回归可以拟合非线性关系。

逻辑回归则适用于因变量为二元分类变量的情况。

相关分析是一种用来研究变量之间相关性的方法。

它可以帮助我们判断两个变量之间是否存在其中一种关系,并且能够量化这种关系的强度和方向。

常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数是一种用来测量两个连续变量之间线性相关程度的指标。

它的取值范围为-1到+1之间,-1表示完全负相关,0表示无相关,+1表示完全正相关。

斯皮尔曼相关系数则是一种非参数的相关系数,适用于两个变量之间的关系非线性的情况。

回归分析和相关分析可以相互配合使用,用来探索和解释变量之间的关系。

首先,通过相关分析,可以初步判断两个变量之间是否存在相关性。

然后,如果判断出存在相关性,可以使用回归分析来建立一个数学模型,以解释自变量对因变量的影响。

总之,回归分析和相关分析是统计学中常用的两种数据分析方法。

它们可以帮助我们研究和解释变量之间的关系,并用于预测和控制因变量的变化。

了解和掌握这两种方法,对于研究者和决策者来说都是非常重要的。

第七章 相关与回归分析

第七章  相关与回归分析

总体一元线性 回归方程:
Yˆ EY X
以样本统计量估计总体参数
(估计的回归方程)
样本一元线性回归方程: yˆ a bx
(一元线性回归方程)
截距 斜率(回归系数)
截距a 表示在没有自变量x的影响时,其它各 种因素对因变量y的平均影响;回归系数b 表
明自变量x每变动一个单位,因变量y平均变 动b个单位。
n x2 x2 n y2 ( y)2
1637887 916 625
0.9757
16 55086 9162 16 26175 6252
r 2 0.97572 0.9520
第七章 回归分析与相关分析
第七章 相关与回归分析
STAT
★ 第一节 相关分析概述 ★ 第二节 一元线性回归分析
第七章 回归分析与相关分析
yˆ a bx是理论模型,表明x与y变量 之间的平均变动关系,而变量y的实际
值应为yi (a bxi ) i yˆ i
X对y的线性影响而形 成的系统部分,反映两 变量的平均变动关系, 即本质特征。
随机干扰:各种偶然 因素、观察误差和其 他被忽视因素的影响
体重(Y)
75 70 65 60 55 50 45 40
b
n xy x y
n x2 x2
16 37887 916 625 16 55086 9162
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
函数关系 相关关系

第10章相关分析及回归分析

第10章相关分析及回归分析

第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。

事物之间的依存关系,能够分为函数关系和相关关系。

相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。

2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。

相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。

3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。

用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。

4.应用相关与回归分析应注意的问题。

相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。

相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。

二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。

为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。

初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。

若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。

三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。

2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。

第六章相关分析与回归分析

第六章相关分析与回归分析

+
-
x+x0
+yy0
+


0
x
x
第六章 相关分析与回归分析
STAT
coxv,y()0则r>0,说明x和y之间为正线性
相关;
coxv,y()0则r<0,说明x和y之间为负线性
相关;
coxv,y()0则r=0,说明x和y之间不存在线
性相关。
第六章 相关分析与回归分析
2、标准差 x 和 y 的作用
第六章 相关分222470, 64098 y26383 .48 , 7 5x7y1114.448633 STAT
r
nxyxy
nx2(x)2 ny2(y)2

1011144.486133371.785276.127
三、相关表和相关图
STAT
相关表
将某一变量x按其数值大小顺序排 列,然后再将与其相关的另一个变量y 对应值平行排列,观察x由小到大变化 时,y的变化情况。
第六章 相关分析与回归分析
八个同类工业企业的月产量与生产费用
企业编号
1 2 3 4 5 6 7 8
月产量(千吨)X
1.2 2.0 3.1 3.8 5.0 6.1 7.2 8.0
联系
STAT
(1)有函数关系的变量间,由于有测 量误差及各种随机因素的干扰,可表 现为相关关系;
(2)对具有相关关系的变量有深刻了 解之后,相关关系有可能转化为或借 助函数关系来描述。
第六章 相关分析与回归分析
• 例:判断下列关系是什么关系? • 1)物体体积随温度升高而膨胀,随压力加大而STAT
第六章 相关分析与回归分析
正相关

相关与回归分析

相关与回归分析

第十二章相关与回归分析第一节变量之间的相关关系相关程度与方向•因果关系与对称关系第二节定类变量的相关双变量交互分类(列联表)•削减误差比例(PRE •入系数与T系数第三节定序变量的相关分析同序对、异序对和同分对• Gamma系数•肯德尔等级相关系数(T a系数、T b与T c系数)•萨默斯系数(d系数)•斯皮尔曼等级相关(p相关)•肯德尔和谐系数第四节定距变量的相关分析相关表和相关图•积差系数的导出和计算•积差系数的性质第五节回归分析线性回归•积差系数的PRE性质•相关指数R第六节曲线相关与回归可线性化的非线性函数•实例分析(二次曲线指数曲线)一、填空1.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是()变量。

2•变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是()。

3 •依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值Y c是服从();(2)分布中围绕每个可能的Y C值的()是相同的。

4•在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为()的变量,因变量是随()的变化而发生相应变化的变量。

5 •根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(),并据以进行估计和预测。

这种分析方法,通常又称为()。

6•积差系数r是()与X和Y的标准差的乘积之比。

二、单项选择1 .当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在()关系。

A 直线正相关B 直线负相关C 曲线正相关D 曲线负相关A 0.50B 0.80C 0.64D 0.90)。

)。

D 不存在线性相关D 严格的依存关系 2•评价直线相关关系的密切程度,当r 在0.5〜0.8之间时,表示( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造厂产品的成本分析1. 数据采集最近几年某铸造厂狠抓成本管理,提高经济效益,在降低原材料和能源消耗,提高劳动生产率,以及增收节支等方面,取得了显著成绩,单位成本有明显下降,基本扭转了亏损局面。

但是各月单位成本起伏很大,有的月份赢利,有的月份赢利少甚至亏损。

为了控制成本波动,并指导今后的生产经营,该铸造厂统计部门进行了产品成本分析。

通过搜集有关资料,抽取一个随机样本如下:表1 铸铁件产量及单位成本时间铸铁产量(吨)单位产品成本(元)出厂价(元/吨)上年1月810 670 750 2月547 780 7503月900 620 7504月530 800 7505月540 780 7506月800 675 7507月820 650 7308月850 620 7309月600 735 73010月690 720 73011月700 715 73012月860 610 730下年1月920 580 720 2月840 630 7203月1000 570 720从表1可以看出,铸铁件单位成本波动很大,在15个月中,最高的上年4月单位成本达800元,最低的今年3月单位成本为570元,全距是230元。

上年2、4、5、9月4个月成本高于出厂价,出现亏损,而下一年3月毛利率达到20.8%=[(720-570)/720*100%]。

成本波动大的原因是什么呢?从表1可以发现,单位成本的波动与产量有关。

上年4月成本最高,而产量最低,今年3月成本最低,而产量最高,去年亏损的4个月中,产量普遍偏低,这显然是个规模效益问题。

在成本构成中,可以分为变动成本和固定成本两部分。

根据该铸造厂的实际情况,变动成本主要包括原材料及能源消耗、工人工资、销售费用、税金等,固定成本主要包括折旧费用、管理费用和财务费用。

在财务费用中,绝大部分是贷款利息,由于贷款余额大,在短期内无力偿还,所以每个月的贷款利息支出基本上是一项固定支出,不可能随产量的变动而变动,故将贷款利息列入固定成本之中。

从目前情况看,在成本构成中,固定成本所占比重较大,每月产量大,分摊在单位产品中的固定成本就小;如果产量小,分摊在单位产品中的固定成本就大,所以每月产量的多少直接影响单位成本的波动。

为了论证单位成本与产量之间是否存在相关关系,并找出其内在规律以指导今后的工作,现应用matlab对数据进行拟合。

x=[810 547 900 530 540 800 820 850 600 690 700 860 920 840 1000]; y=[670 780 620 80 780 675 650 620 725 720 715 610 580 630 570]; n=1;A=polyfit(x,y,n);y1=polyval(A,x); plot(x,y,'k*',x,y1,'r-');f=fittype('a*e^(b*x)+c'); fity=fit(x,y,f)由上图可知,产品的成本与产量成线性相关关系,现进行相关与回归分析。

2. 相关与回归分析 (1)相关分析由于要对产品的成本和产量之间的关系进行分析,将铸铁产量作为自变量x ,成本作为因变量y ,对相关数据进行整合得到: 时间 铸铁产量(吨)x 单位产品成本(元)y|x2y 2 x*y 上年1月 810 670 656100 448900 542700 2月 547 780 299209 608400 426660 3月 900 620 810000 384400 558000 4月 530 800 280900 640000 424000 5月 540 780 291600 608400 421200 6月 800 675 640000 455625 540000 7月 820 650 672400 422500 533000 8月 850 620 722500 384400 528000 9月 600 735 360000 54225 441000 10月 690 720 476100 518400 496800 11月 700 715 490000 511225 500500 12月 860 610 39600 372100 524600 下年1月 920 580 846400 336400 533600 2月 840 630 705600 396900 529200 3月 1000 570 1000000 324900 570000 合计1140710155899040969527757568260由表中的数据可得:∑=11407x ,∑=10155y ,∑=89904092x ,∑=69527752y ,∑=7568260xy 因此,样本成本与产量之间的相关系数r 为:()()98.010155695277515114078990409151015511407756826015222222-=-⨯-⨯⨯-⨯=---=∑∑∑∑∑∑∑y y n x x n yx xy n r 对此相关系数进行显著性检验α=0.05,()7562.1798.011398.01222-=--⨯-=--=rn r t根据显著性水平α=0.05时,()306.222/=-n t α.由于()22/->n t t α可知,铸铁成本与产量的相关关系显著。

(2)回归分析用最小二乘估计回归参数()4886.0114078990409151015511407756826015222-=-⨯⨯-⨯=--=∑∑∑∑∑x x n y x xy n b ()564.104815114074886.01510155=⨯--=-=∑∑nx b ny a所以建立回归方程为:564.10484886.0+-=x y ;回归系数b 的含义是,铸铁产量每增加一吨,成本将减少0.4886元。

进行回归方程的显著性检验:()()()∑∑∑===-+-=-n i ni ni c cy y y yy y 111222即 SST=SSR+SSE样本判定系数968.02222=--+==∑∑∑yn yyn xy b y a SSTSSRr (2r 是样本观测值的函数,是一个统计量。

)3. 下面应用SPSS 软件进行回归分析与上面的计算结果进行对比:模型汇总b模型 R R 方 调整 R方 标准 估计的误差 更改统计量Durbin-Wats on R 方更改F 更改df1df2 Sig. F 更改 1.984a.968.96627.714.968 398.132113.0001.731a. 预测变量: (常量), 单位产品成本(元)y 。

b. 因变量: 铸铁件产量(吨)x从模型汇总的表中,决定系数R 方是0.968,反映因变量Y 的全部变异中能通过自变量回归系数被自变释的比例为96.8%,接近于1,说明因变量的全部变量中能通过回归系数被自变量解释的比例很高。

残差的独立性检验:D.W 统计量范围是0—4,越接近于2,残差与自变量之间越独立。

上表中D.W 值为1.731,说明独立性强,自相关性弱。

Anova b模型 平方和 df均方 F Sig. 1回归 305781.216 1 305781.216 398.132.000a残差 9984.517 13 768.040总计315765.73314a. 预测变量: (常量), 单位产品成本(元)y 。

b. 因变量: 铸铁件产量(吨)xAnovab 方差表主要进行回归直线意义的F 检验,统计量F=平均回归平方和/平均残差平方和。

若F 值过小说明自变量对因变量的解释力度很差,拟合的回归直线没有意义,相反若概率值Sig 越小则线性方程越明显。

该F 很大,是398.132,SIG 值为0,所以该回归直线有意义。

系数a模型 非标准化系数标准系数t Sig. B 的 95.0% 置信区间B 标准 误差 试用版下限 上限 1(常量)2102.282 67.62831.086 .000 1956.181 2248.382 单位产品成本(元)y-1.982.099-.984-19.953.000-2.197-1.767a. 因变量: 铸铁件产量(吨)x系数相关a模型 单位产品成本(元)y1相关性 单位产品成本(元)y 1.000 协方差单位产品成本(元)y.010a. 因变量: 铸铁件产量(吨)x根据上表,可写出回归方程:y=1048.564-0.4886x,其中x 是产量,y 是成本。

T 检验是对回归系数的检验,考察是否每一个自变量都对因变量都有显著的影响,其中Sig 越接近0越好。

由上表可得,常量和y 系数的Sig 值都为0,所以该方程中,自变量对因变量由显著的影响。

>=953.19t 201.22/=αt 所以回归系数的显著性水平较高,x 与y 成线性关系。

该图为标准化残差直方图,由图可知标准化残差基本符合正态分布,有意义。

该图为回归标准化残差的标准P-P图,图中的点基本位于一条直线上,说明该方程有意义。

该图为散点图,点基本分布均匀在区域内,残差符合正态分布。

4.结论:分析报告显示的系数与计算结果大致相同,产品的成本与产量有着线性关系,=x-y回归系数与回归方程经显著性水平测试后符合标准,残差基本4886564.0+.1048符合正态分布,该式是有意义的。

所以该厂在寻找增加利润的方法时刻考虑,增加产量来降低成本,从而增大利润。

相关文档
最新文档