高中数学中数列的考点分析及复习建议

合集下载

高中数学数列与数列极限的性质及定理总结

高中数学数列与数列极限的性质及定理总结

高中数学数列与数列极限的性质及定理总结数列是高中数学中的重要概念之一,它是由一系列按照一定规律排列的数所组成的。

数列的研究对于理解数学的发展和应用具有重要意义。

本文将总结数列的性质及定理,并通过具体题目的分析,说明其考点和解题技巧,以帮助高中学生和家长更好地理解和应用数列。

一、数列的性质1. 有界性:数列可以是有界的,也可以是无界的。

有界数列是指其所有项都在某个范围内,无界数列则相反。

例如,数列{1, 2, 3, ...}是无界的,而数列{(-1)^n}是有界的,其项的取值范围在-1和1之间。

2. 单调性:数列可以是单调递增的,也可以是单调递减的。

单调递增数列是指其后一项大于或等于前一项,单调递减数列则相反。

例如,数列{1, 2, 3, ...}是单调递增的,而数列{3, 2, 1, ...}是单调递减的。

3. 有界单调性:数列既有界又单调,即既满足有界性,又满足单调性。

例如,数列{(-1)^n/n}既是有界的,其项的取值范围在-1和1之间,又是单调递减的。

二、数列极限的性质及定理1. 数列极限的定义:数列{a_n}的极限是指当n趋向于无穷大时,数列的项a_n趋向于某个常数L。

用数学符号表示为lim(a_n) = L。

例如,数列{1/n}的极限是0,即lim(1/n) = 0。

2. 数列极限的唯一性:如果数列{a_n}的极限存在,那么它是唯一的。

即数列的极限不依赖于数列的前几项,只与数列的性质有关。

例如,数列{(-1)^n/n}的极限是0,无论数列的前几项是多少。

3. 夹逼定理:夹逼定理是数列极限的重要定理之一,它用于求解一些复杂的极限问题。

夹逼定理的核心思想是通过夹逼数列来确定数列的极限。

例如,对于数列{1/n^2},我们可以通过夹逼定理得出其极限为0。

4. 递推数列的极限:递推数列是指通过前一项或前几项来确定后一项的数列。

递推数列的极限可以通过求解递推关系式来确定。

例如,对于数列{a_n = a_(n-1) +1/n},我们可以通过求解递推关系式得出其极限为无穷大。

高中数学数列方法总结(适应于数列一轮复习)

高中数学数列方法总结(适应于数列一轮复习)

一、 数列的概念及表示法(一) 定义1. 概念:按照一定顺序排列的数叫做数列,简称{}n a ,n 为序号。

数列中的每一个数叫做这个数列的项,第一项为首项,最后一项为末项。

2. 数列中项性质:有序性、可重复性、确定性 (二) 分类1. 按个数分为:有穷数列和无穷数列2. 按项的变化趋势分为:递增数列、递减数列、常数列、摆动数列 (三) 数列与函数数列是一种特殊的函数,数列是定义域为正整数集的数列,是一系列孤立的点。

(四) 表示法 1. 列表法2. 图像法:一系列孤立的点3. 通项公式法(并不是所有的数列都有通项公式) 将数列用一个数学式子表现出来的方法叫做通项公式法。

4. 递推公式如果已知数列的第一项,且从第二项开始的任一项与它的前一项间的关系可以用一个公式来表示,这个公式就叫数列的递推公式。

(五) 数列的性质 1. 单调性如果对所有的n *N ∈,都有,n n a a >那么数列为递增数列,否则为递减数列,如果相等为常数列。

2. 周期性如果对所有的,n *N ∈都有n n a a =+k (k 为正整数),那么称数列为以k 为周期的周期数列 3. 有界性如果对所有的,*N n ∈都有M a n ≤,那么就称数列为有界数列,否则为无界数列。

(六) 数列的前n 项和 数列前n 项的和。

(七) 题型1. 数列的概念及分类例1:1,0,-1,0 (2)sinπn …是什么数列? 摆动数列、周期数列、无穷数列 例2已知数列n a 的123,6a a ,且21nnn a a a ,则2008a( )(A )-3 (B )3 (C )-6 (D )6解:∵123,6a a ,且21nn n a a a , ∴3456783,3,6,3,3,6a a a a a a ,…∴数列n a 是以6为周期的周期数列. ∵200833464,∴200843a a .故选A2. 观察法求通项公式(1)9,99,999,9999… (2)-1,0,-1,0…(3)-1,7,-13,19, (4)246810,,,,,315356399…(5)11112,4,6,824816,… 解:(1)110-=n a n (2)⎩⎨⎧-=为偶数)(为奇数n n a n 0)(1(3)1(1)[16(1)]n n a n )(4)122nna n3. 数列的通项公式及数列中的项例:已知数列n a 的通项公式为3231nn a n .(1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间12(,)33内有无数列中的项?若有,有几项?若没有,请说明理由. 解:(1)令10n ,得第10项102831a . (2)令329831101n n ,得3100n .∵此方程无自然数解,∴98101不是该数列中的项.(3)∵3231331313131n n n a n n n ,又*n N ,∴30131n ,∴01n a .(4)令13223313nn a n ,则31969662n n n n,∴7683nn,∴7863n, ∴当且仅当2n时,不等式才成立,故在区间12(,)33内仅有一项为247a . 4. 通项公式求最值解:若数列n a 中,9(1)()10nna n ,则此数列中的最大项为 ( ) (A )第7项 (B )第8项 (C )第9项 (D )第8项,或第9项二、 求通项公式的方法(一) 累加法形如)(1n f a a n n =-+形式的均可利用累加法求通项公式 例1 已知数列满足2,111=-=+n n a a a ,求通项公式。

(推荐)高中数学笔记-4-数列

(推荐)高中数学笔记-4-数列

高中数学笔记----------4-数列基本概念:1.等差数列{a n }中:(1)a n =a+(n -1)d=a m +(n -m)d; p+q=m+n a p +a q =a m +a n . (2)a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等差数列.(3)a p =q,a q =p (p ≠q) a p+q =0; S p =q,S q =p (p ≠q) S p+q =-(p+q); S m+n =S m +S n +mnd ⑷S 2n-1=a n (2n-1) (常用于数列的比较中和代换中); Snn为等差数列,公差为d ∕23.等比数列{a n }中;(1) m+n=r+s, a m ·a n =a r ·a s(2) a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等比数列(4) 111 (1)(1) (1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩注意:①a n-b n=(a -b)(an -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)②S m+n =S m +q m S n =S n +q n S m .4.等差数列与等比数列的联系(1)如果数列{a n }成等差数列, 那么数列{n aA }(n aA 总有意义)必成等比数列. (2)如果数列{a n }成等比数列, 那么数列{log ||a n a }(a>0,a≠1)必成等差数列.(3)如果数列{ a n }既成等差数列也成等比数列,那么数列{ a n }是非零常数数列; 数列{a n }是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有其公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 5.数列求和的常用方法.(1)公式法: ①等差数列求和公式, ②等比数列求和公式 ③常用公式:, 12+22+32+…+n 2=16n(n+1)(2n+1), 13+23+33+------+n 3=14 [n (n +1)]2(2)分组求和法: 在直接运用公式法求和有困难时,常将"和式"中"同类项"先合并在一起,再运用公式法求和.(3)倒序相加法: 在数列求和中,若和式中到首尾距离相等的两项和有其共性,则常考虑选用倒序相加法,发挥其共性的作用求和.(4)错位相减法: 如果数列的通项是由一个等差数列的通项与一个等比数列通项相乘构成,那么常选用错位相减法,将其和转化为"一个新的等比数列的和"求解".(5)裂项相消法: 如果数列的通项可"分裂成两项差"的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,常用裂项形式有:①111(1)1n n n n =-++ ②1111()()n n k k n n k=-++ ③2211111()1211k k k k <=---+; 21111111(1)1k k k k k k k -<<=-+-- ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ⑤ 11(1)!!(1)!n n n n =-++⑥<< ⑦ 1n2<2(12n−1--12n+1);1n2<3(13n−2--13n+1)(注意:运用等比数列求和公式时,务必检查其公比与1的关系,必要时应分类讨论.裂项相消法更多的用于数列中不等式的证明) 6.数列的通项的求法:(11种类型) 类型1 )(1n f a a n n +=+ ;(累加法)解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

高中数学解数列极限问题的详细分析与实例分析

高中数学解数列极限问题的详细分析与实例分析

高中数学解数列极限问题的详细分析与实例分析数列极限是高中数学中一个重要的概念,也是学生们经常遇到的难点之一。

在解决数列极限问题时,我们需要掌握一些基本的解题技巧和方法。

本文将详细分析数列极限问题,并通过实例分析来说明解题方法和考点。

一、数列极限的定义和性质数列极限是指当数列的项数无限增加时,数列中的数值趋于一个确定的常数或无穷大。

数列极限的定义可以表述为:对于任意给定的正数ε,存在正整数N,使得当n>N时,数列的第n项与极限之间的差的绝对值小于ε。

在解决数列极限问题时,我们需要掌握一些基本的性质。

首先是数列极限的唯一性,即一个数列只有一个极限。

其次是数列极限的四则运算性质,即两个数列的极限之和、差、积、商仍然是有限的。

二、常见的数列极限问题1. 等差数列的极限问题等差数列是高中数学中最常见的一类数列,其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

当公差d不为0时,数列的极限为无穷大或无穷小;当公差d为0时,数列的极限为首项a1。

例如,考虑数列{1, 3, 5, 7, ...},其中首项a1=1,公差d=2。

根据等差数列的通项公式,第n项为an=1+(n-1)2=2n-1。

当n趋于无穷大时,2n-1也趋于无穷大,因此该数列的极限为正无穷。

2. 等比数列的极限问题等比数列是指数列中相邻两项之比为常数的数列,其通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

当公比r的绝对值小于1时,数列的极限为0;当公比r 的绝对值大于1时,数列的极限为无穷大或无穷小。

例如,考虑数列{2, 4, 8, 16, ...},其中首项a1=2,公比r=2。

根据等比数列的通项公式,第n项为an=2*2^(n-1)=2^n。

当n趋于无穷大时,2^n也趋于无穷大,因此该数列的极限为正无穷。

3. 斐波那契数列的极限问题斐波那契数列是指数列中每一项都是前两项之和的数列,其通项公式为an=an-1+an-2,其中a1=1,a2=1。

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧

高中数学解数列求和问题的技巧数列是高中数学中的重要概念之一,求和问题是数列中常见的考点。

解决数列求和问题需要掌握一些技巧和方法,下面我将介绍几种常见的数列求和问题及其解题技巧。

一、等差数列求和问题等差数列是指数列中相邻两项之间的差值恒定的数列。

求等差数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示末项,n表示项数。

例如,给定一个等差数列的首项为3,公差为2,求前10项的和。

根据求和公式,首先计算出末项an:an = a1 + (n - 1) * d = 3 + (10 - 1) * 2 = 21。

然后代入公式计算出前10项的和:Sn = (a1 + an) * n / 2 = (3 + 21) * 10 / 2 = 120。

二、等比数列求和问题等比数列是指数列中相邻两项之间的比值恒定的数列。

求等比数列的前n项和,可以利用求和公式来解决。

求和公式为:Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。

例如,给定一个等比数列的首项为2,公比为3,求前5项的和。

根据求和公式,代入相应的值计算出前5项的和:Sn = 2 * (1 - 3^5) / (1 - 3) = 242。

三、特殊数列求和问题除了等差数列和等比数列外,还存在一些特殊的数列,求和问题也有相应的解题技巧。

1. 平方数列求和问题:平方数列是指数列中的每一项都是前一项的平方。

例如,1,1,4,16,...。

求平方数列的前n项和,可以利用平方数的求和公式来解决。

求和公式为:Sn = (2^(n+1) - n - 2) / 3。

2. 斐波那契数列求和问题:斐波那契数列是指数列中的每一项都是前两项的和。

例如,1,1,2,3,5,...。

求斐波那契数列的前n项和,可以利用斐波那契数列的性质来解决。

高中数学 数列中档题复习(学生版)

高中数学 数列中档题复习(学生版)

数列一、考点分析:本章的知识结构图:数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.复习建议:在进行数列二轮复习时,建议可以具体从以下几个方面着手:1.运用基本量思想(方程思想)解决有关问题;2.注意等差、等比数列的性质的灵活运用;3.注意等差、等比数列的前n项和的特征在解题中的应用;4.注意深刻理解等差数列与等比数列的定义及其等价形式;5.根据递推公式,通过寻找规律,运用归纳思想,写出数列中的某一项或通项,主要需注意从等差、等比、周期等方面进行归纳;6.掌握数列通项an与前n项和Sn 之间的关系;7.根据递推关系,运用化归思想,将其转化为常见数列;8.掌握一些数列求和的方法(1)分组求和(2)裂项相消(3)错位相减(4)倒序相加(5)公式法。

9.以等差、等比数列的基本问题为主,突出数列与函数、数列与方程、数列与不等式、数列与几何等的综合应用.一、 等差与等比数列的概念和性质1. 已知公差大于零的等差数列}{n a 的前n 项和为n S ,且满足:.22,1175243=+=⋅a a a a (1)求通项n a ;(2)若数列}{n b 是等差数列,且cn S b nn +=,求非零常数c ; 解:(1)34-=n a n(2)n n n n S n -=-+=222)341(, ⎪⎪⎩⎪⎪⎨⎧-===2102c b a 21-=c 2.设数列{a n }和{b n }满足a 1=b 1=6, a 2=b 2=4, a 3=b 3=3, 且数列{a n +1-a n }(n ∈N *)是等差数列,数列{b n -2}(n ∈N *)是等比数列. (1)求数列{a n }和{b n }的通项公式;(2)是否存在k ∈N *,使a k -b k ∈(0,21)?若存在,求出k ;若不存在,说明理由. 解:(1)927212+-=n n a n ,3)21(2-+=n n b(2)不存在3. (2008年海南宁夏卷)已知数列{}n a 是一个等差数列,且21a =,55a =-。

高考数列重要复习方法

高考数列重要复习方法

如2008年高考试题(19)题: 2008年高考试题(19)题: (Ⅰ)设a1,a2,…,an是各项均不为零的等差数列 )设a (n≥4),且公差d≠0,若将此数列删去某一 n≥4) 且公差d≠0,若将此数列删去某一 项得到的数列(按原来的顺序)是等比数列: ①当n =4时,求a /d的数值;②求n ①当n =4时,求a1/d的数值;②求n的所有可 能值; (Ⅱ)求证:对于一个给定的正整数n(n≥4), )求证:对于一个给定的正整数n(n≥4), 存在一个各项及公差都不为零的等差数列 b1,b2,…,bn,其中任意三项(按原来顺序)都 不能组成等比数列.
如2009年(17)题: 2009年(17)题: 设{an}是公差不为零的等差数列,Sn为其前 是公差不为零的等差数列,S n项和 ,满足a22+a32=a42+a52,S7=7 ,满足a (1)求数列{an}的通项公式及前n项和Sn . )求数列{a 的通项公式及前n项和S (2)试求所有的正整数m,使得amam+1/am+2 )试求所有的正整数m,使得a 为数列{a 中的项. 为数列{an}中的项.
(3)等比数列
掌握等比数列的定义,能够根据定义判定 一个数列是否为等比数列. 掌握等比数列的通项公式a 掌握等比数列的通项公式an=a1qn-1;推广形 式为a 式为an=amqn-m. 掌握等比数列的前项和公式S 掌握等比数列的前项和公式Sn=(a1-anq)/1-q q)/1=a1(1-qn)/1-q,(q≠1),并能灵活运用. (1- )/1q≠1),并能灵活运用. 公式的推导方法为错位相减法. 公式的推导方法为错位相减法. 特别地,当q=1时,S 特别地,当q=1时,Sn=na1.
三、复习建议
1、夯实基础知识

高中数学数列知识点精华总结

高中数学数列知识点精华总结

数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。

在高中数学中,数列极限的性质和计算方法是一个重要的考点。

本文将详细解析数列极限的性质和计算方法,并通过具体题目进行举例,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

一、数列极限的性质1. 有界性:如果数列{an}存在有界的上界和下界,那么该数列必定收敛。

例如,考虑数列{an} = (-1)^n,该数列的值在-1和1之间,因此数列{an}是有界的,且极限为0。

2. 单调性:如果数列{an}单调递增且有上界,或者单调递减且有下界,那么该数列必定收敛。

例如,考虑数列{an} = 1/n,该数列单调递减且有下界0,因此数列{an}是收敛的,且极限为0。

3. 夹逼定理:如果数列{an}满足an≤bn≤cn,并且lim an = lim cn = L,那么数列{bn}也收敛,并且极限为L。

例如,考虑数列{an} = 1/n,{bn} = (1 + 1/n)^n,{cn}= (1 + 1/n)^(n+1),显然有an≤bn≤cn,并且lim an = lim cn = 0,因此数列{bn}也收敛,且极限为0。

二、数列极限的计算方法1. 基本四则运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{an + bn}的极限为A + B,数列{an - bn}的极限为A - B,数列{an * bn}的极限为A * B,数列{an / bn}的极限为A / B(其中B ≠ 0)。

2. 极限的乘法法则:如果数列{an}的极限为A,数列{bn}的极限为B,那么数列{an * bn}的极限为A * B。

例如,考虑数列{an} = 1/n,{bn} = n,显然lim an = 0,lim bn = ∞,但是lim (an * bn) = 1。

3. 极限的倒数法则:如果数列{an}的极限为A(A ≠ 0),那么数列{1/an}的极限为1/A。

高中数学数列极限的概念及相关题目解析

高中数学数列极限的概念及相关题目解析

高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。

在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。

本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。

一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。

数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。

数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。

2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。

3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。

二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。

解析:对于这道题目,我们可以通过直接代入数值的方法来求解。

当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。

当n趋于无穷大时,我们可以发现an的值趋近于0。

因此,根据数列极限的定义,lim(an)=0。

2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。

解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。

当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。

因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。

3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。

(完整版)高中数学数列专题复习

(完整版)高中数学数列专题复习

高中数学数列专题目录高中数学数列专题 (2)第1讲数列的概念及其表示 (2)第2讲等差数列及前n项和 (17)第3讲等比数列及前n项和 (32)第4讲数列求和、数列的综合应用 (47)第四年末的住房面积为 (67)第五年末的住房面积为 (67)高中数学数列专题第1讲数列的概念及其表示考点一数列的概念及其表示方法知识点1数列的定义(1)按照一定顺序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为这个数列的第一项,也叫首项.(2)数列与函数的关系从函数观点看,数列可以看成:以正整数集N*或N*的有限子集{1,2,3,…,n}为定义域的函数a n=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2数列的表示方法列表法列表格表达n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项用公式表达的方法递推公式使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n-1)等表达数列的方法3数列的分类分类原则类型满足条件按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项注意点数列图象是一些孤立的点数列作为一种特殊的函数,由于它的定义域为正整数集N*或它的有限子集,所以它的图象是一系列孤立的点.入门测1.思维辨析(1)数列{a n}和集合{a1,a2,a3,…,a n}表达的意义相同.()(2)所有数列的第n项都能使用公式表达.()(3)根据数列的前几项归纳出数列的通项公式可能不止一个.()(4)数列:1,0,1,0,1,0,…,通项公式只能是a n=1+(-1)n+12.()答案(1)×(2)×(3)√(4)×2.数列13,18,115,124,…的一个通项公式为()A.a n=12n+1B.a n=1n+2C.a n=1n(n+2)D.a n=12n-1答案 C解析观察知a n=1(n+1)2-1=1n(n+2).3.若数列{a n}中,a1=3,a n+a n-1=4(n≥2),则a2015的值为()A.1 B.2C.3 D.4答案 C解析因为a1=3,a n+a n-1=4(n≥2),所以a1=3,a2=1,a3=3,a4=1,…,显然当n是奇数时,a n=3,所以a2015=3.解题法[考法综述]利用归纳法求数列的通项公式,或给出递推关系式求数列中的项,并研究数列的简单性质.命题法数列的概念和表示方法及单调性的判断典例(1)已知数列{a n}的通项公式为a n=n2-2λn(n∈N*),则“λ<1”是“数列{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)写出下面各数列的一个通项公式:①3,5,7,9,…;②1,3,6,10,15,…;③-1,32,-13,34,-15,36,…;④3,33,333,3333,….[解析](1)若数列{a n}为递增数列,则有a n+1-a n>0,即2n+1>2λ对任意的n∈N*都成立,于是有3>2λ,λ<32.由λ<1可得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A.(2)①各项减去1后为正偶数,所以a n =2n +1. ②将数列改写为1×22,2×32,3×42,4×52,5×62,…因而有a n =n (n +1)2,也可逐差法a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式累加得a n =n (n +1)2.③奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1, 所以a n =(-1)n·2+(-1)nn.④将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[答案] (1)A (2)见解析【解题法】 归纳法求通项公式及数列单调性的判断(1)求数列的通项公式实际上是寻找数列的第n 项与序号n 之间的关系,常用技巧有:①借助于(-1)n 或(-1)n +1来解决项的符号问题.②项为分数的数列,可进行恰当的变形,寻找分子、分母各自的规律以及分子、分母间的关系.③对较复杂的数列的通项公式的探求,可采用添项、还原、分割等方法,转化为熟知的数列,如等差数列、等比数列等来解决.④根据图形特征写出数列的通项公式,首先,要观察图形,寻找相邻的两个图形之间的变化;其次,要把这些变化同图形的序号联系起来,发现其中的规律;最后,归纳猜想出通项公式.(2)数列单调性的判断方法①作差比较法:a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.②作商比较法:当a n >0时,则a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列. 当a n <0时,则a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.③结合相应函数的图象直观判断数列的单调性.对点练1.设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0答案 C解析 ∵数列{2a 1a n }为递减数列,∴2 a 1a n >2 a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d <0.故选C.2.下列可以作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+32答案 C解析 A 项显然不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 3.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2答案 C解析 解法一:令n =1,2,3,4,验证选项知选C.解法二:a 1=1,a 2=a 1+2,a 3=a 2+3,a 4=a 3+4,…,a n =a n -1+n . ∴(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)=n +(n -1)+…+3+2. 因此a n =1+2+3+…+n =n (n +1)2.考点二 数列的通项公式知识点1 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).2 已知递推关系式求通项一般用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.注意点 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).入门测1.思维辨析(1)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (2)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( )答案 (1)√ (2)√ (3)√ 2.数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23答案 A解析 由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a 3+1=23+1=53.故选A.3.在正项数列{a n }中,若a 1=1,且对所有n ∈N *满足na n +1-(n +1)a n =0,则a 2015=( ) A .1011 B .1012 C .2014 D .2015答案 D解析 由a 1=1,na n +1-(n +1)a n =0可得a n +1a n =n +1n ,得到a 2a 1=21,a 3a 2=32,a 4a 3=43,…,a n +1a n=n +1n ,上述式子两边分别相乘得a 2a 1×a 3a 2×a 4a 3×…×a n +1a n =a n +1=21×32×43×…×n +1n =n +1,故a n =n ,所以a 2015=2015,故选D.解题法[考法综述] 高考以考查a n 与S n 的关系为主要目标以求通项公式a n 为问题形式,特别是给出递推公式如何构造数列求通项公式作为一个重难点和命题热点.命题法 由S n 求a n 或由递推关系式求a n典例 (1)若数列{a n }的前n 项和S n =2n 2+3n ,则此数列的通项公式为a n =________. (2)已知数列{a n }的前n 项和为S n 满足a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,求S n .[解析] (1)当n =1时, a 1=S 1=2×12+3×1=5;当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,∴a n =4n +1.(2)∵当n ≥2,n ∈N *时,a n =S n -S n -1, ∴S n -S n -1+2S n S n -1=0,即1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是公差为2的等差数列,又S 1=a 1=12,∴1S 1=2,∴1S n =2+(n -1)·2=2n , ∴S n =12n.[答案] (1)4n +1 (2)见解析 【解题法】 求通项公式的方法 (1)由S n 求a n 的步骤 ①先利用a 1=S 1求出a 1.②用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n的表达式.③对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.(2)由递推公式求通项公式的常见类型与方法①形如a n +1=a n +f (n ),常用累加法.即利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)求通项公式.②形如a n +1=a n f (n ),常用累乘法,即利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1求通项公式.③形如a n +1=ba n +d (其中b ,d 为常数,b ≠0,1)的数列,常用构造法.其基本思路是:构造a n +1+x =b (a n +x )⎝⎛⎭⎫其中x =db -1,则{a n +x }是公比为b 的等比数列,利用它即可求出a n .④形如a n +1=pa n qa n +r (p ,q ,r 是常数)的数列,将其变形为1a n +1=r p ·1a n +qp .若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用公式求通项;若p ≠r ,则采用③的办法来求.⑤形如a n +2=pa n +1+qa n (p ,q 是常数,且p +q =1)的数列,构造等比数列.将其变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n-a n -1=f (n ),然后用累加法求得通项.⑥形如a 1+2a 2+3a 3+…+na n =f (n )的式子, 由a 1+2a 2+3a 3+…+na n =f (n ),①得a 1+2a 2+3a 3+…+(n -1)a n -1=f (n -1),② 再由①-②可得a n .对点练1.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案2011解析 由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2, 则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2⎝⎛⎭⎫1-111=2011. 2.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________. 答案 a n =2·3n -1-1解析 ∵a n +1=3a n +2,∴a n +1+1=3(a n +1). ∴a n +1+1a n +1=3,∴数列{a n +1}是等比数列,公比q =3. 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.答案 a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=-1;当n ≥2时,a n =S n -S n -1=2n -1,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.4.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3 =n3(2n +3).5.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解 因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12(n -1)2+4(n -1)=92-n . 当n =1时,92-1=72=a 1,所以a n =92-n .微型专题 数列中的创新题型创新考向以数列为背景的新定义问题是高考命题创新型试题的一个热点,考查频次较高.命题形式:常见的有新定义、新规则等.创新例题把1,3,6,10,15,21,…这些数叫做三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是()A.27 B.28C.29 D.30答案 B解析由图可知,第7个三角形数是1+2+3+4+5+6+7=28.创新练习1.将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2014项与5的差,即a2014-5=()A.2018×2012 B.2020×2013C.1009×2012 D.1010×2013答案 D解析观察图中的“梯形数”可得:a2-a1=4,a3-a2=5,a4-a3=6…a2014-a2013=2016,累加得:a2014-a1=4+5+6+…+2016=2013×20202=2013×1010,即a2014-5=2013×1010.2.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+a12=________.答案28解析依题意得数列{a n}是周期为3的数列,且a1=1,a2=2,a3=4,因此a1+a2+a3+…+a12=4(a1+a2+a3)=4×(1+2+4)=28.3.对于E={a1,a2,...,a100}的子集X={a i1,a i2,...,a ik},定义X的“特征数列”为x1,x2,...,x100,其中x i1=x i2=...=x ik=1,其余项均为0,例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________.(2)若E的子集P的“特征数列”为p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99.E的子集Q的“特征数列”为q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.答案(1)2(2)17解析(1)据“特征数列”定义知子集{a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,故其前三项和为2.(2)由定义知p1=1,p2=0,p3=1,p4=0…故集合P={a1,a3,a5,…,a99}={a i|i=2k+1,k∈N且k≤49},又q1=1,q2=q3=0,q4=1,q5=q6=0,q7=1,…,∴集合Q={a1,a4,a7,a10…}={a i|i=3k+1,k∈N且k≤33}.若a k∈P∩Q,则k=2k1+1=3k2+1,k1,k2∈N,k1≤49,k2≤33.即2k1=3k2,不妨设6k3=2k1=3k2,所以k1=3k3,k2=2k3,0≤3k3≤49,0≤2k3≤33,k3∈N,得k3∈{0,1,2,3,…,16},k =6k3+1,共有17个,P∩Q中元素个数为17.创新指导1.准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要求的形式,切忌同已有概念或定义相混淆.2.方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.已知数列{a n}中,a n=n2-kn(n∈N*),且{a n}单调递增,则k的取值范围是________.[错解][错因分析]在解答的过程中虽然注意了数列的定义域为正整数集,但是不能用二次函数对称轴法来判断数列的单调性.因为数列的图象不是连续的,而是离散的点.[正解]由题意得a n+1-a n=2n+1-k,又{a n}单调递增,故2n+1-k>0恒成立,即k<2n +1(n∈N*)恒成立,解得k<3.[答案]k<3[心得体会]课时练基础组1.数列{a n}的通项a n=nn2+90,则数列{a n}中的最大值是()A.310 B.19C.119 D.1060答案 C解析因为a n=1n+90n,运用基本不等式得,1n+90n≤1290,由于n∈N*,不难发现当n=9或10时,a n=119最大,故选C.2.数列{a n}的前n项积为n2,那么当n≥2时,{a n}的通项公式为() A.a n=2n-1 B.a n=n2C.a n=(n+1)2n2D.a n=n2(n-1)2答案 D解析设数列{a n}的前n项积为T n,则T n=n2,当n≥2时,a n=T nT n-1=n2 (n-1)2.3.已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10等于() A.1 B.9C.10 D.55答案 A解析∵S n+S m=S n+m,a1=1,∴S1=1.可令m=1,得S n+1=S n+1,∴S n+1-S n=1.即当n≥1时,a n+1=1,∴a10=1.4.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5等于()A.-16 B.16C.31 D.32答案 B解析当n=1时,S1=2a1-1,∴a1=1.当n≥2时,S n-1=2a n-1-1,∴a n=2a n-2a n-1,∴a n=2a n-1.∴{a n}是等比数列且a1=1,q=2,故a5=a1×q4=24=16.5.已知数列{a n}满足a0=1,a n=a0+a1+…+a n-1(n≥1),则当n≥1时,a n等于()A .2n B.12n (n +1) C .2n -1 D .2n -1答案 C解析 由题设可知a 1=a 0=1,a 2=a 0+a 1=2. 代入四个选项检验可知a n =2n -1.故选C.6. 已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫78n,则当a n 取得最大值时,n 等于( ) A .5 B .6 C .5或6 D .7答案 C解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n≥a n +1,∴⎩⎨⎧(n +2)⎝⎛⎭⎫78n≥(n +1)⎝⎛⎭⎫78n -1,(n +2)⎝⎛⎭⎫78n≥(n +3)⎝⎛⎭⎫78n +1.∴⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6. 7.在数列{a n }中,a 1=1,a n +1-a n =2n +1,则数列的通项a n =________. 答案 n 2解析 ∵a n +1-a n =2n +1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+5+3+1=n 2(n ≥2).当n =1时,也适用a n =n 2.8.已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2解析 由S n +1=2S n +1,则有S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,a 2=3,所以数列{a n }从第二项开始成等比数列,∴a n =⎩⎪⎨⎪⎧2,n =1,3·2n -2,n ≥2.9.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N *,S n +1+S n -1=2(S n +1)都成立,则S 10=________.答案 91解析 ∵⎩⎪⎨⎪⎧S n +1+S n -1=2S n +2,S n +2+S n =2S n +1+2,两式相减得a n +2+a n =2a n +1(n ≥2),∴数列{a n }从第二项开始为等差数列,当n =2时,S 3+S 1=2S 2+2,∴a 3=a 2+2=4,∴S 10=1+2+4+6+…+18=1+9(2+18)2=91. 10. 如图所示的图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第n 个图形中小正方形的个数是________.答案n (n +1)2解析 由已知,有a 1=1,a 2=3,a 3=6,a 4=10, ∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n , 各式相加,得a n -a 1=2+3+…+n , 即a n =1+2+…+n =n (n +1)2,故第n 个图形中小正方形的个数是n (n +1)2. 11.已知数列{a n }满足:a 1=1,2n -1a n =a n -1(n ∈N *,n ≥2). (1)求数列{a n }的通项公式;(2)这个数列从第几项开始及以后各项均小于11000? 解 (1)n ≥2时,a n a n -1=⎝⎛⎭⎫12n -1, 故a n =a n a n -1·…·a 3a 2·a 2a 1·a 1=⎝⎛⎭⎫12n -1·⎝⎛⎭⎫12n -2·…·⎝⎛⎭⎫122·⎝⎛⎭⎫121 =⎝⎛⎭⎫121+2+…+(n -1)=⎝⎛⎭⎫12(n -1)n 2,当n =1时,a 1=⎝⎛⎭⎫120=1,即n =1时也成立. ∴a n =⎝⎛⎭⎫12(n -1)n 2.(2)∵y =(n -1)n 在[1,+∞)上单调递增, ∴y =⎝⎛⎭⎫12(n -1)n 2在[1,+∞)上单调递减. 当n ≥5时,(n -1)n 2≥10,a n =⎝⎛⎭⎫12(n -1)n 2 ≤11024. ∴从第5项开始及以后各项均小于11000.12.已知数列{a n }满足a n +1=⎩⎨⎧2a n ,0<a n ≤12,2a n-1,12<a n<1,且a 1=67,求a 2015.解 ∵a 1=67∈⎝⎛⎭⎫12,1,∴a 2=2a 1-1=57. ∵a 2∈⎝⎛⎭⎫12,1,∴a 3=2a 2-1=37. ∵a 3∈⎝⎛⎭⎫0,12,∴a 4=2a 3=67=a 1, ∴{a n }是周期数列,T =3,∴a 2015=a 3×671+2=a 2=57.能力组13.已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1 B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2答案 B解析 由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14(n =1),2n +1(n ≥2).故选B.14.在如图所示的数阵中,第9行的第2个数为________.答案 66解析 每行的第二个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,则a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,各式两边同时相加,得 a n -a 2=(2n -3+3)×(n -2)2=n 2-2n ,即a n =n 2-2n +a 2=n 2-2n +3(n ≥2),故a 9=92-2×9+3=66. 15.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23(n =1)1n (n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.16.已知数列{a n }中,a 1=12,a n +1=3a na n +3.(1)求a n ;(2)设数列{b n }的前n 项和为S n ,且b n ·n (3-4a n )a n =1,求证:12≤S n <1.解 (1)由已知得a n ≠0则由a n +1=3a n a n +3,得1a n +1=a n +33a n ,即1a n +1-1a n =13,而1a 1=2,∴⎩⎨⎧⎭⎬⎫1a n 是以2为首项,以13为公差的等差数列.∴1a n =2+13(n -1)=n +53,∴a n =3n +5. (2)证明:∵b n ·n (3-4a n )a n =1,由(1)知a n =3n +5,∴b n =a n n (3-4a n )=1n (n +1)=1n -1n +1,∴S n =b 1+b 2+…+b n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1, 又∵n ≥1,∴n +1≥2,∴0<1n +1≤12. ∴12≤S n <1. 第2讲 等差数列及前n 项和 考点一 等差数列的概念及运算知识点1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b2. 3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和 等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列; 当d <0时,数列{a n }为递减数列; 当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C 解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2. 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4.∵a 1=2,∴d =a 2-a 1=4-2=2. ∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50.解得a 1=12,d =2.所以a n =2n +10; (2)由S n =na 1+n (n -1)2d ,S n =242, 得方程12n +n (n -1)2×2=242, 解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2, ∴b n +1-b n =a n +2-a n +1-(a n +1-a n ) =2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列. (2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1, ∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5, …,a n -a n -1=2n -3,累加法可得 a n -a 1=1+3+5+…+(2n -3)=(n -1)2, ∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立. (3)通项公式法:验证a n =pn +q . (4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0 答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 由已知得S 1=a 1,S 2=a 1+a 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,而S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1(4a 1-6),整理得2a 1+1=0,解得a 1=-12.4.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解 (1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.考点二 等差数列的性质及应用知识点等差数列及其前n 项和的性质已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a 1+a n =a 2+a n -1=a 3+a n -2=…=a k +a n -k +1=….(2)等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *). 特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *).(3)相隔等距离的项组成的数列是等差数列,即a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *).(4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d .(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1.(7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a mb m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .入门测1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( ) (3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13. 由a 3+a 6+a 9=27,得3a 6=27,a 6=9. 所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C. [答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a mn -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.(2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m+a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *. (2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0 答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能. ∴a 2012>0,a 2013<0. 再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0,而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4答案 B解析 a n b n =2a n2b n =2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________. 答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝⎛⎭⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c . 解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4. 所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n ,所以b n =S nn +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32.∴当n =1或n =2时,S 1=S 2且最小. [心得体会]课时练 基础组1.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. 2.已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C.3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析由已知式2a n+1=1a n+1a n+2可得1a n+1-1a n=1a n+2-1a n+1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a1=1,公差为1a2-1a1=2-1=1的等差数列,所以1a n=n,即a n=1n.4.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45C.36 D.27答案 B解析S3=9,S6-S3=36-9=27,根据S3,S6-S3,S9-S6成等差数列,S9-S6=45,S9-S6=a7+a8+a9=45,故选B.5.已知等差数列{a n}中,前四项和为60,最后四项和为260,且S n=520,则a7=() A.20 B.40C.60 D.80答案 B解析前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n=520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a7是中间项,所以a7=40.6.已知等差数列{a n}的前n项和为S n,且S4S2=4,则S6S4=()A.94 B.32C.53D.4答案 A解析由S4S2=4,可设S2=x,S4=4x.∵S2,S4-S2,S6-S4成等差数列,∴2(S4-S2)=S2+(S6-S4).则S6=3S4-3S2=12x-3x=9x,因此,S6S4=9x4x=94.7.设等差数列{a n}的前n项和为S n,若a1=-3,a k+1=32,S k=-12,则正整数k=______.答案13解析由S k+1=S k+a k+1=-12+32=-212,又S k+1=(k+1)(a1+a k+1)2=(k+1)⎝⎛⎭⎫-3+322=-212,解得k=13.8.设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n ,∴S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________. 答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39. 10设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝⎛⎭⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝⎛⎭⎫a 2a 12=3+2 2. 11.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛ 110-3n -⎭⎫113-3n。

数列考试题型分析及解题方法指导

数列考试题型分析及解题方法指导

数列考试题型分析及解题方法指导浠水一中一、考点回顾1.数列的概念,数列的通项公式与递推关系式;等差等比数列的有关公式和性质。

2.判断和证明数列是等差(等比)数列常用三种方法:(1)定义法:对于n≥2的任意自然数,验证11()nn n n a a a a ---为同一常数。

(2)通项公式法:①若1(1)()=+-=+-n m a a n d a n m d ,则{}n a 为等差数列;②若11n n mn m a a q a q --==,则{}n a 为等比数列。

(3)中项公式法:验证()212122n n n n n n a a a a a a n N +++++=+=∈都成立。

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法、分组求和法、累加累乘法、归纳猜想证明法等。

4.数列的综合应用:⑴函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到。

⑵数列与函数、数列与不等式的综合、数列与解析几何的综合等内容。

5.知识网络111111(2)(2)(1)(1)()22()--=≥=←-=≥=+--=+=++=++=+⎧⎪⎨⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩两个基等比数列的定义本数列等比数列的通项公式数列等比数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q 1111(1)(1)11(1)()---=≠=--==+=+⎧⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明n n n n m p q a a q a q q S q qna q a a a a m n p q二、复习建议1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果2.归纳——猜想——证明体现由具体到抽象,由特殊到一般,由有限到无限的辩证思想.学习这部分知识,对培养学生的逻辑思维能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有重大意义.3.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题. 4.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解. 三、方法总结与2009年高考预测(一)方法总结1. 求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项。

高考数学数列知识点考点解析及知识点整理

高考数学数列知识点考点解析及知识点整理

高考数学数列知识点考点解析及知识点整理数列数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都可不能遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探干脆问题是高考的热点,常在数列解答题中显现。

本章中还包蕴着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等差不多数学方法。

近几年来,高考关于数列方面的命题要紧有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中要紧是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地点用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合1.在把握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统把握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探干脆问题实践中加深对基础知识、差不多技能和差不多数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读明白得和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探究的精神和科学理性的思维方法。

要练说,先练胆。

说话胆小是幼儿语言进展的障碍。

许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

高二数学复习考点知识讲解与提升练习1 数列的概念

高二数学复习考点知识讲解与提升练习1  数列的概念

高二数学复习考点知识讲解与提升练习第01讲 数列的概念一、数列及相关概念1、定义:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做这个数列的项,数列中的每一项都和项的序数有关,各项依次叫做这个数列的第1项,第2项,… ,第n 项,… 注:数列与数集的区别:数集中的元素具有无序性和互异性,而数列的主要特征是有序性,而且数列的项可以重复出现。

2、数列的一般形式可以写成:123,,,,,,n a a a a 其中n a 是数列的第n 项,n 是n a 的序数,上面的数列可简单记作{}n a 。

3、函数思想:数列可以看成是定义在自然数集或其子集上的函数。

函数与数列的联系与区别: 一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题. 另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N ,因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即1n n a a ->),则图象呈上升趋势,即数列递增,即{}n a 递增⇔1n n a a +>对任意的()n n N *∈都成立.类似地,有{}n a 递减⇔1n n a a +<对任意的()n n N *∈都成立.二、数列的表示方法解析法、图像法、列举法、递推法.三、数列的分类有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;1. 有穷数列:项数有限.2. 无穷数列:项数无限.3. 递增数列:对于任何n N *∈,均有1n n a a +>.4. 递减数列:对于任何n N *∈,均有1n n a a +<.5. 摆动数列:例如:-1,1,-1,1,-1,1, …….6. 常数数列:例如:6,6,6,6,…….四、数列的通项公式定义:如果数列{}n a 的第n 项与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注:⑴并不是所有数列都能写出其通项公式,如数列1,1.4,1.41,1.414,….;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是n a2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .一、求数列通项公式【例1】 ,52,21,32,1的一个通项公式是。

数列高考知识点大全

数列高考知识点大全

数列高考知识点大全数列是高中数学中的一个重要内容,也是高考中经常出现的考点之一。

掌握好数列的相关知识点,对于解题和提高数学分数都十分关键。

本文将对数列在高考中的各个知识点进行全面总结和归纳,以帮助考生快速复习和掌握相关内容。

一、等差数列等差数列是指数列中相邻两项之差都相等的数列。

在高考中,涉及到等差数列的考点有:1. 等差数列的通项公式及性质;2. 等差数列的前n项和公式及性质;3. 等差数列的性质和应用,如等差数列的中项、公差等。

二、等比数列等比数列是指数列中相邻两项之比都相等的数列。

在高考中,涉及到等比数列的考点有:1. 等比数列的通项公式及性质;2. 等比数列的前n项和公式及性质;3. 等比数列的性质和应用,如等比数列的求和、常用等比数列问题的解题方法等。

三、斐波那契数列斐波那契数列是指数列中从第三项开始,每一项都是前两项之和的数列。

在高考中,涉及到斐波那契数列的考点有:1. 斐波那契数列的定义和性质;2. 斐波那契数列的求解和应用,如斐波那契数列的递推公式、斐波那契数列与黄金分割、应用题等。

四、等差数列与等比数列的联立等差数列与等比数列的联立是指在题目中同时涉及到等差数列和等比数列的解题方法。

在高考中,涉及到等差数列与等比数列的联立的考点有:1. 根据已知条件建立等差数列或等比数列的方程;2. 利用等差数列和等比数列的性质求解方程组;3. 应用等差数列与等比数列的性质解答应用题。

五、数列的极限数列的极限是指随着项数趋于无穷大,数列的值趋于稳定的一个值。

在高考中,涉及到数列的极限的考点有:1. 数列极限的定义和性质;2. 数列极限的判敛方法,如夹逼定理、单调有界原理等;3. 应用数列极限解答极限计算题。

六、数列的应用数列的应用是指将数列的相关知识点应用于实际问题中。

在高考中,涉及到数列的应用的考点有:1. 利用数列解决经典问题,如数列求和问题、数列递推问题等;2. 利用数列建立模型,解决实际问题;3. 数列应用题的解题思路和方法。

上海高中数学沪教版数列知识年度考点汇总

上海高中数学沪教版数列知识年度考点汇总

标题:上海高中数学沪教版数列知识年度考点汇总在上海市高中数学沪教版教材的学习中,数列知识是学生必须掌握的重要内容。

为了帮助学生更好地备战年度考试,本文将汇总上海高中数学沪教版数列知识的年度考点,并提供相应的备考策略。

一、数列的基本概念数列是数学中的基本概念之一,它是由一系列按照特定规律排列的数组成的。

学生需要掌握数列的基本概念,如数列的项、数列的性质、数列的分类等。

这些基本概念是理解和解决数列问题的基础。

二、数列的性质和公式数列具有许多独特的性质和公式,如数列的通项公式、数列的前n项和公式、数列的极限等。

学生需要熟练掌握这些性质和公式,并能够灵活运用它们来解决问题。

这些公式是解决数列问题的关键工具。

三、数列的分类数列可以根据其性质和规律分为多种类型,如等差数列、等比数列、斐波那契数列等。

学生需要了解这些数列的特点和规律,并能够区分它们。

不同类型的数列有不同的解题方法,学生需要根据数列的类型选择合适的解题策略。

四、数列的应用数列在数学和其他领域有许多应用,如数列的求和、数列的极限、数列的序列等。

学生需要了解数列的应用领域,并能够将数列知识应用到实际问题中。

这有助于提高学生的实际问题解决能力。

五、数列的求和和方法数列的求和是数列知识中的重要部分。

学生需要掌握数列的求和方法,如等差数列的求和、等比数列的求和、斐波那契数列的求和等。

这些求和方法是解决数列求和问题的关键。

六、数列的极限数列的极限是数学中的重要概念,它描述了数列随着项数增加时的趋势。

学生需要理解数列的极限概念,并能够计算数列的极限。

数列的极限在数学分析和实际应用中具有重要意义。

七、数列与函数的关系数列与函数有着密切的关系。

学生需要了解数列可以看作是函数的特殊情况,并能够将函数的知识应用到数列中。

这有助于提高学生对数列知识的理解和应用能力。

八、经典案例分析在备考过程中,学生可以通过分析经典案例来提高自己的数列知识。

例如,研究等差数列、等比数列、斐波那契数列等经典数列的性质和规律,从而加深对数列知识的理解。

数列首轮复习建议:要重视数列概念及等差(比)数列的基本运算

数列首轮复习建议:要重视数列概念及等差(比)数列的基本运算

( 、 一项 或 知 若 干 项 的 和 求某 一 项 的取 比) 某 值范围; 求参 数值 ( 范 围) 论证 某个 数列 是 或 ; 等差 ( 数列 . 察 的思想 方法 有 : 比) 考 函数 与方 程、 分类 讨论 、 归转化 、 元法 及 构造法 等. 化 换
3 首 轮 复 习 建 议
a 一 S S - 一1
【l d I 6q , a +2 =bq・ l。
即 2 ・ d 6g , +2 12
口+2 一(1。。 。 l1 6g),
一 ( a 一 + 1 一 ( a一 + 1 , 4 l ) 4 2 )
解 = , 一 . 得q± 詈 一
1 0
一— 丁 一 一 ( 2
一 31

口 + - 2 ” 1 a 一2 ,
口+ 一 2 2 l a + ,
) .
2 命题 走 向
拆 项分组 法 、 并项求 和 法 、 奇偶数 项分 别求 和
法 求非 等差 ( 数 列 的和 . 比)
4 例题 选讲
1 数 列 在 历 年 高 考 都 占有 很 重 要 的 地 ) 位, 一般 情况 下都 是 一 客 观 性 题 目和一 个 解
答题 .
4 1 利 用数 列 的 有 关公 式 或 等 差 ( 数 列 . 比) 的性质 求 5个 量 S 。 , 口 。 , 中的 某 些 基 n 。 d。 l
项、 项 公 式、 通 前 项 的 和 、 数 、 公 差 项 求
例 1 (02年江 苏卷 ) ( 为等 差 数 20 设 a)
列 ,b } 等 比数 列 , a =b 一 1 n +a 一 { 为 且 l l ,2
b ,。 2 分别 求 { 及 { 的前 l 的 。a 一6b , a ) b) O项

高中数学中数列的考点及复习对策研究

高中数学中数列的考点及复习对策研究

高中数学中数列的考点及复习对策研究摘要:数列是数学中一个重要的概念,它是研究一组有序的数,每一个数称为数列中的一项。

在高中数学中,学生需要掌握一些基本的数列知识,这些知识对于学生今后的数学学习有着重要的意义。

要深入分析高中数学数列考点内容,结合当前高中数学教育实际情况,寻找科学的复习对策。

本文简述了高中数学数列知识的基本内容,包括数列的类型、通项公式、求和公式和实际应用。

希望通过本文的介绍,能对数列知识有更深入的了解和认识,引导学生深入开展学习。

关键词:高中数学;数列;新高考考点;人教版教材数列知识是高中数学教学中一个重要的组成部分,它不仅有着广泛的应用,而且可以与其他数学知识结合使用,对于学生今后的数学学习具有重要的意义。

作为高中数学教师和学生,要提升对数列知识的理解和应用能力,将知识学习、考试需求、日常应用有机结合起来,提高学生的综合能力,适应当前新高考教学改革发展趋势[1]。

一、新高考数列核心知识点解析首先,学生需要了解数列的类型。

常见的数列类型有等差数列、等比数列和不定数列等。

不定数列是指没有明显的规律的数列。

其次,学生需要掌握数列的通项公式。

此外,学生还需要了解数列的求和公式。

最后,学生需要学会利用数列知识解决实际问题。

例如,在工程中,我们可以利用数列知识来计算物体的运动路程;在经济学中,我们可以利用数列知识来分析一个公司的财务状况等。

在生活中,我们可以利用数列知识来计算如何贷款、还款更适合实际需求等。

此外,数列知识还可以与其他数学知识结合使用。

例如,我们可以利用数列知识和概率论知识来研究随机事件,也可以利用数列知识和几何知识来研究物体的运动轨迹等。

在实践中,要结合高中数学数列学习和考试要点,结合知识发展的实际趋势,不断整合教育资源,提升知识理解与应用能力,适应当前高中教育发展,满足学生的多样需求,适应考场变化形势[2]。

具体来看,将以上考点进行展开,在高中数学备考学习中要重点复习数列的基本定义与概念:数列的概念、等差数列、等比数列、通项公式等;复习常见数列的性质:等差数列的性质、等比数列的性质、数列的前缀和等;掌握求数列前缀和公式:等差数列前缀和公式、等比数列前缀和公式等;练习求数列通项公式:等差数列通项公式、等比数列通项公式等;练习数列的应用:利用数列知识解决实际问题,如物体运动路程、公司财务状况分析、还贷问题等;练习数列试题:利用所学知识解决题目,包括理解题、推导题、应用题等[3]。

高中数学数列极限的计算方法及解题技巧

高中数学数列极限的计算方法及解题技巧

高中数学数列极限的计算方法及解题技巧数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。

在高中数学中,我们经常会遇到需要计算数列极限的题目。

本文将介绍数列极限的计算方法及解题技巧,并通过具体的题目进行说明,帮助高中学生和他们的父母更好地理解和应用。

一、数列极限的定义在开始讨论数列极限的计算方法之前,首先需要了解数列极限的定义。

数列极限是指当数列的项数趋于无穷大时,数列的值趋于的一个确定的值。

数列极限常用符号"lim"表示,例如lim(n→∞)an = L,表示当n趋于无穷大时,数列an的极限为L。

二、数列极限的计算方法1. 常见数列的极限计算方法常见的数列包括等差数列、等比数列、阶乘数列等。

对于这些数列,我们可以利用其特殊的性质来计算极限。

例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差。

当n趋于无穷大时,数列的极限为无穷大,即lim(n→∞)an = +∞。

对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比。

当|r| > 1时,数列的极限为无穷大,即lim(n→∞)an = +∞;当|r| < 1时,数列的极限为0,即lim(n→∞)an = 0。

2. 利用数列的递推关系计算极限有些数列的递推关系可以帮助我们计算极限。

例如,对于递推数列an = an-1 + 1/n,其中a1 = 1。

我们可以通过递推关系计算数列的前几项,发现数列逐渐趋近于ln2。

因此,当n趋于无穷大时,数列的极限为ln2,即lim(n→∞)an = ln2。

三、数列极限的解题技巧1. 注意数列的特殊性质在解题过程中,我们需要注意数列的特殊性质,例如等差数列和等比数列的性质。

通过分析数列的特点,可以更好地确定数列的极限。

2. 利用数列的性质进行变形有时候,我们可以通过对数列进行变形来简化计算。

例如,对于数列an =(n+1)/(n-1),我们可以将分子和分母同除以n,得到an = (1+1/n)/(1-1/n)。

高中数学数列与数列极限的收敛与发散情况分析

高中数学数列与数列极限的收敛与发散情况分析

高中数学数列与数列极限的收敛与发散情况分析数列与数列极限是高中数学中的重要概念,对于理解数学的发展规律以及解决实际问题具有重要意义。

本文将从数列的定义出发,分析数列的收敛与发散情况,并通过具体题目举例,说明不同类型题目的考点和解题技巧。

一、数列的定义与基本性质数列是按照一定规律排列的一组数,可以表示为{an}或者{a1, a2, a3, ...}。

其中,an表示数列中的第n个数,a1, a2, a3, ...表示数列中的前n个数。

数列的收敛与发散是指数列中的数是否趋于某个确定的值,即数列是否有极限。

如果数列{an}的极限存在,那么我们称数列收敛,否则称数列发散。

根据数列的定义和基本性质,我们可以通过以下几个方面来判断数列的收敛与发散情况。

二、数列的收敛与发散判定方法1. 数列的递推关系对于一些常见的数列,我们可以通过观察数列的递推关系来判断其收敛与发散情况。

例如,等差数列和等比数列是高中数学中常见的数列类型。

对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差。

当公差d为0时,数列为常数数列,显然收敛于a1;当公差d不为0时,数列无极限,发散。

对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比。

当公比|r| < 1时,数列收敛于0;当|r| > 1时,数列发散;当|r| = 1时,数列可能收敛也可能发散,需要进一步判断。

2. 数列的极限定义根据数列的极限定义,我们可以通过数列的递推关系和初值来判断其收敛与发散情况。

例如,对于数列an = 1/n,我们可以通过计算数列的前几项来猜测其极限为0。

然后,我们可以使用数学归纳法证明该数列的极限确实为0。

3. 数列的单调性与有界性对于某些特殊的数列,我们可以通过数列的单调性和有界性来判断其收敛与发散情况。

例如,对于数列an = (-1)^n/n,我们可以通过观察数列的符号变化和数列的绝对值来判断其收敛与发散情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学中数列的考点分析及复习建议
作者:李琳玉
来源:《当代教育》2010年第01期
数列在高中数学中所处的地位非常独特。

承前:采集了集合的方法,贯穿了函数的思想;启后:包罗了高中数学之万象,集数学思维方法之大成。

当然,数列的高考试题,归根结底,就是(或是可化归为)等差数列或等比数列的问题,掌握这两个基本数列的基本特征和基本性质,无疑是把握高考数列问题命脉的关键。

然而问题是,我们的学生真的(或基本)掌握了两个基本数列的基本特征和基本性质了吗?从我们对近一阶段学生考试的情况所进行的分析中,得出的结论是否定的!学生在数列中普遍存在的问题有:①证明不严谨,以偏概全。

②运算错漏率之高,令改卷教师咋舌。

③等差、等比数列的求和公式不过关,其中尤以后者为重。

④将数列问题化归为两个基本数列的能力差,
如何针对学生在数列中普遍存在的问题,做好高考最后阶段的复习工作,使我们的复习工作有计划、有针对性、有指导性,使学生对数列问题消除畏惧心理,增加得分率?为此,首先对高考数学中数列的考点进行一下分析。

一、高考数学数列中的考点分析
虽然数列在《教学大纲》中只有12课时,但在高考中,数列内容却占有重要的地位。

高考对数列的考试要求是:①理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,能根据数列的递推公式写出数列的前几项或证明其他一些性质。

②理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

③理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

由上述考试要求,我们知道,数列内容的考试试题,应以等差数列和等比数列的相关概念、通项公式、前n项和公式为主线,以数列的其他内容如通项与前n项和公式的关系、递推数列等相关内容为辅助。

但从高考新大纲的变化来看,加入了利用递推公式进行数列的相关问题的证明,考察由递归数列派生出来的新的等差或等比数列的相关问题。

二、复习建议
1.加大等差、等比数列通项公式、求和公式的训练力度。

在等差、等比数列的训练中,让学生回到首项和公差(或公比)中去,无疑是非常本色的方法。

例1:如在等差数列{an}中,点(a3+a5+a4+a5+a6)在直线y=2x+1 上,则该数列的首项a1=。

(A)1; (B)-1; (C)2; (D)-2.(答:B)
对于这道试题,采用下标规律而不能自拔者受阻了,回到首项和公差中去的学生(不见得是数学成绩好的学生)轻易解出来了。

例2:各项均为正数的等比数列{an}的前n项和为Sn,且S2 =74,S3 =111,则S5=。

(答:185)
对于这道试题,只记住死结论:在等比数列中, Sn,S2n -Sn ,S3n -.S2n 成等比数列的学生不知从何下手,机械地应用公式Sn=的学生在算出q=1(q=-)( 舍去)后,又发现代入上述公式不成立,只有知道讨论使用等比数列的求和公式的学生才能得到正确的答案。

通过以上两个例子,我们认为,对于数列通项公式和求和公式的训练,应尽量让学生能反复使用最原始的公式,并注意使公式成立的环境,让学生训练到求一般等差数列和等比数列的通项公式前项和公式变得轻松自然为止。

2.加强数列问题的运算训练,教会学生必要的运算检验方法。

高考数学中运算问题,历来令我们在高考一线的教师们头痛,而数列的运算,则将学生的运算水平低下暴露得非常具体。

运算训练从哪里入手?这里有几点建议:①进行单一公式运用的反复训练,特别是针对经过前一阶段检测发现学生普遍应用不过关的公式(如等比数列的前n项和公式)进行相应的训练。

②对数列问题的通性通法进行反复训练,使方法的牢固掌握和运算能力的提高同步进行。

③对同一方法进行变式训练,一直练到学生运算结论准确为止。

3.有计划地对学生进行数列综合问题的综合运算训练,提高学生的综合运算能力。

4.加强数列证明问题(或与之相关的题型)的训练,此类问题也是学生的一个薄弱环节。

例3.在数列{an}中,an+1=3an+2n +4 且a2= 6
(1)求a1; (2)求证数列{an+2n +2}是等比数列,并求an。

怎样证明数列{an}是等比(或等差)数列?证明(或an+1 -an)是一个与n无关的常数即可。

这么浅显的道理,怎么会有大量的学生不知从何下手?原因还是我们的训练力度不够。

对于上述问题,可进行如下变式训练:
1.在数列{an}中,a1=2,an+1=2an+2n-2,证明数列{an+2n}是等比数列,并求an。

2. 在数列{an}中,a1=2,an+1=2an+2n+1+3,证明数列{}是等差数列,并求出数列{an}的前n项和。

递归数列的问题,以上述结构出现的试题降低了求数列通项公式的难度,这样的试题往往是经过逆向编制出来的。

以上观点为本人在教学中的点滴体会,仅供同行们参考。

相关文档
最新文档