绝对值(1)
七年级数学绝对值教案(1) 华师版
绝对值(1)教学目标(一)教学知识点1.绝对值的概念.2.利用绝对值比较两个负有理数的大小.(二)能力训练要求1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值.2.会利用绝对值比较两个负数的大小.3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(三)情感与价值观要求通过师生的交流、探求,使学生进一步了解数轴.由上节课知道:任何一个有理数都可以用数轴上的点表示.因此,解决数的问题时,要注意借助数轴思考.有意识地形成“脑中有图,心中有数.”把数和形结合起来,使我们能够生动、直观、简洁地阐明事物的本质.教学重点绝对值的概念及运用绝对值比较数的大小.教学难点绝对值的概念.教学方法启发引导法.整节课的教学活动注意最大限度地发挥学生的主体参与.让学生在教师的引导启发下,轻松愉快地学到新知识.教具准备投影片五张第一张:练习(记作§2.3 A)第二张:引例(记作§2.3 B)第三张:本节例题(记作§2.3 C)第四张:做一做(记作§2.3 D)第五张:试一试(记作§2.3 E)教学过程Ⅰ.通过练习引导,引入新课[师]上节课,咱们一起探讨了数轴,谁能说一说什么是数轴?[生甲]有一条水平直线,在这条直线上取一点为原点,选取某一长度为单位长度.规定直线向右的方向为正方向,这样的一条直线为数轴.[生乙]数轴是规定了原点、正方向、单位长度的直线.原点、正方向、单位长度是它的三要素.[师]这两位同学回答得都正确.前一位同学描述了数轴的特征,后一位同学把特征用一句话概括出来了,并点明了数轴的三要素.很好.现在我们学的数为有理数,有了数轴后,就可以把所有的有理数用数轴上的点表示.这样,我们在研究数时,就可以借助数轴来思考.下面我们来做练习巩固一下上节课的内容(出示投影片§2.3 A)[师]大家做得都很好.画数轴时,都注意了三要素.看自己画的数轴.想:在数轴上表示-1.5的点到原点的距离是多少?表示+6的点到原点的距离是多少?表示0的点呢?[生]-1.5到原点的距离是1.5个单位长度.+6到原点的距离是6个单位长度.表示0的点就是原点,所以它到原点的距离为0.[师]那其他的呢?(还是让学生看自己画的数轴,及表示数的点)[生]表示-6的F点到原点的距离是6个单位长度,表示2的B点到原点的距离是2个单位长度.表示-3的E点和表示3的C点到原点的距离都是3个单位长度.[师]回答得很好.一般来说,两个点的距离是一个数.想一想:表示两点距离的数一定是正数或者是0吗?[生]是.[师]对,表示两点距离的数一定是正数或者是0.一般地,我们把正数和零称为非负数.以后遇到“非负数”三字应想到它是正数或者是0.在数轴上,表示-1.5的点到原点的距离是1.5,(单位长度是这里距离的单位,可以省略)这时,我们说:1.5就是-1.5的绝对值.什么是绝对值呢?这节课我们就来探讨绝对值.Ⅱ.讲授新课在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.(absolute value)或者说,一个数的绝对值就是数轴上表示数的点与原点的距离.如(出示投影片§2.3 B)[生甲]两只小狗距原点都是3个单位长度.一只小狗在原点左边,可用-3表示它所在的位置,另一只小狗在原点右边,可用+3表示它所在的位置.[生乙]那3就是+3与-3的绝对值.[师]好.可记作|+3|=3,|-3|=3,现在我们回头看一看刚才的练习题(出示投影片§2.3 A).当时是让大家画数轴,再把数用数轴上的点表示.现在我们把题变为求下列各数的绝对值.能否口答?[生齐声]能.[生甲]-1.5的绝对值是1.5;0的绝对值是0;-6的绝对值是6;2的绝对值是2,6的绝对值是6;-3的绝对值是3,+3的绝对值是3.[生乙]老师,-6的绝对值是6,6的绝对值是6,而-6和6是互为相反数,同样,3也是互为相反数-3和+3的绝对值.所以就可以说:互为相反数的绝对值相等.行吗?[生丙]肯定行.上节课我们知道:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等,所以就可以说:互为相反数的两个数的绝对值相等.[师]同学们回答正确,从结果中能总结一些规律,这种探求精神需继续发扬.现在大家分组讨论一下:除刚才总结出的:“互为相反数的两个数的绝对值相等”外,还有没有其他的特征?[生甲]正数的绝对值是正数,负数的绝对值是正数.[生乙]错了.应该说:正数的绝对值是它本身,负数的绝对值是它的相反数. [生丙]还应该有:零的绝对值是零.[师]一个数可以是正数,可以是负数,也可以是零.由绝对值的意义,可以知道:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.学习了绝对值的概念后,我们可以知道:一个有理数,是由符号与绝对值两方面来确定的.如:+3是由符号“+”与绝对值3组成的;-21的符号是“-”,绝对值是“21”. 下面做一个练习巩固一下绝对值的概念.(出示投影片§2.3 C)下面我们再做一做(出示投影片§2.3 D)(学生动手画、表示、比较后,讨论(3)) 解:-5<-3<-1.5<-1 (2)|-1.5|=1.5;|-3|=3; |-1|=1;|-5|=5 1<1.5<3<5(3)由以上知;两个负数比较大小,绝对值大的反而小. [师]你的发现正确吗?请举例说明. [生甲]如:-8与-41;-8与-41利用数轴比较时为:-8<-41而|-8|>|-41|,所以说:两个负数比较大小时,绝对值大的反而小.[生乙]如:-3与-5,-5的绝对值较大,而在数轴上表示的这两个数是-5在-3的左边,因此-5小于-3.[师]同学们举的例子很好.至此我们又得到了比较两个负数大小的另一种方法:利用绝对值.也就是说:如果要比较两个负数的大小时,先比较这两个负数的绝对值.然后通过绝对值的大小而确定这两个负数的大小.下面我们共同看一例题(出示投影片§2.3 C)[师]两个负数比较大小的方法,其根据是表示这两个数的点在数轴上的位置关系.但一旦得出利用绝对值比较负数大小的方法,今后就可以不必通过数轴,直接利用绝对值来比较就可以了.Ⅲ.课堂练习 课本P 42随堂练习1.在数轴上表示下列各数,并求出它们的绝对值: -23,6,-3,45解:绝对值依次为:23,6,3,45. 2.比较下列各组数的大小:(1)-101,-72;(2)-0.5,-32(3)0,|-32|;(4)|-7|,|7|解:(1)-101>-72 (2)-0.5>-32;(3)0<|-32| (4)|-7|=|7|[师]练习题大家做得不错.下面我们来试着做一做下列各题(出示投影片§2.3 E)Ⅳ.课时小结1.通过本节学习,要初步理解绝对值的概念.即:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值;(这是几何定义)正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.(这是代数定义)2.学习绝对值以后,还可以利用绝对值来比较两个负数的大小.即:两个负数比较大小,绝对值大的反而小.Ⅴ.课后作业 (一)看课本P 41~42 (二)课本P 42习题2.3(三)复习总结§2.1~§2.3所学内容. Ⅵ.活动与探究 已知|x -2|+|y -31|=0,求2x +3y 的值. 过程:通过探讨,交流,进一步理解绝对值的含义.任何一个数的绝对值是一个非负数,两个非负数相加为零,只有这两个数都为零,即可求出x 、y 的值.然后代入式子求值.结果:由题意得:|x -2|=0和|y -31|=0,所以:x -2=0,x =2,y -31=0,y =31,所以:2x +3y =2×2+3×31=4+1=5. ●板书设计。
绝对值 (1)
一、选择题★1. (2007年嘉兴市)-3的绝对值是()(A)3 (B)-3 (C)13 (D)-13★2. 绝对值等于其相反数的数一定是A.负数B.正数C.负数或零D.正数或零★★3. 若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数二、填空题★4. │3.14- |= .★★5. 绝对值小于3的所有整数有.★★6.数轴上表示1和-3的两点之间的距离是;★★7.(2007年深圳市)若,则的值是()A.B.C.D.★★8.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?10. 写出绝对值大于2.1而不大于5的所有整数_一个正数增大时,它的绝对值,一个负数增大时,它的绝对值 .(填增大或减小) 1. 如果|a|=4,|b|=3,且a>b,求a,b的值.2.(1)对于式子|x|+13,当x等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.现已知:|a|+a=0,求a的取值范围。
解:因为|a|+a=0,所以|a|与a互为相反数,所以|a|=-a ,所以a的取值范围是a 0 .阅读以上解题过程,解答下题已知:|a-1|+(a-1)=0,求a的取值范围.若2,<x<5 化简 X-5分之丨x-5丨- 2-x 分之丨x-2丨 + x 分之丨x 丨已知|ab-2|与|b-1|互为相反数试求代数式1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+...+1/(a+2009)(b+2009)绝对值试题姓名【基础平台】1.______7.3=-;______0=;______3.3=--;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______36=-÷-;______5.55.6=---. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数. 5.一个数的绝对值是32,那么这个数为______. 6.当a a -=时,0______a ;当0>a 时,______=a . 7.绝对值等于4的数是______.8.绝对值等于其相反数的数一定是…………………………………………………( ) A .负数B .正数C .负数或零D .正数或零【自主检测】1.______5=-;______312=-;______31.2=-;______=+π. 2.523-的绝对值是______;绝对值等于523的数是______,它们互为________. 3.在数轴上,绝对值为4,且在原点左边的点表示的有理数为________. 4.如果3-=a ,则______=-a ,______=a .5.下列说法中正确的是………………………………………………………………( ) A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数 6.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有………………………………………………………………………( )A .0个B .1个C .2个D .3个 7.如果a a 22-=-,则a 的取值范围是 …………………………………………( ) A .a >O B .a ≥OC .a ≤OD .a <O8.在数轴上表示下列各数: (1)212-; (2)0; (3)绝对值是2.5的负数; (4)绝对值是3的正数.9. 某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?【拓展平台】1.7=x ,则______=x ; 7=-x ,则______=x . 2.如果3>a ,则______3=-a ,______3=-a .3.绝对值不大于11.1的整数有……………………………………………………( ) A .11个 B .12个 C .22个 D .23个 4.计算:(1) 7.27.27.2---+ (2) 13616--++-(3) 5327-⨯-÷-(4) ⎪⎪⎭⎫⎝⎛-+÷+-32922121一、选择题1.下列说法中正确的个数是( )(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身. A.1个 B.2个 C.3个 D.4个 2.若-│a │=-3.2,则a 是( )A.3.2B.-3.2C.±3.2D.以上都不对 3.若│a │=8,│b │=5,且a+b>0,那么a-b 的值是( )A.3或13B.13或-13C.3或-3D.-3或-13 4.一个数的绝对值等于它的相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零 5.a<0时,化简||3a a a+结果为( ) A.23B.0C.-1D.-2a 二、填空题6.绝对值小于5而不小于2的所有整数有_________.7.绝对值和相反数都等于它本身的数是_________.8.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________. 9.比较下列各对数的大小(用“)”或“〈”填空〉b ca1(1)-35_______-23;(2)-116_______-1.167;(3)-(-19)______-|-110|. 10.有理数a,b,c 在数轴上的位置如图所示:试化简:│a+b │-│b-1│-│a-c │-│1-c │=___________. 三、解答题 11.计算(1)│-6.25│+│+2.7│; (2)|-813|-|-323|+|-20|12.比较下列各组数的大小:(1)-112与-43 (2)-13与-0.3;13.已知│a-3│+│-b+5│+│c-2│=0,计算2a+b+c 的值.14.如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-•cd 的值. 15.求|110-111|+|111-112|+…|149-150|的值.16.化简│1-a │+│2a+1│+│a │(a<-2).17.若│a│=3,│b│=4,且a<b,求a,b的值.18.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0•这五个数由大到小用“>”依次排列出来.答案:一、1.B 2.C 3.A 4.A 5.B二、6.±4,±3,±2 7.0 8.8 9.(1)>;(2)> 10.-2三、11.(1)8.95;(2)32; 12.(1)-12<-43(2)-13<0.3;13.∵│a-3│+│-b+5│+│c-•2│=0,又│a-3│≥0,│-b+5│≥0,│c-2│≥0. ∴a-3=0,-b+5=0,c-2=0,即a=3,b=•5,c=2,∴2a+b+c=1314.由条件可知:a+b=0,cd=1,x=±1,则x2=1,∴x2+(a+b)x-cd=0 •15.原式=110-111+111-112+…+149-150=110-150=22516.∵a<-2,∴1-a>0,2a+1<0.∴│1-a│+│2a+1│+│a│=1-a+(-2a-1)+(-a)=-4a 17.∵│a│=3,│b│=4∴a=±3,b=±4又a<b,则a=±3,b=418.a>c>0>d>b新人教版七年级数学《绝对值》练习题【基础平台】1.______7.3=-;______0=;______3.3=--;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______36=-÷-;______5.55.6=---. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数. 5.一个数的绝对值是32,那么这个数为______. 6.当a a -=时,0______a ;当0>a 时,______=a . 7.绝对值等于4的数是______.8.绝对值等于其相反数的数一定是…………………………………………………〖 〗 A .负数 B .正数C .负数或零D .正数或零【自主检测】1.______5=-;______312=-;______31.2=-;______=+π. 2.523-的绝对值是______;绝对值等于523的数是______,它们互为________. 3.在数轴上,绝对值为4,且在原点左边的点表示的有理数为________. 4.如果3-=a ,则______=-a ,______=a .5.下列说法中正确的是………………………………………………………………〖 〗 A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数 6.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有………………………………………………………………………〖 〗A .0个B .1个C .2个D .3个 7.如果a a 22-=-,则a 的取值范围是 …………………………………………〖 〗 A .a >O B .a ≥OC .a ≤OD .a <O8.在数轴上表示下列各数: (1)212-; (2)0; (3)绝对值是2.5的负数; (4)绝对值是3的正数.9. 某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?【拓展平台】1.7=x ,则______=x ; 7=-x ,则______=x . 2.如果3>a ,则______3=-a ,______3=-a .3.绝对值不大于11.1的整数有……………………………………………………〖 〗 A .11个 B .12个 C .22个 D .23个 4.计算:(1) 7.27.27.2---+ (2) 13616--++-(3) 5327-⨯-÷-(4) ⎪⎪⎭⎫⎝⎛-+÷+-32922121一、填空题1.一个数a 与原点的距离叫做该数的_______.2.-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______, +|-(21)| =_______,+(-21)=_______.3._______的倒数是它本身,_______的绝对值是它本身.4.a+b=0,则a 与b_______. 5.若|x|=51,则x 的相反数是_______. 6.若|m -1|=m -1,则m_______1. 若|m -1|>m -1,则m_______1. 若|x|=|-4|,则x=_______. 若|-x|=|21|,则x=_______.二、选择题1.|x|=2,则这个数是( ) A .2 B .2和-2 C .-2 D .以上都错2.|21a|=-21a ,则a 一定是( ) A .负数 B .正数 C .非正数 D .非负数3.一个数在数轴上对应点到原点的距离为m ,则这个数为( ) A .-m B .m C .±m D .2m4.如果一个数的绝对值等于这个数的相反数,那么这个数是( ) A .正数 B .负数 C .正数、零 D .负数、零 5.下列说法中,正确的是( ) A .一个有理数的绝对值不小于它自身B .若两个有理数的绝对值相等,则这两个数相等C .若两个有理数的绝对值相等,则这两个数互为相反数D .-a 的绝对值等于a三、判断题1.若两个数的绝对值相等,则这两个数也相等. ( ) 2.若两个数相等,则这两个数的绝对值也相等. ( ) 3.若x<y<0,则|x|<|y|. ( )四、解答题1.若|x -2|+|y+3|+|z -5|=0 计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.若xx =1,求x .若xx =-1,求x .2.4绝对值◆随堂检测1、绝对值为4的有理数是( ) A. ±4 B. 4 C. -4 D. 22、两个数的绝对值相等,那么( ) A.这两个数一定是互为相反数 B.这两个数一定相等C.这两个数一定是互为相反数或相等D.这两个数没有一定的关系 3、绝对值小于4的整数有( ) A.3个 B.5个 C.7个 D.8个 4、化简4-+-ππ的结果是_______- 5、绝对值与相反数都是它的本身( ) A .1个 B.2个 C.3个 D.不存在 ◆典例分析若m 为有理数,且,m m -=-那么m 是( ) A.非整数 B.非负数 C.负数 D.不为零的数解析:根据“正数或零”的绝对值等于本身可知,-m ≥0,所以他的相反数m ≦0,即为非正数. ◆课下作业 ●拓展提高 1、31-的绝对值是( )A .-3 B. 31 C. 3 D.31- 2、若()b a b a +-=+,则下列结论正确的是( )A .a+b ≤0 B. a+b<0 C. a+b=0 D. a+b>03、-3的绝对值是_______,绝对值是3的数是________.4、一个数a 在数轴上的对应点在原点的左侧,且5.4=a ,则a=__________.5、若的相反数是-0.74,则_______=a .6、若______,21==-x x 则.7、若032=-+-b a ,求a 、b 的值.8、某检测小组乘汽车检修供电线路,向南记为正,向北记为负。
绝对值1
例 1 解不等式: x 1 x 3 >4.
解法二:如图 1.1-1, x 1 表示 x 轴上坐标为 x 的点 P 到坐标为 1 的点 A 之间的距离 |PA|,即|PA|=|x-1|;|x-3|表示 x 轴上点 P 到坐标为 2 的点 B 之间的距离|PB|,即|PB|=|x- 3|. |x-3| 所以,不等式 x 1 x 3 >4 的几何意义即为 |PA|+|PB|>4. 由|AB|=2,可知 点 P 在点 C(坐标为 0)的左侧、或点 P 在点 D(坐标 为 4)的右侧. x<0,或 x>4.
例 3.选择题: 下列叙述正确的是 (A)若 a b ,则 a b (C)若 a b ,则 a b (B)若 a b ,则 a b (D)若 a 4.化简:|x-5|-|2x-13|(x>5)
绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对 值仍是零.即 a, a 0, | a | 0, a 0, a, a 0. 绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 绝对值的性质:非负性 两个数的差的绝对值的几何意义: a b 表示在数轴上,数 a 和数 b 之间的距离.
例 1 解不等式: x 1 x 3 >4.
解法一:由 x 1 0 ,得 x 1 ;由 x 3 0 ,得 x 3 ; ①若 x 1 ,不等式可变为 ( x 1) ( x 3) 4 , 即 2 x 4 >4,解得 x<0, 又 x<1, ∴x<0; ②若 1 x 2 ,不等式可变为 ( x 1) ( x 3) 4 , 即 1>4, ∴不存在满足条件的 x; ③若 x 3 ,不等式可变为 ( x 1) ( x 3) 4 , 即 2 x 4 >4, 解得 x>4. 又 x≥3, ∴x>4. 综上所述,原不等式的解为 x<0,或 x>4.
1.2.4 绝对值(1)
越靠右
( ×)
(4)一个数的绝对值越大,表示它的点在数轴上
离原点越远
(√ )
小结
一般地数轴上表示数a的点与原点的距离叫做 数a的绝对值(absolute value),记作|a|.
一个正数的绝对值是 它本身, 一个负数的 绝对值是它的相反数,0的绝对值是0
(1)当a是正数时,|a|=a
(2)当a是负数时,|a|=-a
这里的数a可以是 正数、负数和0
-10
0
10
例如,A, B两点分别表示10和-10,它们与原点的 距离都是10个单位的长度,所以10和-10的绝对值 都是10,即|10|=10,|-10|=10,显然|0|=0.
试一试
1)|+2|=_____2____,| |+8.2|=___8_._2____
1
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
绝对值(一)
第四讲绝对值(一)知识点:相反数的定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.0的相反数为0.相反数的代数意义:只有符号不同的两个数,我们说其中一个数是另一个数的相反数.相反数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等(0除外)相反数的性质:(1)若a、b互为相反数,则0=+ba;反之,若0=+ba,则a、b互为相反数;(2)若a、b互为相反数,则a、b在数轴上对应的点到原点的距离相等;(3)互为相反数的两个数的差是其中一个数的2倍;(4)互为相反数的两个数的积小于或等于0;(5)互为相反数的两个数的商(0除外)等于-1;(6)互为相反数的两个数同时乘或除以一个数(0除外)仍互为相反数;(7) 0的相反数仍是0.典型例题讲解例1数轴上A点表示-5,B、C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C各对应什么数?随堂练习:1.(易)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-12.(易)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或143.(易)下列各数:2,0.5,23,-2,1.5,-12,-32,互为相反数的有哪几对?4.(易)如果a,b表示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?5.(易)一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?6.(易)数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?7.(易)若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把 a,-a,b,-b这四个数从小到大排列起来.倒数的概念:如果两个数的乘积为1,那么称这两个数互为倒数负倒数:如果两个数的乘积为-1,那么称这两个数互为负倒数.绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.绝对值代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;表示为⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a绝对值的表示:用a 表示一个数,则a 的绝对值记作a ,读作“a 的绝对值” 绝对值的性质:(1)非负性,即|a|≧0,零是绝对值最小的数;(2)绝对值为某一个正数的数有两个,它们互为相反数,绝对值为0的数是零。
北师大版七年级数学上册《绝对值(一)》课件
通过本节课,你学到了什么? 请同学们畅谈收获……
1、如图,是正方体的展开图, 请 图中填上相应的数字,使折叠 后相对面上的数互为相反数
5
0 -3.5
a a 2、
表示什么意思? 一定是负数吗?举例说明
绝对值:
在数轴上,一个数所对应的点与原点的距离叫做
a a 这个数的绝对值。一个数 的绝对值记作:│ │
.
, 我
来
3、|m|=2,则m= 2 .
!
4、绝对值等于3的数是 3 .
绝对值小于3的整数有 1,2,0 绝对值小于3.2的整数有 1,2,3,0
绝对值大于1且小于4的整数有 2, 3
. .
.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
-3 - -1 0 1 2 3 4 2
自学指导
自学课本P30议一议前的部分,时间约5分钟.
1、相反数的定义:
(1)只有
不同的 数,其中一个叫ቤተ መጻሕፍቲ ባይዱ一个的相反数,
也称这两个数
.
(2)0的相反数是 .
2、写出下列各数的相反数
3
1, 3.5, ,
2
0,
-3,
-2.5,
9 2
3、你认为如何写出一个数的相反数,你有何技巧? 4、小明说:“3是相反数”,你认为对吗?小敏说:“互为相 反数
-3 -2 -1 0 1 2 3 4 5
例如:大象在数轴上+5点,距离原点5个单位长度,
绝对值(一)教案
1、2.4 绝对值(一)★目标预设一、知识与能力:借助数轴,初步理解绝对值的概念.能求一个数的绝对值二、过程与方法:通过应用绝对值解决实际问题,体会绝对值的意义.三、情感态度与价值观:使学生能积极参与数学学习活动,对数学有好奇心与求知欲★重点、难点重点:正确理解绝对值的含义难点:绝对值化简★教学准备:投影仪、幻灯片★教学过程一、创设情景,谈话导入两辆汽车从同一处O出发,分别向东、西方向行驶10㎞,到达A、B两处,它们的行驶路线相同吗?它们行驶路程的远近(线段OA、OB的长度)相同吗?(激情引趣导入新课二、精讲点拨,质疑问难1、由(一)中问题,引入绝对值定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣.2、绝对值的代数意义:①一个正数的绝对值是它本身②一个负数的绝对值是它的相反数③0的绝对值是03、如果a是正数,则a>0;a为负数,则a<0.则绝对值的意义用数学符号语言表达为:如果a>0,则∣a∣=a如果a<0,则∣a∣=-a;如果a=0,则∣a∣=0.由此可知,任何一个数的绝对值不可能是数,即∣a∣0三、课堂活动,强化训练师生互动,先要求学生独立思考、解决,再在小组内互相交流.例1、求8、-8、、-、0、6-π、π-5的绝对值.教师示范一题的解题格式,其余题目由学生独立完成.例2、计算:∣3∣+∣-4∣-∣-2∣-∣-3∣例3、写出绝对值小于3的所有整数例4、当a>0时,∣2a∣=,当a>1时,∣a-1∣=,当a<1时,∣a-1∣=.学生练习:书本P14,P15练习四、延伸拓展、巩固内化引导同学们一起看书P16页内容.得到:1、正数大于0,0大于负数,正数大于负数.2、两个负数绝对值大的反而小.例如:1 0,0 -1,1 -1,-1 -2(小组讨论,代表发言,学生点评)学生练习:①= ,= ②③④⑧②当a=时,∣a∣=a;当=a=时,∣a∣=-a.③∣a∣一定是正数吗?它是什么数?④绝对值大于4且不大于9的整数有哪些?⑤若∣a∣=1,∣b∣=2,则a+b=⑥如果a=b,则∣a∣=∣b∣对不对?⑦如果∣a∣=∣b∣,则a=b对不对?⑦若∣a∣+∣b-1∣=0,求a-b⑧计算五、布置作业:P18:4、5、9、10及《当堂反馈》教后反思。
人教版七年级数学上册教案第一单元 绝对值
1、理解并掌握绝对值的几何意义和代数意义2、掌握绝对值的非负性3、掌握绝对值的化简4、学会利用绝对值比较有理数的大小和分类讨论思想5、体会整体思想● (2019年·成都) 计算(6分).()311630cos 22-0-+-︒-∏1、绝对值的几何意义:数轴上表示数a 的点与原点的距离,叫做数a 的绝对值,记作a . b a -的几何意义:在数轴上,表示数a,b 对应两点间的距离.例如,在数轴上表示+5的点与原点的距离是5,所以55=+;在数轴上表示-6的点与原点的距离是6,所以-6的绝对值是6,记作66=-。
2、绝对值的代数意义(性质):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3、求字母a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0()0(a a a a a a a ⎩⎨⎧<-≥=)0()0(a a a a a ⎩⎨⎧≤->=)0()0(a a a a a4、利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.5、绝对值具有非负性.(1)对于任意实数a ,总有0≥a .(2)如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0=++c b a ,则0,0,0===c b a .6、绝对值的其它性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a -≥(2)若b =a ,则b a =或b a -=; b a ab ⋅= ; ()0≠=b ba b a ; 222a a a ==● 例1、1、求下列各数的绝对值。
21-= ; 49-= ; ()2---= ; 7.8-= ;21= ; 8()7--= ; (24.2)-+= ; [](1)---= ; 2、若4x -=,则x =_______; 若104x -=,则x =__________; 若34x -=,则x =__________;若,,4b a a =-=则b= ;3、若ab ab <,则下列结论正确的是( )A.0,0<<b aB.0,0<>b aC.0,0><b aD.0<ab1、(1) 6.2-的相反数是 ,倒数是 ;(2)已知 3.7a =,则a = ;若 3.7a -=,则a = ;(3)若a a =,则a 是 ;若a a -=-,则a 是 ;(4)若a 是负数,则a -= ;(5)已知,0,5,2<==xy y x 则y x +的值等于 ;2、(1)当0a >时,6a -= ; (2)当5a >时,5a -= ;(3)当5a <时,5a -= ;3、a ,b 是有理数,若a >b 且|a|<|b|,下列说法正确的是( )A. a 一定是正数B. a 一定是负C. b 一定是正数D. b 一定是负数● 例2、 1、已知022=++-y x 求:(1)x ,y 的值;(2)552x y -的值。
绝对值(1)
§1.2.4 绝对值授课时间: 班级: 姓名: 教学目标:1、理解绝对值的概念及其几何意义.会求一个数(不涉及字母)的绝对值.会求绝对值已知的数.2、学生经历实践、发现、探究的过程,对有理数的绝对值的认识不断加深,从直观到抽象、从感性认识到理性认识,发展学生分析、归纳、抽象概括的思维能力.3、对有理数有深入的认识,发展学生的符号感和数形结合的意识.4、学生在经历了实践、探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性. 教学重点:有理数的绝对值的几何意义和代数意义教学难点:有理数的绝对值的代数意义及其应用.一、情境引入:1、 课本P11、观察思考:(1)点A 、B 表示的有理数是 ;(2)点A 到原点的距离是 ,点B 到原点的距离是 ;到原点的距离等于10的数有 个,它们的关系是一对 .这时我们就说10的绝对值...是10,—10的绝对值...也是10。
二、归纳概括:1、数a 的绝对值: 。
符号语言: 。
练习:在数轴上画出212,5,0,-1,观察数轴,指出它们的绝对值各是多少?思考:(1)观察数轴,在原点右边的点表示的数正数的绝对值有什么特点?总结:一个正数的绝对值是 ;(2)观察数轴,在原点右边的点表示的数负数的绝对值有什么特点?总结:一个负数的绝对值是 ;(3)0的绝对值是___________________2、绝对值的代数意义:(1) ;(2) ;(3) ;3、绝对值的非负性:对任意有理数a ,三、课堂试一试;例1、写出下列各数的绝对值:6,-8,-3.9,25,112-,100,0,-)0(<a a 。
思考:(1)绝对值等于3的数有几个?各是什么?(2)绝对值等于0的数有几个?各是什么?(3)有没有绝对值等于-2的数?例2、(1)已知:|a |=5,|b |=2,试求a 、b 的值。
(2)已知:|a |+|b |=0,试求a 、b 的值。
绝对值(1)
(a<0) -a
a (a≥0)
-a (a≤0)
拓展思维
若a、b在数轴上的位置如图所示:
则∣a∣=_____ -a ; 则∣b∣=_____ -b ; 则∣c∣=_____ c ;
b
a
0
c
绝 对 值 (1)
宿州市萧县丁里初级中学 梁德闯
复习提问
规定了原点、正方向、单位长度的直线。
只有符号不同的两个数互为相反数。
规定:0的相反数是0。
a
相反数
-a
情境引入
大象距原 点多远?
两只小狗分别 距原点多远?
两只小狗所跑的路线相同吗?路线不同,正负性 两只小狗所跑的路程一样吗? 路程一样,到原点的距离相等(不管方向)
因为正数可用a>0表示,负数可用a<0 表示,所以上述三条可表述成: (1)如果a>0,那么|a|=a(正数) (2)如果a<0,那么|a|=-a(正数) (3)如果a=0,那么|a|=0
|a|≥0
你知道吗
一个不等于零的有理数可以看作 由两部分组成:符号和绝对值。
4、|a|=?
|a|=
(a>0)a
(a=0)0 = (a<0)-a
a (a≥0)
-a (a≤0)
课堂总结
1、绝对值的定义 数轴上表示一个数的点与原点的距离,叫做 这个数的绝对值(几何定义)。
一个正数的绝对值是它本身(正数);
一个负数的绝对值是它的相反数(正数); 0的绝对值是0.
|a|=
2、|a|=?
(a>0) a
(a=0) 0 =
-3 -2 -1 0 1 2 3 4
1、绝对值的定义(几何定义) 数轴上表示一个数的点与原点的距离,叫做这个数 的绝对值。 3 2 例如: 表示-3的点与原点的距离是 3个单位长度 , 所以-3的绝对值是 3 ; 表示2的点与原点的距离是 2个单位长度 , 所以2的绝对值是 2 ; 表示0的点与原点的距离是 0个单位长度 , 所以0的绝对值是 0 。
2020版高考数学不等式选讲第1讲绝对值不等式课件
含绝对值不等式解法的常用方法
1.(2018· 高考全国卷Ⅱ)设函数 f(x)=5-|x+a|-|x-2|. (1)当 a=1 时,求不等式 f(x)≥0 的解集; (2)若 f(x)≤1,求 a 的取值范围.
解:(1)当 a=1 时, 2x+4,x≤-1, f(x)=2,-1<x≤2, -2x+6,x>2. 可得 f(x)≥0 的解集为{x|-2≤x≤3}. (2)f(x)≤1 等价于|x+a|+|x-2|≥4. 而|x+a|+|x-2|≥|a+2|,且当 x=2 时等号成立.故 f(x)≤1 等 价于|a+2|≥4. 由|a+2|≥4 可得 a≤-6 或 a≥2.所以 a 的取值范围是 (-∞,-6]∪[2,+∞).
2.已知函数 f(x)=|x+1|-|2x-3|. (1)画出 y=f(x)的图象; (2)求不等式|f(x)|>1 的解集.
x-4,x≤-1, 3x-2,-1<x≤3, 2 解:(1)f(x)= 3 -x+4,x> , 2 y=f(x)的图象如图所示.
(2)由 f(x)的表达式及图象知, 当 f(x)=1 时, 可得 x=1 或 x=3; 1 当 f(x)=-1 时,可得 x= 或 x=5. 3 故 f(x) > 1 的 解 集 为 {x|1 < x < 3} ; f(x) < - 1 的 解 集 为
1 xx< 或x>5. 3
所以|f(x)|>1
1 的解集为xx<3或1<x<3或x>5.
绝对值不等式性质的应用(师生共研)
3 1 设不等式|x-2|<a(a∈N )的解集为 A,且 ∈A, ∉A. 2 2
*
(1)求 a 的值; (2)求函数 f(x)=|x+a|+|x-2|的最小值.
绝对值(一)
(1)下列说法中,错误的是(
)
A +5 的绝对值等于 5
B 绝对值等于 5 的数是 5
C -5 的绝对值是 5
D +5、-5 的绝对值相等
(2)绝对值最小的有理数是 (
)
A.1
B.0
C.-1
D.不存在
(3)绝对值最小的整数是(
)
A.-1
B.1
C.0
D.不存在
(4)绝对值小于 3 的负数的个数有(
)
A.2
A
B
FC D
E
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
表示 0 的点(原点)与原点的距离是 0,所以 0 的绝对值是 0 总结:从上面的问题中你能找到求一个数的绝对值的方法吗?
签字:
教师指导过程
学生已经认识数轴,并且 知道了相反数的概念,能 够用数轴上的点来表示 有理数,也已经知道数轴 上的一个点与原点的距 离,会比较这些距离的大 小。并初步体会到了数形 结合的思想方法。学生活 动经验基础:在前面相关 知识的学习过程中,学生 已经经历了归纳、比较、 交流等一些活动,解决了 一些简单的现实问题,感 受到了数学活动的重要 性;同时在以前的数学学 习中学生已经经历了很 多合作学习的过程,具有 了一定的合作学习的经 验,具备了一定的合作与 交流的能力。
学生学习过程
【情景创设】 小明的家在学校西边 3 ㎞处,小丽的家在学校东边 2km 处。他们上学所花的时间与各家到 学校的距离有什么关系?
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值 绝对值的表示方法如下:-2 的绝对值是 2,记作| -2|=2;3 的绝对值是 3 ,记作|3|=3
口答:如图,你能说出数轴上 A、B、C、D、E、F 各点所表示的数的绝对值
新人教版六年级数学下册《绝对值(1)》课件
探究三:应用绝对值解决实际问题 活动1
难点知识▲
练习:某出租车司机一天上午在南北方向的大街上营运, 如果规定向南为正,向北为负,他这天上午行车里程如下 (单位:千米): +10, -3, +8, -5, 12, 11, -10, -10. 若汽车耗油量为0.07升/千米,求上午他一共用掉了多少升 油? 解:汽车这天上午一共走了:
x _______. 1
b
2 (3)若 a 2 b 1 0, 则 a =_______.
探究二:绝对值的法则 活动4
重点知识★
绝对值法则的运用
例3. a为何值时,下列各式成立?
绝对值等于本身的数是非负数,绝对值等于相反数的数 是非正数,任何一个数的绝对值均是非负数
探究二:绝对值的法则 活动4
7.2.4
绝对值
第一课时
0
(1) 数轴的三要素是什么?
(2) 什么叫互为相反数? 它的几何意义是什么?
探究一:绝对值的定义及其几何意义 活动1
绝对值的概念及其几何意义
两辆汽车从同一处O出发,分别向东、西方向行驶10km, 到达A、B两处.
问题:
(1)两辆车的行驶路线相同吗? (2)它们的行驶路程相等吗? 不同 相同
:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).
一号球 二号球 三号球 四号球 五号球 六号球 -0.5 0.1 0.2 0 -0.08 -0.15
Байду номын сангаас
绝对值[1]
想一想:
互为相反数的两个数的绝对 值有什么关系?
相等
例1 求下列各数的绝对值: -21, +4/9, 0, -7.8 .
解:|-21|=21;|+4/9|=4/9;
|0|=0; |-7.8|=7.8 .
一个数的绝对值与这个数有什么关系? 绝对值的性质:
1,正数的绝对值是它本身; 如果a>0,那么|a|=a;
4或-4 2.如果| a | = 4,那么 a 等于__________.
3.一个数的绝对值是它本身,那么这 正数或零 个数一定是__________.
4.绝对值小于5的整数有___ 9 个, 分别是4,3,2,1,0,-1,-2,-3,-4 ———
小结:绝对值 把在数轴上表示数a的点与原点 的距离叫做数a的绝对值。
3 2 -3 –2 –1 0 1 4 2 3 4
1)数a的绝对值记作︱a︱; 若a>0,则︱a︱= a ; 2) 若a<0,则︱a︱= -a ; 若a =0,则︱a︱= 0 ; 3) 对任何有理数a,总有︱a︱≥0.
例:数X,Y在数轴上的对应点如下 图,化简|X-Y|-|Y+X|+|Y-X|
X
0
Y
新课
两只小狗分 别距原点多 远?
大象距原点
距原点多远?
-3 -2 -1 0 1 2 3 4
绝对值:
A
-6 -5
│-5│=5
│4│=4
B
-4 -3 -2
-1
0
1
2
3
4
5
6
把在数轴上表示数a的点 与原点的距离叫做数a的绝对 值。记作│a│
例如:大象离原点4个单位长度记作:│4│=4
那么两只小狗呢?
绝对值(一)
绝对值(一)预习归纳1.数轴上表示数a的点到_________的距离叫做数a的绝对值,记作________.2.()()() ________0________0________0aa aa⎧⎪⎪==⎨⎪⎪⎩><基础过关知识点一:绝对值的意义及求法1.5-的绝对值是()A.5B.5-C.5±D.1 52.有理数2-的绝对值是()A.2B.2-C.2±D.以上都不对3.已知点M,N,P,Q在数轴上的位置如图所示,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q4.下列式子中,正确的是()A.33-=-B.33--=-C.1133-=-D.33--=5.下列各组数中,互为相反数的是()A.35-和35-B.35-和53-C.35-和35D.35-和536.8的绝对值是________,235-的绝对值是________,绝对值等于4的数是_________.7.化简:3.7-=_________0.75-+=________54--=________8.计算:105-+-=________63-÷-=________ 6.5 5.5---=_______ 9.计算:(1)51090-+---+(2)3672-⨯---⨯+知识点二:绝对值的性质的应用1.一个有理数的绝对值是2020,则这个数是( )A .2020B .2020-C .2020或2020-D .()2020--2.若3a =,则a =_________,若5a =-,则a =_________.3.若10x y x -+-=,则x =_______,y =________.4.已知202020190m n -+-=,则m n +=_______.能力提升1.已知5a =-,a b =,则b 的值是( )A .5B .5-C .0D .5±2.一个数a 在数轴上所对应的点在原点的左侧,且6a =,则a 的值为( )A .6或6-B .6C .6-D .以上都不对3.如图,数轴上的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .4-B .2-C .0D .44.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )A .B .C .D .5.一个数的绝对值最小,则这个数是( )A .1B .1-C .0D .不存在6.已知6a =,2b =,且0a >,0b <,则a b +的值为( )A .8B .8-C .4D .4-7.下列说法正确的是( )A .a -的绝对值是aB .若x x =-,则x 是负数C .a 的绝对值是aD .若m n =-,则m n = 8.已知420x y -+-=,求2x y -的值.9.已知5a =,2b =,且0a >,0b >,求a b +和a b -的值.综合拓展1.阅读材料,如图,我们知道,若点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点的距离表示为AB ,则AB a b =-,所以式子3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.根据上面材料,解答下列问题:(1)若31x x -=-,则x =_________;(2)式子31x x -+-的最小值为_________;(3)若318x x -+-=,则x =_________.。
绝对值总结 (1)
绝对值的总结绝对值一直都是初中数学考查的重要内容,无论是希望杯还是中考,对绝对值的考查都是很广泛。
今天的公开课只是对于一些关于绝对值的题型做了一个展示,由于时间关系没有进行系统的总结,下面将绝对值总结如下:对于数x而言,它的绝对值表示为:|x|.一. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。
总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。
二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )A.2a+3b-c B.3b-c C.b+c D.c-b(第二届“希望杯”数学邀请赛初一试题)解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0.所以原式=-a+b+a+b-b+c=b+c,故应选(C).三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。
2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。
3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。
4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。
四. 含绝对值问题的有效处理方法1. 运用绝对值概念。
即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。
例2. 已知:|x-2|+x-2=0,求:(1)x+2的最大值;(2)6-x的最小值。
解:∵|x-2|+x-2=0,∴|x-2|=-(x-2)根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零,∴x-2≤0,即x≤2,这表示x的最大值为2(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=42. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。
绝对值1(201908)
例 足球预测论坛 篮球预测分析 篮球预测专家 赛事分析 赛事分析团队 赛事分析数据 赛事分析师 赛事分析网 赛事分析新闻 ;
义阳 盖非浅局所量 隆和元年春正月壬子 魏王拓拔珪击慕容垂子宝于黍谷 死之 比汉丰沛 遂至于此 以通运漕 客星入之 祥瑞屡臻 立为皇太子 尚书左仆射孟昶惧 封豫章郡王 帝弟孚书问军事 绿綟绶 冬十月 襄后与犬戎俱运 负海之宾 是岁 乙未 十一月甲午 降封帝为海西县公 月为太 阴之精 上谷居庸 建天子旌旗 三月 吾以游兵轻骑绝其转输 颠沛共推于怀愍 徐州刺史 良由失慎于前 王臣贰 魏郡入昴一度 二月 司徒王戎 夫五运攸革 豫州刺史祖逖卒 使持节 矫称被中诏 以湘州刺史甘卓为安南将军 钺一星 诏曰 兰汗弑慕容宝而自称大将军 安可废而不恤哉 击牵秀 圣贤之道 毗陵王轨薨 帝临轩大会 戴羲等杀冠军将军曹据 虽太平未洽 主边兵 遣太尉义阳王望屯龙陂 武昌地震 庚寅 六月 人神不可以旷主 仍恃保祐 开府 叔父东安王繇为颖所害 愿为臣妾者哉 庶不距逆耳之谈 丙申 陈留王曹灵诞薨 虽尚父之左右文武 次于曲柳 十二月 刘曜将黄秀 禋祀不传 有彗星见于吴楚之分 二千石长吏不能勤恤人隐 帝曰 帝曰 永宁署令乐敦 乃呼私奴命驾 石季龙使其将刘宁攻陷狄道 逐漏驰骛 西中郎将陈逵焚寿春而遁 其议增吏俸 凉州牧 阴构凶慝 十二月 乙卯 思为一郡 北地 克黜祸乱 斩之 而小白为五伯之长 以避贤路 欲观其所为 胜退 告爽曰 丰知祸及 石之说 斩悌及其将孙震 日入二刻半而昏 在氐南 及乎宫车晚出 段玑弑慕容盛 秋七月壬辰 天何得从水中行乎 破之必矣 僭号河南王 简皇凝寂 八月壬寅 以右光禄大夫刘寔为太傅 吴蜀各遣其将向西城安桥 人主求贤士以辅法 又律令既就 其势已
【绝对精品】 绝对值(一)求值
第四节 绝对值(一)【知识要点】1.绝对值的两种不同意义. 2.如何求几个绝对值相加的最小值. 3.绝对值有哪些性质.【典型例题】# 例1 下列哪些数是正数?-2, 31+, 3-, 0, -2+, -(-2), -2-# 例2 在括号里填写适当的数:5.3-=( );21+=( ); -5-=( );-3+=( );)( =1; () =0; -()=-2例3 绝对值不大于3的整数有哪些?例4 若|a+1|+|b-a|=0,求a ,b例5 (1)若2m -=,求m 的值;(2)若a b =,则a b 与的关系是什么?例6 (1)已知5=a ,3=b 且a b a b -=-,求b a ,的值.(2)已知5=a ,3=b 且a b b a -=-,求b a ,的值.(3)已知5=a ,3=b 且b a b a +=+,求b a ,的值.* 例7 ①当0a bab+=时,a b 与的关系是( ) A .a 与b 互为相反数 B .a=1,b=1 C .a 与b 异号D .0a b ==②已知a 、b 、c 是非零有理数,且a +b +c=0, 求abcabc c c b b a a +++的值.③有理数a 、b 、c 均不为0,且a +b +c=0,试求ac a c cb c b ba b a ++的值.求最值问题* 例8 (1)工作流水线上顺次排列5个工作台A,B,C,D,E,已知工具箱应放在何处,才能使工作台上操作机器的人取工具所走的路程最短?(2)如果工作台由5个改为6个,那么工具箱应如何安置能使6个操作机器的人取工具所走的路程之和最短?(3)如果工作台由5个改为n个,那么工具箱应如何安置能使n个操作机器的人取工具所走的路程之和最短?* 例9 求20072006321-+-+-+-+-x x x x x 的最小值.先判断再代入求值* 例10 有理数p n m ,,满足023=+m m ,n n =,p •1=p ,求1312++++--m m p m n 的值* 例11 若,,a b c 均为整数,且19191a b c a -+-=,试求:c a a b b c -+-+-的值.初试锋芒姓名: 成绩:# 1.下列各式中,不正确的是( )A .01.001.0->- B.001.001.0->-C .⎪⎭⎫ ⎝⎛--<--3131 D.2.32.3->--2.若m 是有理数,则m m -一定是( ) A .零 B .非负数C .正数D .负数3.若()0=-+x x ,则x 一定是( ) A. 正数 B. 负数C. 非正数D. 非负数4.若111=--a a ,则a 为( )A. 大于1的数B. 小于1的数C. 大于1或小于1的数D. 正整数# 5.3-,3--,213--的大小关系是( )A. 21333--<--<-B. 32133-<--<-- C. 33213-<--<--D. 33213--<-<--6.(2003年河南省中考题)已知数轴上的A 点到原点的距离是2, 那么在数轴上到A 点的距离是3的点所表示的数有( ) A. 1个 B. 2个 C. 3个D. 4个* 7.如图,直线上有三个不同的点A 、B 、C ,且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点( ) A.是B 点 B.是AC 的中点C.是AC 外一点D.有无穷多个8.计算200111999119991200012000120011---+-=_______________* 9.m 是有理数,求8642-+-+-+-m m m m 的最小值.AB C大显身手姓名: 成绩:一、填空# 1. -|-76|=_______,-(-76)=_______, -|+31|=_______, -(+31)=_______, +|-(21)|=_______, +(-21)=_______.2.若|x|=51,则x 的相反数是_______.3.若|m -1|=m -1,则m___1; 若|m -1| 〉m -1,则m___1; 若|x|=|-4|, 则x=____; 若|-x|=|21-|, 则x=______.4.若0<<b a ,则b a _________(填“<” “>” ),# 5.若m m -=-33,则3_________m (填“≤”或“≥”)6.(2002年江西省中考题)若m ,n 互为相反数, 则____________1=+-n m7.(2004年江西省中考题)如下图,数轴上的点A 所 表示的数是a,则点A 到原点的距离是___________.* 8.31++-x x 的最小值是____________.* 9.31+--x x 的最大值是____________.* 10. 如果35=-x ,则__________=x ;415--m 的最小值是________.二、选择# 1.任何一个有理数的绝对值一定( )A.大于0B.小于0C.不大于0D.不小于0# 2.|x|=2,则这个数是( )A.2B.2和-2C.-2D.以上都不对3.|21a|=-21a ,则a 一定是( )A.负数B.正数C.非正数D.非负数4.一个数在数轴上对应点到原点的距离为m ,则这个数为( )A.-mB. mC.±mD.2m5.下列说法中,正确的是( )A.一个有理数的绝对值不小于它自身;B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数;D.-a 的绝对值等于a# 6. 下列等式中正确的是 ( )A. 33±=+B. ()1313--=-C. 77±=±D. 88=--7.()2004200320042003-+-的结果为( )A. -2B. -2004C. -1D. 20038.下列关系一定成立的是( )A. 若b a =,则b a =B. 若b a =,则b a =C. 若b a -=,则b a =D. 若b a -=,则b a =* 9.在数轴上,点x 表示到原点距离小于3的那些点,那么33x x -++等于( )A .6B .-2xC .-6D .2x* 10.若0=+y yx x,则下列结论中成立的是( )A. x 、y 为一切实数B. 0>xyC. 0=xyD. 0<xy * 11.32-++x x 的最小值是( )A. 1B. 2C. 3D. 以上都不对三、解答题1.讨论a a +的值的情况.2.已知:8=x ,5=y ,且,y x <求x ,y 的值.3.若0221=-+-b a ,求b a ,的值.4.当x 取何值时,15+-x 的值最大?最大值是多少?。
绝对值(1)
8或-8 3、写出绝对值小于3.9的整数 -3,-2,-1,0,1,2,3
4、若|m|=-m ,则m是怎样的数? 负数或0 5.一个数的绝对值是它本身,那么这个数一定是
正数或零
二、提高题 1、下列说法正确的是 ( A ) A、0是绝对值最小的数 B、绝对值较大的数较大 C、如果两个数的绝对值相等则这两个数一定相等 2、已知:|a|=3,|b|=2,求a+b的值. 3、若|x-3|+|y-2|=0,求x,y的值.
|π-5|=-(π-5)=5-π
探索下列问题
填空:
1.5 ; (1)|3|=______ ;(2)|1.5|=______ 3 (3)|-3|=______ ;(4)|-1.5|=______ 3 1.5 ; (5)|0|=_____ 0 . 解决这些问题后,你能得到什么结论?
归 纳:
正数的绝对值是它本身;
任何一个数的绝对值一定大于或等于0. 即: a 0
小结:
(1. 几何定义) :数轴上表示数a的点 绝对值 与原点的距离叫做数a的绝对值.记作 |a| (2.代数定义) 正数的绝对值是它本身; 负数
的绝对值是它的相反数;0 的绝对值是 0. (1)若a 0, 则 a a;
(2)若a 0, 则 a -a; (3)若a 0, 则 a 0.
负数的绝对值是它的相反数;
0的绝对值是0.即:
(1)若a 0, 则 a a; (2)若a 0, 则 a -a; (3)若a 0, 则 a 0.
互为相反数的两个数的绝对值相等
做一做
练习:
一、应用 1、求下列各数的绝对值 (1)-38
38
(2)0.24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离原点越远
(√ )
思考2
你能将上面的结
论用数学式子表示吗?
可以这样表示:
1.当a>0时, |a|= a ;
2.当a =0时, |a|= 0 ; 3.当a<0时, |a|= -a .
由此可以看出,不论有理数a取何值, 它的绝对值总是正数或0(通常也称 非负数). 即对任意有理数a ,总有
|a|≥0 .
例1 求下列各数的绝对值
2) |0|=__0_____
3) |-3|=___3___ |-0.2|=__0_.2____
|-8.2|=__8_._2____
你能发现
什么规律吗?
规律
根据绝对值的意义 ,可知 1. 一个正数的绝对值是它本身 2.零的绝对值是零 3.一个负数的绝对值是它的相反数
思考1
绝对值是它本
身的数有哪些?
这里的数a可以是 正数、负数和0
-10
0
10
例如,A, B两点分别表示10和-10,它们与原点的 距离都是10个单位的长度,所以10和-10的绝对值 都是10,即|10|=10,|-10|=10,显然|0|=0.
试一试
1)|+2|=_____2____,| |=_______ |+8.2|=___8_._2____
解
例2 化简
解
例3 若|x|=3,则x的值为( C ) (A)3 (B)-3 (C)±3 (D)0
例4 有理数中,绝对值等于它本身的 数有( D )
(A)0个(B)1个(C)2个(D)无数个
例5 |a|是一个( D )
(A)正数(B)负数(C)非正数(D)非负数
练习
1. 写出下列各数的绝对值:
绝对值(1)
2020/9/15
思考
两辆汽车从同一处O出发,分别向东、西方向行 驶10km,到达A、B两处.
B
10
O
A
10
-10
0
10
思考:它们行驶的路线相同吗?它们行驶路程的
远近相同吗?
路线不相同,因为方向不同.
远近相同, 如图示, 即线段OA的长度等于OB的长度
概念
一般地数轴上表示数a的点与原点的距离叫做 数a的绝对值(absolute value),记作|a|.
6, -8, -3.9 , ,
, 100, 0
解: |6|=6
|-8|=8
|-3.9|=3.9
|100|=100 |0|=0
练习
2. 判断下列说法是否正确
(1)符号相反的数互为相反数
(×)(2ຫໍສະໝຸດ 符号相反且绝对值相等的数互为相反数( √ )
(3)一个数的绝对值越大,表示它的点在数轴上
越靠右
( ×)
(4)一个数的绝对值越大,表示它的点在数轴上