气力输灰选型计算书
气力输送系统基本参数计算(全)
系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。
灰气比的选择取决于管道的长度、灰的性质等因素。
对于输送干灰的系统,μ值一般取7-20 kg/kg。
当输送距离短时,取上限值;当输送距离长时,则取下限值。
3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。
因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。
根据经验,每100m的温降值一般为6—20℃。
当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。
5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。
气力输灰系统方案
第三节气力输灰系统1工作围1.1原始资料(1)气力输灰主要原始设计条件及参数1.2系统工艺说明1)气力输灰系统:锅炉烟气除尘形式采用电/袋除尘器,电除尘器设一个灰斗,布袋除尘器设二个灰斗,每个灰斗下设置一套正压浓相发送器。
三台发送器共用一根DN125的输送管道输送至500m³混凝土灰库贮存。
单台炉系统出力为7.2t/h。
系统特点描述:我公司气力输送系统采用目前国际流行的正压浓相栓流式输送系统(下引式),该系统具有节能、高效、经济、安全等显著优点,系统特点分述如下:●系统配置简洁,投资少系统转动部件少,由于系统配置采用单元制,可实现多个灰斗下的仓泵串连安装,每个单元的仓泵可合用1套进气阀组、1只出料阀,合用1根输灰母管,从而大大减少了气动阀门和管道的数量,也就相应地减少了故障点;而且仓泵小巧的外形可降低电除尘器(或布袋除尘器)的安装高度,从而节省投资。
●系统输送浓度高,能耗少系统的输送原理为栓流式,物料在输送过程中绝大部分积聚在管道的下部成团状,依靠压缩空气的静压能和部分动能向前运动,因此消耗较少的压缩空气就1可以输送较多的物料,输送灰气比较高,相应的所需的输送耗气量较少,从而降低了系统能耗。
●管道流速低,磨损小系统的输送原理决定了系统的输送流速较低,一般初速为3~4m/s,输送距离在100米左右时,末速约为10m/s,而管道磨损与流速的三次方成正比,因此管道的磨损大大降低。
●系统调节手段多样化,适应性强,安全系数高系统的各个部位均安装了可调节设备,可根据不同的工况进行参数调节,适应性强,并且备有应急处理设备(排堵设施)。
●系统设备性能可靠,维护量少,年运行费用低由于系统输送原理先进,并采用了先进技术的优质阀门,可保证整体使用寿命在20年以上。
同时由于系统中的易损件少,阀门性能可靠,管道的磨损小,只需较低的费用就可保证系统安全可靠运行。
●系统技术全面,应用围广系统可根据不同的原始条件如出力、输送距离、物料的特性(密度、温度等)选用不同的设备配置;我们还可以为其它行业的粉粒状松散物料的气力输送提供解决方案。
成品灰气力输送计算书
成品灰气力输送计算书
喷射泵后的压力(压差)为ΔPb1=Pb-Pa=1422.3kgf/m2=13938.54Pa(1kgf/m2=9.8066pa)
根据喷射泵相关理论,文氏管喷射泵输送的主要能量损失在于将空气的压力能→速度能(动能)→压力能的转化过程中,能量损耗占总能量的0.5~0.6左右,另还包括将灰料加速的能量损耗,而能量的损耗主要以空气输送压降实现,尽管输送空气流量有一定的变化,但仅是少量而不予考虑
(此理论也基本与工程实际相符)。
故喷射泵前后压损为:
ΔPb2=ΔPb1/(1-0.6)=34846.35Pa
所以进入喷射泵的输送空气压力(压差)为
ΔPb0=ΔPb1+ΔPb2=48784.89Pa
考虑从风机房内的纯空气压损及一定的富裕量,并结合罗茨风机选型,
取罗茨风机升压为 58.8 Kpa。
罗茨风机流量取1.1×Q'a=38.83m3/min,根据罗茨风机型号,选定风机流量为39.46 m3/min 故原灰输送选定罗茨风机型号为CKSR200A,风冷型,升压 58.8 Kpa,流量39.46 m3/min。
气力输送计算书
设计计算书本系统两罐串联,交替运行。
发送罐选用型号CT6.5,每罐装满料的质量为3500Kg系统要求的正常质量流量27156Kg/h-----------G s设计的最大输送能力325872 Kg/h---------------G m备用率为G m/ G s=1.2管道当量长度Le的计算:[单位mm ]原始数据:水平长度220m,垂直40m,弯头数9个,管道阀门数2个。
L e=L水+L垂*C+(N弯+N阀)*L pC为垂直管道的当量系数取1.2L p为弯头的当量长度取10m计算得Le=378m当地空气的平均密度的计算:[单位Kg/m³]原始数据:年平均温度5.9℃(T=279)大气压力73.56Pa根据理想方程:PV=nRT推导如下PV=(m/M)RT=(ρV/M)ρ气=0.92Kg/m³R 为比例系数,单位是J/(mol·K)取8.314M空气的摩尔质量29固气比μ的选择:μ=25μ= G s/ G aG a为正常空气质量流量Ga= Gs/μ=27156/25=1086.24Kg/h耗气量Q= Ga/ρ气=1086.24/0.92*60=19.7Nm³/min管径的选择:[单位mm ]发送器到四路分流器之间输送管径选用φ219*6规格,四路分流器至料仓输送管径选用φ325*8规格。
气体流速的计算[单位m/s ]V初=Q/πR1²R1=100mm计算V初=10.46m/sV末=Q/πR2²R2=150mm计算V末=4.6m/s压力损失ΔP的计算[单位Pa ]系统的全程压力损失由以下几点确定①气体和物料在水平管道内的损失②气体和物料在垂直管道内的损失③物料启动时的压力损失(即物料从开始的静止到一定速度输送所消耗的压力)④弯管的压力损失以上的计算较为复杂,国内目前大多是根据日本狩野武推导的公式进行计算,根据经验参数估算的结果为ΔP=4.5~5bar即4.5~5*105Pa 吨米气耗q r″的计算[单位m3/t*km]q r″=q va/q mg*L=(Q/WL)*106q va=Q/tq mg=W/tq r″=152÷(3500*378)*106=115 式中:q va-----------空气体积流量,单位m3/sQ-----------输送一罐料所用的空气量,单位m3t-------------输送一罐料所需的时间,单位sq mg----------物料的质量流量,单位Kg/sw------------一罐料的质量,单位KgL-------------输送管的当量长度单位m输送一罐料的耗气量Q3500 Kg÷25=140Kg 140÷0.92=152 m325是固气比吨米功率消耗k″的计算[单位kWh/t*m]k″= q va*ΔP/(q mg*L)= Q*ΔP/3600wLΔP---------输送管入口和出口的全压差(Pa)k″=152*5*105/3600*3500*378=0.016kW*h/t*m每小时系统的能耗E:[单位kWh]E=ηk″* G s*Le =1.3*0.016*27*378*=212.3kWhη为损耗系数1.3 (全文完)。
气力输灰系统讲解
第三节气力输灰系统1工作范围1.1原始资料(1)气力输灰主要原始设计条件及参数项目规格及技术参数锅炉1×90t/t循环流化床锅炉除尘器形式电/袋除尘器输送距离~100m(水平加爬高)设计出力(单台炉)7.2t/h灰堆积密度~0.75t/m3(干灰)控制方式PLC灰库500m3混凝土灰库(¢8000)输渣能力~2.5t/h(干渣)渣库300m3钢制渣库(¢8000)1.2系统工艺说明1)气力输灰系统:锅炉烟气除尘形式采用电/袋除尘器,电除尘器设一个灰斗,布袋除尘器设二个灰斗,每个灰斗下设置一套正压浓相发送器。
三台发送器共用一根DN125的输送管道输送至500m³混凝土灰库贮存。
单台炉系统出力为7.2t/h。
系统特点描述:我公司气力输送系统采用目前国际流行的正压浓相栓流式输送系统(下引式),该系统具有节能、高效、经济、安全等显著优点,系统特点分述如下:●系统配置简洁,投资少系统内转动部件少,由于系统配置采用单元制,可实现多个灰斗下的仓泵串连安装,每个单元的仓泵可合用1套进气阀组、1只出料阀,合用1根输灰母管,从而大大减少了气动阀门和管道的数量,也就相应地减少了故障点;而且仓泵小巧的外形可降低电除尘器(或布袋除尘器)的安装高度,从而节省投资。
●系统输送浓度高,能耗少系统的输送原理为栓流式,物料在输送过程中绝大部分积聚在管道的下部成团状,依靠压缩空气的静压能和部分动能向前运动,因此消耗较少的压缩空气就可以输送较多的物料,输送灰气比较高,相应的所需的输送耗气量较少,从而降低了系统能耗。
●管道流速低,磨损小系统的输送原理决定了系统的输送流速较低,一般初速为3~4m/s,输送距离在100米左右时,末速约为10m/s,而管道磨损与流速的三次方成正比,因此管道的磨损大大降低。
●系统调节手段多样化,适应性强,安全系数高系统的各个部位均安装了可调节设备,可根据不同的工况进行参数调节,适应性强,并且备有应急处理设备(排堵设施)。
气力输送计算
上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。
气力输送系统基本参数计算(全)
系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)] (kg/kg) (5-20)Gh=ψγhνp (t/仓) (5-21)式中 Gh—仓泵装灰容量,t/仓。
灰气比的选择取决于管道的长度、灰的性质等因素。
对于输送干灰的系统,μ值一般取7-20 kg/kg。
当输送距离短时,取上限值;当输送距离长时,则取下限值。
3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa= Gm/μ (kg/min) (5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算 tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中 Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。
因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。
根据经验,每100m的温降值一般为6—20℃。
当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。
5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。
输灰系统基本参数计算
系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m) (5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)] (kg/kg) (5-20)Gh=ψγhνp (t/仓) (5-21)式中 Gh—仓泵装灰容量,t/仓。
灰气比的选择取决于管道的长度、灰的性质等因素。
对于输送干灰的系统,μ值一般取7-20 kg/kg。
当输送距离短时,取上限值;当输送距离长时,则取下限值。
3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)] (m3/min) (5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min) (5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中 Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) 按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。
因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。
根据经验,每100m的温降值一般为6—20℃。
当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。
5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。
气力除灰系统基本参数计算
Q混始 Q混始=[P1/Pa*(273+ta)/(273+t1)*Q气]+α Q系统/(60*ρ b) 20.23 D' Q灰 Dn μ λ 0.2 31.2 77.77 0.271 22.47 6 0.018
1/2 2 2 c
Q混末 Q混=[P1/P2*(273+t2)/(273+t1)*Q气]+Q灰
3 3
代号
公式
数值 103.8 2.6 492 4ቤተ መጻሕፍቲ ባይዱ.94
Q系统 Q系统=MAX(1.5Q设计,1.2Q校核) V仓泵 V仓泵=α Q系统/(η bnρ bn1) Leq Q气 Leq=L+2H+Σ m*Lr QN=13.83*α Q系统/μ D'=[4*Q混始/(60*3.14*μ a)]1/2 QN=60*V仓泵*η b/t输送 Dn=[4*Q混/(60*3.14*μ c)]1/2
25 起始端流速(m/s) 26 末端流速(m/s) 27 输送时间(s) 28 起始端气灰混合物温度(℃) 29 标准气温(℃) 30 末端输送温度(℃) 31 当地平均大气压(MPa) 32 管道粗糙度
μ μ
a c
7.5 15 4 100 20 40 0.10167 0.2
t输送 ta t1 t2 PN Σ
b b
计算结果 数值 69.2 69.76 4 0.8 0.8 0.8 10 300 28 0 1 2 0 12 0 20 0 7 0.7 0.275 0.32 0.101234 0.10667 25 序号 名称 1 2 3 4 5 6 7 8 9 气力除灰系统出力(t/h) 仓泵容积计算(m3) 当量长度(m) 标态下输送耗气量(Nm /min) 起始端气灰混合物流量(Nm3/min) 修正灰管管径(m) 输送管道内干灰体积流量(Nm /min) 末端气灰混合物流量(Nm3/min) 末端输送管道内径(m)
气力输送计算(催功龙)
上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径)φ=仓泵出料管输出流量q 计算点压力工况下需要输送空输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。
气力输灰技术方案
气力输灰技术方案泸州永丰浆纸有限责任公司75t/h CFB锅炉配套气力输灰系统技术文件浙江天洁环境科技股份有限公司2014年5月目录1. 工程设计方案 (2)1.1. 工程设计方案与说明 (2)1.2. 供货范围 (7)2. 主要设备及部件选型 (9)2.1. 仓泵选型的说明 (9)2.2. 主要零部件选型说明 (9)3. 产品规格与标准 (12)3.1. 产品规格 (12)3.2. 产品执行标准与规范 (14)4. 工程实施 (15)4.1. 生产制造与试验 (15)4.2. 安装调试与运行 (15)4.3. 工程进度安排 (16)4.4. 质量保证及售后服务 (17)1. 工程设计方案1.1. 工程设计方案与说明1.1.1. 原始设计资料与设计依据1.1.1.1. 锅炉与除尘器型式锅炉容量:1×75t/h锅炉除尘器型式:一电二袋除尘器除尘器灰斗布置:3个1.1.1.2. 操作条件1.1.1.2.1. 飞灰量单台75t/h飞灰总量:9.89t/h (暂定) 单台75t/h炉灰量分配:1.1.1.2.2. 飞灰理化性质1.1.1.2.2.1. 飞灰化学成分(略)1.1.1.2.2.2. 飞灰物理性质飞灰粒径分布:(暂缺,按下表考虑)飞灰温度:按150℃考虑飞灰真实密度:按2400kg/m3考虑飞灰堆积密度:按750kg/m3考虑1.1.1.2.3. 飞灰输送距离水平输送距离:按100m考虑垂直爬升:按22m考虑90 弯头处数:按5处考虑1.1.2. 输灰系统设计方案与说明1.1.2.1. 系统工艺流程参见气力输灰系统工艺流程图。
本系统流程包括如下主要部分:仓泵部分:采用上引式流态化仓泵作为系统关键输送设备。
根据电除尘器各电场工况变化,配置不同规格仓泵以适应工况要求,每只灰斗下设一台仓泵,共3台。
仓泵接受灰斗中的飞灰,在压缩空气的作用下,灰气混和物排入输送管道,实现飞灰的远距离输送。
气源部分:采用空气压缩机作为动力源,为保证系统的稳定运行,设置和干燥过滤系统。
气力输送计算
上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。
84-设计-气力输送设计计算书
84-设计-气力输送设计计算书广东南海梅山电场气力输送设计计算书1.仓泵技术参数:总容积 1.0m30.4m3装灰量(比重按0.75确定) 0.6t 0.25t输送管径DN100 DN802.除尘器一个输送单元输送系统校核2.1.仓泵出口处管道内气流速度:按浓相仓泵运行要求,出口处气流速度:< 5.0m/s2.2.仓泵运行时输送压力(泵内工作压力):0.15~0.18MPa2.3.输送管未端气流速度:按管道内灰气混合物流动的热力学过程介于等温和绝热过程之间,取k=1.1则: P1(V1×S1)1.1=P2(V2×S2)1.1式中:P1 、P2为输送管始端压力和管道未端压力(绝对压力)V1、V2为输送管进口和出口的流速S 1 电场仓泵出口输灰管截面积 0.0078m2S 2 电场输送管出口截面积0.0078m2令P2=1,P1=2.8代入得: V 2 =12.43m/s管道内气流平均速度:U p=8.71m/s在上列无缝管配置下实际耗气量:耗气量按下式确定(近似计算式):Q实=S2×V2=0.096m3/s = 5.8m3/min2.4.仓泵的工作过程主要分为下列几个过程:㈠进料㈡加压㈢输送㈣吹扫等四个过程.2.5.仓泵输送质量流率:G MS=Q×μ气×μ=2.84g/s上式中: G MS质量流率Q 耗气量 (0.069m3/s)μ气空气比重 (1.25)μ混合比 (33)仓泵主要技术参数见上表, 一个输送过程的时间按下式计算:t=t1+t2+t3+t4+t5上式中:t 1 进料时间(多组仓泵进行交替输送时,不计时料时间) t 2 有效输送时间t 3 管道吹扫时间t4加压时间t5辅助时间(各种动作过程时间)每组泵的有效输送时间: t2=w÷(Q×μ气×μ) =598.6s上式中: w 一台仓泵装灰量, 为1700kg.吹扫时间: t 3 =L÷V p+60=85s上式中: L 按输送最远几何距离215m计算V p气流平均速度:8.7m/s加压时间: T4 30s辅助时间: T5 5s总的输送时间为:718.6每小时最大输送能力:(3600÷718.6)×1.7t =8.5t/h根据以上计算,电除尘器一台炉采用一根DN100输灰管,分二组进行交替输送,其输送能力为8.5t/h,大于实际出力的300%,满足招标文件中的设计出力要求。
气力输灰系统教材
第三节气力输灰系统1工作范围1.1原始资料(1)气力输灰主要原始设计条件及参数项目规格及技术参数锅炉1×90t/t循环流化床锅炉除尘器形式电/袋除尘器输送距离~100m(水平加爬高)设计出力(单台炉)7.2t/h灰堆积密度~0.75t/m3(干灰)控制方式PLC灰库500m3混凝土灰库(¢8000)输渣能力~2.5t/h(干渣)渣库300m3钢制渣库(¢8000)1.2系统工艺说明1)气力输灰系统:锅炉烟气除尘形式采用电/袋除尘器,电除尘器设一个灰斗,布袋除尘器设二个灰斗,每个灰斗下设置一套正压浓相发送器。
三台发送器共用一根DN125的输送管道输送至500m³混凝土灰库贮存。
单台炉系统出力为7.2t/h。
系统特点描述:我公司气力输送系统采用目前国际流行的正压浓相栓流式输送系统(下引式),该系统具有节能、高效、经济、安全等显著优点,系统特点分述如下:●系统配置简洁,投资少系统内转动部件少,由于系统配置采用单元制,可实现多个灰斗下的仓泵串连安装,每个单元的仓泵可合用1套进气阀组、1只出料阀,合用1根输灰母管,从而大大减少了气动阀门和管道的数量,也就相应地减少了故障点;而且仓泵小巧的外形可降低电除尘器(或布袋除尘器)的安装高度,从而节省投资。
●系统输送浓度高,能耗少系统的输送原理为栓流式,物料在输送过程中绝大部分积聚在管道的下部成团状,依靠压缩空气的静压能和部分动能向前运动,因此消耗较少的压缩空气就可以输送较多的物料,输送灰气比较高,相应的所需的输送耗气量较少,从而降低了系统能耗。
●管道流速低,磨损小系统的输送原理决定了系统的输送流速较低,一般初速为3~4m/s,输送距离在100米左右时,末速约为10m/s,而管道磨损与流速的三次方成正比,因此管道的磨损大大降低。
●系统调节手段多样化,适应性强,安全系数高系统的各个部位均安装了可调节设备,可根据不同的工况进行参数调节,适应性强,并且备有应急处理设备(排堵设施)。
气力输灰技术方案
泸州永丰浆纸有限责任公司75t/h CFB锅炉配套气力输灰系统技术文件浙江天洁环境科技股份有限公司2014年5月目录1. 工程设计方案 (3)1.1. 工程设计方案与说明 (3)1.2. 供货范围 (9)2. 主要设备及部件选型 (12)2.1. 仓泵选型的说明 (12)2.2. 主要零部件选型说明 (12)3. 产品规格与标准 (15)3.1. 产品规格 (15)3.2. 产品执行标准与规范 (18)4. 工程实施 (19)4.1. 生产制造与试验 (19)4.2. 安装调试与运行 (19)4.3. 工程进度安排 (20)4.4. 质量保证及售后服务 (21)1.工程设计方案1.1.工程设计方案与说明1.1.1.原始设计资料与设计依据1.1.1.1.锅炉与除尘器型式锅炉容量:1×75t/h锅炉除尘器型式:一电二袋除尘器除尘器灰斗布置:3个1.1.1.2.操作条件1.1.1.2.1.飞灰量单台75t/h飞灰总量:9.89t/h (暂定)单台75t/h炉灰量分配:1.1.1.2.2.飞灰理化性质1.1.1.2.2.1.飞灰化学成分(略)1.1.1.2.2.2.飞灰物理性质飞灰粒径分布:(暂缺,按下表考虑)飞灰温度:按150℃考虑飞灰真实密度:按2400kg/m3考虑飞灰堆积密度:按750kg/m3考虑1.1.1.2.3.飞灰输送距离水平输送距离:按100m考虑垂直爬升:按22m考虑90 弯头处数:按5处考虑1.1.2.输灰系统设计方案与说明1.1.2.1.系统工艺流程参见气力输灰系统工艺流程图。
本系统流程包括如下主要部分:仓泵部分:采用上引式流态化仓泵作为系统关键输送设备。
根据电除尘器各电场工况变化,配置不同规格仓泵以适应工况要求,每只灰斗下设一台仓泵,共3台。
仓泵接受灰斗中的飞灰,在压缩空气的作用下,灰气混和物排入输送管道,实现飞灰的远距离输送。
气源部分:采用空气压缩机作为动力源,为保证系统的稳定运行,设置和干燥过滤系统。
35气力输灰设计方案
2X35t/h 锅炉配套气力输灰系统技术方案2015年 2月目录1.工程设计方案 (2)1.1.工程设计方案与说明 (2)1.2.供货范围 (7)2.主要设备及部件选型 (9)2.1.仓泵选型的说明 (9)2.2.主要零部件选型说明 (9)3.产品规格与标准 (12)3.1.产品规格 (12)3.2.产品执行标准与规范 (15)4.工程实施 (16)4.1.生产制造与试验 (16)4.2.安装调试与运行 (16)4.3.工程进度安排 (17)4.4.质量保证及售后服务 (18)1.工程设计方案1.1. 工程设计方案与说明1.1.1. 原始设计资料与设计依据1.1.1.1. 锅炉与除尘器型式锅炉容量: 2× 35t/h锅炉除尘器型式:布袋除尘器除尘器灰斗布置:单台炉 3 个,共6个1.1.1.2. 操作条件1.1.1.2.1. 飞灰量单台炉飞灰总量:按0.50t/h单台炉灰量分配:按每只灰斗0.167t/h 1.1.1.2.2. 飞灰理化性质1.1.1.2.2.1. 飞灰化学成分(略)1.1.1.2.2.2. 飞灰物理性质飞灰粒径分布:按各灰斗均等考虑飞灰温度:按 150℃考虑飞灰真实密度:按2100kg/m 3考虑飞灰堆积密度:按750kg/m 3考虑1.1.1.2.3. 飞灰输送距离水平输送距离:按100m考虑垂直爬升:按25m考虑90 弯头处数:按10 处考虑1.1.2. 设计方案与说明1.1.2.1. 系统工艺流程参见气力输灰系统工艺流程图。
本系统流程包括如下主要部分:仓泵部分:采用上引式流态化仓泵作为系统关键输送设备。
根据布袋除尘器各灰斗工况一样,配置相同规格仓泵适应工况要求,每只灰斗下设一台仓泵,共 6 台。
仓泵接受灰斗中的飞灰,在压缩空气的作用下,灰气混和物排入输送管道,实现飞灰的远距离输送。
气源部分:采用空气压缩机作为动力源,为保证系统的稳定运行,设置储气罐和干燥过滤系统。
灰渣稀相气力输送系统设计计算说明书
灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。
系统的最大灰渣产率按第一种情况计算,即取2.05t/h。
尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为4.6kg/h。
为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。
卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。
根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。
按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。
按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。
因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。
综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。
二灰渣输送线操作参数选取按输送系统输送距离最长的部分(余热锅炉灰斗至渣仓)管线布置计算,灰渣输送管线的当量长度大于200m。
气力输送计算【范本模板】
气力输送计算
一、设计依据和主要参数确定
1、输送量(G)
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,此速度。
风速过高动力消耗过大。
动力消耗几乎与风速的三次方成正比。
风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料.所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。
通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值.一般输送粮粒的风速为20—25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。
我国粮食行业一般输送稻谷等粮粒时取υ=3-5。
我们根据实际情况取υ=4
4、风量(Q) 根据公式y
G Q υ==2.1410203⨯⨯=4.17×103 m 3/h y-空气的比重 取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1。
1×4.17×103=4。
58×103
m 3/h
5、输料管直径D 根据公式=⨯==22
1058.48.188.183V Q D 271.1 我们进行取整,得输料管直径D=300mm 。
6、压力损失(P)。