一次函数培优练习 (1)
人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案
期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
一次函数培优练习题(含答案)
稳固练习一、选择题:1.y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为〔〕〔A〕y=8x 〔B〕y=2x+6 〔C〕y=8x+6 〔D〕y=5x+32.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过〔〕〔A〕一象限〔B〕二象限〔C〕三象限〔D〕四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是〔〕〔A〕4 〔B〕6 〔C〕8 〔D〕164.假设甲、乙两弹簧的长度y〔cm〕与所挂物体质量x〔kg〕之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,那么y1与y2的大小关系为〔〕〔A〕y1>y2〔B〕y1=y2〔C〕y1<y2〔D〕不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•那么有一组a,b的取值,使得以下4个图中的一个为正确的选项是〔〕6.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过第〔〕象限.〔A〕一〔B〕二〔C〕三〔D〕四7.一次函数y=kx+2经过点〔1,1〕,那么这个一次函数〔〕〔A〕y随x的增大而增大〔B〕y随x的增大而减小〔C〕图像经过原点〔D〕图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限9.要得到y=-32x-4的图像,可把直线y=-32x〔〕.〔A〕向左平移4个单位〔B〕向右平移4个单位〔C〕向上平移4个单位〔D〕向下平移4个单位10.假设函数y=〔m-5〕x+〔4m+1〕x2〔m为常数〕中的y与x成正比例,那么m的值为〔〕〔A〕m>-14〔B〕m>5 〔C〕m=-14〔D〕m=511.假设直线y=3x-1与y=x-k的交点在第四象限,那么k的取值范围是〔〕.〔A〕k<13〔B〕13<k<1 〔C〕k>1 〔D〕k>1或k<1312.过点P〔-1,3〕直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作〔〕〔A〕4条〔B〕3条〔C〕2条〔D〕1条13.abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过〔〕〔A〕第一、二象限〔B〕第二、三象限〔C〕第三、四象限〔D〕第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,那么常数a的取值范围是〔〕〔A〕-4<a<0 〔B〕0<a<2〔C〕-4<a<2且a≠0 〔D〕-4<a<215.在直角坐标系中,A〔1,1〕,在x轴上确定点P,使△AOP为等腰三角形,那么符合条件的点P共有〔〕〔A〕1个〔B〕2个〔C〕3个〔D〕4个16.一次函数y=ax+b〔a为整数〕的图象过点〔98,19〕,交x轴于〔p,0〕,交y轴于〔•0,q〕,假设p为质数,q为正整数,那么满足条件的一次函数的个数为〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个18.〔2005年全国初中数学联赛初赛试题〕在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个19.甲、乙二人在如下图的斜坡AB上作往返跑训练.:甲上山的速度是a米/分,下山的速度是b米/分,〔a<b〕;乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t〔分〕,离开点A的路程为S〔米〕,•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t〔分〕与离开点A的路程S〔米〕•之间的函数关系的是〔〕20.假设k、b是一元二次方程x2+px-│q│=0的两个实根〔kb≠0〕,在一次函数y=kx+b 中,y随x的增大而减小,那么一次函数的图像一定经过〔〕〔A〕第1、2、4象限〔B〕第1、2、3象限〔C〕第2、3、4象限〔D〕第1、3、4象限二、填空题1.一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.一次函数y=〔m-2〕x+m-3的图像经过第一,第三,第四象限,那么m的取值范围是________.3.某一次函数的图像经过点〔-1,2〕,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.直线y=-2x+m不经过第三象限,那么m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•那么点P•的坐标为__________.6.过点P〔8,2〕且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年〔b≠a〕,他的退休金比原来的多q元,那么他每年的退休金是〔以a、b、p、•q•〕表示______元.9.假设一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•那么一次函数的解析式为________.10.〔湖州市南浔区2005年初三数学竞赛试〕设直线kx+〔k+1〕y-1=0〔为正整数〕与两坐标所围成的图形的面积为S k 〔k=1,2,3,……,2021〕,那么S 1+S 2+…+S 2021=_______. 11.据有关资料统计,两个城市之间每天的 通话次数T•与这两个城市的人口数m 、n 〔单位:万人〕以及两个城市间的距离d 〔单位:km 〕有T=2kmnd 的关系〔k 为常数〕.•现测得A 、B 、C 三个城市的人口及它们之间的距离如下图,且A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 次数为_______次〔用t 表示〕.三、解答题1.一次函数y=ax+b 的图象经过点A 〔2,0〕与B 〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,以下图表示他离家的距离y〔千米〕与所用的时间x 〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?5.一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=232的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,那么当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.写文章、出幅员书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购置甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购置甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购置甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购置甲商品的个数的2倍与预计购置乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付根本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的根本费和损消耗外,超过局部每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为〔1,a+b〕,•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;应选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过〔1,1〕,∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=〔m-5〕x+〔4m+1〕x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①假设a+b+c≠0,那么p=()()()a b b c c aa b c+++++++=2;②假设a+b+c=0,那么p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.〔13,3〕或〔53,-3〕.提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为〔13,3〕或〔53,-3〕.提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P 〔8,2〕代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为〔98,34〕,在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的 通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.〔1〕由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4〔•函数图象略〕.〔2〕∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.〔1〕∵z与x成正比例,∴设z=kx〔k≠0〕为常数,那么y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;〔2〕∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.〔1〕设一次函数为y=kx+b,将表中的数据任取两取,不防取〔37.0,70.0〕和〔42.0,78.0〕代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.〔1〕由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.〔2〕设直线CD的解析式为y=k1x+b1,由C〔2,15〕、D〔3,30〕,代入得:y=15x-15,〔2≤x≤3〕.当x=2.5时,y=22.5〔千米〕答:出发两个半小时,小明离家.〔3〕设过E、F两点的直线解析式为y=k2x+b2,由E〔4,30〕,F〔6,0〕,代入得y=-15x+90,〔4≤x≤6〕过A、B两点的直线解析式为y=k3x,∵B〔1,15〕,∴y=15x.〔0≤x≤1〕,•分别令y=12,得x=265〔小时〕,x=45〔小时〕.答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B〔-2,y B〕,其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B〔-2,-2〕代入正比例函数y=kx,•得k=1.把点A〔-6,0〕、B〔-2,-2〕代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A〔-3,0〕,B〔0,∵点C坐标〔1,0〕由勾股定理得,设点D的坐标为〔x,0〕.〔1〕当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为〔52,0〕.设图象过B、D两点的一次函数解析式为y=kx+b,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.〔2〕假设点D在点C左侧那么x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D 点坐标为〔-14,0〕,∴图象过B、D〔-14,0〕两点的一次函数解析式为22,综上所述,满足题意的一次函数为222或22.9.直线y=12x-3与x轴交于点A〔6,0〕,与y轴交于点B〔0,-3〕,∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为〔0,8〕,设过CD的直线解析式为y=kx+8,将C〔4,0〕代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为〔225,-45〕. 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为〔-3,0〕,〔0,4〕•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′〔如图〕, 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt△BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.〔1〕y=200x+74000,10≤x ≤30〔2〕三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f 〔x 〕=x-x 〔1-20%〕20%〔1-30%〕=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000〔元〕.答:这笔稿费是8000元. 13.〔1〕设预计购置甲、乙商品的单价分别为a 元和b 元,那么原方案是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:〔a+1.5〕〔x-10〕+〔b+1〕y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:〔a+1〕〔x-5〕+〔b+1〕y=1563.5, ③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.〔2〕依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.那么y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2〔9-a〕+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,那么一月份的付款方式应选①式,那么8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.〔1〕由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400〔18-2x〕+800〔10-x〕+700〔10-x〕+500〔2x-10〕=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200〔5≤x≤9,x是整数〕.由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.〔2〕由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800〔10-x〕+300y+700〔10-y〕+•400〔19-x-y〕+500〔x+y-10〕=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩〔x,y为整数〕.W=-200x-300〔x+y〕+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300〔x+y〕+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册
人教版数学八年级下册第19章《一次函数》实际应用解答题培优(一)1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.在防疫工作稳步推进的过程中,复工复产工作也在如火如荼进行.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?收费方式月使用费(元)包时通话(分钟)超时通话(元/分钟)A12 0 0.2B18 40 0.34.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y 元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A 商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:5 10 15 …一次购买数量/个A商店花费/元500 …B商店花费/元600 …(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:2 5 10 12 20 30 …购买种子的数量/千克10 a50 58 b130 …付款金额/元(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x ﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y=;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y =200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克,根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y乙=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y乙=5x+20;当0≤x≤2时,设y乙与x的函数解析式为y乙=kx,可得2k=30,解得k=15,即y=15x;乙∴y乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m,开挖6小时,甲、乙两队挖的河渠的长度相差10m;故答案为:10;10;(4)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.11.解:(1)由图可知,升级前A生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A生产线每天生产口罩4×(1+20%)=4.8(万个),故答案为:4.8;(2)A生产线技术升级后,A生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B生产线从第8天开始生产到第15天的产能为56万个,所以每条B生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B生产线有x条,根据题意得:15×4.8+8x=136,解得:x=8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元),∴150+40﹣182=8(元),答:一起购买可省8元.。
北师大版版八年级上册数学 一次函数培优训练(详细,经典)
《一次函数》培优资料(1)专题一:一次函数的定义、图像及性质1.对于一次函数y = kx + k -1(k ? 0),下列叙述正确的是()A.当0 < k <1 时,函数图象经过第一、二、三象限B.当k > 0 时,y 随x 的增大而减小C.当k <1 时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(-1, -2)2.对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.3.直线y=kx+b 经过点(2,﹣4),且当3≤x≤6 时,y 的最大值为8 则k+b 的值为.4.两个一次函数y=ax+b与y=bx+a在同一坐标系中的图象大致是()5.如图,函数y=mx﹣4m(m 是常数,且m≠0)的图象分别交x 轴y 轴于点M、N,线段MN 上两点A、B(点B 在点A 的右侧),作AA1 ⊥x 轴,BB1⊥x 轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A 的面积S1 与△OB1B 的面积S2 的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定的6.已知直线y =- n x +n +11n +1(n 为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2018= .7.如图,在平面直角坐标系中,函数y=﹣2x+12 的图象分别交x 轴y 轴于A、B 两点,过点A 的直线交y 正半轴于点M,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)试在直线AM 上找一点P,使得S=S△AOM,请直接写出点P△ABP的坐标.8.点C 在直线AM 上,在坐标平面内是否存在点D,使以A、O、C、D 为顶点的四边形是正方形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.专题二:重要公式和结论1.直线y=kx+b过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k 的值为.2.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2 0),B(0,1),则直线BC 的解析式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式.4.如图,点A的坐标为(﹣2,0),点B在直线上运动,当点B 的坐标是时,线段AB 最短,最短距离为.5.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为.6.对于坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2 两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O 为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;7.设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b 上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4 的“转角距离”为10,求a 的值.专题三:直线与x轴正方向夹角和k的关系1.已知:一次函数的图象如图所示,则k= .2.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b 的表达式为.3.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为.4.如图,在平面直角坐标系中,直线l:y = 3 x ,直线l2:y =3x ,在3直线l1 上取一点B,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1 作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2 于点C1,得到四边形OA1B1C1;再以点B1 为对称中心,作O 点的对称点B2,过点B2 作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2 于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.5.已知,直线x +与x 轴,y 轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a 为坐标系中的一个动点.= ;(1)则三角形ABC 的面积S△ABC点C 的坐标为;(2)证明不论 a 取任何实数,△BOP 的面积是一个常数;(3)要使得△ABC 和△ABP 的面积相等,求实数a 的值.6.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A、B 两点,点A 的坐标为(1,0)∠ABO=30°,过点B 的直线y= x+m 与x 轴交于点C.(1)求直线l 的解析式及点C 的坐标.7.点D 在x 轴上从点C 向点A 以每秒1 个单位长的速度运动(0<t<4),过点D 分别作DE∥AB,DF∥BC,交BC、AB 于点E、F,连接EF,点G 为EF 的中点.①判断四边形DEBF 的形状并证明;②求出t 为何值时线段DG 的长最短.8.点P 是y 轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,说明理由.《一次函数》培优资料(2)专题四:一次函数与几何变换1. ( 1 )直线y = 2x +1 向下平移 3 个单位后的解析式是.( 2 )直线y = 2x +1 向右平移 3 个单位后的解析式是.2.如图,已知点 C 为直线y =x 上在第一象限内一点,直线y = 2x +1 交y轴于点A,交x 轴于B,将直线AB 沿射线OC 方向平移3 2 个单位,则平移后的直线的解析式为.yACBO x3.如图,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B (3,1),C(2,2),当直线与△ABC 有交点时,b 的取值范围是.4.在平面直角坐标中,已知点A(-2,3)、B(4,5),直线y=kx+1(k≠0 与线段AB 有交点,则k 的取值范围为.5.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为.6.如图,函数y=﹣2x+2 的图象分别与x 轴、y 轴交于A,B 两点,线段AB绕点A顺时针旋转90°得到线段AC,则直线AC的函数解析式是.7.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴y 轴上,点B 在第一象限,直线y=x+1 交y 轴于点D,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为.8.如图1,已知平行四边形ABCD,AB∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是平行四边形ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD,求点P 的坐标.(2)若点P 在边AB,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x﹣1 上,求点P 的坐标.解:(1)∵CD=6,∴点P 与点C 重合,∴点P 坐标为(3,4).(2)①当点P 在边AD 上时,∵直线AD 的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P 关于x 轴的对称点Q1(a,2a+2)在直线y=x﹣1 上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P 关于y 轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1 上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P 在边AB 上时,设P(a,﹣4)且1≤a≤7,若等P 关于x 轴的对称点Q2(a,4)在直线y=x﹣1 上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P 关于y 轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1 上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P 的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).9.若点P 在边AB,AD,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM,过点G 作x 轴的平行线GM,它们相交于点M,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)(3)①如图1 中,当点P 在线段CD 上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得,∴P (﹣,4)根据对称性可知,P(,4)也满足条件.②如图2 中,当点P 在AB 上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P 坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4)10.如图,直线l1 与x 轴、y 轴分别交于A、B 两点,直线l2 与直线l1 关于x 轴对称,已知直线l1 的解析式为y=x+3,(1)求直线l2 的解析式;y=﹣x﹣3(2)过A 点在△ABC 的外部作一条直线l3,过点B 作BE⊥l3 于E,过点C 作CF⊥l3 于F,请画出图形并求证:BE+CF=EF;(2)如图.BE+CF=EF.∵直线l2 与直线l1 关于x 轴对称,∴AB=AC,∵l1 与l2 为象限平分线的平行线,∴△OAC 与△OAB 为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P,过P 点的直线与AC 边的延长线相交于点Q,与y 轴相交于点M,且BP=CQ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.(3)①对,OM=3过Q 点作QH⊥y 轴于H,直线l2 与直线l1 关于x 轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM ∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM= BC=3.例1对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1 次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A. B. C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C 的坐标为(7,6),求出点B的坐标及n的值.例2 已知,在平面直角坐标系中,正方形ABOC的顶点在原点.(1)如图,若点C 的坐标为(-1,3),求A点坐标;(2)如图,点F 在AC 上,AB 交x 轴于点E。
《一次函数》培优题[含答案解析]
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
第五章 一次函数单元培优训练(一)及答案
第五章 一次函数单元培优训练(一)一.选择题1.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )2.已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( ) A .第一象限B . 第二象限C . 第三象限D . 第四象限3.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )23.≥x A 3.≤x B 23.≤x C 3.≥x D4.已知点M (1,a )和点N (2,b )是一次函数y =﹣2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD.以上都不对5.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时 6.对于函数y =-3x +1,下列结论正确的是( )A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大7.如图,一次函数y =(m -2)x -1的图象经过二、三、四象限,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <28.若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的图象可能是( )9.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1, 0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D .8210.小高骑自行车从家上学,先走上坡路达到A ,再走下坡路到达B ,最后平路到达学校,所 用时间与路程关系如图所示.放学后,他沿原路返回,且上坡、下坡、平路的速度分别与上学时保持一致,那么他从学校到家用的时间是( ) A .14分钟 B .17分钟 C .18分钟 D .20分钟第9题A B CO yx二.填空题11.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是12.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米. 13.如图,直线y =﹣x +m 与y =nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +4n >0的整数解为________14.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则的值是15.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b 1﹣b 2等于16.若直线l 与直线21y x =-关于y 轴对称,则直线l 的解析式为____________17.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过______分钟,容器中的水恰好放完.18.如图所示,函数x y =1和21433y x =+的图象相交于(-1,1),(2,2)两点.当21y y > 时,x 的取值范围是________________19.如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图8所示,那么△ABC 的面积是 20.已知直线(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3++S 2014= 三.解答题21.某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?2n 2y x n 1n 1=-+++22.已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图①),上周货运量折线统计图(如图②)等信息如下: 货运收费项目及收费标准表(1)汽车的速度为_______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y 汽>y 火; (总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?图①120 200 O图 ②参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案C A A A C C D C C D三.解答题21.解:(1)根据题意知,调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台, 电冰箱(x-10)台,则y=200x+170(70-x)+160(40-x)+150(x-10),即y=20x+16800∵0, 700, 400,100, xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩∴10≤x≤40.∴y=20x+168009 (10≤x≤40);(2)按题意知:y=(200-a)x+170(70-x)+160(40-x)+150(x-10),即y=(20-a)x+16800.∵200-a>170,∴a<30.当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;22.解:(1)60,100.(2)依题意,得y 汽=240⨯2x +24060⨯5x +200.y 汽=500x +200.y 火=240⨯1.6x +240100⨯5x +2280.y 火=396x +2280.若y 汽>y 火,得500x +200>396x +2280,∴x >20.。
浙教版2022-2023学年八上数学第5章 一次函数 培优测试卷1(解析版)
浙教版2022-2023学年八上数学第5章 一次函数 培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )A .金额B .数量C .单价D .金额和数量 【答案】D【解析】常量是固定不变的量,变量是变化的量, 单价是不变的量,而金额是随着数量的变化而变化, 故答案为:D .2.如图,三个正比例函数的图象分别对应表达式:将a ,b ,c 从小到大排列为( ) ①y=ax ;②y=bx ;③y=cxA .a <b <cB .a <c <bC .b <a <cD .c <b <a 【答案】B【解析】根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则a <c <b . 故答案为:B .3.对于函数y =﹣2x+1,下列结论正确的是( ) A .y 值随x 值的增大而增大B .它的图象与x 轴交点坐标为(0,1)C .它的图象必经过点(﹣1,3)D .它的图象经过第一、二、三象限 【答案】C【解析】∵k =﹣2<0,∴y 值随x 值的增大而减小,结论A 不符合题意; ∵当y =0时,﹣2x+1=0,解得:x = 12,∴函数y =﹣2x+1的图象与x 轴交点坐标为( 12,0),结论B 不符合题意;∵当x =﹣1时,y =﹣2x+1=3,∴函数y =﹣2x+1的图象必经过点(﹣1,3),结论C 符合题意; ∵k =﹣2<0,b =1>0,∴函数y =﹣2x+1的图象经过第一、二、四象限,结论D 不符合题意. 故答案为:C .4.如图,函数y =2x 和y =ax +4的图象相交于点A(32,3),则不等式2x <ax +4的解集为( )A .x <32B .x <3C .x >32D .x >3【答案】A【解析】根据函数图象得,当x <32时,2x <ax +4.故答案为:A.5.下列对一次函数y =ax+4x+3a ﹣2(a 为常数,a≠﹣4)的图象判断正确的是( ) A .图象一定经过第二象限B .若a >0,则其图形一定过第四象限C .若a >0,则y 的值随x 的值增大而增大D .若a <4,则其图象过一、二、四象限 【答案】C【解析】 y =(a +4)x +3a −2 ,当 a <−4 时, a +4<0,3a −2<0, 图象经过第二、三、四象限.y 的值随x 的增大而减小.当 −4<a <23 时, a +4>0,3a −2<0, 图象经过第一、三、四象限.y 的值随x 的增大而增大.当 a >23时, a +4>0,3a −2>0, 图象经过第一、二、三象限.y 的值随x 的增大而增大.综合分析,只有C 符合题意. 故答案为:C.6.如果点 A(m +1,n −1) 、 B(m −2,n +5) 均在一次函数 y =kx +b(k ≠0) 的图象上,那么 k 的值为( ) A .2 B .3 C .-3 D .-2 【答案】D【解析】∵点A (m+1,n -1)、B (m -2,n+5)均在一次函数y=kx+b (k≠0)的图象上,∴{k(m +1)+b =n −1,①k(m −2)+b =n +5,② ,①-②解得k=-2. 故选:D .【分析】直接把两点代入一次函数y=kx+b (k≠0),求出k 的值即可.7.一次函数 y =mx +n 与正比例函数 y =mnx (m ,n 为常数、且 mn ≠0 )在同一平面直角坐标系中的图可能是( )A .B .C .D .【答案】C【解析】A 、∵直线y=mx+n 经过第一,二,三象限 ∴m >0,n >0, ∴mn >0,∴直线y=mnx 经过第一,三象限,故A 不符合题意; B 、∵直线y=mx+n 经过第一,四,三象限 ∴m >0,n <0, ∴mn <0,∴直线y=mnx 经过第二,四象限,故B 不符合题意; C 、∵直线y=mx+n 经过第一,四,三象限 ∴m >0,n <0,∴mn <0,∴直线y=mnx 经过第二,四象限,故C 符合题意; D 、∵直线y=mx+n 经过第一,四,二象限 ∴m <0,n >0, ∴mn <0,∴直线y=mnx 经过第二,四象限,故D 不符合题意; 故答案为:C.8.已知一次函数 y =−2x −2 ,图象与 x 轴、 y 轴交点 A 、 B 点,得出下列说法: ①A (−1,0) , B(0,−2) ; ②A 、 B 两点的距离为5; ③ΔAOB 的面积是2;④当 y ≥0 时, x ≤−1 ; 其中正确的有( ) A .1个 B .2个 C .3个 D .4个 【答案】B【解析】∵在一次函数 y =−2x −2 中,当 y =0 时 x =−1 ∴A (−1,0)∵在一次函数 y =−2x −2 中,当 x =0 时 y =−2 ∴B(0,−2) ∴①符合题意;∴AB 两点的距离为 √(0+1)2+(−2−0)2=√5∴②是错的;∵S ΔAOB =12OA •OB , OA =1 , OB =2∴S ΔAOB =12×1×2=1∴③是错的;∵当 y ≥0 时, −2x −2≥0 ∴−2x ≥2 , x ≤−1 ∴④是正确的;∴说法①和④是符合题意 ∴正确的有2个 故答案为:B .9.一次函数y =54x −15的图象与x 轴、y 轴分别交于点A 、B ,O 为坐标原点,则在△OAB 内部(包括边界),纵坐标、横坐标都是整数的点共有( ) A .90个 B .92个 C .104个 D .106个 【答案】D【解析】当x =0时,y =﹣15, ∴B (0,﹣15),当y =0时,0=54x ﹣15,∴x =12, ∴A (12,0),x =0时,y =﹣15,共有16个纵坐标、横坐标都是整数的点,x =1时,y =54×1﹣15=﹣1334,共有14个纵坐标、横坐标都是整数的点,同理x =2时,y =﹣1212,共有13个纵坐标、横坐标都是整数的点,x =3时,y =﹣1114,共有12个纵坐标、横坐标都是整数的点,x =4时,y =﹣10,共有11个纵坐标、横坐标都是整数的点, x =5时,y =﹣834,有9个纵坐标、横坐标都是整数的点,x =6时,y =﹣712,有8个纵坐标、横坐标都是整数的点,x =7时,y =﹣614,有7个纵坐标、横坐标都是整数的点x =8时,y =﹣5,共有6个纵坐标、横坐标都是整数的点, x =9时,y =﹣334,共有4个纵坐标、横坐标都是整数的点,x =10时,y =﹣212,共有3个纵坐标、横坐标都是整数的点,x =11时,y =﹣114,共有2个纵坐标、横坐标都是整数的点, x =12时,y =0,共有1个即A 点,纵坐标、横坐标都是整数的点.在△OAB 内部(包括边界),纵坐标、横坐标都是整数的点有16+14+13+12+11+9+8+7+6+4+3+2+1=106个. 故答案为:D .10.如图,直线y =−43x +4与x 轴交于点B ,与y 轴交于点C ,点E(1,0),D 为线段BC 的中点,P为y 轴上的一个动点,连接PD 、PE ,当△PED 的周长最小时,点P 的坐标为( )A .(0,45)B .(0,1)C .(1,0)D .(0,32)【答案】A【解析】如图,作点E 关于y 轴的对称点F ,连接DF ,交y 轴于点Q ,则QE =QF ,连接PF ,∵△PED 的周长=PD +PE +DE =PF +PE +PD ≥DF +DE ,点D ,E 是定点,则DE 的长不变, ∴当PQ 重合时,△PED 的周长最小,由y =−43x +4,令x =0,y =4,令y =0,则x =3∴B(3,0),C(0,4)△D 是BC 的中点 △D(32,2)△E(1,0),点F 是E 关于y 轴对称的点 △F(−1,0)设直线DF 的解析式为:y=kx+b ,将D(32,2),F(−1,0)代入, 0=−k+b2=32k+b 解得k=45b=45△直线DF 的解析式为:y=45x+45 令x=0,则y=45 即P(0,45)故答案为:A二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.在圆的面积公式S=πR 2中,常量是 . 【答案】π【解析】∵保持不变的量是常量, ∴其中的π是常量.12.若直线y =2x +3下移后经过点(5,1),则平移后的直线解析式为 . 【答案】y =2x −9【解析】设平移后的解析式为:y=2x+b , ∵将直线y=2x+3下移后经过点(5,1), ∴1=10+b ,解得:b =−9,故平移后的直线解析式为:y =2x −9. 故答案为:y =2x −9.13.小明放学后步行回家,他离家的路程s (米)与步行时间t (分钟)的函数图象如图所示,则他步行回家的平均速度是 米/分钟.【答案】80【解析】由图知,他离家的路程为1600米,步行时间为20分钟, 则他步行回家的平均速度是:1600÷20=80(米/分钟), 故答案为:80.14.已知一次函数 y =kx +b (k 、b 是常数, k ≠0 )的图象与x 轴交于点 (2,0) ,与y 轴交于点 (0,m) .若 m >1 ,则k 的取值范围为 .【答案】k <−12【解析】∵一次函数 y=kx+b ( k 、b 是常数, k≠0 )的图象与x 轴交于点 (2,0) ,与y 轴交于点 (0,m) ,∴{m =b 0=2k +b , ∴m =−2k , ∵m >1 ,∴−2k >1 ,即 k <−12 .故答案为: k <−12.15.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n 天(n≥2)应收租金 元. 【答案】0.5n+0.6【解析】当租了n 天(n≥2),则应收钱数: 0.8×2+(n -2)×0.5, =1.6+0.5n -1, =0.5n+0.6(元).答:共收租金0.5n+0.6元. 故答案为:0.5n+0.6.16.当m ,n 是正实数,且满足m+n =mn 时,就称点P (m , mn)为“完美点”.已知点A (1,6)与点B 的坐标满足y =﹣x+b ,且点B 是“完美点”.则点B 的坐标是 . 【答案】(4,3)【解析】将点A (1,6)代入y=-x+b , 得b=7,则直线解析式为:y=-x+7, 设点B 坐标为(x ,y ), ∵点B 满足直线y=-x+7, ∴B (x ,-x+7), ∵点B 是“完美点”,∴{m =x m n=−x +7① ∵m+n=mn ,m ,n 是正实数, ∴mn +1=m ②将②代入①得: {m =xm −1=−x +7 解得x=4,∴点B 坐标为(4,3), 故答案为:(4,3)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.已知一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1) (1)(1)直接写出方程组 {mx +y =33x −y =n的解;(2)求m 和n 的值. 【答案】解:(1)∵一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1),∴方程组{mx +y =33x −y =n的解是 {x =2y =−1;(2)将P (2,﹣1)代入y=﹣mx+3, 得﹣2m+3=﹣1, 解得m=2,将P (2,﹣1)代入y=3x ﹣n , 得6﹣n=﹣1, 解得n=7.(1)解:∵一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1),∴方程组{mx +y =33x −y =n的解是 {x =2y =−1;(2)(2)解:将P (2,﹣1)代入y=﹣mx+3, 得﹣2m+3=﹣1, 解得m=2,将P (2,﹣1)代入y=3x ﹣n , 得6﹣n=﹣1, 解得n=7. 18.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M (2,a )是“理想点”,且在正比例函数y=kx (k 为常数,k≠0)图象上,求这个正比例函数的表达式.(2)函数y=3mx ﹣1(m 为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m 的代数式表示出“理想点”的坐标;若不存在,请说明理由. 【答案】(1)解:∵点M (2,a )是正比例函数y=kx (k 为常数,k≠0)图象上的“理想点”,∴a=4,∵点M (2,4)在正比例函数y=kx (k 为常数,k≠0)图象上, ∴4=2k , 解得k=2∴正比例函数的解析式为y=2x(2)解:假设函数y=3mx ﹣1(m 为常数,m≠0)的图象上存在“理想点”(x ,2x ), 则有3mx ﹣1=2x , 整理得:(3m ﹣2)x=1,当3m ﹣2≠0,即m≠ 23 时,解得:x= 13m−2 ,当3m ﹣2=0,即m= 23 时,x 无解,综上所述,当m≠ 23 时,函数图象上存在“理想点”,为( 13m−2 , 23m−2);当m= 23时,函数图象上不存在“理想点”19.某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正(2)设三人间共住了x 人,则双人间住了 人,一天一共花去住宿费用y 元表示,写出y 与x 的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么? 【答案】(1)解:设三人间普通客房住了x 间,双人间普通客房住了y 间.根据题意得:{3x +2y =5050×50%×3x +70×50%×2y =1510解得: {x =8y =13 ∴三人间普通客房住了8间,双人间普通客房住了13间 (2)(50−x);y =−10x +1750(3)解: 不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元 【解析】(2) (50−x) ;根据题意得: y =25x +35(50−x) 即 y =−10x +175020.小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min 后距出发点的距离为y m .图中折线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(2,0).(1)A 点所表示的实际意义是 ; OM MA= ;(2)求出AB 所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇? 【答案】(1)小亮出发 103 分钟回到了出发点;32(2)解:由(1)可得A 点坐标为( 103 ,0),设y=kx+b ,将B (2,480)与A ( 103,0)代入,得:{480=2k +b0=103k +b, 解得 {k =−360b =1200.所以y=﹣360x+1200(3)解:小刚上坡的平均速度为240×0.5=120(m/min ), 小亮的下坡平均速度为240×1.5=360(m/min ),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m 没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min ).(或求出小刚的函数关系式y=120x ,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.) 【解析】(1)根据M 点的坐标为(2,0),则小亮上坡速度为: 4802=240(m/min ),则下坡速度为:240×1.5=360(m/min ),故下坡所用时间为: 480360 = 43(分钟),故A 点横坐标为:2+ 43 = 103 ,纵坐标为0,得出实际意义:小亮出发 103分钟回到了出发点;OM MA = 243= 32 .故答案为:小亮出发 103 分钟回到了出发点; 32.21.如图,直线l 1的解析表达式为y=- 12x -1,且l 1与x 轴交于点D ,直线l 2经过定点A (2,0),B (-1,3),直线l 1与l 2交于点C .(1)求直线l 2的函数关系式; (2)求△ADC 的面积; (3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请写出点P 的坐标. 【答案】(1)解:设l 2的函数关系式为:y=kx+b , ∵直线过A (2,0),B (-1,3),∴{2k +b =0−k +b =3 ,解得: {k =−1b =2 , ∴l 2的函数关系式为:y=-x+2(2)解:∵l 1的解析表达式为y=- 12x -1,∴D 点坐标是(-2,0), ∵直线l 1与l 2交于点C .∴{y =−12x −1y =−x +2,解得 {x =6y =−4 , ∴C (6,-4),△ADC 的面积为: 12 ×AD×4= 12×4×4=8(3)解:∵△ADP 与△ADC 的面积相等,∴△ADP 的面积为8,∵AD 长是4,∴P 点纵坐标是4, 再根据P 在l 2上,则4=-x+2,解得:x=-2,故P点坐标为:(-2,4)22.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?【答案】(1)兔子;乌龟;1500(2)解:结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米),乌龟每分钟爬50米.(3)解:700÷50=14(分钟),乌龟用了14分钟追上了正在睡觉的兔子.(4)解:∵48千米=48000米,∴48000÷60=800(米/分),(1500−700)÷800=1(分钟),30+0.5−1×2=28.5(分钟),兔子中间停下睡觉用了28.5分钟.【解析】(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC表示赛跑过程中兔子的路程与时间的关系;线段OD表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;23.已知直线l1:y=﹣34x+3与直线l2:y=kx﹣163交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.(1)求k的值,并作出直线l2图象;(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;(3)若点M 、N 分别是x 轴上、线段AC 上的动点(点M 不与点O 重合),是否存在点M 、N ,使得△ANM△△AOC ?若存在,请求出N 点的坐标;若不存在,请说明理由. 【答案】(1)解:∵直线l 1:y=﹣ 34x+3与x 轴交于点A ,∴令y=0时,x=4,即A (4,0),将A (4,0)代入直线l 2:y=kx ﹣ 163 ,得k= 43,直线l 2图象如图1所示;(2)解:设P (a ,b ),根据题意得:S △ACP =S △ABC ﹣S △PBC = 12 ×(3+ 163 )×4﹣ 12 ×(3+ 163)a=15,解得:a= 25 ,将P ( 25 ,b )代入直线l 1得:b= 25 ×(﹣ 34 )+3=﹣ 310 +3= 2710,∴点P 的坐标( 25 , 2710)(3)解:如图2,作ND△x 轴于D ,∵AC= √42+(163)2= 203 ,△ANM△△AOC ,∴AM=AC= 203 ,AN=AO=4,MN=OC= 163 ,△ANM=△AOC=90°,∵S △AMN = 12 AM•ND= 12AN•MN ,∴ND= AN⋅MN AM = 4×163203 = 165,将N 的纵坐标y=﹣ 165 代入直线l 2得:x= 85 ,∴当N 的纵坐标为( 85 ,﹣ 165)时,△ANM△△AOC24.如图,在平面直角坐标系中,点A (0,b )、B (a ,0)、D (d ,0),且a 、b 、d 满足 √a +1+|b −3|+(2−d)2=0,DE△x 轴且△BED=△ABD ,BE 交y 轴于点C ,AE 交x 轴于点F(1)求点A 、B 、D 的坐标;(2)求点E 、F 的坐标;(3)如图,点P (0,1)作x 轴的平行线,在该平行线上有一点Q (点Q 在点P 的右侧)使△QEM=45°,QE 交x 轴于点N ,ME 交y 轴的正半轴于点M ,求 AM−MQ PQ 的值.【答案】(1)解:∵√a +1+|b −3|+(2−d)2 =0, ∴a=﹣1,b=3,d=2, ∴A (0,3),B (﹣1,0),D (2,0)(2)解:∵A (0,3),B (﹣1,0),D (2,0), ∴OB=1,OD=2,OA=3, ∴AO=BD , 在△ABO和△BED 中, {∠ABO =∠BED ∠AOB =∠BDE =90°AO =BD , ∴△ABO△△BED (AAS ), ∴DE=BO=1, ∴E (2,1), 设直线AE 解析式为y=kx+b , 把A 、E 坐标代入,可得 {3=b 1=2k +b ,解得 {k =1b =3 , ∴直线AE 的解析式为y=﹣x+3, 令y=0,可解得x=3, ∴F (3,0)(3)解:如图,过E 作EG△OA ,EH△PQ ,垂足分别为G 、H ,在GA 上截取GI=QH ,∵E (2,1),P (﹣1,0), ∴GE=GP=GE=PH=2, ∴四边形GEHP为正方形, ∴△IGE=△EHQ=90°, 在Rt△IGE 和Rt△QHE 中, {GE =HE∠IGE =∠EHQ IG =QH, ∴△IGE△△QHE (SAS ), ∴IE=EQ ,△1=△2, ∵△QEM=45°, ∴△2+△3=45°, ∴△1+△3=45°, ∴△IEM=△QEM , 在△EIM 和△EQM 中, {IE =QE∠IEM =∠QEM ME =ME , ∴△EIM=EQM (SAS ),∴IM=MQ , ∴AM ﹣MQ=AM ﹣IM=AI , 由(2)可知OA=OF=3,△AOF=90°, ∴△A=△AEG=45°, ∴PH=GE=GA=IG+AI , ∴AI=GA ﹣IG=PH ﹣QH=PQ ,∴AM−MQ PQ = AI PQ =1.。
一次函数培优练习题(含答案)
一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。
2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。
3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。
4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。
5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。
6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。
7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。
8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。
9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。
10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。
11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。
12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。
13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。
改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。
答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。
一次函数培优(完美版)
一次函数培优(完美版)1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,),则不等式ax大于b的解集为()解:根据题意,该函数经过x轴交点为(-2,0),即-2a+b=0,解得b=2a。
由于图像经过一,二,三象限,即函数值同时为正、负、正,因此a的符号为正。
代入不等式ax>b 中,得到ax>2a,即x>2.因此,答案为A。
2、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________解:不等式左侧为两个绝对值的和,可以通过分段讨论的方法求解。
当x<1时,2|x-1|=-2x+2,3|x-3|=-3x+9,因此不等式化为-5x+11≤a。
当1≤x<3时,2|x-1|=2x-2,3|x-3|=-3x+9,因此不等式化为-x+7≤a。
当x≥3时,2|x-1|=2x-2,3|x-3|=3x-9,因此不等式化为5x-15≤a。
为了使不等式有解,必须满足-5x+11≤a和5x-15≤a都成立,即a≥11/2且a≥15/2,取最大值a=15/2,因此答案为15/2.3、已知实数a,b,c满足a+b+c≠0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?解:将a/b+c=b/c+a=c/a+b=k代入,得到a=k(b+c),b=k(c+a),c=k(a+b)。
将b+c=a/k代入第一个式子,得到a=k(a/k),即a=c+b。
因此,a,b,c三个数相等,且都不为0.将a=b=c代入直线方程y=kx-3中,得到y=kx-3a。
因为a不为0,所以直线不经过原点,因此必定经过第二、第三、第四象限。
答案为第二、第三、第四象限。
4、已知一次函数y=ax+b的图象过(,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 解:由于图象过(,2)点,因此b=2.又因为图形是等腰直角三角形,所以另外两个交点的横坐标相等,即函数值为0时的横坐标相等。
八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版
可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。
【教师卷】初中数学八年级数学下册第十九章《一次函数》习题(培优)(1)
一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y <D .不确定A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0 B .m <0C .m >2D .m <2D解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D . 【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.4.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .A解析:A 【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m < B .12m >C .m 1≥D .1m <A解析:A 【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围. 【详解】 解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上, ∴当-1<3时,由题意可知y 1>y 2, ∴y 随x 的增大而减小, ∴2m-1<0,解得m <12, 故选:A . 【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <D 解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确; D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.9.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112A.3 B.﹣5 C.6 D.不存在C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】 解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩,解得:21a b =⎧⎨=-⎩,∴2x ﹣1=11, 解得:x =6. 故选:C . 【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.10.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于解析:B 【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案. 【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交= 故选:B . 【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.二、填空题11.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围. 【详解】解:(1)方程组y kx by mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<. 【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法. 12.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤ 【分析】根据一次函数的定义进行一一判断. 【详解】 ①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x=-是一次函数,⑤()222121y x x x x =--+=+是一次函数. 故答案为:①②④⑤. 【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.13.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可. 【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米,∴父子共用时间20-20÷5=16秒, ∴儿子的速度为10016=254米/秒, 故答案为:254.【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 14.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考 解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可. 【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限, ∴20a -<, 解得:2a <,224496a a a a -++-+ ()()2223a a =-+-23a a =-+- 23a a =-+- 52a =-,故答案为:52a -. 【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b >0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160800153÷=; 25分~35分的速度:(800500)1030-÷=; 45分~50分的速度:5005100÷=;∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.16.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩, ∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.17.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______. 【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩ 【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?解析:(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标;(2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.解析:(1)332y x =-+,点B 的坐标是()0,3;(2)一次函数的图象如图所示;见解析;(3)ABP ∆的面积为3或9.【分析】(1)利用待定系数法求出解析式,令y=0求出x 的值得到点B 的坐标;(2)利用描点法画出函数图象;(3)根据2OP OA =,得到A 1P 1=2或A 1P 2=6,再利用三角形的面积公式计算得出答案.【详解】(1)把点()2,0A 的坐标代入3y kx =+中,得230k +=, 解得32k =-, 所以,一次函数表达式为332y x =-+,当0x =,y=3,所以,点B 的坐标是()0,3;(2)一次函数的图象如图所示;(3)因为点A 的坐标是()2,0A ,所以2OA =,因为点P 在x 轴上,且2OP OA =,所以OP=2OA=4,∴AP 1=2或AP 2=6, ∴111123322ABP S AP OB ∆=⨯⨯=⨯⨯=; 221163922ABP S AP OB ∆=⨯⨯=⨯⨯=, 所以,ABP ∆的面积为3或9.【点睛】此题考查待定系数法求函数的解析式,一次函数与坐标轴的交点坐标,描点法画一次函数的图象,分类思想求一次函数图象构成的三角形的面积.23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长.(2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 解析:(1)5;(2)1612,55F ⎛⎫-⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合,OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯, 即1153422FG ⨯⨯=⨯⨯,125FG =, 在Rt OFG △中,由勾股定理得:22165OG OF FG =-=, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.解析:(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】(1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时; (4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?解析:(1)3种;(2)4320元;(3)当010m <<时,安排生产A 校服48套时,可获最大利润;当10m =时,生产利润定值是4800元;当10m >时,安排生产A 校服50套,可获最大利润【分析】(1)设生产A 校服x 套,根据题意列方程组并求解,结合x 为整数,即可得到答案; (2)设总利润为y ,结合(1)的结论,根据题意列一次函数,再结合一次函数的性质分析,可得到最大利润;(3)结合(2)的结论,根据一次函数的性质,对m 的取值分三种情况分析,即可完成求解.【详解】(1)设生产A 校服x 套,则生产B 校服()80x -套根据题意得:250280(80)20900250280(80)20960x x x x +-≥⎧⎨+-≤⎩解得:4850x ≤≤又∵x 为整数∴x 只能取48,49,50∴厂家共有3种方案可供选择;(2)设总利润为y结合题意,A 校服利润为30025050-=,B 校服利润为34028060-=()50608010+4800y x x x =+-=-100-<∴y 随x 的增大而减小∴当48x =时,y 最大,最大值为480010484320-⨯=(元)∴当生产A 校服48套时,有最大利润4320元;(3)根据题意得:()()506080y m x x =++-()104800m x =-+当010m <<时,100m -<,y 随x 增大而减小∴安排生产A 校服48套时,可获最大利润,此时生产B 校服32套;当10m =时,4800y =,即生产利润定值为4800元,3种方案一样的利润; 当10m >时,100m ->,y 随x 增大而增大∴安排生产A 校服50套时,可获最大利润,此时生产B 校服30套.【点睛】本题考查了一元一次不等式组、一次函数的知识;解题的关键是熟练掌握一元一次不等式组、一次函数的性质,并运用到实际问题中,从而完成求解.26.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x 名,801班师生景区游览的门票总费用为y 元,请用x 的代数式表示y . (2)若师生门票总费用y 不超过858元,问至少有几名学生.解析:(1)y=12x+810;(2)至少有41名学生【分析】(1)根据总费用=老师费用+学生费用列出关系式即可;(2)根据总费用不超过858元列出不等式,求解即可解答.【详解】(1)根据题意得:y=30x+30×0.6×(45﹣x )=12x+810,故总费用y=12x+810;(2)由题意得:12x+810≤858,解得:x≤4,则45﹣x≥41,故至少有41名学生.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,理解题意,正确列出函数关系式是解答的关键.27.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.解析:(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】 (1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =,(2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键. 28.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2,(1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3)在(2)的条件下,求出△AOB 的面积;解析:(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4 【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.。
八年级数学人教版下册第19章《一次函数》培优综合专练(一)
2020-2021学年八年级下册第19章《一次函数》培优综合专练(一)1.一次函数y 1=ax ﹣a +1(a 为常数,且a ≠0).(1)若点(﹣1,3)在一次函数y 1=ax ﹣a +1的图象上,求a 的值; (2)当﹣1≤x ≤2时,函数有最大值5,求出此时一次函数y 1的表达式;(3)对于一次函数y 2=kx +2k ﹣4(k ≠0),若对任意实数x ,y 1>y 2都成立,求k 的取值范围.2.如图,一次函数l 1:y =2x ﹣2的图象与x 轴交于点D ,一次函数l 2:y =kx +b 的图象与x 轴交于点A ,且经过点B (3,1),两函数图象交于点C (m ,2).(1)求m ,k ,b 的值;(2)根据图象,直接写出1<kx +b <2x ﹣2的解集.3.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,两人同时出发,匀速行驶,已知摩托车速度小于汽车速度,各自到达终点后停止,设甲、乙两人间的距离为s (km ),行驶的时间为t (h ),s 与t 之间的函数关系如图所示,结合图象回答下列问题: (1)甲的速度为 km /h ,乙的速度为 km /h ;(2)求出图中a、b的值;(3)何时两人相距20km?4.一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y(单位:升)与时间x(单位:分钟)之间的关系如图所示.(1)每分钟进水多少升?(2)当4<x≤12时,求y关于x的函数解析式;(3)容器中储水量不低于15升的时长是多少分钟?5.已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?6.已知一次函数y=kx+b的图象经过点M(0,2)、N(﹣3,﹣1)两点.(1)画出这个函数的图象;(2)当x=时,y=0.7.某班“数学兴趣小组”对函数y=|x+3|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣7 ﹣6 ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 …y… 4 3 m 1 0 1 2 3 4 …其中,m=.(2)如图,在平面直角坐标系xOy中,画出函数图象.(3)进一步探究函数图象发现:①函数图象与直线y=﹣x有交点,所以对应的方程|x+3|=﹣x有个解;②关于x的方程|x+3|=ax(a≠0)有两个不相同的解时,a的取值范围是.8.疫情复学后,某校借助小型飞行器监测学生课间休息情况,以便及时提醒学生们保持社交距离.一天,甲飞行器所在高度与上升时间的函数关系如图所示;乙飞行器从15m高度,以0.5m/min的速度上升.两个飞行器同时起飞,都匀速上升了h米.(1)分别求出甲、乙两个飞行器所在高度y(单位:m)与上升时间为x(单位:min)之间的函数关系式;(2)当x=30min时,甲、乙两个飞行器的高度相差多少米?(3)在某时刻甲、乙两个飞行器能否位于同一高度?如果能,求此时两个飞行器高度;如果不能,请说明理由.9.小华为一个长方形娱乐场所提供了如图所示的设计方案,其中半圆形休息区和长方形游泳区外的地方都是绿地.如果这个娱乐场所需要有一半以上的绿地,并且它的长与宽之间满足a=b,而小华设计的m,n分别是a,b的,那么:(1)求绿地面积;(结果用代数式表示,代数式中的字母只含有b)(2)小华的设计方案是否符合要求 .(填“符合要求”或“不符合要求”)10.阅读理解材料一:平面内任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为:AB =,特别地,当两个点同时在x 轴或y 轴上,或者两点所在直线平行于x 轴或y 轴时,两点间的距离公式可化简为的|x 2﹣x 1|或|y 2﹣y 1|;材料二:如图1,点M ,N 在直线l 的两侧,在直线l 上找一点H ,使得|MH ﹣HM |的值最大.解题思路:如图2,作点N 关于直线l 的对称点N 1,连接MN 1,并延长,交直线l 于点H ,则点M ,N 1之间的距离即为|MH ﹣HN |的最大值. 请根据以上材料解决下列问题:(1)已知点P ,Q 在平行于y 轴的直线上,点P (3a ﹣4,8﹣a )在一三象限的角平分线上,PQ =2,求点Q 的坐标;(2)如图,在平面直角坐标系中,点E (﹣2,0),点F (﹣3,4),请在直线y =﹣x 上找一点G ,使得|EG ﹣FG |最大,求出|EG ﹣FG |的最大值及此时点G 的坐标.参考答案1.解:(1)把(﹣1,3)代入y =ax ﹣a +1得﹣a ﹣a +1=3,解得a =﹣1; (2)①a >0时,y 随x的增大而增大,则当x =2时,y 有最大值5,把x =2,y =5代入函数关系式得5=2a ﹣a +1,解得a =4; ②a <0时,y 随x 的增大而减小,则当x =﹣1时,y 有最大值5,把x =﹣1,y =5代入函数关系式得 5=﹣a ﹣a +1,解得a =﹣2,所以a =4或a =﹣2; (3)依题意,得k =a , ∴y 1=kx ﹣k +1,∵对任意实数x ,y 1>y 2都成立, ∴2k ﹣4<﹣k +1, 解得k <, ∴k 的取值范围是k <.2.解:(1)∵点C 在直线l 1:y =2x ﹣2上, ∴2=2m ﹣2, 解得m =2;∵点C (2,2)、B (3,1)在直线l 2上, ∴, 解得:;(2)由图象可得,不等式组1<kx +b <2x ﹣2的解集为2<x <3.3.解:(1)由图象可得:甲骑摩托车的速度为:120÷3=40(千米/小时), 设乙开汽车的速度为a 千米/小时,则=1,解得:a =80,经检验:a =80是分式方程的根, ∴乙开汽车的速度为80千米/时.故答案为:40;80;(2)由(1)可知,b=120÷(40+80)=1;a=40×1.5=60;(3)设x小时后两人相距20km,根据题意,得(40+80)x=120﹣20或(40+80)x=120+20,解得x=或x=.答:小时或小时后两人相距20km.4.解:(1)根据题意,每分钟进水20÷4=5(升);(2)当4<x≤12时,设y随x变化的函数解析式为y=kx+b.∵图象过(4,20)、(12,30),∴,解得,∴;(3)由图象可得,每分钟的出水量为(升),当0<x<4时,(分钟),当x>12时,(分钟),所以容器中储水量不低于15升的时长是(12+4)﹣3=13(分钟).5.解:(1)∵一次函数y=(2﹣k)x﹣k2+4的图象y随x的增大而减小,∴2﹣k<0,解得:k>2,∴当k>2时,y随x的增大而减小;(2)∵一次函数y=(2﹣k)x﹣k2+4的图象经过原点,∴,解得:k=﹣2,∴当k=﹣2时,它的图象经过原点.6.解:(1)如图,(2)当x=﹣2时,y=0.故答案为﹣2.7.解:(1)x=﹣5时,y=|x+3|=2,故m=2,故答案为2.(2)函数图象如图所示:(3)①函数图象与直线y=﹣x有1个交点,所以对应的方程|x+3|=﹣x有1个实数根;故答案为1个,1;②把x=﹣3,y=0,代入y=ax解得,a=0,当y=ax与直线y=﹣x﹣3时,k=﹣1,∴关于x的方程|x+3|=ax(a≠0)有两个不相同的解时,则a的取值范围是﹣1<a<0,故答案为﹣1<a<0.8.解:(1)由题意可得,y甲=5+x,当y甲=h时,h=5+x,得x=h﹣5,y乙=15+0.5x;当y乙=h时,h=15+0.5x,得x=2h﹣30,即y甲=5+x(0≤x≤h﹣5),y乙=15+0.5x(0≤x≤2h﹣30);(2)当x=30时,y甲=5+30=35,y乙=15+0.5×30=30,35﹣30=5(m),即当x=30min时,甲、乙两个飞行器的高度相差5米;(3)在某时刻甲、乙两个飞行器能位于同一高度,5+x=15+0.5x,解得,x=20,∴5+x=25,即第20min时,甲、乙两个飞行器位于同一高度,这一高度是25米.9.解:(1)绿地面积:ab﹣mn﹣πn2;(2)设计合理.理由:由已知,得a=b,m=a,n=b,所以(ab﹣mn﹣πn2)﹣ab=•b2>0,∴ab﹣mn﹣πn2>ab,即小亮设计的游泳池面积符合要求,故答案为:符合要求.10.解:(1)∵点P(3a﹣4,8﹣a)在一三象限的角平分线上,∴3a﹣4=8﹣a,∴a=3,∴P(5,5),∵点P,Q在平行于y轴的直线上,∴Q点的横坐标为5,∵PQ=2,∴Q(5,7)或(5,3);(2)作点E关于y=﹣x的对称点为E'(0,2),作直线E'F与y=x的交点即可所求点G;百度文库精品文档∵GE=GE′,∴|EG﹣FG|=|E'G﹣FG|=E'F,∵F(﹣3,4),∴EF==,设直线E′F的解析式为y=kx+b,∴,解得,∴直线E'F的解析式为y=﹣x+2,联立:,解得,∴Q(﹣6,6),∴|EG﹣FG|的最大值是,此时点Q的坐标(﹣6,6).。
八年级数学(一次函数)培优测试题
八年级数学(一次函数)培优辅导题1.以下关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.一次函数y=kx+6.y 随x 的增大而减小,那么此一次函数的图象只是 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.以下函数,y 随x 增大而减小的是( )A .y=xB .y=x –1C .y=x+1D .y=–x+14.以下各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(5. 以下各点在函数y =3x +1的图象上的是( ).A .(3,5)B .(-2,3)C .(2,7)D .(4,10)6.假设点A(2 , 4)在直线y=kx –2上,那么k=( )A .2B .3C .4D .07.在直角坐标系中,既是正比例函数kx y =,又是y 的值随x 值的增大而减小的图像是( )A B C D8.y =kx +b 图象如图那么( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>0 9.y=kx +k 的大致图象是( )A B C D10.已知直线y=(k –2)x+k 不通过第三象限,那么k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<211.以下函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 12.若是y=x -2a +1是正比例函数,那么a 的值是( )(A)21 (B)0 (C)-21 (D)-2 13.函数y=kx+2,通过点(1 , 3),那么y=0时,x=( )A .–2B .2C .0D .±24.已知长方形的周长为14.一个长方形的周长是25,设它的长为x ,宽为y ,那么y 与x 的函数关系为( )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 15点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,那么1y 和2y 的大小关系是( )A. 1y 2yB. 1y 2yC. 1y =2yD.不能确信16.函数y=2x+1的图象通过( )A .(2 , 0)B .(0 , 1) C. (1 , 0) D .(12, 0) 17.如图,直线b kx y +=通过A(0,2)和B(3,0)两点,那么那个一次函数关系式是( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y18.已知油箱中有油25 L ,每小时耗油5 L ,那么剩油量P (L)与耗油时刻t (h)之间的函数关系式为( ).A .P =25+5tB .P =25-5tC .P =255t D .P =5t -25 19.函数y=3x -自变量x 取值范围是( ) A .x ≥3 B .x>3 C .x ≤3 D .x<320.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.721.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.那么1b 和2b 的关系是( )A. 1b 2bB. 1b 2bC. 1b =2bD.不能确信22.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时刻t(小时)的函数关系用图像表示为( )23.第二象限和第四象限角平分线所在的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=24.函数值y 随x 的增大而减小的是( )(A)y=1+x (B)y=21x -1 (C)y=-x +1 (D)y=-2+3x 1..关于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.2.一次函数b kx y +=的图象与两坐标轴的交点坐标别离为)0,3(和)2,0(-,那么=k ____,=b ____.3..假设函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,那么b =_____________.4.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,那么k ____________________.5.某公司此刻年产值为150万元,打算尔后每一年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.6.直线2-=kx y 通过点),4(1y ,且平行于直线12+=x y ,那么1y =___________,k =______.7.函数y=x -2自变量x 的取值范围是_________. 8.直线y=3x+b 与y 轴交点(0 ,–2),那么这条直线不通过第____象限.9.直线y=x –1和y=x+3的位置关系是_________10.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,那么a 、b 的大小关系是a____b.11.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,那么m 的取值范围是 .12.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标别离是 , 。
八年级数学《一次函数》培优训练题(一)
八年级数学《一次函数》培优训练题1. 无论k 为何值,一次函数(2k-1)x-(k-3)y-(k-11)=0的图像必经过定点( ); A .(0,0) B.(0,11) C.(2,3) D.无法确定2. 在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点,设k 为整数,当直线y=x-2与y= kx +k 的交点为整点时,k 的值可取( ); A . 4个 B. 5个 C. 6个 D. 7个3. 如图,设b>a ,将一次函数a bx y +=与b ax y +=的图像画在同一平面直角系内,则有一组a ,b 的取值,是下列4个图中的一个为正确的是( )A. B. C.D.4.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( )A 、04<<-aB 、20<<aC 、24<<-a 且0≠aD 、24<<-a 5. 一个一次函数的图象与直线59544y x =+平行,与x 轴、y 稠的交点分别为A,B 并且过点(-1,-25).则在线段AB 上(包含端点A,B),横、纵坐标都是整数的点有( )A.4个B.5个C.6个D.7个6. 在平面直角坐标系中,已知A (2,•-2),点P 是y 轴上一点,则使AOP 为等腰三角形的点P 有( ) (A )1个 (B )2个 (C )3个 (D )4个7.函数xx y --=2212的自变量x 的取值范围是_________________;8.一点A 为直线y=-2x+2上一点,点A 到两坐标轴距离相等,则点A 的坐标为_________; 9.一次函数y=kx+2图像与x 轴交点到原点的距离为4,那么k 的值为____;10.直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 .11.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=31恰好将矩形OABC 分成面积相等的两部分,那么b = 12.一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .13.已知A (-2,3),B (3,1),P 点在x 轴上,且│PA │+│PB │最小,求点P 的坐标。
一次函数培优训练题
一次函数培优训练题一,填空题1.直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限.2.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.3.若点A(2 , 4)在直线y=kx –2上,则k= .4.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是 .5.直线x y 2-=向上平移3个单位,再向左平移2个单位后的解析式为________.6. 函数y=kx+2,经过点(1 , 3),则y=0时,x= .7. 一次函数62-=x y 的图象与x 轴的交点坐标是____ __,与y 轴的交点坐标是 __8.(2007山东淄博)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是________.9. 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 . 二.选择题1.如果在一次函数中,当自变量x 的取值范围是-1<x <3时,函数y 的取值范围是-2<y <6,那么此函数解析式为( )A.x y 2= B.42+-=x y C.x y 2=或42+-=x y D.x y 2-=或42-=x y2.无论m 为何实数,直线m x y 2+=与直线4+-=x y 的交点不可能在( ) A .第三象限 B .第四象限 C .第一象限 D .第二象限3.已知一次函数k kx y -=,若y 随着x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限4.已知一次函数4)2(2-++=k x k y 的图象经过原点,则( ) A 、k=±2 B 、k=2 C 、k= -2 D 、无法确定5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x > B .0x < C .2x > D .2x <6.(2007福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( ) A .1a > B .1a <C .0a >D .0a <7.(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )第5题图x图1A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--9.(2007浙江湖州)将直线y =2x 向右平移2) A.y =2x +2B.y =2x -2C.y =2(x -2)D.y =2(x +2)10.(2007四川乐山)已知一次函数y kx b =+的图象如下图(6)所示,当1x <时,y 的取值范围是( )A.20y -<< B.40y -<< C.2y <- D.4y <-11.(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0B .1C .2D .312.〔2011•日照市〕在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,43)B.(0,34) C.(0,3) D.(0,4)13. (2011•苏州市)如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为( ) A .3 B C .4 D14. 1+=mx y 与12-=x y 的图象交于x 轴上一点,则m 为( )A .2B .2-C .21D .21-a b + 第11题 图(6)三.解答题1.已知一次函数图象经过点(3 , 5) , (–4,–9)两点. ① 求一次函数解析式.② 求图象和两坐标轴交点坐标.③ 求图象和坐标轴围成的三角形面积. ④ 若点(a , 2)在图象上,求a 的值.2.已知函数y=(2m –2)x+m+1① m 为何值时,图象过原点.② 已知y 随x 增大而增大,求m 的取值范围. ③ 函数图象与y 轴交点在x 轴上方,求m 取值范围. ④ 图象过二、一、四象限,求m 的取值范围.3. (2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。
一次函数培优及答案
Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《一次函数》提优训练1.已知一次函数3y kx =+的图像经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标不可能是( )A.(2,4)B.(-1 ,2)C. (5,1)D.(-1,-4)2. 如图,直线l 经过第一、二、四象限,l 的函数表达式是(3)2y m x m =-++,则m 的取值范围在数轴上表示为 ( )3. 若实数,a b 满足0ab <,则一次函数y ax b =+的图像可能是()4. 如图,直线243y x =+与x 轴、y 轴分别交于点 A 和点B ,点,C D 分别为线段,AB OB 的中点,点P为OA 上一动点,则当PC PD +值最小时, 点P 的坐标为( )A.(-3,0)B.(-6 ,0)C. (32-,0) D. (52- ,0) 5. 某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,给出以下三个结论:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的结论是( )A.①③B.②③C.③D.①②③6. 如图是一个数值转换程序,当输入的x 值为1. 5时,输出的y 值为 .7. 已知一次函数23y kx k =++的图像与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8. 如图,已知,,,A B C D 是平面直角坐标系中坐标轴上的点,且AOB COD ∆≅∆.设直线AB 的函数表达式为111y k x b =+,直线CD 的函数表达式为222y k x b =+,则12k k g = .9. 对于平面直角坐标系中任意两点111222(,),(,)P x y P x y ,称1212x x y y -+-为12,P P 两点的直角距离,记作: 12(,)d P P .0(2,3)P -是一定点,(,)Q x y 是直线y kx b =+上的一动点,称0(,)d P Q 的最小值为0P 到直线y kx b =+的直角距离.若(,3)P a -到直线1y x =+的直角距离为6,则a = .10. 如图,在平面直角坐标系中,点P 的坐标是(3,4),直线l 经过点P 且平行于y 轴,点Q从点A (3,10)出发,以每秒1个单位长度的速度沿AP 方向匀速运动.设点Q 的运动时间为t .(1)当t 为何值时,POQ ∆的面积为6?(2)当t 为何值时,POQ ∆为等腰三角形?11. 某农场急需铵肥8吨,在该农场南北方向各有一家化肥公司,,A B A 公司有铵肥3吨,每吨售价750元; B 公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b (单位:元)与运输重量a (单位:吨)的关系如图所示.(1)根据图像求出b 关于a 的函数表达式;(写出自变量的取值范围)(2)若农场到B 公司的路程是到A 公司路程的2倍,农场到A 公司的路程为m 千米,设农场从A 公司购买x 吨铵肥,购买8吨钱肥的总费用为y 元(总费用=购买铵肥费用+运输费用),求出y 关于x 的函数表达式(m 为常数),并向农场建议总费用最低的购买方案.12. 周末,小芳骑自行车从家出发到野外郊游,从家出发0. 5 h 到达甲地,游玩一段时间后按原速前往乙地,小芳离家43h 后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地.如图是她们距乙地的路程y (km)与小芳离家时间x (h)的函数图像. (1)小芳骑车的速度为 km/h ,点H 的坐标为 .(2)小芳从家出发多长时间被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?【强化闯关】1. 若0,0k b ≠<,则y kx b =+的图像( )2. 若一次函数y ax b =+的图像经过第一、二、四象限,则下列不等式中总是成立的是( )A. 0ab >B. 0a b -> C . 20a b +> D. 0a b +>3. 已知一次函数5y kx =+和7y k x '=+,假设0k >且0k '<,则这两个一次函数图像的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限 4. 定义:点(,)A x y 为平面直角坐标系内的点,若满足x y =,则把点A 叫做“平衡点”.例如: (1,1),(2,2)M N --都是“平衡点”.当13x -≤≤时,直线2y x m =+上有“平衡点”,则m 的取值范围是( )A. 01m ≤≤B. 31m -≤≤C. 33m -≤≤D. 10m -≤≤ 5. 今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( ) A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6 600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度6. 已知一个函数,当0x >时,函数值y 随着x 的增大而减小,请写出这个函数关系式 .(写出一个即可)7. 若函数(1)my m x =-,是正比例函数,则该函数的图像经过第 象限. 8. 已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线1:5l y x =+与直线21:12l y x =--的交点坐标为 .9. 将直线21y x =+向下平移3个单位长度后所得直线的解析式是 . 10. 如图,在平面直角坐标系中,函数2y x =和y x =-的图像分别为直线12,l l ,过点(1,0)作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ……依次进行下去,则点2017A 的坐标为 .11. 如图,在平面直角坐标系xOy 中,过点(6,0)A -的直线1l 与直线2:2l y x =相交于点(,4)B m .(1)求直线1l 的表达式;(2)过动点(,0)P n 且垂直于x 轴的直线与12,l l 的交点分别为点,C D ,当点C 位于点D 上方时,写出n 的取值范围.12. 甲、乙两人在100 m 直道AB 上练习匀速往返跑,若甲、乙分别在,A B 两端同时出发,分别到另一端点处掉头,掉头时间不计.速度分别为5 m/s 和4 m/s.(1)在坐标系中,虚线表示乙离A 端的距离s (单位:m)与运动时间t (单位:s)之间的函数图像(0200t ≤≤),请在同一坐标系中用实线画出甲离A 端的距离s 与运动时间t 之间的函数图像(0200t ≤≤);(3)①直接写甲、乙两人分别在第一个100 m内,与的函数解析式,并指出自变量的取值范围;②求甲、乙第6次相遇时t的值.13.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图像如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图像如图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月、4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得的利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额一经销成本)参考答案1. C2. C3. B4. C5. C6. 0.57. 1-8. 19. 2或10-10. (1)①当点P 在点Q 的下方时,1(104)362POQ S t ∆==⨯--⨯=,解得2t = ②当点P 在点Q 的上方时,1(6)362POQS t ∆==⨯-⨯=,解得10t =综上所述,当t 的值为2或10时,POQ ∆的面积为6. (2)∵点P 的坐标是(3,4)由勾股定理,得5OP ==当PO PQ =时,65t -=或65t -= 解得1t =或11t = 当PO OQ =时,14t = 当OQ PQ =时,设PQ x = 易得2223(4)x x +-=解得258x =则738AQ =即738t =综上,当t 的值为1或11或14或738时,POQ ∆为等腰三角形 11. (1)由题图可知,当04a ≤≤时,设(0)b ka k =≠把(4,12)代入,得412k = 解得3k = 所以3b a =当4a >时,设(0)b pa n p =+≠ 把(4,12),(8,32)代入得412832p n p n +=⎧⎨+=⎩解得58p n =⎧⎨=-⎩∴58b a =- ∴3(04)58(4)a a b a a ≤≤⎧=⎨->⎩(2)依题意13x ≤≤∴7503(8)700[5(8)8]2y x mx x x m =++-⨯+--⨯ ∴(507)560064y m x m =-++当507m >时,到A 公司买3吨铵肥,到B 公司买5吨铵肥,费用最低 当5007m <<时,到A 公司买1吨铵肥,到B 公司买7吨铵肥,费用最低12. (1)20 3(,20)2由题中图像可知,小芳家距甲地的路程为302010-=(km),骑自行车花费时间为0.5 h 故小芳骑车的速度为100.520÷=(km/h)由题意可知,点H 的横坐标为413362+=故点H 的坐标为3(,20)2(2)设直线AB 的函数表达式为111y k x b =+ 将点(0,30)A ,(0.5,20)B 代入得11130200.5b k b =⎧⎨=+⎩解得112030k b =-⎧⎨=⎩∴12030y x =-+ ∵//AB CD设直线CD 的函数表达式为2220y x b =-+ 将点C (1,20)C 代入 得240b = ∴22040y x =-+设直线EF 的函数表达式333y k x b =+ 将点4(,30)3E ,3(,20)2H 代入得333343033202k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得3360110k b =-⎧⎨=⎩∴360110y x =-+ 解方程组601102040y x y x =-+⎧⎨=-+⎩解得 1.755x y =⎧⎨=⎩∴点D 的坐标为(1.75,5),30525-=(km) ∴小芳出发1.75 h 被妈妈追上,此时距家25 km. (3)将0y =代入直线CD 的函数表达式,得20400x -+= 解得2x =将0y =代入直线EF 的函数表达式得601100x -+= 解得116x =1112()10(min)66h -==故小芳比预计时间早10 min 到达乙地.【强化闯关】1. B2. C3. A4. B5. C6. 2y x =-+(答案不唯一)7. 二、四8. (4,1)-9. 22y x =- 10. 10081009(2,2)11. (1)∵点(,4)B m 在直线2:2l y x =上∴42m = 解得2m = ∴(2,4)B设直线1l 的表达式为1(0)y kx b k =+≠, ∵直线1l 过点(6,0)A -,(2,4)B ∴4206k bk b =+⎧⎨=-+⎩解得123k b ⎧=⎪⎨⎪=⎩∴直线直线1l 的表达式为132y x =+ (2)依题意,(2,3)2nC +,(,2)D n n ∵点C 位于点D 上方 ∴322nn +> ∴2n <12. (1)甲距离A 端的距离s (m)与时间t (s)的函数图像如图所示.(3)①甲: 5(020)s t x =≤≤乙:1004(025)s t x =-≤≤②)由表格可得,甲、乙两人第6次相遇时.他们所跑的路程之和为20061001100⨯-=(m)11001100(54)9t =÷+=(s) ∴甲、乙第6次相遇时t 的值为11009s 13. (1)设p ky b =+,把(100,60),(200,110)代入得10060200110k b k b +=⎧⎨+=⎩ 解得1210k b ⎧=⎪⎨⎪=⎩ ∴1102p y =+ (1) 由(1)知1102p y =+ 当150y =时,115010852p =⨯+= ∴该公司3月份利润为1508565-=万元)当175y =时,11751097.52p =⨯+= ∴该公司4月份的利润为17597.577.5-=(万元). (3)设到第m 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额多出200万元.∵5月份以后的每月利润为90万元∴6577.590(2)40200m m ++--≥∴ 4.75m ≥∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.。