八年级数学第十七章勾股定理测试题

合集下载

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

(精练)人教版八年级下册数学第十七章 勾股定理含答案

(精练)人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在中,∠C=90°,sinA= ,则tanA=()A. B. C.1 D.2、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.3、如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是().A.1B.2C.4D.84、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.90B.120C.121D.不能确定5、如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.326、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)7、如图,平面直角坐标系中,A点坐标为,点在直线上运动,设的值为,则下面能够大致反映w与m的函数关系的图象是()A. B. C.D.8、如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条9、在直角三角形ABC中,斜边AB=1,则AB²+BC²+AC²=()A.2B.4C.6D.810、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2B.C.D.11、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米12、小明从一根长6m的钢条上截取一段后,截取的钢条恰好与两根长分别为3m、5m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4mB. mC.4m或mD.6m13、如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C (0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.814、小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米15、已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、已知,点O为数轴原点,数轴上的A,B两点分别对应,,以AB 为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17、如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为________.18、如图,扇形中,. 为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为________19、图中是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大的正方形E的边长为3则正方形的面积之和为________.20、如图,一扇卷闸门用一块宽18cm,长80cm的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起________cm高.21、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).22、如图,在等腰中,,,则边上的高是 ________ .23、如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S 3、S4,则S1+S2+S3+S4=________.24、学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为________.25、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.28、证明:斜边和一条直角边对应相等的两个直角三角形全等.29、已知如图,.求四边形的面积.30、如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、A5、C6、D7、A8、B9、A10、D11、A12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是()A.1米B.1.5米C.2米D.2.5米2、长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个3、如图,分别以直角三角形的三边作三个半圆,且,,则等于()A.60B.40C.50D.704、已知直角三角形两边的长为3和4,则此三角形的周长为()A.12B.7+C.12或7+D.以上都不对5、一个直角三角形木架的两条直角边的边长分别是,.现要做一个与其相似的三角形木架,如果以长的木条为其中一边,那么另两边中长度最大的一边最多可达到()A. B. C. D.6、有下列命题中是真命题的为()A.有一个角是锐角的三角形是锐角三角形B.三边长为,,的三角形为直角三角形 C.等腰三角形的高、中线、角平分线互相重合 D.三角形三边垂直平分线的交点到三角形三个顶点的距离相等7、如图,在△ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则EB的长是()A.3 cmB.4 cmC.5 cmD.不能确定8、如图,直线y=x+1分别与x轴、y轴相交于点A,B,以点A为圆心、AB长为半径画弧交x轴于点A1,再过点A作x轴的垂线交直线于点B1,以点A为圆心、AB1长为半径画弧交x轴于点A2按此做法进行下去,则点A2020的坐标是( )A.(2 2020, 0)B.(2 1010, 0)C.(2 1010+1,0)D.(2 1010-1,0)9、下列图形中,面积最大的是()A.边长为6的正三角形;B.长分别为3、4、5的三角形;C.半径为的圆; D.对角线长为6和8的菱形;10、如图,在△ABC中,三边a、b、c的大小关系是( )A.a<b<cB.c<a<C.c<b<aD.b<a<c11、已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A=∠C-∠BB.a 2=b 2-c 2C.a:b:c=2:3:4D.a=,b=,c=112、如图,正方形ABCD的边长为4,点E,点F分别是边BC,边CD上的动点,且BE=CF,AE与BF相交于点P.若点M为边BC的中点,点N为边CD上任意一点,则MN+PN的最小值等于()A. B.5 C. D.13、如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为()A. B. C. D.14、“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则大正方形与小正方形的面积差是( )A.9B.36C.27D.3415、如图所示,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,则△ACE的周长为()A.16B.15C.14D.13二、填空题(共10题,共计30分)16、一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是________ cm.17、如图,长方体的长为,宽为,高为,点离点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________。

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案

第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。

人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在正方形网格中,∠AOB如图所示放置,则sin∠AOB的值为()A. B. C. D.2、一直角三角形三边长分别为a,a,c,那么由an,an,cn(n为自然数)为三边组成的三角形一定是()A.等腰三角形B.等腰直角三角形C.钝角三角形D.任意三角形3、如图,△AB C的顶点是正方形网格的格点,则sinA的值为()A. B. C. D.4、直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1B.5C.D.5或5、如图,点A在双曲线上,且OA=4,过A作AC⊥ 轴,垂足为C,OA 的垂直平分线交OC于B,则△ABC的周长为()A.4B.5C.D.6、在我国古代数学名著《算法统宗》里有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和身高为5尺的人一样高,秋千的绳索始终是拉直的,试问绳索有多长?”设绳索长为x尺,则x满足的方程为()A.x 2=10 2+(x-5-1)2B.x 2=(x﹣5)2+10 2C.x 2=10 2+(x+1-5)2 D.x 2=(x+1)2+10 27、如图,四边形中,,在边上确定一点使得则()A. B. C. D.8、已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m 2+2mn+n 2=0B.m 2﹣2mn+n 2=0C.m 2+2mn﹣n 2=0D.m 2﹣2mn﹣n 2=09、给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;③三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠C为直角的直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个10、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他制了如图2所示的图形,图2中留个形状大小都相同的四边形围成一个圆的内接六边和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为,则该圆的半径为()cm.A. B. C.7 D.811、如图,在正方形网格中,以格点为顶点的的面积等于3,则点A到边BC的距离为()A. B. C.4 D.312、下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a+b=cB.三角形的三边长分别为2、3、4 C.三角形的一边等于另一边的一半 D.三角形的三边长为7、24、2513、如图,BD为矩形ABCD的对角线,将△BCD沿BD翻折得到,与边AD交于点E.若AB=x1, BC=2x2, DE=3,其中x1、x2是关于x的方程x2﹣4x+m=0的两个实根,则m的值是()A. B. C.3 D.214、如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,若点A在数轴上表示的数是-1,则对角线AC、BD的交点在数轴上表示的数为()A.5.5B.5C.6D.6.515、如图,有一张直角三角形的纸片,两直角边,,现将直角边沿直线折叠,使它落在斜边上且与重合,则的长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.17、如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为________.18、如图,在直角坐标系中,的圆心A的坐标为,半径为1,点P 为直线上的动点,过点P作的切线,切点为Q,则切线长PQ的最小值是________.19、如图,在中,,,,点、分别在、上,将沿翻折,使与的中点重合,则的长为________.20、如图,在中,,为的角平分线,且于D,若,则的长为________.21、若a、b、c满足(a-5)2+ + =0,则以a,b,c为边的三角形面积是________.22、如图,中,,、分别在、边上,,、相交于点,且,若,,则的长为________.23、△ABC中,AB= ,AC=8,∠ACB=30°,则BC的长为________.24、如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1, S2,则S1+S2=________.25、将长方形纸片ABCD沿对角线BD折叠,点C落在点处,交AD于点E.若,对角线,则________.三、解答题(共5题,共计25分)26、在Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图,在同一平面内,有一组平行线l1、l2、l3,相邻两条平行线之间的距离均为4,点O在直线l1上,⊙O与直线l3的交点为A、B,AB=12,求⊙O的半径.28、如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=900.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?29、有一块土地,如图所示,已知AB=8,∠B=90°,BC=6,CD=24,AD=26,求这块土地的面积.30、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、C6、C7、A8、C9、B10、D11、D12、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。

人教版八年级下册数学第十七章 勾股定理含答案(全优)

人教版八年级下册数学第十七章 勾股定理含答案(全优)

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、下列数据中,哪一组不是勾股数( )A.7,24,25B.9,40,41C.3,4,5D.8,15,192、如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.43、如图,在⊙O中,直径MN=10,正方形ABCD的四个顶点都分别在半径OP、OM及⊙O上,且∠POM=45º,则AB=()A.2B.C.D.4、如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD=,则AB的长为( )A.2B.3C.4D.55、《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A. B. C.D.6、如图,的对角线与相交于点,,,,则的长为()A. B. C. D.7、下列各组数中不能作为直角三角形的三边长的是()A.7,24,25B. ,4,5C. ,1,D.40,50,608、直角三角形中,两直角边分别是12和5,则斜边上的中线长是().A.34B.26C.6.5D.8.59、如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.﹣2B.﹣2C.2 ﹣1D.1﹣210、如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

已知孔洞的最长边为2cm,则三角尺穿过孔洞部分的最大面积为( )A. cm 2B. cm 2C.2 cm 2D.(2+ )cm 211、如图,在矩形ABCD中,AD=5,AB=3 ,点E在AB上,= ,在矩形内找一点P,使得∠BPE=60°,则线段PD的最小值为()A.4B.2C.2 -2D.2 -412、如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于( )A.4B.C.D.513、三角形的三边长分别为6,8,10,那么最长边上的高为()A.4.8B.5C.6D.814、已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A=∠C-∠BB.a 2=b 2-c 2C.a:b:c=2:3:4D.a=,b=,c=115、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:① ;② ;③ ;④ .其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.17、如图,在Rt△ABC中,∠C=90°,AC=4,cosA= ,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为________.18、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.19、如图, Rt△ABC的两直角边 AC = 8cm , BC = 6cm , D 为 AC 上一点,将△ABC 折叠,使点 A 与点 B 重合,折痕为 DE ,则CD 的长为________cm.20、如图,在长方形 ABCD中,点E为长方形ABCD的边AD上一点,若AE=2,S=6,将长方形ABCD沿BE折叠,使点A落在EC上的点F处,则BCE的面ABE积是 ________.21、如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为________.22、在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么________23、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.24、如图,射线PB,PD分别交⊙O于点A,B和点C,D,且AB=CD=8。

人教版八年级下册数学第十七章 勾股定理 含答案

人教版八年级下册数学第十七章 勾股定理 含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;③作射线OA,交BC于点E,若CE=6,BE=10.则AB的长为()A.11B.12C.18D.202、如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为( )A.6B.2C.5D.3、如图,菱形ABCD的周长为52,对角线AC的长为24,,垂足为E,则DE的长为()A. B. C. D.4、△ABC满足下列条件中的一个,其中不能说明△ABC是直角三角形的是()A.b 2=(a+c)(a﹣c)B.a:b:c=1::2C.∠C=∠A﹣∠BD.∠A:∠B:∠C=3:4:55、下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,136、如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC于点D,若CD=5,则AE的长为()A. B.2 C. D.47、一只蚂蚁从圆柱体的下底面点沿着侧面爬到上底面点,已知圆柱的底面半径为,高为(取3),则蚂蚁所走过的最短路径是()A.8B.9C.10D.128、如图,点是矩形的对角线的中点,是边的中点,若,则的长为()A.5B.6C.8D.109、以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,1210、如图所示,在a、b、c、d、e中,是无理数的有()A.1个B.2个C.3个D.4个11、以下列各组数为三角形的三边,能构成直角三角形的是( )A.4,5,6B.1,1,C.6,8,11D.5,12,2312、如图,在△ABC中,AC=6,BC=8,若AC,BC边上的中线BE,AD 垂直相交于点O,则AB=()A.5B.4C.3D.213、一个直角三角形的两条边长分别为3cm,5cm,则该三角形的第三边长为().A.4cmB.8cmC. cmD.4cm或cm14、若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形15、如图,直线AB与⊙O相切于点A,弦CD∥AB,若⊙O的直径为5,CD=4,则弦AC的长为()A.4B.C.5D.6二、填空题(共10题,共计30分)16、如图,在△ABC中,CD⊥AB交AB于点D,BE⊥AC交AC于点E,F为BC的中点,BC = 10,DE = 8,则△DEF的面积为________.17、如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.18、如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60°到△CBQ,已知∠AQB=150°,QA:QC=a:b(b>a),则PB:QA=________(用含a,b 的代数式表示)19、菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=________cm.20、如图,已知的两直角边,,平分,则________.21、如图,在正方形ABCD中,AB=2,M为CD的中点,N为BC的中点,连接AM 和DN交于点E,连接BE,作AH⊥BE于点H,延长AH与DN交于点F,连接BF 交延长与CD交于点G,则MG长度为________。

人教版数学八年级下册第十七章 勾股定理测试卷(附答案)

人教版数学八年级下册第十七章 勾股定理测试卷(附答案)

人教版数学八年级下册第十七章勾股定理测试卷一、单选题(共10题;共20分)1.判断以下各组线段为边作三角形,可以构成直角三角形的是()A. 6,15,17B. 7,12,15C. 13,15,20D. 7,24,252.如图,在的正方形网格中,的顶点都在格点上,下列结论错误的是A. B. C. D.3.下列各组数中不能作为直角三角形的三边长的是()A. 7,24,25B. ,4,5C. ,1,D. 40,50,604.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A. 2.7 米B. 2.5 米C. 2.1 米D. 1.5 米5.如图,在中,是上一点,已知,,,,则的长为()A. B. C. D.6.将一根24cm 的筷子,置于底面直径为15cm,高8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h 的取值范围是()A. h≤15cmB. h≥8cmC. 8cm≤h≤17cmD. 7cm≤h≤16cm7.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A. 4B. 8C. 2πD. 168.在四边形中,,若,则的大小为()A. B. C. D.9.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A. 10B. 12C. 13D. 1410.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 360B. 400C. 440D. 484二、填空题(共10题;共30分)11.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________12.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部在距离根部处,这棵大树在折断前的高度为________ .13.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是________.14.没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为________cm.15.在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。

(必考题)初中八年级数学下册第十七章《勾股定理》经典题(含答案解析)

(必考题)初中八年级数学下册第十七章《勾股定理》经典题(含答案解析)

一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD =D .CAB DAB ∠=∠4.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.1<10<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .35.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 6.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 9.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D 1010.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA11.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于,且OD=2,△ABC的面积是()A.20 B.24 C.32 D.4012.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对=,AE//BF,添加以下哪一个条件仍不能13.如图,点C,D在线段AB上,AC DB判定△AED≌△BFC()=A.ED CF=B.AE BF∠=∠C.E FD.ED//CF14.如图,C是∠AOB的平分线上一点,添加下列条件不能判定△AOC≌△BOC的是()A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 15.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题16.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.17.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.18.如图,ABC 的三边AB 、BC 、CA 长分别是10、15、20,三条角平分线交于O 点,则::ABO BCO CAO S S S 等于__________.19.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.20.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____21.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)22.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.23.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.24.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.25.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.26.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题27.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明.(1)____________;(2)____________.28.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.29.按要求作图(1)如图,已知线段,a b ,用尺规做一条线段,使它等于+a b (不要求写作法,只保留作图痕迹)(2)已知:∠α,求作∠AOB=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹)30.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.。

第十七章 勾股定理单元检测题(含解析)

第十七章 勾股定理单元检测题(含解析)

人教版八年级下册17章勾股定理检测题题号一二三四总分得分一、选择题(本大题共11小题,共33.0分)1.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A. 4cmB. 6cmC. 8cmD. 10cm2.下列各组数能构成勾股数的是()A.2,,B. 12,16,20B.C. ,, D. ,,3.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成角,如图所示,这棵树在折断前的高度是()A. 10mB. 15mC. 5mD. 20m4.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为( )米A. 4米B. 5米C. 7米D. 8米5.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里6.下列各组数中,不能满足勾股定理的逆定理是()A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,107.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,AD=1,则BD的长为()A.2B. 2C. 3D. 38.如图,字母B所代表的正方形的面积是()A.12B. 144C. 13D. 1949.2002年国际数学家大会在北京召开,大会选用了赵爽弦图作为会标的中心图案.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形.如果大正方形的面积是25,直角三角形较长的直角边长是a,较短的直角边长是b,且(a+b)2的值为49,那么小正方形的面积是()A.2B.C. 13D. 110.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B. 9米C. 10米D. 11米11.下列说法中,正确的有()①如果∠A+∠B-∠C=0,那么△ABC是直角三角形;②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是n2-4、4n、n2+4(n>2),则△ABC是直角三角形;A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)12.如图,△ABC是边长6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V p=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t= ______ s时,△PBQ为直角三角形.13.如图,为安全起见,幼儿园打算加长滑梯AB,将其倾斜角由45°降至30°,已知滑梯AB的长为4m,点D,B,C在同一水平地面上,那么加长后的滑梯AD的长是______ m.14.将一副三角尺如图所示叠放在一起,若AB=24cm,则阴影部分的面积是______.15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其中央,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是______.16.如果直角三角形的三边长为10、6、x,则最短边上的高为______.17.已知Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,则AB边上的中线为______ cm,AB边上的高为______ cm.三、计算题(本大题共1小题,共6.0分)18.如图,小明的家位于一条南北走向的河流MN的东侧A处,某一天小明从家出发沿南偏西30°方向走60m到达河边B处取水,然后沿另一方向走80m到达菜地C处浇水,最后沿第三方向走100m 回到家A处.问小明在河边B处取水后是沿哪个方向行走的?并说明理由.四、解答题(本大题共6小题,共48.0分)19.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.20.如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.(1)求证:△ABC为直角三角形.(2)求AE的长.21.已知△ABC的三边分别为a,b,c,且a+b=3,ab=1,c=.(1)求a2+b2的值;(2)试判断△ABC的形状,并说明理由.22.如图所示的一块地(图中阴影部分),∠ADC=90°,AD=12, CD=9, AB=25, BC=20.(1) 求∠ACB的度数;(2)求阴影部分的面积。

八年级下册数学第17章单元勾股定理测试题

八年级下册数学第17章单元勾股定理测试题

勾股定理检测卷(总分100分时间90分钟)一、选择题(每小题3分.共30分)1.在△ABC中.∠A、∠B、∠C的对应边分别是a、b、c.若∠A+∠C=90°.则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.已知一个直角三角形的三边的平方和为1800 cm2.则斜边长为( )A.30 cm B.80 cm C.90 cm D.120 cm3.如果a、6、c是一个直角三角形的三边.则a:b:c等于( )A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:134.如图.如果半圆的直径恰为直角三角形的一条直角边.那么半圆的面积为( ) A.4πcm2B.6πcm2C.12πcm2D.24πcm25.在△ABC中.∠C=90°.BD平分∠ABC.交AC于点D.若DC=3.BC=6.AD=5.则AB =( )A.9 B.10 C.11 D.126.如图.在Rt△ABC中.∠C=90°.D为AC上一点.且DA=DB=5.又△DAB的面积为10.那么DC的长是( )A.4 B.3 C.5 D.4.57.如图.梯子AB靠在墙上.梯子的底端A到墙根O的距离为7m.梯子的顶端B到地面的距离为24 m.现将梯子的底端A向外移动到A'.使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B'.那∠BB'等于( )A.3m B.4 m C.5 m D.6 m8.聪聪在广场上玩耍.他从某地开始.先向东走10米.又向南走40米.再向西20米.又向南走40米.最后再向东走70米.则聪聪到达的终止点与原出发点间的距离是( )A.80米B.100米C.120米D.95米9.在Rt△ABC中.AC=6.BC-8.分别以它的三边为直径向上作三个半圆.则阴影部分面积为( )A.24 B.24πC.252D.252π10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三.股四.则弦五”的记载.如图(a)是由边长相等的小正方形和直角三角形构成的.可以用其面积关系验证勾股定理.图(b)是由图(a)放人长方形内得到的.∠BAC=90°.AB=3.AC=4.点D.E.F.G.H.I都在长方形KLMJ的边上.则长方形KLMJ的面积为( )A.90 B.100 C.110 D.121二、填空题(每小题3分.共24分)11.如图阴影部分正方形的面积是_______.12.若直角三角形中.一斜边比一直角边大2.且另一直角边长为6.则斜边为_______.13.如图.△ABC为等边三角形.AD为BC边上的高.且AB=2.则正方形ADEF的面积为_______.14.一长方形门框宽为1.5米.高为2米.安装门框时为了增强稳定性.在门框的对角线处钉上一根木条.这根木条至少_______米长.15.如图是一等腰三角形状的铁皮△ABC.BC为底边.尺寸如图.单位:cm.根据所给的条件.则该铁皮的面积为_______.16.如图是连江新华都超市一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线.小马虎从点A到点C共走了12 m.电梯上升的高度h为6m.经小马虎测量AB=2 m.则BE=_______.17.如图.P是正△ABC内一点.且PA=6.PB=8.PC=10.若将△PAC绕点A逆时针旋转后.得到△P'AB.则点P与P'之间的距离为PP'=_______.∠APB=_______度.18.如图.正方形ABDE、CDFI、EFGH的面积分别为25、9、16.△AEH、△BDC、△GFI 的面积分别为S1、S2、S3.则S1+S2+S3=_______.三、解答题(共46分)19.(6分)如图.△ABC中.∠ACB=90°.AC=7.BC=24.CD⊥AB于D.(1)求AB的长;(2)求CD的长.20.(6分)如图.已知AB=13.BC=14.AC=15.AD⊥BC于D.求AD长.21.(6分)某开发区有一空地ABCD.如图所示.现计划在空地上种草皮.经测量.∠B=90°.AB=3m.BC=4 m.AD=12 m.CD=13 m.若每种植1平方米草皮需要100元.问总共需要投入多少元?22.(6分)如图.两点A.B都与平面镜相距4米.且A.B两点相距6米.一束光由A点射向平面镜.反射之后恰好经过B点.求B点与入射点间的距离.23.(6分)如图.一块长方体砖宽AN=5 cm.长ND=10 cm.CD上的点B距地面的高BD=8 cm.地面上A 处的一只蚂蚁到B 处吃食.需要爬行的最短路径是多少?24.(8分)探索与研究:方法1:如图(a).对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得.所以∠BAE =90°.且四边形ACFD 是一个正方形.它的面积和四边形ABFE 面积相等.而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图(b).是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的.你能根据图示再写一种证明勾股定理的方法吗?25.(8分)(1)如图(1).在四边形ABCD 中.BC ⊥CD.∠ACD =∠ADC . 求证:AB +AC>22BC CD ;(2)如图(2).在△ABC 中.AB 上的高为CD.试判断(AC +BC)2与AB 2+4CD 2之间的大小关系.并证明你的结论.参考答案1—10 CADBB BBBAC11.22512.1013.314.2.515.60 cm216.817.6 15018.1819.(1)AB=25;(2)CD=6.72.20.AD=12.21.3600(元).22.5(米).24.略25.(1)略(2)大小关系是(AC+BC)2≥AB2+4CD2.。

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

第十七章勾股定理一、选择题1.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为()A. 1.5米B. 2米C. 2.5米D. 1米2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A. 86B. 64C. 54D. 483.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8 cm,AC=17 cm,AB=5 cm,BD=10m,则C,D两辆车之间的距离为()A. 5 mB. 4 mC. 3 mD. 2 m4.如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B. 2+1C.D. 55.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A. 40 cmB. 60 cmC. 80 cmD. 100 cm6.三角形三边长为6、8、10,那么最长边上的高为()A. 6B. 4.5C. 4.8D. 87.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′()A.小于1 mB.大于1 mC.等于1 mD.小于或等于1 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()A. 5 mB. 12 mC. 13 mD. 18 m二、填空题9.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________.10.一个三角形的三边长之比为5∶12∶13,它的周长为120,则它的面积是________.11.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC________直角三角形.(填“是”或“不是”)12.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.13.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为________;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为________(用含n的式子表示,n为正整数).14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.16.在△ABC中,已知AB=BC=CA=4 cm,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C 运动,速度为1 cm/s;点Q沿CA、AB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x=__________,△BPQ是直角三角形.三、解答题17.如图所示的一块地,AD=9 m,CD=12 m,∠ADC=90°,AB=39 m,BC=36 m,求这块地的面积.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.为了弘扬“社会主义核心价值观”,乐至县政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的距离分别是5米和3米.(1)求公益广告牌的高度AB;(2)求∠BDC的度数.21.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作--《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做__________定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.答案解析1.【答案】A【解析】设水深为h米,则红莲的高(h+1)米,且水平距离为2米,则(h+1)2=22+h2,解得h=1.5.故选A.2.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.3.【答案】D【解析】在Rt△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m,在Rt△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=2 m,故选D.4.【答案】A【解析】如图所示,由图可知,AB==.故选A.5.【答案】D【解析】如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80 cm,EG=60 cm,∴AQ+QG=A′Q+QG=A′G==100 cm.∴最短路线长为100 cm.故选D.6.【答案】C【解析】∵62+82=102,∴这个三角形是直角三角形,∴最长边上的高为6×8÷10=4.8.故选C.7.【答案】A【解析】在直角三角形AOB中,因为OA=2,OB=7,由勾股定理,得AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得OB′=,∴BB′=7-<1.故选A.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】6【解析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=4.该直角三角形的面积S=×3×4=6.10.【答案】480【解析】设三边的长是5x,12x,13x,则5x+12x+13x=120,解得x=4,则三边长是20,48,52.∵202+482=522,∴三角形是直角三角形,∴三角形的面积是×20×48=480.11.【答案】是【解析】由分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,得BC2+AC2=AB2,则△ABC是直角三角形.12.【答案】96【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为S△ABC-S△ACD=×10×24-×6×8=96.13.【答案】55n【解析】已知小正方形ABCD的面积为1,则把它的各边延长一倍后,△AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25=52,…正方形AnBnCnDn的面积为5n.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.16.【答案】2或【解析】根据题意,得BP=t cm,CQ=2t cm,BQ=(8-2t) cm,若△BPQ是直角三角形,则∠BPQ=90°或∠BQP=90°,①当∠BPQ=90°时,Q在A点,CQ=CA=4 cm,4÷2=2(s);②当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=BP,即8-2t=t,解得t=,故当t=2或秒时,△BPQ是直角三角形.17.【答案】解连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216.答:这块地的面积是216平方米.【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.18.【答案】解BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°-90°-60°=30°,故乙船沿南偏东30°方向航行.【解析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.19.【答案】解如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,故152-x2=132-(14-x)2,解之得x=9.∴AD=12.∴S△ABC=BC·AD=×14×12=84.【解析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.20.【答案】解(1)在直角三角形ADC中,AC ===4(m),在直角三角形BDC中,BC ===3(m),故AB=AC-BC=1(米),答:公益广告牌的高度AB的长度为1 m;(2)∵在直角三角形BDC中,BC=CD=3 m,∴△DBC是等腰直角三角形,∴∠BDC=45°.【解析】(1)直接利用勾股定理得出AC的长,进而得出BC的长即可得出AB的长;(2)利用已知结合(1)中所求得出△DBC是等腰直角三角形,进而得出答案.21.【答案】解(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【解析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.。

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题(测试时间:90分钟满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是().A. ,,B. ,,C. ,,D. ,,2.设直角三角形的两条直角边长分别为a和b,斜边长为c.已知b=8,c=10,则a的值为( ) A. 2 B. 6 C. 5 D. 363.在△ABC中,AB=1,AC=2,BC=5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形().A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形5.如图字母所代表的正方形的面积是().A. B. C. D.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米B. 63米C. 6米D. 23米8.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10mB. 15mC. 18mD. 20m9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A、B、C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A. 102B.104C.105D. 510.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()24二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________.12.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是_______.13.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了_____________m.14.如图,数轴上点A所表示的实数是______________.15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.16.如图,若要建一个蔬菜大棚,棚宽3.2 m,高2.4 m,长15 m,请你计算,覆盖在顶上的塑料薄膜需要____m2.17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.18.如图,在△ABC中,∠C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.19.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m220.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DACB(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?27.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m、8 m.现要将其扩建成等腰三角形,且扩充部分是以8 m为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A. ,, B. ,,C. ,, D. ,,【答案】D2.设直角三角形的两条直角边长分别为a 和b ,斜边长为c .已知b =8,c =10,则a 的值为( ) A. 2 B. 6 C. 5 D. 36 【答案】B【解析】a =22c b -=22108-=6.故选B .3.在△ABC 中,AB =1,AC =2,BC =5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形 【答案】B【解析】在△ABC 中,AB =1,AC =2,BC =5.∵()222125+=,∴△ABC 是直角三角形.故选B .4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形( ). A. 仍是直角三角形 B. 可能是锐角三角形 C. 可能是钝角三角形 D. 不可能是直角三角形 【答案】A【解析】将直角三角形三条边的长度都扩大同样的倍数后得到的三角形只是改变大小,不会改变它形状,故选A.5.如图字母所代表的正方形的面积是( ).A. B. C. D.【答案】C【解析】∵图中三角形为,∴,∴.故选C.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米【答案】D7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米3 C. 6米3【答案】B8.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m 【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴AC=22AB BC +=22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m. 故选:C. 学@科网9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A 、B 、C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A.102 B. 104 C. 105D. 5 【答案】A10.如图,在△ABC 中,有一点P 在直线AC 上移动,若AB =AC =5,BC =6,则 BP 的最小值为( )A. 24B. 5C. 4D. 4.8 【答案】D【解析】根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB =AC ,AD ⊥BC ,∴D 为BC 的中点,又BC =6,∴BD =CD =3.在Rt △ADC 中,AC =5,CD =3,根据勾股定理得:AD =22AB BD -=2253-=4.又∵S △AB C =12BC •AD =12BP •AC ,∴BP =BC AD AC ⋅=645⨯=4.8.故选D .二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________. 【答案】13【解析】∵直角三角形的两直角边长分别是5和12,∴斜边长=22512 =13.故答案为:13.12.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______. 【答案】60cm 213.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m ,木板顶端向下滑动了0.9m ,则小猫在木板上爬动了_____________m .【答案】2.5 【解析】如图所示:14.如图,数轴上点A所表示的实数是______________.【答案】【解析】由勾股定理,得斜线的为=,由圆的性质,得点表示的数为,故答案为:. 学科%网15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米, ∴CD=2米, ∴CE===1.5(米),∴AE=AC-EC=0.5(米). 故答案为:0.5.16.如图,若要建一个蔬菜大棚,棚宽3.2 m ,高2.4 m ,长15 m ,请你计算,覆盖在顶上的塑料薄膜需要____m 2.【答案】6017.如图,将一根长24厘米的筷子,置于底面直径为6厘 米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.【答案】14【解析】如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形, ∴勾股定理求得圆柱形水杯的最大线段的长度,即2268 =10cm ,∴筷子露在杯子外面的长度至少为24-10=14cm , 故答案为14.18.如图,在△ABC 中,∠C=90°,AD 是角平分线,AC=12,AD=15,则点D 到AB 的距离为__________.【答案】919.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m 2【答案】24【解析】如图,连接AC .由勾股定理可知:AC=2222435AD CD +=+=,又∵AC 2+BC 2=52+122=132=AB 2, ∴△ABC 是直角三角形这块地的面积为=△ABC 的面积-△ACD 的面积=12×5×12- 12×3×4=24(m 2). 学#科网20.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.【答案】130cm三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DC(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.【答案】(1)以点A 、点B 、点C 为顶点的三角形是直角三角形; (2)这块地的面积24m 2. 【解析】试题分析:(1)根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,考点:勾股定理的逆定理.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?【答案】飞机每小时飞行540千米.学科%网【解析】试题分析:先画出图形,构造出直角三角形,利用勾股定理解答.试题解析:设A点为男孩头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2-AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),即飞机每小时飞行540千米.考点:勾股定理的应用.23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【答案】旗杆的高度是12米. 【解析】考点:勾股定理24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米? 【答案】它们离开港口半小时后相距10千米 【解析】试题分析:根据已知条件,构建直角三角形,利用勾股定理进行解答. 试题解析:如图,由已知得,OB=16×0.5=8海里,OA=12×0.5=6海里,在△OAB 中,∵∠AOB=90°,由勾股定理得OB 2+OA 2=AB 2, 即82+62=AB 2,AB=2286 =10海里.考点:勾股定理25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】(1)作图见解析;(2)作图见解析.【解析】考点:1.勾股定理;2.作图题.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.学%科网(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?【答案】(1)20s;(2)可以通行.【解析】考点:勾股定理的应用.27.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?【答案】(1)24;(2)不是. 【解析】试题分析:(1)应用勾股定理求出AB 的高度; (2)应用勾股定理求出BE 的距离即可解答. 试题解析:(1)如图:∠B=90°,在Rt △ABC 中,222225724AC BC -=-=,∴这个梯子的顶端A 距地面有24米高.(2)如果梯子下滑4米,则:BD=24-4=20,在Rt △BDE 中,2222252015DE BD -=-=, ∴CE=15-7=8,即:梯子的底部在水平方向也是滑动了8 m ,而不是滑动4m. 考点:勾股定理的应用. 学!科网28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m 、8 m .现要将其扩建成等腰三角形,且扩充部分是以8 m 为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.【答案】48或40或1003.【解析】考点:1.勾股定理的应用;2.等腰三角形的性质.。

人教版八年级下册数学第十七章 勾股定理 含答案

人教版八年级下册数学第十七章 勾股定理 含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、如图,已知,矩形ABCD中,AB=3 cm,AD=9 cm,将此矩形折叠,使点B与点D重合,折痕为EF,则AE的长为()A.3 cmB.4 cmC.5 cmD. cm2、如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,那么最快经过()小时,甲、乙两人相距6千米?A. B. C.1.5 D.3、下列说法中,不正确的是()A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为9∶40∶41的三角形是直角三角形4、如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为( )A.4B.8C.16D.645、下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5B.C.6,8,10D.9,12,156、如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )A.14B.16C.20D.287、如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.58、在下列三角形中,外心在它一条边上的三角形是()A.三角形的边长分别为2cm,2cm,3cmB.三角形的边长都等于4cm C.三角形的边长分别为5cm,12cm,13cm D.三角形的边长分别为4cm,6cm,8cm9、若线段a,b,c组成直角三角形,则它们的比可以为()A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶1010、如果将直角三角形的两直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.2倍B.4倍C.3倍D.以上结论都不对11、如图,在中,,,平分交于,于,交的延长线于,连接,给出四个结论:①;②;③;④;其中正确的结论有()A.1个B.2个C.3个D.4个12、《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x 2﹣6=(10﹣x)2B.x 2﹣6 2=(10﹣x)2C.x 2+6=(10﹣x)2 D.x 2+6 2=(10﹣x)213、如图,已知△ABC中,AB=6,AC=8,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.28B.36C.45D.5214、如图,在中,AD⊥BC于 D, AB=3,DB=2,DC=1,则AC等于()A.6B.C.D.415、如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①=AB•AC ④,正确的个数是∠CAD=30°②③S平行四边形ABCD()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点A、B、C为顶点的三角形的面积是________,周长是________.17、已知菱形的面积为24,一条对角线长为6,则其周长等于________.18、有一组勾股数,其中的两个分别是8和17,则第三个数是________19、已知,在△ABC中,∠ABC=90°,AB=4,BC=3,若线段CD=2,且CD∥AB,则AD的长度等于________.20、如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=________cm.21、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和10㎝的长方体无盖盒子中,则细木棒露在盒外面的最短长度是________㎝.22、如图,在矩形中,点E为边上一点,连接,作的平分线,交于点F,连接,若,,且,则________.23、飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行________千米.24、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门不知其高、宽,有竿,不知其长、短,横放,竿比门宽长出尺;竖放,竿比门高长出尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为尺,则可列方程为________.25、如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA =6,OC=10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为________。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3题图H
C
第4
题图
第5题图
D
C
B
A
第2题图
20
20
20
20
1515
15
15
24
2424
2425
25
25
25
7
7
7
7
第6题图
A
八年级数学第十七章勾股定理测试题(新课标)
(时限:100分钟总分:100分)
一、选择题:将下列各题正确答案的代号的选项填在下表中。

每小题2分,共24分。

1.下列说法正确的是
A.若a、b、c是△ABC的三边,则a2+b2=c2
B.若a、b、c是Rt△ABC的三边,则a2+b2=c2
C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2
D.若a、b、c是Rt△ABC的三边,∠C=90°,则a2+b2=c2
2.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是
3.如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的
线段是
A. CD,EF,GH
B. AB,EF,GH
C. AB,CD,GH
D. AB,CD,EF
4.在一个由16个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是
A. 3︰4
B. 5︰8
C. 9︰16
D. 1︰2
5.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、
B、C、D的边长分别为3、5、2、3,则最大正方形E的面积是
A. 13
B. 26
C. 47
D. 94
第10题图D
C
B
A 第12题图
A
64
100
第18题图
E D C B
A 第19题图第20题图N
M
F
E D C B A
6.如图,一圆柱高为8cm ,底面周长为30cm ,蚂蚁在圆柱表面爬行,从点A 爬到 点B 的最短路程是 A.15cm B.16cm C.17cm D.18cm
7.三角形的三边长分别为a 2+b 2、2ab 、a 2-b 2 (a 、b 都是正整数),则这个三角形是
A. 直角三角形
B. 钝角三角形
C. 锐角三角形
D. 不能确定 8.
等腰直角三角形三边长度之比为
A. 1︰1
︰2 B.1︰1︰2不能确定 9.三角形的三边长a 、b 、c 满足()2
a b +=c 2+2ab ,则这个三角形是
A. 等边三角形
B. 钝角三角形
C. 锐角三角形
D. 直角三角形
10.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为
A. 60
B. 30
C. 24
D. 12
11.已知三角形的三边长为a 、b 、c ,
如果()()2
a 9
b 12
c 150-+-+-=,则△ABC 是
A. 以a 为斜边的直角三角形
B. 以b 为斜边的直角三角形
B. 以c 为斜边的直角三角形 D. 不是直角三角形
12.三个正方形的面积如图,正方形A 的边长为
A. 8
B. 36
C. 64
D. 6
二、填空题:本大题共8小题,每小题2分,共16分。

13.某同学想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地 还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,旗杆的高度是 . 14.已知直角三角形的两边长为3、5,则另一边长是 .
15.若一个三角形的三边之比为5︰12︰13,则它为 三角形.
16.在△ABC 中,若a 2+b 2=25,a 2-b 2
=7,c =5,则△ABC 为 三角形.
17.一个长方形土地面积为48m 2
,对角线长为10m ,则此长方形的周长为 . 18.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,
且BE ︰AE =12︰5,则河堤的高BE 为 米.
19.如图,Rt △ABC 的面积为20cm 2
,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴
影部分的面积为 .
20.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕
为MN ,则线段CN 的长是 . 三、解答题:(本大题共60分)
21.(本题分2个小题,每小题5分共10分)
(1)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就
恰好等于门的对角线,已知门宽4尺,求门高和竹竿长.
第22题图D C
B 第23题图
O N
M
P
B
A
第24题图D /
C /B /A /
D
C B
A
(2)若△ABC 的三边a 、b 、c ,满足(a -b )(a 2
+b 2
-c 2
)=0,
试判断△ABC 的形状
22.(10分)如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积.
23.(10分)如图,∠AOB =60°,P 为∠AOB 内一点,P 到OA 、OB 的距离PM 、PN 分别为2和11,
求OP 的长.
24.(10分) 一根70cm 的木棒,要放在长、宽、高分别为50cm 、40cm 、30cm 的长方体要箱中,能放进去吗?(连接AC 及AC /)
25.(10分)如图所示,在一次夏令营活动中,小玲从营地A 出发,沿北偏东60
°方向走了到达B 点,然后再沿北偏西方向走了500m ⑴.求A 、C 两点之间的距离.
⑵确定目的地C 在营地A 什么方向.
图图②①
c
c c b a
c b a E 图④c
c c c b b b a a a a
图③
c c b b a a D C B A
四、阅读与证明(10分)
26. 如图①是用硬纸片做成的两个全等的直角三角形,两直角边分别为a 和b ,
斜边为c ,
图②是以c 为直角边的等腰直角三角形,将它们拼成一个能证明勾股定理的图形.
⑴ 将图①、图②拼成一个直角梯形,如图③. ⑵ 假设图①中直角三角形有若干个,可拼成边长为(a +b )的正方形.如图④
证明⑴.由图③可得 ()()2
A B C D
A B C D B C a b
=
=
2
2
梯形S +?, 2
A
B C
D R
t A
B E
R C D E R A E D
a b a b c
S =S S S =222
梯形t t D D D
++++, ∴()
2
2
a b ab ab c
=
2
2
2
2
++
+
∴a 2+b 2=c 2.
由图④你能验证勾股定理吗?试一试:
第24题图D /
C /
B /
A /
D
C
B
A
第25题图
参考答案:
一、1.D ;2.C ;3.B ;4.B ;5.C ;6.C ;7.A ;8.B ;9.D ;10.C ;11.C ;12.D ; 二、13.12米;14. 4
;15.直角;16.直角;17. 28cm ;18. 12;19.20cm 2; 20. 3cm.
三、21.竹竿长8.5尺,门高7.5尺;22.连接AC ,其他略; 23.延长NP 交OB 于C ,其他略;
24.
解析:连接AC 、AC /,则AC /为长方体木箱能容入 的木棒最大长度. △ABC 和△ACC /都是直角三角形. 根据勾股定理可得:
2
2
2
/2
2
/2
AC AB BC ,AC AC CC =+=+.
又AB =50,BC =40,CC /=30, ∴AC 2=AB 2+BC 2+CC /2=5000.
∴AC /

70>. ∴木棒能放进去.
25.解:⑴过点B 作BE ∥AD , ∴∠DAB =∠ABE =60°,
∴30°+∠CBA +∠ABE =180°, ∴∠ABC =90°
即△ABC 是直角三角形. ∵BC =500m,AB
= ∴由勾股定理得:
1000AC ==(m)
⑵在Rt ABC 中,∵BC =500m,AC =1000m,∴∠CAB =30°. ∵∠DAB =60°,∴∠DAC =30°, 即点C 在点A 的北偏东30°的方向.。

相关文档
最新文档