最新北师大版数学第一章-勾股定理-单元测试卷
第1章勾股定理 单元练习题 2022-2023学年北师大版八年级数学上册
![第1章勾股定理 单元练习题 2022-2023学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/e9b886cff605cc1755270722192e453610665bc8.png)
2022-2023学年度北师大版八年级数学上册《第1章勾股定理》单元综合练习题(附答案)一.选择题1.如图,在Rt△ABC中,∠CAB=90°,AB=8,AC=3,两顶点A,B在y轴、x轴上滑动,点C在第一象限内,连接OC,则OC的最大值为()A.7B.8C.9D.2.已知直角三角形纸片的两条直角边分别为m和n(m<n),过此三角形锐角的顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则有()A.m2+2mn+n2=0B.m2﹣2mn+n2=0C.m2+2mn﹣n2=0D.m2﹣2mn﹣n2=03.如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=125,S3=46,则S2=()A.171B.79C.100D.814.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5B.C.4D.35.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90B.100C.110D.1216.满足下列条件的三角形中,是直角三角形的是()A.三个内角度数之比是3:4:5B.三边长的平方比为5:12:13C.三边长度是1::D.三个内角度数比为2:3:47.分别以下列各组数为一个三角形的三边长:①6,8,10;②13,5,12;③2,2,3;④7,24,25;其中能构成直角三角形的有()组.A.2B.3C.4D.58.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A.x2=(x﹣4)2+(x﹣2)2B.2x2=(x﹣4)2+(x﹣2)2C.x2=42+(x﹣2)2D.x2=(x﹣4)2+229.如图,是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走()A.80米B.90米C.100米D.110米10.有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m二.填空题11.如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为.12.如图,在正方形网格中,每个小正方形的边长为1,△ABC是网格上的格点三角形,则它的边AC上的高等于.13.若一直角三角形两直角边长分别为6和8,则斜边长为.14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么a+b的值为.15.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.16.三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是.17.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.18.观察下面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;…根据你发现的规律,请你写出有以上规律的第⑤组勾股数:.19.一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是20.有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长.21.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为.22.如图所示,一个梯子AB长5m,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3m梯子滑动后停在DE位置上,如图,测得DB的长为1m,则梯子顶端A下落了m.三.解答题23.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图中画一条线段MN,使MN=;(2)在图中画一个三边长均为无理数,且各边都不相等的直角△DEF.24.在△ABC中,点D是直线BC上的一点,已知AB=15,AD=12,AC=13,BD=9.求BC的长.25.如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.26.如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数.27.若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.29.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.参考答案一.选择题1.解:取AB中点P,连接OP、CP,则OP=AP=AB=4,由勾股定理得,CP=5,利用三角形两边之和大于第三边可知:OC≤OP+PC=9,OC的长的最大值为9,故选:C.2.解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.3.解:由题意可知:S1=AB2,S2=BC2,S3=CD2,S4=AD2,连接BD,在直角△ABD和△BCD中,BD2=AD2+AB2=CD2+BC2,即S1+S4=S3+S2,因此S2=125﹣46=79,故选:B.4.解:∵ab=6,∴直角三角形的面积是ab=3,∵小正方形的面积是1,∴大正方形的面积=1+4×3=13,∴大正方形的边长为,故选:B.5.解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.8.解:当三个内角度数之比是3:4:5时,最大的角的度数是:180°×=75°<90°,故选项A不符合题意;当三边长的平方比为5:12:13时,因为()2+()2≠()2,故该三角形不是直角三角形,故选项B不符合题意;当三边长度是1::时,12+()2=()2,故该三角形不是直角三角形,故选项C符合题意;三个内角度数比为2:3:4时,最大的角的度数是:180°×=80°<90°,故选项D不符合题意;7.解:①62+82=100=102,符合勾股定理的逆定理;②52+122=132,符合勾股定理的逆定理;③22+22≠32,不符合勾股定理的逆定理;④72+242=252,符合勾股定理的逆定理.故选:B.8.解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,故选:A.9.解:因为两点之间线段最短,所以AC为从A到B的最短距离,根据矩形的对边相等,得,BC=AD=80米,再根据勾股定理,得,AC=100米.故选:C.10.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC=10m.故选:B.二.填空题11.解:连接AC,由勾股定理得AB2+BC2=AC2,AD2+CD2=AC2,∴甲的面积+乙的面积=丙的面积+丁的面积,∵甲的面积为30,乙的面积为16,丙的面积为17,∴丁的面积为30+16﹣17=29.故答案为:29.12.解:S△ABC=4×5﹣﹣=,根据勾股定理得:AC=5,设△ABC边AC边上的高为h,则,解得h=,故答案为.13.解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长=10,故答案为10.14.解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5.故答案为:5.15.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.16.解:当第三边是直角边时,根据勾股定理,第三边的长=4,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长=,三角形的边长分别为3,5,亦能构成三角形;综合以上两种情况,第三边的长应为4或.17.解:∵△ABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,即52=32+42,∴△ABC是直角三角形,∵CD⊥AB,∴AC•BC=AB•CD,即3×4=5×CD,解得CD=.故答案为:.18.解:通过观察得:第①组勾股数分别为:2×1+1=3,2×12+2×1=4,2×12+2×1+1=5;第②组勾股数分别为:2×2+1=5,2×22+2×2=12,2×22+2×2+1=13;第③组勾股数分别为:2×3+1=7,2×32+2×3=24,2×32+2×3+1=25;第④组勾股数为:2×4+1=9,2×42+2×4=40,2×42+2×4+1=41;所以第⑤组勾股数为:2×5+1=11,2×52+2×5=60,2×52+2×5+1=61.故答案为:11,60,61.19.解:当牙刷与杯底垂直时h最大,h最大=16﹣12=4cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB=13cm,故h=16﹣13=3cm.故h的取值范围是3≤h≤4.故答案是:3≤h≤4.20.解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10﹣6=4m,∴AD===4m,∴△ABD的周长=10+10+4=(20+4)m.③如图3,当AB为底时,设AD=BD=x,则CD=x﹣6,由勾股定理得:AD==x解得,x=,∴△ABD的周长为:AD+BD+AB=m.④如图4中,倍长AC后,因为AC=8,所以扩充部分就是以8m为直角边的直角三角形,此时△ABD的周长为36m,故答案为:32m或(20+4)m或m或36m.21.解:所示题意如下图:OA=40×20=800m,OB=40×15=600m.在直角△OAB中,AB==1000米.故答案为:1000米.22.解:在Rt△ABC中,AB=5m,BC=3m,根据勾股定理得AC==4米,Rt△CDE中,ED=AB=5m,CD=BC+DB=3+1=4米,根据勾股定理得CE==3,所以AE=AC﹣CE=1米,即梯子顶端下滑了1m.三.解答题23.解:如图所示:24.解:∵AB=15,AD=12,BD=9,∴AD2+BD2=AB2,∴△ABD是直角三角形,AD⊥BC,在Rt△ADC中,DC==5,则BC=BD+DC=14.当C′在线段BD上时,BC′=9﹣5=4,综上所述,BC的长为14或4.25.解:(1)如图所示,连接BE,∵D是AB边的中点,DE⊥AB于点D,∴DE垂直平分AB,∴AE=BE,又∵AE2﹣CE2=BC2,∴BE2﹣CE2=BC2,∴△BCE是直角三角形,且∠C=90°;(2)Rt△BDE中,BE===10,∴AE=10,设CE=x,则AC=10+x,而AB=2BD=16,Rt△ABC中,BC2=AB2﹣AC2=162﹣(10+x)2,Rt△BCE中,BC2=EB2﹣EC2=102﹣x2,∴162﹣(10+x)2=102﹣x2,解得x=2.8,∴CE=2.8.26.解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD=,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.27.解:(1)第一组(a是奇数):9,40,41(答案不唯一);第二组(a是偶数):12,35,37(答案不唯一);(2)当a为奇数时,,;当a为偶数时,,;证明:当a为奇数时,a2+b2=,∴(a,b,c)是“勾股数”.当a为偶数时,a2+b2=∴(a,b,c)是“勾股数”.28.解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.29.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m 在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.。
第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)
![第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)](https://img.taocdn.com/s3/m/4511174fb94ae45c3b3567ec102de2bd9605de76.png)
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.我国汉代的赵爽在注释《周髀算经》时给出了勾股定理的无字证明,人们称它为“赵爽弦图”,“赵爽弦图”指的是()A.B.C.D.2.下列各组数中,属于勾股数的是()A.1,1.7,2B.1.5,2,2.5C.6,8,10D.5,6,73.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.C.D.3π4.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.86.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.如图,一根长25m的梯子,斜立在一竖直的墙上,这时梯足距离底端7m.如果梯子的顶端下滑4m,那么梯足将滑动()A.7m B.8m C.9m D.10m8.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6cm B.8cm C.10cm D.12cm9.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.4,5,6C.1,2,3D.32,42,52 10.现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是()A.4,6,8B.4,6,10C.4,8,10D.6,8,10二.填空题(共7小题,满分28分)11.直角三角形的两直角边长分别为6和8,则斜边中线的长是.12.直角三角形中,两边长为3,4,则第三边长的平方为.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的度数为.15.观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:,第n组勾股数是.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.17.在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.三.解答题(共6小题,满分52分)18.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度的平方为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.。
第一章 勾股定理 单元练习 2024-2025学年北师大版数学八年级上册
![第一章 勾股定理 单元练习 2024-2025学年北师大版数学八年级上册](https://img.taocdn.com/s3/m/e816a37b4a35eefdc8d376eeaeaad1f347931174.png)
第一章勾股定理一、选择题1.下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=4,b=5,c=6 2.在Rt△ABC中,∠C=90°,AB=3,AC=2,则BC的值()A.5B.6C.7D.133.下列各图是以直角三角形各边为边,在三角形外部画正方形得到的,每个正方形中的数及字母S表示所在正方形的面积.其中S的值恰好等于10的是()A.B.C.D.4.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.5cm B.3cm C.3cm D.2cm5.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?()A.0.4B.0.6C.0.7D.0.86.小华新买了一条跳绳,如图1,他按照体育老师教的方法确定适合自己的绳长:一脚踩住绳子的中央,手肘靠近身体,两肘弯屈90∘,小臂水平转向两侧,两手将绳拉直,绳长即合适长度。
将图1抽象成如图2,若两手握住的绳柄两端距离约为1米,小臂到地面的距离约1.2米,则适合小华的绳长为()A.2.2米B.2.4米C.2.6米D.2.8米7.明朝数学家程大位在数学著作《直指算法统宗》中,以《西江月》词牌叙述了一道“荡秋千”问题:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地.意思是:如图,秋千OA静止的时候,踏板离地高一尺(AB=1尺),将它往前推进两步,一步合5尺(CA'=10尺),此时踏板离地五尺(A'D=5尺),则秋千绳索OA的长度为()A.10.5尺B.尺C.20尺D.29尺8.如图,已知△ABC中,AB=2,AC=3,AD⊥BC于D,P为AD上任一点,则PC2−PB2等于()A.5B.6C.7D.8二、填空题9.在Rt△ABC中,∠C=90°,AB=13,BC=5,则AC=.10.如图,在△ABC中,AC=BC,BD⊥AC于点D,AD=1,BD=3,则BC=.11.如图,已知RtΔABC的两直角边AC=7,BC=24,AD平分∠CAB,则CD=.12.如图,在Rt△ABC中,∠ACB=90°,D是AB上的一点,连接CD.将△ACD沿CD折叠,使点A落在A'处,且A'C⊥AB于点E,若CD=6,BD=5.则线段CE的长为.13.图1是第七届国际数学教育大会(ICME−7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图2所示)演化而成的.如果图2中的OA1=A1A2=A2A3=…A7A8=1,那么OA8的长为.三、解答题14.如图在四边形ABCD中,AB=BC=2,CD=3,DA=1,且∠B=90°,求∠DAB的度数.15.如图,一棵竖直的大杉树在一次台风中被刮断(AB⊥CD),树顶C落在离树根B15m处,工作人员要查看断痕A处的情况,在离树根B有6m的D处架起一个长10m的梯子AD,点D,B,C在同一条直线上,求这棵树原来的总高度.16.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)17.如图,一辆小汽车在一段限速110km/h高速公路上沿直道行驶,某一时刻刚好行驶到路对面车速检测仪A的正前方80m的C处,过了2s后,测得小汽车到达与车速检测仪A之间的距离为100m的B处.(1)你能计算这辆小汽车的速度吗?(2)这辆小汽车超速了吗?18.“劳动基地”是培养学生劳动意识和创新精神的重要平台,某校在校园一角开辟了一块四边形的“劳动基地”,如图,经过测量得知:∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)连接AC,判断△ACD的形状并说明理由;(2)若在该基地上种植蔬菜,每平方米需要费用3元,试问种满这块基地共需费用多少元?参考答案1.C2.A3.D4.A5.D6.C7.B8.A9.1210.511.21412.24513.2214.解:连接AC,∵∠B=90∘,AB=BC=2∴AC=AB2+BC2=22,∠BAC=45∘又∵CD=3,DA=1∴AC2+DA2=8+1=9,CD2=9∴AC2+DA2=CD2∴△ACD是直角三角形∴∠CAD=90∘∴∠DAB=45∘+90∘=135∘15.解:∵AB⊥CD,∴∠ABD=∠ABC=90°,∵AD=10m,BD=6m,∴AB=AD2−BD2=102−62=8m,∴AC =AB 2+BC 2=82+152=17m ,∴这棵树原来的总高度为:AB +AC =8+17=25m .16.解:在Rt△ABC 中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米17.(1)解:在RtABC 中,AC =80cm ,AB =100m ;根据勾股定理可得:BC =AB 2−AC 2=60(m),∴小汽车的速度为v =602=30(m/s)=108(km/h);(2)解:∵108km/h <110km/h ,∴这辆小汽车不超速行驶.答:这辆小汽车不超速.18.(1)解:△ACD 是直角三角形,理由如下:如图,∵∠B=90°,AB=6m,BC=8m,∴AC =AB 2+BC 2=62+82=10(m),∵CD=24m,AD=26m,102+242=262,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,且∠ACD=90°;(2)解:由(1)可知,∠ACD=90°,∵∠B=90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB ⋅BC +12AC ⋅CD =12×6×8+12×10×24=144(m 2),即四边形ABCD 的面积为144m 2,∴3×144=432(元),答:种满这块基地共需费用432元.。
第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册
![第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/897b19b14bfe04a1b0717fd5360cba1aa8118cc4.png)
第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。
(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档
![(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档](https://img.taocdn.com/s3/m/63bdddd116fc700aba68fc5e.png)
7 7第一章《勾股定理》单元测试卷班别:姓名:一、选择题(本题共10 小题,每小题3 分,满分30 分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c 能组成直角三角形,则c=()A.5B.C.5 或D.5 或63.如图中字母A 所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC 中,直角三角形的个数为()①a= ,b=,c= ②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2 个B.3 个C.4 个D.5 个7.在△ABC 中,若a=n2﹣1,b=2n,c=n2+1,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3 8. 直角三角形斜边的平方等于两条直角边乘积的2 倍,这个三角形有一个锐角是 ( ) A .15°B .30°C .45°D .60°9. 已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点 D 重合,折痕为 EF ,则△ABE 的面积为( ) A .3cm 2B .4cm 2C .6cm 2 D.12cm 210. 已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港 口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( ) A .25 海里B .30 海里C .35 海里D . 40 海里二、填空题(本题共 8 小题,每小题 3 分,满分 24 分)11. 一个三角形三边长度之比为 1∶2∶ ,则这个三角形的最大角为度.12. 如图,等腰△ABC 的底边 BC 为 16,底边上的高 AD 为 6,则腰长 AB 的长为. 13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m ,结果他在水中实际游了 520m ,求该河流的宽度为m .14.小华和小红都从同一点O 出发,小华向北走了9 米到A 点,小红向东走到B 点时,当两人相距为15 米,则小红向东走了米.15.一个三角形三边满足(a +b)2 -c2 = 2ab ,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是.三、解答题(共46 分)19.在RtΔABC 中,∠A CB=90°,AB=5,AC=3,CD⊥AB 于D,求CD 的长.CA BD21.(7 分)如图,在△ABC 中,AD⊥BC 于D,AB=3,BD=2,DC=1,求AC 的值.22.(8 分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河北牧童A东B 小屋23.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10 小题,每小题3 分,满分30 分)1.C.2.C.3.D.4.C.5.D.6.A.7.D.8.C.9.C.10.D.二、填空题(共8 小题,每小题3 分,满分24 分)11.900 .12.10 .13.480 m.14.12 米.15.直角.16.合格.17.30 cm2.18.25 .三、解答题(共46 分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC2 = AB2 -AC2=42,∴BC=4,∵CD⊥AB,1 1 12∴AB·CD= AC·BC,∴5CD=12,∴CD=.2 2 5.21.解:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.∴AC=22.解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.23.如图,作出A 点关于MN 的对称点A′,则A′A=8 km,连接A′B 交MN 于点P,则A′B 就是最短路线.在Rt△A′DB 中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17kmA′M P NAD B24.解:(1)由A 点向BF 作垂线,垂足为C,在Rt△ABC 中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A 城要受台风影响;(2)设BF 上点D,DA=200 千米,则还有一点G,“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
北师版八上数学 第一章 勾股定理 单元测试卷(含答案)
![北师版八上数学 第一章 勾股定理 单元测试卷(含答案)](https://img.taocdn.com/s3/m/58b69ac9e43a580216fc700abb68a98271feaca5.png)
北师版八上数学第一章勾股定理单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共15分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列由线段a、b、c组成的三角形,不是直角三角形的是()A.=345a b c==,,B.45 133 a b c===,,C.91215a b c===,,D.2a b c===,,2.如图,已知正方形ABED与正方形BCFE,现从A,B,C,D,E,F六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有()A.10B.12C.14D.163.已知ABC△的三边长分别为5,13,12,则ABC△的面积为()A.30B.60C.78D.不能确定4.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍5.已知三角形的三边长为n、n+1、m(其中m2=2n+1),则此三角形().A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定6.如图所示,在ABC∆中,三边a b c,,的大小关系是()A.a b c << B.c a b <<C.c b a << D.b a c<<7.如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是()A.x y =B.x y >C.x y <D.不确定8.以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形9.若三角形中两边的垂直平分线的交点正好落在第三条边上,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.如图,在由单位正方形组成的网格图中标有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是()A.CD ,EF ,GHB.AB ,EF ,GH C.AB ,CD ,GHD.AB ,CD ,EFF HG E D BC A二、填空题(本大题共5小题,每小题3分,共15分)11.如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC △是______三角形.12.△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边.(1)若a =5,b =12,则c =______;(2)若c =41,a =40,则b =______;(3)若∠A =30°,a =1,则c =______,b =______;(4)若∠A =45°,a =1,则b =______,c =______.14.在Rt △ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c,若c-a=4,b=16,则a、c 分别为.15.已知ABC ∆的A B C ∠∠∠,,的对边分别是a b c ,,,且满足()22220a b a b c -++-=,则三角形ABC 的形状是.三、解答题(本大题共7小题,共55分)16.已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.17.如图,ON是垂直于地面OM的墙面,AB是一根斜靠在墙面上长为a的木条,当木条端点A沿墙面下滑时,B沿地面向右滑行⑴设木条AB的中点为P,试判断木条滑行过程中,墙角处点O到P的距离怎样变化?说明理由⑵木条在什么位置时,ABO的面积最大?最大面积为多少?18.如图,已知CA⊥AB,DB⊥AB,AC=BE,AE=BD.(1)试猜想线段CE与DE的大小与位置关系,并说明你的结论;(2)若AC=5,BD=12,求CE的长.19.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.20.已知a b c ,,为ABC △的三边,且()()()::2:7:1a c a b c b -+-=-,试判断△ABC 的形状.21.阅读理解题:(1)如图所示,在ABC △中,AD 是BC 边上的中线,且12AD BC =.求证:90BAC ∠=︒(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直接运用这个结论解答下列题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为13,求这个三角形的面积.22.如图,Rt ABC ∆中,90CAB ∠=︒,AB AC =,E 、F 为BC 上的点,且45EAF ∠=︒,求证:222EF BE FC =+.F E CB A答案解析一、选择题1.D2.C;可得到14个直角三角形,分别为ABE △、ADE △、ABD 、△BED 、△BCE CFE 、、△△BCF BEF 、、△△ACF ADF ACD CDF AEC DBF、、、、、△△△△△△3.A;∵22251213+=,∴三角形为直角三角形,∵长为5,12的边为直角边,∴三角形的面积=12×5×12=30.4.B5.C6.D;a =10b 5,c =13.选D.()()2222a a a x a y +=-++化简得()2220a x y x y -=+>,x y>8.B;设最大半圆半径为c ,最小半圆半径为a ,第三个半圆半径为b ,则三角形中最长边为2c ,最短边长为2a ,第三边为2b ;∵较小的两个半圆面积之和等于较大的半圆面积,222222a b c πππ+=化简得:222a b c +=∴()()()222222a b c +=,符合勾股定理的逆定理,即三角形为直角三角形.9.B10.B;8AB =,20CD =5EF =13GH =,选B.二、填空题11.直角12.(1)13;(2)9;(3)2,3;(4)1,2.13.182cm ;设AB 为3x ,BC 为4x ,AC 为5x ,∵周长为36,AB +BC +AC =36,∴3x +4x +5x =36得x =3∴AB =9,BC =12,AC =15∵222AB BC AC +=,∴ABC △是直角三角形过3秒时,936236BP BQ =-==⨯=,∴()2119361822PBQ S BP BQ cm =⨯=⨯-⨯=△.14.a =30,c =3415.等腰直角三角形;因为222a b a b c =+=,,所以为等腰直角三角形三、解答题16.(1)先连接AD ,构造全等三角形:△BED 和△AFD .AD 是等腰直角三角形ABC 底边上的中线,所以有∠CAD =∠BAD =45°,AD =BD =CD ,而∠B =∠C =45°,所以∠B =∠DAF ,再加上BE =AF ,AD =BD ,可证出:△BED ≌△AFD ,从而得出DE =DF ,∠BDE =∠ADF ,从而得出∠EDF =90°,即△DEF 是等腰直角三角形;(2)还是证明:△BED ≌△AFD ,主要证∠DAF =∠DBE (∠DBE =180°-45°=135°,∠DAF =90°+45°=135°),再结合两组对边对应相等,所以两个三角形全等.17.⑴木条在滑行过程中,墙角处点O 到P 的距离保持不变,连结OP ,因为木条在滑行过程中,ABO ∆始终是以AB 为斜边的直角三角形,所以斜边上的中线1122OP AB a ==⑵设Rt ABO ∆中AB 边上的高为h ,则12ABC S ah ∆=,在木条滑动的过程中,三角形的面积随h 的变化而变化,显然除OH 与OP 重合外,总有OH OP <,即12h a <,当Rt ABO ∆是等腰直角三角形时,OH 与OP 重合,h 取得最大值12a ,这时三角形的面积最大,所以当木条与底面夹角为45︒时,ABO ∆的面积最大,最大面积为211112224ABC S ah a a a ∆==⋅=18.(1)易证△CAE∽△EBD,∴∠CEA+∠BED=∠CEA+∠ACE=90°,∴∠CED=90°,∴CE⊥DE(2)由(1)可知AC =5,AE =BD =12,∴CE =1319.EC=3cm;设EC=x,则6,CF=4.在Rt CEF △中(8-x)2=x 2+42,解得x=320.∵()():2:7a c a b -+=-∴9270a b c +-=①∵()():2:1a c c b --=-∴20a b c -+=②∵()():7:1a b c b +-=∴870a b c +-=③∵①+②得:3:5a c =,①-③得:3:4a b =∴::3:4:5a b c =∴△ABC 是直角三角形.21.(1)∵BD =CD ,AD =12BC ,∴AD =BD =DC ,∴∠B =∠BAD ,∠C =∠CAD ,∵∠B +∠BAD +∠CAD +∠C =180°,∴∠BAD +∠CAD =90°,即∠BAC =90°.(2)根据题意用语言表述为:如果三角形斜边上的中线等于斜边的一半,那么这个三角形是直角三角形.(3)因为一个三角形一边长为2,这边上的中线长为1,所以这个三角形为直角三角形,又∵1AB AC +=+∴()24AB AC +=+,2224AB AB AC AC +⨯+=+即224AB AC BC ⨯+=+,AB AC ⨯=∴直角三角形的面积可得2.22.过点A 作线段AD ,使CAF BAD ∠=∠,且AD AF =.在ACF ∆和ABD ∆中,AC AB CAF BAD AF AD =⎧⎪∠=∠⎨⎪=⎩∴ACF ABD∆∆≌∴CF BD =,DBA FCA∠=∠90DBE DBA ABE FCA ABE ∠=∠+∠=∠+∠=︒在ADE ∆和AFE ∆中,45AE AE EAF EAD AD AF =⎧⎪∠=∠=︒⎨⎪=⎩∴ADE AFE ∆∆≌∴ED EF =在Rt BDE ∆中,222DE BD BE =+,∴222EF BE FC =+.D F E C B A。
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)
![北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)](https://img.taocdn.com/s3/m/dc91ad6391c69ec3d5bbfd0a79563c1ec5dad7c3.png)
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)一、选择题(每题4分,共40分)1. 下列说法中,正确的是()A. 在任意三角形中,最长边的平方等于另外两边平方和B. 在直角三角形中,最长边的平方等于另外两边平方和C. 在直角三角形中,最长边的平方小于另外两边平方和D. 在直角三角形中,最长边的平方大于另外两边平方和答案:B2. 已知直角三角形两直角边长分别为6cm和8cm,那么它的斜边长是()A. 10cmB. 14cmC. 12cmD. 16cm答案:A3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB 的长度是()A. 5B. 6C. 7D. 8答案:A4. 下列三角形中,能构成直角三角形的是()A. 3, 4, 5B. 5, 6, 7C. 8, 9, 10D. 10, 11, 12答案:A5. 一个三角形的三边长分别是3cm、4cm和5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B6. 下列关于勾股定理的说法,错误的是()A. 勾股定理的适用范围是直角三角形B. 勾股定理可以用来求直角三角形的斜边长C. 勾股定理可以用来判断一个三角形是否为直角三角形D. 勾股定理只适用于直角三角形的直角边答案:D7. 如果一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是()A. 13cmB. 14cmC. 15cmD. 16cm答案:A8. 在直角三角形中,如果最长边的长是10cm,那么另外两边长的可能取值是()A. 6cm和8cmB. 5cm和12cmC. 3cm和4cmD. 2cm和3cm答案:B9. 已知直角三角形的斜边长为10cm,其中一条直角边长为6cm,那么另一条直角边长为()A. 4cmB. 8cmC. 10cmD. 12cm答案:B10. 下列图形中,不能用勾股定理求解的是()A. 正方形B. 矩形C. 等腰三角形D. 直角三角形答案:C二、填空题(每题4分,共40分)11. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB=__________。
第一章勾股定理单元测试 2024—2025学年北师大版数学八年级上册
![第一章勾股定理单元测试 2024—2025学年北师大版数学八年级上册](https://img.taocdn.com/s3/m/882e4d6e42323968011ca300a6c30c225801f069.png)
AB第一章勾股定理单元测试北师大版2024—2025学年八年级上册一、选择题1、在下列长度的四组线段中,不能组成直角三角形的是( ). A .a=9 b=41 c=40 B .a=b=5 C=52 C .a:b:c=3:4:5 D .a=11 b=12 c=152、下列说法正确的有( )①△ABC 是直角三角形,∠C=90°,则222c b a =+ ②△ABC 中,222c b a ≠+,则△ABC 不是直角三角形.③若△ABC 中,222c b a =-,则△ABC 是直角三角形.④若△ABC 是直角三角形,则()()2c b a b a =-+A.4个B.3个C.2个D.1个3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为( )A.8mB.10mC.12mD.14m4、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是 ( )A.20cmB.10cmC.14cmD.无法确定.5、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( ) A 、962cm B 、1202cm C 、1602cm D 、2002cm7、如图,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm ,且∠ABC=900,则四边形ABCD 的面积是( ).A .84B .36C .251D .无法确定 8、若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ).A .14B .4C .14或4D .以上都不对9、如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,B C /交AD 于E ,AD=8,AB=4,则DE 的长为( ).A .3B .4C .5D .610、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图2所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).A .13B .19C .25D .169图2BCDEAB二、解答题11.(1)如图所示,90B OAF ∠=∠=︒,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.(2)如图,在Rt △ABC 中,∠C =90°,AC =8,在△ABE 中,DE 是AB 边上的高,DE =12,S △ABE=60,求BC 的长.12.如图,一艘货轮在B 处向正东方向航行,船速为25 n mile/h ,此时,一艘快艇在B 的正南方向120 n mile 的A 处,以65 n mile/h 的速度要将一批货物送到货轮上,问快艇最快需要多少时间?13.一架梯子的长度为25米,如图斜靠在墙上,梯子顶端离墙底端为7米。
第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册
![第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/ff284f59a55177232f60ddccda38376baf1fe065.png)
北师大版八上勾股定理章节测试一、选择题(共11小题)1. 一个直角三角形的三边长分别为3,4,x,则x2为( )A. 5B. 25C. 7D. 7或252. 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.83. 如图所示,正方体的棱长为1,一只蜘蛛从正方体的一个顶点A爬行到另一个顶点B,则蜘蛛爬行的最短距离的平方是( )A. 2B. 3C. 4D. 54. 【例4】下列结论中,错误的有( )①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90∘;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形.A. 0个B. 1个C. 2个D. 3个5. 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A. 3cmB. 4cmC. 5cmD. 6cm6. 如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的Bʹ.则这根芦苇的长度是( )A. 10尺B. 11尺C. 12尺D. 13尺7. 如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A. 16cmB. 18cmC. 20cmD. 24cm8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是( )A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长为( )A. a+bB. a−bC. √a2+b22D. √a2−b2210. 如图 所示,矩形纸片 ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点 C 与点 A重合,则 AF 的长为 ( )A. 258 cmB. 254 cmC. 252 cmD. 8 cm11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为 ( )A. 2.2 米B. 2.3 米C. 2.4 米D. 2.5 米二、填空题(共10小题)12. 如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则 AE = .13. 如图,有一块直角三角形纸片 ABC ,两直角边 AC =6,BC =8,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,点 C 与点 E 重合,则 CD 长为 .14. 如图,在一个长为 2 米,宽为 1 米的纸板上有一长方体木块,它的长和纸板宽 AD 平行且大于AD ,木块的正面是边长为 0.2 米的正方形,一只蚂蚁从 A 处爬行到 C 处需要走的最短路程是 米.15. 已知三角形的三边长分别为AB=2cm,BC=2√3cm,CA=4cm,则此三角形面积是.16. 如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在Rt△ABC中,∠ABC=90∘,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点Bʹ处,则BE的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在△ABC中,∠ABC=90∘,分别以BC,AB,AC为边向外作正方形,面积分别记为S1,S2,S3,若S2=4,S3=6,则S1=.20. 阅读下列题目的解题过程:已知a,b,c为△ABC的三边,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.解:∵a2c2−b2c2=a4−b4,(A)∴c2(a2−b2)=(a2+b2)(a2−b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.23. 如图,有一只小鸟在一棵高4m的小树的树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,该小鸟立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,∠ABC=90∘,AB=12厘米,点P从A点开始沿AB边向B点移动,P的速度为2厘米/秒.点Q同时从点B开始沿BC边向C移动,Q的速度为3厘米/秒.几秒后,两点相距10厘米?25. 如图所示,若OA=3,OB=4,AB=5,OC=5,OD=12,CD=13,则∠BOC+∠AOD的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为1,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图1中画一条线段AB,使AB=√17,并标出AB的中点M;(2)在图2中画一条线段CD,使CD=2√13,并标出CD的中点N.27. 如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EBʹF,连接BʹD,求BʹD的最小值.28. 如图,某学校(A点)到公路(直线D)的距离为300m,到公交站(D点)的距离为500m,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,求商店C与车站D之间的距离.答案1. D2. D【解析】∵AB=2.5米,AC=0.7米,∴BC=√AB2−AC2=2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC−0.4=2米,∴DC=√DE2−EC2=1.5米.∴梯子的底部向外滑出AD=1.5−0.7=0.8(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接AB,如图所示,爬行的最短路径为线段AB.由勾股定理得,AB2=(1+1)2+12=5,故选D.4. C【解析】①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或√7,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90∘,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.5. A【解析】在Rt△ABC中,由勾股定理可知:AB=√BC2+AC2=√82+62=10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90∘,∴BE=AB−AE=10−6=4,∠DEB=90∘,设DC=x,则BD=8−x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3.6. D 【解析】设芦苇长AB=ABʹ=x尺,则水深AC=(x−1)尺,因为边长为10尺的正方形,所以BʹC=5尺.在Rt△ABʹC中,52+(x−1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7. C 【解析】如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=12×24=12cm,EF=18−1−1=16cm,在Rt△FES中,由勾股定理得:SF=√SE2+EF2=√122+162=20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.8. C【解析】A.正面向上的可能性为12;B.正面不向上的可能性为12;C.正面或反面向上的可能性为1;D.正面和反面都不向上的可能性为0.9. C【解析】设CD=x,则DE=a−x,∵HG=b,∴AH=CD=AG−HG=DE−HG=a−x−b=x,∴x=a−b2,∴BC=DE=a−a−b2=a+b2,∴BD2=BC2+CD2=(a+b2)2+(a−b2)2=a2+b22,∴BD=√a2+b22.10. B【解析】设AF=x cm,则DF=(8−x)cm .∵矩形纸片ABCD中,AB=6,BC=8,现将其沿EF对折,使得点C与点A重合,∴DF=DʹF.在Rt△ADʹF中,∵AF2=ADʹ2+DʹF2,∴x2=62+(8−x)2 .解得x=25.411. A 【解析】如图,在Rt△ACB中.∵∠ACB=90∘,BC=0.7米,AC=2.4米,AB2=AC2+BC2,∴AB2=0.72+2.42=6.25.在Rt△AʹBD中,∵∠AʹBD=90∘,AʹD=2米,BD2+AʹD2=AʹB2,∴BD2+22=6.25.∴BD2=2.25.∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.即小巷的宽度为2.2米,故答案选A.12. 2【解析】∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC=√AB2+BC2=√12+12=√2;AD=√AC2+CD2=√(√2)2+12=√3;AE=√AD2+DE2=√(√3)2+12=2.13. 314. 2.6【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接AC,AB=2+0.2×2=2.4米,BC=1米,∴AC2=2.42+12=6.76=2.62,∴AC=2.6米,∴妈蚁从A处爬行到C处需要走的最短路程为2.6米.15. 2√3cm216. 9【解析】在Rt△ABC中:∵∠CAB=90∘,BC=17米,AC=8米,∴AB=√BC2−AC2=√172−82=15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17−1×7=10(米),∴AD=√CD2−AC2=√102−82=6(米),∴BD=AB−AD=15−6=9(米),答:船向岸边移动了9米.17. 3218. 2米【解析】若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.5x+(x−0.5)2,解之得,x=2.5.所以水深2.5−0.5=2米.19. 2【解析】∵△ABC中,∠ABC=90∘,∴AB2+BC2=AC2,∴BC2=AC2−AB2.∵BC2=S1,AB2=S2=4,AC2=S3=6,∴S1=S3−S2=6−4=2.20. C,没有考虑a=b的情况,△ABC是等腰三角形或直角三角形21. x−3,(x−3)2+82=x2【解析】x−3;由题意可知AB⊥BC,由勾股定理可得(x−3)2+82=x2.22. 由题意得DB=AD;设CD=xcm,则AD=DB=(8−x)cm,∵∠C=90∘,∴在Rt△ACD中,根据勾股定理得:AD2−CD2=AC2,即(8−x)2−x2=36,解得x=7;4cm.即CD=7423. 这只小鸟至少经过5s才能到达大树和伙伴在一起.秒或2秒24. 221325. 在△AOB中,OA=3,OB=4,AB=5,所以OA2+OB2=AB2,所以△AOB是直角三角形,且∠AOB=90∘,在△COD中,OC=5,OD=12,CD=13,所以OC2+OD2=CD2,所以△COD是直角三角形,且∠COD=90∘,所以∠BOC+∠AOD=∠AOB+∠COD=90∘+90∘=180∘.26. (1)如图1,AB=√17,点M为线段AB的中点.(2)如图2,CD=2√13,点N为线段CD的中点.27. 如图,当∠BEF=∠DEF,点Bʹ在DE上时,BʹD的值最小.根据折叠的性质,得△EBF≌△EBʹF,所以EBʹ⊥FBʹ,EBʹ=EB .因为E是AB边的中点,AB=4,所以AE=EBʹ=2 .因为AD=6,所以DE=√62+22=2√10,所以BʹD=2√10−2 .28. 过点A作AB⊥l于点B,AD=500,AB=300,∴BD=400,设CD=AC=x,则BC=400−x,在Rt△ABC中,x2=(400−x)2+3002,x=312.5,∴CD=312.5m.。
初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)
![初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)](https://img.taocdn.com/s3/m/a39c307d2e60ddccda38376baf1ffc4fff47e27a.png)
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
北师大版八年级数学上《第一章勾股定理》单元测试题(含答案)
![北师大版八年级数学上《第一章勾股定理》单元测试题(含答案)](https://img.taocdn.com/s3/m/a4b75e7b48d7c1c708a145f4.png)
第一章勾股定理一、选择题(每题3分,共30分)1.下列由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=4,b=5,c=62.如图1所示,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()图1A.5B.6C.7D.83.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.A.0个B.1个C.2个D.3个4.如图2,将长为8cm的橡皮筋放置在地面上,固定两端点A和B,然后把中点C向上拉升3cm至点D,则橡皮筋被拉长了()图2A.2cm B.3cm C.4cm D.5cm5.将面积为8π的半圆与两个正方形按图3所示的方式摆放,则这两个正方形面积的和为()图3A.16B.32C.8πD.646.若△ABC 的三边长a ,b ,c 满足(a -b )2+|b -2|+(c 2-8)2=0,则下列对此三角形的形状描述最确切的是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形7.如图4所示,AC ⊥BD ,O 为垂足,设m =AB 2+CD 2,n =AD 2+BC 2,则m ,n 的大小关系为()图4A.m <n B.m =n C.m >nD.不确定8.如图5,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为()图5A.1B.2C.3D.49.如图6,设正方体ABCD -A 1B 1C 1D 1的棱长为1,黑甲壳虫从点A 出发,白甲壳虫从点C 1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA 1→A 1D 1→D 1C 1→C 1C →CB →BA →AA 1→A 1D 1…,白甲壳虫爬行的路线是:C 1C →CB →BB 1→B 1C 1→C 1C →CB …,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是()图6A.2B.3C.4D.510.如图7所示,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()图7A.3B.4C.5D.6二、填空题(每题3分,共18分)11.在△ABC中,若AC2+BC2=AB2,∠A∶∠B=1∶2,则∠B的度数是________.12.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________.13.木工师傅做了一个桌面,要求桌面为长方形,现量得桌面的长为60cm,宽为32cm,对角线的长为68cm,则这个桌面________.(填“合格”或“不合格”)14.一座垂直于两岸的桥长27米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头36米,则小船实际行驶了________米.15.如图8所示,把长方形纸片ABCD沿EF,GH同时折叠,B,C两点恰好都落在AD边上的点P处,若∠FPH=90°,PF=8,PH=6,则BC边的长为________.图816.我国数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图9,它是用八个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=15,则S 2的值是________.图9三、解答题(共52分)17.(6分)如图10,△ABC 中,D 是BC 上的一点,AB=10,BD=6,AD=8,AC=17.(1)判断AD 与BC 的位置关系,并说明理由;(2)求△ABC 的面积.图1018.(6分)如图11所示,在长方形ABCD 中,AB=CD=24,AD=BC=50,E 是AD 上一点,且AE∶DE=9∶16,判断△BEC 的形状.图1119.(6分)如图12是某同学设计的机器人比赛时行走的路径,机器人从A处先往东走4 m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m 就到达了B处,则点A,B之间的距离是多少?图1220.(6分)如图13所示,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)图1321.(6分)如图14,河边有A,B两个村庄,A村距河边10m,B村距河边30m,两村平行于河边方向的水平距离为30m,现要在河边建一抽水站,需铺设管道抽水到A村和B 村.(1)求铺设管道的最短长度是多少,请画图说明;(2)若铺设管道每米需要500元,则最低费用为多少?图1422.(6分)有一个如图15所示的长方体的透明鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.图1523.(8分)如图16,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.(1)如图①,A,B,C是三个格点(即小正方形的顶点),判断AB与BC的位置关系,并说明理由;(2)如图②,连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图,并说明理由).图1624.(8分)八年级(3)班开展了手工制作竞赛,每名同学都需在规定时间内完成一件手工作品.陈莉同学在制作手工作品时的第一、二个步骤是:①如图17,先裁下一张长BC=20cm ,宽AB=16cm 的长方形纸片ABCD;②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的点F 处.请你根据步骤①②解答下列问题:(1)找出图中∠FEC 的余角;(2)求EC 的长.图17答案1.C2.B3.C4.A5.D6.C7.B8.D9.D10.D11.60°12.答案不唯一,如20,99,10113.合格14.4515.2416.517.解:(1)AD ⊥BC .理由如下:因为BD 2+AD 2=62+82=102=AB 2,所以△ABD 是直角三角形,且∠ADB =90°,所以AD ⊥BC .(2)在Rt△ACD 中,因为CD 2=AC 2-AD 2=172-82=152,所以CD =15,所以S △ABC =12BC ·AD =12(BD +CD )·AD =12×21×8=84.18.解:因为AD =50,AE ∶DE =9∶16,所以AE =18,DE =32.在Rt△ABE 中,由勾股定理,得BE 2=AB 2+AE 2=242+182=900.在Rt△CDE 中,由勾股定理,得CE 2=DE 2+CD 2=322+242=1600.在△BCE 中,因为BE 2+CE 2=900+1600=2500=502=BC 2,所以△BEC 是直角三角形.19.解:如图,过点B 作BC ⊥AD 于点C ,由图可知AC =4-2+0.5=2.5(m),BC =4.5+1.5=6(m).在Rt△ABC 中,AB 2=AC 2+BC 2=2.52+62=42.25,所以AB =6.5(m),即点A ,B 之间的距离是6.5m.20.解:由题意可知AB =2m,CD =3m,BC =5m,AE =DE .设BE=x m,则EC=(5-x)m.在Rt△ABE中,由勾股定理,得AE2=AB2+BE2.在Rt△DCE中,由勾股定理,得DE2=CD2+EC2.所以AB2+BE2=CD2+EC2,即22+x2=32+(5-x)2,解得x=3,则5-x=2.所以杆AB底部距小鱼3m,杆CD底部距小鱼2m.21.解:(1)如图,过点A作AC⊥CE于点C,延长AC至点D,使CD=AC,连接BD,交河边于点E,连接AE,则抽水站应建在点E处,可使铺设的管道最短,最短长度为AE+BE,即BD的长.过点B作BF⊥AC于点F,由题意得:AC=10m,CF=30m,BF=30m,所以CD=AC=10m,所以DF=10+30=40(m).在Rt△BDF中,BD2=302+402=502,所以BD=50(m).即铺设管道的最短长度是50m.(2)最低费用为50×500=25000(元).22.解:(1)如图所示,AQ→QG为最短路线.(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm).因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.23.解:(1)AB⊥BC.理由:如图①,连接AC.由勾股定理可得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°,所以AB⊥BC.(2)∠α+∠β=45°.理由:如图②,由勾股定理得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°.又因为AB=BC,所以△ABC是等腰直角三角形,所以∠BAC=45°,即∠α+∠γ=45°.由图可知∠β=∠γ,所以∠α+∠β=45°.24.解:(1)∠CFE,∠BAF.(2)由折叠的性质,得AF=AD=20cm,EF=DE.设EC=x cm,则EF=DE=(16-x)cm.在Rt△ABF中,BF2=AF2-AB2=202-162=144,所以BF=12(cm),所以FC=BC-BF=20-12=8(cm).在Rt△EFC中,由勾股定理,得EF2=FC2+EC2,即(16-x)2=82+x2,解得x=6,所以EC的长为6cm.。
北师大版八年级上册《第一章勾股定理》单元测试(含答案)
![北师大版八年级上册《第一章勾股定理》单元测试(含答案)](https://img.taocdn.com/s3/m/f9043bd909a1284ac850ad02de80d4d8d15a01a3.png)
北师大版八年级上册《第一章勾股定理》单元测试(含答案)八年级数学勾股定理单元测试(时间:100分钟总分:120分)班级学号姓名得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C .①③ D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是()A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D .a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是() A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是()A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A .600米B . 800米C . 1000米D. 不能确定二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______第10题图第13题图第14题图第15题图米.14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b =2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。
北师大数学八年级上册第1章《勾股定理》单元测试卷含答案解析
![北师大数学八年级上册第1章《勾股定理》单元测试卷含答案解析](https://img.taocdn.com/s3/m/6d085b0e03020740be1e650e52ea551810a6c968.png)
2022-2023北师大版数学八年级上册第1章《勾股定理》单元测试卷考试范围:第1章《勾股定理》;考试时间:100分钟;满分:120分题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题30分)1.以下列各组线段为边作三角形,能构成直角三角形的是()A.2,3,4 B.6,8,10 C.5,8,13 D.12,13,142.用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2C.c2=a2﹣2ab+b2D.c2=(a+b)2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都是矩形KLMJ的边上,则矩形KLMJ的面积为()A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC 的距离为()A.B.C.D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题30分)11.已知直角三角形的三边分别为6、8、x,则x=.12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积=cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.评卷人得分三.解答题(共6小题60分)21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB=,BC=,AC=;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1,=2,=3,=4,=5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是:=2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题(共10小题)11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB ﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a 2+b 2=c 2,∵三角形的三边长a ,b ,c 满足2ab=(a +b )2﹣c 2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD ,根据勾股定理求出BD ,根据勾股定理的逆定理求出△CBD 是直角三角形,分别求出△ABD 和△CBD 的面积,即可得出答案.【解答】解:连结BD ,在△ABD 中,∵∠A=90°,BC=3cm ,DC=4cm ,∴BD==5(cm ),S △BCD =BC•DC=×3×4=6(cm 2),在△ABD 中,∵AD=13cm ,AB=12cm ,BD=5cm∴BD 2+AB 2=AD 2,∴△ABD 是直角三角形,∴S △ABD =AB•BD=×12×5=30(cm 2),∴四边形ABCD 的面积=S △ABD +S △BCD =6+30=36(cm 2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
第一章 勾股定理 测试卷北师大版八年级数学上册
![第一章 勾股定理 测试卷北师大版八年级数学上册](https://img.taocdn.com/s3/m/9bf5716a854769eae009581b6bd97f192279bfdc.png)
第一章 勾股定理 测试卷一.填空题1.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A.x 2-6=(10-x)2B.x 2-6 2=(10-x)2C.x 2+6=(10-x)2D.x 2+62=(10-x)23.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若(a+b) 2=21,大正方形的面积为13,则小正方形的面积为( )A.3B.4C.5D.64.如图所示,在Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 边的中点D 重合,折痕为MN ,则线段BN 的长为( )A.35B. 25C.4D.55.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是( )A.3,5,6B.2,4,5C.6,7,8D.1.5,2,2.56.若△ABC 的三边长a ,b ,c 满足(a-b)2+|a 2+b 2-c 2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.如图,已知圆柱的底面直径BC=6,高AB=8,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A.6B.8C.10D.148.如图,在由单位正方形组成的网格图中标有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A.CD ,EF ,GHB.AB ,EF ,GHC.AB ,CD ,GHD.AB ,CD ,EF9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米10.如图,在Rt △ABC 中,∠C=90°,AC=6cm ,BC=2cm.点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P 、Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 2的最小值是( )A.400cmB.324cmC.20cmD.18cm二.填空题11.有一组勾股数,两个较小的数为8和15,则第三个数为______.12.若直角三角形的两直角边长为a 、b ,且满足 962+-a a +|b-4|=0,则该直 角三角形的斜边长为______.13.一个三角形的三边长分别是12cm ,16cm ,20cm ,则这个三角形的面积是______.14.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点,若AB=8,则EF=______.15.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,此图案的示意图如图②,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF 、△BCG 、△CDH 、△DAE 是四个全等的直角三角形.若EF=2,DE=8,则AB 的长为______.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是______尺.三.解答题17.如图,△ABC中,AB=AC=13,BC=10,求△ABC的面积.18.如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度沿北偏东40°的方向航行,乙船沿南偏东50°的方向航行,3小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距60海里,问乙船的航速是多少?19.如图所示,正方形网格中,每个小正方形的边长都是1.(1)正方形①的面积S1=______cm2,正方形②的面积S2=1cm2,正方形③的面积S3=25cm2.(2)S1,S2,S3之间存在什么关系?(3)猜想:如果Rt△ABC三边BC,AC,AB的长分别为a,b,c,那么它们之间存在什么关系?20.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车检测仪A正前方30米C处,过了2秒后,测得小汽车与车速检测仪间距离为AB为50米,这辆小汽车超速了吗?21.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.22.学校要征收一块土地,形状如图所示,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,土地价格为1000元/m2,请你计算学校征收这块地需要多少钱?23.如图,在△ABC中,AD,AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8cm,求DE的长.24.如图,壁虎在一座底面半径为2米,高为5米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3)25.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗。
北师大版八年级数学上册:第一章《勾股定理》单元测试(附答案)
![北师大版八年级数学上册:第一章《勾股定理》单元测试(附答案)](https://img.taocdn.com/s3/m/d018e82b01f69e314332947c.png)
《第1章勾股定理》一、选择题1.分别有下列几组数据:①6、8、10 ②12、13、5 ③17、8、15 ④4、11、9,其中能构成直角三形的有()A.4组B.3组C.2组D.1组2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.514.下列三角形中,不是直角三角形的是()A.三角形三边分别是9,40,41B.三角形三内角之比为1:2:3C.三角形三内角中有两个角互余D.三角形三边之比为2:3:45.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为()A.0.7米B.0.8米C.0.9米D.1.0米6.如果三角形一个内角等于另外两个内角之和,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能7.直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cm B.8.5cm C. cm D. cm8.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空:9.如图,正方形B的面积是.10.如图,小方格都是边长为1的正方形,求四边形ABCD的面积.11.一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有米.12.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距 km.13.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .三、解答题:15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?16.新中源陶瓷厂某车间的人字形屋架为等腰△ABC,AC=BC=13米,AB=24米.求AB边上的高CD的长度?17.如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.18.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.《第1章勾股定理》参考答案与试题解析一、选择题1.分别有下列几组数据:①6、8、10 ②12、13、5 ③17、8、15 ④4、11、9,其中能构成直角三形的有()A.4组B.3组C.2组D.1组【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对四组数据进行逐一解答即可.【解答】解:①62+82=100=102,符合勾股定理的逆定理;②52+122=132,符合勾股定理的逆定理;③82+152=172,符合勾股定理的逆定理;④42+92≠112,不符合勾股定理的逆定理;故选:B.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【考点】勾股定理的逆定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.【点评】本题利用了分类讨论思想,是数学中常用的一种解题方法.3.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.51【考点】几何体的表面积;勾股定理.【分析】根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.【解答】解:∵ =15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.【点评】本题考查了勾股定理和长方形的面积公式.4.下列三角形中,不是直角三角形的是()A.三角形三边分别是9,40,41B.三角形三内角之比为1:2:3C.三角形三内角中有两个角互余D.三角形三边之比为2:3:4【考点】勾股定理的逆定理.【分析】分别讨论四个选项是否满足勾股定理的逆定理或者有一个角是直角即可,若满足则是直角三角形,否则不是.【解答】解:对于A:92+402=412,满足勾股定理的逆定理,所以该三角形是直角三角形;对于B:设三个内角为x,2x,3x则,x+2x+3x=180°,x=30°.此时三个内角分别为30°、60°、90°,即有一个角是直角,所以该三角形是直角三角形;对于C:三角形三内角中有两个互余,即另外一个角是90°,所以该三角形是直角三角形;对于D:设该三角形的三边为2x、3x、4x则(2x)2+(3x)2=13x2≠(4x)2=16x2,不满足勾股定理,也没有角为直角,所以不是直角三角形.故选D.【点评】本题主要考查利用直角三角形的性质证明该三角形是直角三角形的能力,只要满足勾股定理的逆定理或者有一个角为直角都可证明是直角三角形.5.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为()A.0.7米B.0.8米C.0.9米D.1.0米【考点】勾股定理的应用.【专题】应用题.【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:梯脚与墙角距离: =0.7(米).故选A.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.6.如果三角形一个内角等于另外两个内角之和,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【考点】三角形内角和定理.【专题】应用题.【分析】根据三角形的外角性质和已知条件可得:这个三角形中有一个内角和它相邻的外角是相等的;又因为外角与它相邻的内角互补,可得一个内角一定是90°,即可判断此三角形的形状.【解答】解:三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形.故选B.【点评】本题主要考查了三角形外角的性质及三角形的内角和定理,解答的关键是利用外角和内角的关系,比较简单.7.直角三角形的两直角边分别为5cm,12cm,其斜边上的高为()A.6cm B.8.5cm C. cm D. cm【考点】勾股定理;三角形的面积.【分析】先根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为5cm,12cm,∴斜边==13cm,设斜边上的高为h,则直角三角形的面积=×5×12=×13•h,∴h=cm.故选D.【点评】本题考查了勾股定理的运用及直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.8.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE 的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9﹣x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空:9.如图,正方形B的面积是144 .【考点】勾股定理.【分析】根据正方形的面积公式求出AC、AD的长,根据勾股定理求出CD的长,根据正方形的面积公式计算即可.【解答】解:由正方形的面积公式可知,AC=13,AD=5,由勾股定理得,DC==12,则CD2=144,∴正方形B的面积是144,故答案为:144.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.如图,小方格都是边长为1的正方形,求四边形ABCD的面积12 .【考点】勾股定理;三角形的面积;正方形的性质.【专题】计算题.【分析】由图可得出四边形ABCD的面积=网格的总面积﹣四个角的四个直角三角形的面积,该网格是5×5类型的且边长都是1的小正方形,面积为5×5;四个角的四个直角三角形的直角边分别为:1、2;4、3;3、2;3、2;根据直角三角形的面积等于×两直角边的乘积,分别求出四个直角三角形的面积,进而求出四边形ABCD的面积.【解答】解:由题意可得:四边形ABCD的面积=5×5﹣×1×2﹣×4×3﹣×2×3﹣×2×3=12,所以,四边形ABCD的面积为12.故答案为12.【点评】本题主要考查求不规则图形面积的能力,关键在于根据图形得出:四边形ABCD的面积=网格的总面积﹣四个角的四个直角三角形的面积,求出四边形ABCD的面积.11.一根旗杆在离地面12米处断裂,旗杆顶部落在离旗杆底部5米处.旗杆折断之前有25 米.【考点】勾股定理的应用.【分析】根据题意,可以知道两直角边的长度,从而构造直角三角形,根据勾股定理就可求出斜边的长.【解答】解:∵52+122=169,∴=13(m),∴13+12=25(米).∴旗杆折断之前有25米.故答案为:25.【点评】此题考查了勾股定理的应用.培养同学们利用数学知识解决实际问题的能力,观察题目的信息是解题以及学好数学的关键.12.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距17 km.【考点】勾股定理的应用.【分析】根据题意,画出图形,且东北和东南的夹角为90°,根据题目中给出的半小时后和速度可以计算AC,BC的长度,在直角△ABC中,已知AC,BC可以求得AB的长.【解答】解:作出图形,因为东北和东南的夹角为90°,所以△ABC为直角三角形.在Rt△ABC中,AC=16×0.5km=8km,BC=30×0.5km=15km.则AB=km=17km故答案为 17.【点评】本题考查了勾股定理在实际生活中的应用,本题中确定△ABC为直角三角形,并且根据勾股定理计算AB是解题的关键.13.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了8 步路(假设2步为1米),却踩伤了花草.【考点】勾股定理的应用.【分析】直接利用勾股定理得出AB的长,再利用AC+BC﹣AB进而得出答案.【解答】解:由题意可得:AB==10(m),则AC+BC﹣AB=14﹣10=4(m),故他们仅仅少走了:4×2=8(步).故答案为:8.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.14.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4= 4 .【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE ,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD ,∴△ABC ≌△BDE (AAS ),∴BC=ED ,∵AB 2=AC 2+BC 2,∴AB 2=AC 2+ED 2=S 1+S 2,即S 1+S 2=1,同理S 3+S 4=3.则S 1+S 2+S 3+S 4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.三、解答题:15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.16.新中源陶瓷厂某车间的人字形屋架为等腰△ABC,AC=BC=13米,AB=24米.求AB边上的高CD的长度?【考点】勾股定理的应用;等腰三角形的性质.【分析】根据等腰三角形ABC,CD是高,则易得△ACD是直角三角形.利用勾股定理即可得出CD的长.【解答】解:∵等腰三角形ABC,CD⊥AB,∴AD=BD=AB=12m,∵AC=BC=13m,∴CD==5m.答:AB边上的高CD的长度是5米.【点评】此题主要考查了等腰三角形的性质以及勾股定理的简单应用,根据已知得出AD=BD=12米是解题关键.17.如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【专题】网格型.【分析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.【点评】考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.18.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?【考点】平面展开-最短路径问题.【分析】先将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB;或将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,然后分别在Rt△ABD与Rt△ABH,利用勾股定理求得AB的长,比较大小即可求得需要爬行的最短路程.【解答】解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB==15cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB==10cm,则需要爬行的最短距离是15cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB==5cm,∵15<10<5,∴则需要爬行的最短距离是15cm.【点评】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展为平面图形,利用勾股定理的知识求解.19.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.【考点】勾股定理的应用.【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB 的长,即旗杆的高.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.【点评】此题考查了学生利用勾股定理解决实际问题的能力.20.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【考点】翻折变换(折叠问题);勾股定理的应用;矩形的性质.【分析】(1)由图形翻折变换的性质可知,AD=AF=10,在Rt△ABF中利用勾股定理即可求解BF,再由BC=12厘米可得出FC的长度;(2)将CE的长设为x,得出DE=10﹣x=EF,在Rt△CEF中,根据勾股定理列出方程求解即可.【解答】解:(1)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)设EC的长为xcm,则DE=(8﹣x)cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8﹣x)2,即16+x2=64﹣16x+x2,化简,得16x=48,∴x=3,故EC的长为3cm.【点评】本题主要考查了勾股定理的应用,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
![北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)](https://img.taocdn.com/s3/m/3e0e2970a4e9856a561252d380eb6294dd8822d9.png)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
2023-2024学年八年级数学上册《第一章 勾股定理》单元测试卷有答案-北师大版
![2023-2024学年八年级数学上册《第一章 勾股定理》单元测试卷有答案-北师大版](https://img.taocdn.com/s3/m/c54e5a0a11661ed9ad51f01dc281e53a580251cd.png)
2023-2024学年八年级数学上册《第一章勾股定理》单元测试卷有答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍2.在△ABC中,a,b,c分别是,和的对边,下列不能确定为直角三角形的是()A.B.C.D.3.如图,有两棵树,一棵高12m,另一棵高4m,两树相距15m,一只鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()A.8m B.10m C.13m D.17m4.如图,等边三角形ABC的周长为18,则BC边上的高AD的长为()A.3 B.3 C.6 D.65.如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC于点D,若CD=5,则AE 的长为()A.B.2 C.D.46.如图,在△ABC中,∠C=90°,M是AB的中点,点N在AC上,MN⊥AB,若AC=8,BC=4,则NC的长为()A.5 B.4 C.3 D.27.如图,的两边和的垂直平分线分别交于D,E两点,垂足分别为M,N,若,则的周长为()A.B.C.D.8.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一条直线上,若AB= ,则CD的长为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.一棵垂直于地面的大树在离地面6m处折断,树的顶部落在离大树底部8m处,大树折断之前的高度是.10.如图,点A在直线上,点B、C在直线上,如果和那么平行线、之间的距离为.11.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为.12.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:),计算两圆孔中心A和B的距离为mm.13.如图,台阶阶梯每一层高,宽,长 .一只蚂蚁从点爬到点,最短路程是.三、解答题:(本题共5题,共45分)14.在中,D是BC上一点,AC=10,CD=6,AD=8,AB=17,求BC的长.15.如图,已知在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AB的垂直平分线交AB于点D,交BC于点E,连结AE,求BE的长.16.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?17.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.18.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.1.A 2.B 3.D 4.B 5.A 6.C 7.B 8.C9.16m10.311.212.15013.130cm14.解:∵∴∵∴∴∴∴∴.15.解:在Rt△ABC中,由勾股定理得AB==15∵DE垂直平分线AB∴AE=BE设BE=AE=x,则CE=12﹣x在Rt△ACE中,由勾股定理得AE2=AC2+CE2即x2=92+(12﹣x)2解得x=即BE的长为.16.(1)解:根据勾股定理:所以梯子距离地面的高度为:AO 米;(2)解:梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米根据勾股定理:OB′=2米所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.17.(1)解:∵AC⊥BC,AB=17,BC=8∴AC= = =15(2)解:∵122+92=152∴CD2+AD2=AC2∴四边形ABCD的面积为:×8×15+ 12×9=60+54=11418.(1)证明:∵AD是∠BAC的平分线∴∠CAD=∠BAD∵AB=BD∴∠BDA=∠BAD∴∠CAD=∠BDA∴AC∥BD;(2)解:作FG⊥AB于G在Rt△ABE中,AE=2,AB=3∴BE∴FE=BE﹣BF∵AD是∠BAC的平分线,BE⊥AC,FG⊥AB,∴FG=FE,即△ABF中AB边上的高为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋八年级上学期第一章勾股定理单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积()A.6 B.12 C.24 D.2432.(4分)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.643.(4分)如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是( )A .B .C .D . 4.(4分)下列各组数中,是勾股数的为( )A .1,2,3B .4,5,6C .3,4,5D .7,8,95.(4分)如图,小明将一张长为20cm ,宽为15cm 的长方形纸(AE >DE )剪去了一角,量得AB=3cm ,CD=4cm ,则剪去的直角三角形的斜边长为( )A .5cmB .12cmC .16cmD .20cm6.(4分)如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm7.(4分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+ D .213π+8.(4分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .23B .34C .35D .58 9.(4分)如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 的高是( )A .210B .410C .510D .510.(4分)如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC 的顶点都在格点上,AB 边如图所示,则使△ABC 是直角三角形的点C 有( )A .12个B .10个C .8个D .6个评卷人得 分二.填空题(共4小题,满分20分,每小题5分)11.(5分)已知△ABC 的三边长为a 、b 、c ,满足a +b=10,ab=18,c=8,则此三角形为 三角形.12.(5分)如图,已知△ABC 中,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD= .13.(5分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A 处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).14.(5分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.评卷人得分三.解答题(共9小题,满分90分)15.(8分)如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.16.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC的周长.17.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=2,求△ABC的面积.18.(8分)如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=5cm,CD=5cm,BC=4cm,求四边形ABCD的面积.19.(10分)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.20.(10分)方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.21.(12分)(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?22.(12分)为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?23.(14分)(1)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如:5、12、13;9、40、41;…但其中也有一些特殊的勾股数,例如:3、4、5;是三个连续正整数组成的勾股数.解决问题:①在无数组勾股数中,是否存在三个连续偶数能组成勾股数?答:,若存在,试写出一组勾股数:.②在无数组勾股数中,是否还存在其它的三个连续正整数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.③在无数组勾股数中,是否存在三个连续奇数能组成勾股数?若存在,求出勾股数,若不存在,说明理由.(2)探索升华:是否存在锐角△ABC三边也为连续正整数;且同时还满足:∠B>∠C >∠A;∠ABC=2∠BAC?若存在,求出△ABC三边的长;若不存在,说明理由.2018年秋八年级上学期 第一章 勾股定理 单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据飞镖状图案的周长求出AB +AC 的长,在直角三角形AOB 中,利用勾股定理求出AC 的长,进而确定出OA 的长,求出三角形AOB 面积,即可确定出所求.【解答】解:根据题意得:4(AB +AC )=24,即AB +AC=6,OB=OC=3,在Rt △AOB 中,根据勾股定理得:AB 2=OA 2+OB 2,即(6﹣AC )2=32+(3+AC )2,解得:AC=1,∴OA=3+1=4,∴S △AOB =21×3×4=6, 则该飞镖状图案的面积为24,故选:C .【点评】此题考查了勾股定理的证明,以及三角形面积,熟练掌握勾股定理是解本题的关键.2.【分析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积.【解答】解:∵正方形PQED 的面积等于225,∴即PQ 2=225,∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣225=64,则正方形QMNR 的面积为64.故选:D .【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.【分析】过C 作CD ⊥AB 于D ,依据AB=6,AC=8,可得CD ≤8,进而得到当CD 与AC 重合时,CD 最长为8,此时,∠BAC=90°,△ABC 的面积最大.【解答】解:如图,过C 作CD ⊥AB 于D ,∵AB=6,AC=8,∴CD ≤8,∴当CD 与AC 重合时,CD 最长为8,此时,∠BAC=90°,△ABC 的面积最大,∴BC=2286 =10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选:C .【点评】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.4.【分析】根据勾股定理的逆定理分别对各组数据进行检验即可.【解答】解:A 、错误,∵12+22=5≠32=9,∴不是勾股数;B 、错误,∵42+52=41≠62=36,∴不是勾股数;C 、正确,∵32+42=25=52=25,∴是勾股数;D 、错误,∵72+82=113≠92=81,∴不是勾股数.故选:C .【点评】此题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.5.【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB 、DC 相交于F ,则BFC 构成直角三角形,运用勾股定理得:BC 2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm .故选:D .【点评】本题主要考查了勾股定理的应用,解答此题要延长AB 、DC 相交于F ,构造直角三角形,用勾股定理进行计算.6.【分析】根据勾股定理,可求出AD 、BD 的长,则AD +BD ﹣AB 即为橡皮筋拉长的距离.【解答】解:Rt △ACD 中,AC=21AB=4cm ,CD=3cm ; 根据勾股定理,得:AD=22CD AC =5cm ;∴AD +BD ﹣AB=2AD ﹣AB=10﹣8=2cm ;故橡皮筋被拉长了2cm .故选:A .【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.7.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A 、C 的最短距离为线段AC 的长. 在Rt △ADC 中,∠ADC=90°,CD=AB=3,AD 为底面半圆弧长,AD=1.5π,所以AC=243233222ππ+=⎪⎭⎫ ⎝⎛+, 故选:C .【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.8.【分析】根据三角形的内角和定理得出∠CAF +∠CFA=90°,∠FAD +∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE ,即可得出EC=FC ,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG ⊥AB 于点G ,∵∠ACB=90°,CD ⊥AB ,∴∠CDA=90°,∴∠CAF +∠CFA=90°,∠FAD +∠AED=90°,∵AF 平分∠CAB ,∴∠CAF=∠FAD ,∴∠CFA=∠AED=∠CEF ,∴CE=CF ,∵AF 平分∠CAB ,∠ACF=∠AGF=90°,∴FC=FG ,∵∠B=∠B ,∠FGB=∠ACB=90°,∴△BFG ∽△BAC , ∴AC FG AB BF =, ∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴354FG FC =-, ∵FC=FG ,∴354FG FC =-, 解得:FC=23, 即CE 的长为23. 故选:A .【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE .9.【分析】根据所给出的图形求出AB 、AC 、BC 的长以及∠BAC 的度数,再根据三角形的面积公式列出方程进行计算即可.【解答】解:根据图形可得:AB=AC=2221+=5,BC=103122=+,∠BAC=90°,设△ABC 中BC 的高是x ,则AC•AB=BC•x ,x •=⨯1055,x=210. 故选:A .【点评】此题考查了勾股定理,用到的知识点是勾股定理、三角形的面积公式,关键是根据三角形的面积公式列出关于x 的方程.10.【分析】根据正六边形的性质,分AB 是直角边和斜边两种情况确定出点C 的位置即可得解.【解答】解:如图,AB 是直角边时,点C 共有6个位置,即有6个直角三角形, AB 是斜边时,点C 共有4个位置,即有4个直角三角形,综上所述,△ABC 是直角三角形的个数有6+4=10个.故选:B .【点评】本题考查了正多边形和圆,难点在于分AB 是直角边和斜边两种情况讨论,熟练掌握正六边形的性质是解题的关键,作出图形更形象直观.二.填空题(共4小题,满分20分,每小题5分)11.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a +b=10,ab=18,c=8,∴(a +b )2﹣2ab=100﹣36=64,c 2=64,∴a 2+b 2=c 2,∴此三角形是直角三角形.故答案为:直角.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.12.【分析】直接利用勾股定理的逆定理得出△ABC 是直角三角形,进而得出线段DE 是△ABC 的中位线,再利用勾股定理得出AD ,再利用线段垂直平分线的性质得出DC 的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∵DE 是AC 的垂直平分线,∴AE=EC=4,DE ∥BC ,且线段DE 是△ABC 的中位线,∴DE=3,∴AD=DC=22DE AE =5.故答案为:5【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.13.【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离,A′B=22221216+=+'BD D A =20(cm ).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF ,即可得出结论.【解答】解:如图,过点A 作AF ⊥BC 于F ,在Rt △ABC 中,∠B=45°,∴BC=2AB=2,BF=AF=22AB=1, ∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt △ADF 中,根据勾股定理得,DF=322=-AF AD∴CD=BF +DF ﹣BC=1+3﹣2=3﹣1, 故答案为:3﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三.解答题(共9小题,满分90分)15.【分析】求出AC 、CD ,利用勾股定理求出AD 即可;【解答】解:在Rt △ABC 中,∠C=90°,∠BAC=30°,AB=6,∴BC=21AB=3, 在Rt △ABC 中,AC=3322=-BC AB ,∵AB 是DC 边上的中线,∴DB=BC=3,所以CD=6,在Rt △ACD 中,AD=()736332222=+=+CD AC .答:AD 的长是37【点评】本题考查勾股定理,中线的定义,直角三角形30度角性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【分析】根据垂直求出∠ADB=∠ADC=90°,求出AC=2AD=4,AD=BD=2,根据勾股定理求出CD 和AB ,即可求出答案.【解答】解:∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∵在Rt △ADB 中,∠DAB=90°﹣∠B=90°﹣45°=45°=∠B ,∴AD=BD=2,由勾股定理得:AB=222222=+;∵在Rt △ADC 中,∠C=30°,AD=2,∴AC=2AD=4,由勾股定理得:CD=322422=-,∴△ABC 的周长是AC +AB +BC=4+22+2+23=6+22+23.【点评】本题考查了等腰三角形的判定、三角形内角和定理、勾股定理、含30°角的直角三角形的性质等知识点,能灵活运用定理进行计算是解此题的关键.17.【分析】求出BD=AD=2,AC=2AD=22,根据勾股定理求出CD ,根据三角形的面积公式求出即可.【解答】解:∵AD ⊥BC ,∴∠ADB=∠ADC=90°,在Rt △ADB 中,∵∠B +∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴BD=AD=2,在Rt △ADC 中,∵∠C=30°,∴AC=2AD=22,∴CD=()()622222=-,BC=BD +CD=2+6,∴S △ABC =21×BC ×AD=21×(2+6)×2=1+3. 【点评】本题考查了含30°角的直角三角形的性质、等腰三角形的判定、勾股定理、三角形的面积等知识点,能求出各个边的长度是解此题的关键.18.【分析】连接BD ,根据勾股定理求得BD 的长,再根据勾股定理的逆定理证明△BCD 是直角三角形,则四边形ABCD 的面积是两个直角三角形的面积和.【解答】解:连接BD .∵∠A=90°,AB=2cm ,AD=5, ∴根据勾股定理可得BD=3, 又∵CD=5,BC=4,∴CD 2=BC 2+BD 2,∴△BCD 是直角三角形,∴∠CBD=90°,∴S 四边形ABCD =S △ABD +S △BCD =21AB•AD +21BC•BD=21×2×5+21×4×3=5+6(cm 2).【点评】此题考查勾股定理和勾股定理的逆定理的应用,辅助线的作法是关键.解题时注意:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.19.【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一.【解答】解:(1)11,60,61;(2)后两个数表示为212-n 和212+n ,又∵n ≥3,且n 为奇数,∴由n,212-n,212+n三个数组成的数是勾股数.故答案为:11,60,61.【点评】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及关系式进行猜想、证明即可.20.【分析】(1)A所在的水平线与B所在的竖直线的交点就是满足条件的点;(2)根据勾股定理可求得AB=5,则到A的距离是5的点就是所求;(3)到A点的距离是5的格点有2个,同理到B距离是5的格点有2个,据此即可求解.【解答】解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D有4个.故答案是:4.【点评】本题考查了等腰三角形,勾股定理,正确对等腰三角形的顶点讨论是关键.21.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=3r,BC=23r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=3r,BC=23r则圆柱型唇膏和纸盒的体积之比为:∴第二种包装的空间利用率大.【点评】考查了勾股定理的应用,圆的有关计算,立体图形的体积公式,综合性较强,需要学生对所学知识的系统掌握.22.【分析】(1)连接BD,在直角三角形ABD中,利用勾股定理求出BD,再利用勾股定理的逆定理判断得到三角形BCD为直角三角形,四边形ABCD面积等于三角形ABD面积+三角形BCD面积,求出即可;(2)由(1)求出的面积,乘以200即可得到结果.【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC=90°,则S 四边形ABCD =S △BAD +S △DBC =21•AD•AB +21DB•BC=21×4×3+21×12×5=36; (2)所以需费用36×200=7200(元).【点评】此题考查了勾股定理的应用,熟练掌握勾股定理及逆定理是解本题的关键.23.【分析】(1)①6,8,10;②设这三个正整数为n ﹣1,n ,n +1,根据勾股定理列方程可得方程解x=4,得出还是3,4,5这三个数,可得结论不存在;③设这三个奇数分别为:2n ﹣1,2n +1,2n +3,同理列方程,方程无整数解,可知,不存在;(2)设AB=x ,AC=x +1,BC=x ﹣1,作辅助线,构建等腰三角形,证明△CAB ∽△CDA ,列比例式,可得方程,解出即可.【解答】解:(1)①存在三个连续偶数能组成勾股数,如6,8,10,(3分)故答案为:存在;6,8,10;②答:不存在,(4分)理由是:假设在无数组勾股数中,还存在其它的三个连续正整数能组成勾股数,设这三个正整数为n ﹣1,n ,n +1,则(n ﹣1)2+n 2=(n +1)2,(5分)n 1=4,n 2=0(舍),当n=4时,n ﹣1=3,n +1=5,∴三个连续正整数仍然是3,4,5,∴不存在其它的三个连续正整数能组成勾股数;(6分)③答:不存在,(7分)理由是:在无数组勾股数中,存在三个连续奇数能组成勾股数,设这三个奇数分别为:2n ﹣1,2n +1,2n +3(n >1的整数),(2n ﹣1)2+(2n +1)2=(2n +3)2,n 1=27,n 2=﹣21, ∴不存在三个连续奇数能组成勾股数;(8分)(2)答:存在,三边长分别是4,5,6,(9分)理由是:如图,在△ABC 中,设AB=x ,AC=x +1,BC=x ﹣1,则:∠B >∠C >∠A ;∠ABC=2∠BAC ,延长CB 至D ,使BD=AB ,连接AD ,∴∠BAD=∠BDA ,(10分)∵∠ABC=∠BAD +∠BDA=2∠BDA ,∵∠ABC=2∠BAC ,∴∠BAC=∠BDA ,∵∠C=∠C ,∴△CAB ∽△CDA , ∴ACBC CD AC , ∴AC 2=BC•DC ,∴(x+1)2=(x﹣1)[(x﹣1)+x],x=5或0(舍),当x=5时,x﹣1=4,x+6,∴BC=4,AB=5,AC=6,答:满足条件的△ABC三边的长为4,5,6.(12分)【点评】本题是阅读材料问题,考查了勾股数的有关问题,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断,本题熟练掌握勾股定理列方程是关键.。