6机械振动n
机械振动原理
机械振动原理机械振动是指物体在受到外力作用下产生的周期性运动。
在工程实践中,我们经常会遇到各种各样的机械振动问题,比如机械结构的振动、机械设备的振动、以及振动控制等。
了解机械振动原理对于解决这些问题至关重要。
首先,让我们来了解一下机械振动的基本原理。
当一个物体受到外力作用时,它会产生振动。
这是因为外力会改变物体的平衡状态,使得物体产生位移。
而物体的位移又会导致弹性力的作用,使得物体产生惯性力,从而产生振动。
这种周期性的运动就是机械振动。
机械振动的特点是周期性和频率。
周期性是指振动是按照一定的周期重复的,而频率则是指单位时间内振动的次数。
振动的频率与物体的固有频率有关,物体的固有频率是指在没有外力作用下,物体自身固有的振动频率。
当外力的频率与物体的固有频率相同时,就会出现共振现象,这会对机械系统造成破坏。
了解机械振动的原理对于工程实践有着重要的意义。
首先,它可以帮助我们分析和预测机械系统的振动特性,从而设计出更加稳定和可靠的机械结构和设备。
其次,它可以帮助我们解决机械系统中出现的振动问题,比如减小振动、消除共振等。
最后,它还可以为我们提供优化设计和改进机械系统的思路。
在工程实践中,我们可以通过仿真和实验的方法来研究机械振动问题。
通过建立数学模型,我们可以分析机械系统的振动特性,比如振幅、频率、相位等。
同时,我们还可以通过实验来验证模型的准确性,并对机械系统进行振动测试,从而找出问题的根源并加以解决。
总之,了解机械振动的原理对于工程实践至关重要。
它可以帮助我们分析和预测机械系统的振动特性,解决振动问题,优化设计和改进机械系统。
通过不断地研究和实践,我们可以不断提高对机械振动的理解,从而为工程实践提供更加可靠和稳定的机械系统。
高中物理机械振动教案
高中物理机械振动教案
课题:机械振动
教学目标:
1. 了解机械振动的概念和特征;
2. 掌握机械振动的基本原理和表达方式;
3. 能够分析和解释机械振动在真实世界中的应用。
教学内容:
1. 机械振动的概念和分类;
2. 机械振动的基本特征;
3. 振动的周期、频率和振幅;
4. 振动的傅里叶级数表示;
5. 机械振动在真实世界中的应用案例。
教学重点:
1. 机械振动的基本概念和特征;
2. 振动的表达方式和分析方法。
教学难点:
1. 振动的傅里叶级数表示;
2. 机械振动在实际应用中的分析和解释。
教学过程:
一、导入
教师引入机械振动的概念,通过视频或图片展示一些常见的机械振动现象,引发学生对这一主题的兴趣。
二、讲解
1. 介绍机械振动的分类和特征;
2. 讲解振动的周期、频率和振幅的概念及计算方法;
3. 介绍振动的傅里叶级数表示方法。
三、例题解析
教师通过实例讲解振动的傅里叶级数表示方法,让学生理解振动信号的频谱分布和特点。
四、讨论
学生分组讨论机械振动在真实世界中的应用案例,分享自己的观点和见解。
五、总结
教师总结本节课的主要内容,强调学生应该掌握的重点和难点,引导学生对机械振动有更深入的理解。
教学反思:
通过这节课的教学,学生应该能够了解机械振动的基本原理和特征,掌握振动信号的傅里叶级数表示方法,并能够分析和解释机械振动在真实世界中的应用。
在教学过程中,要注重引导学生思考和讨论,激发他们的探究兴趣,提高他们的学习能力和综合素质。
大学物理-机械振动
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
江苏专用_新教材高中物理第二章机械振动6受迫振动共振课件新人教版选择性必修第一册
核心素养目标
1.了解固有振动、固有频率、阻尼振动的 概念。
2.知道受迫振动的概念,知道其振动频率 与驱动力频率的关系。
3.了解共振的概念,知道发生共振的条件。 4.了解共振的防止和应用。
知识点一 振动中的能量损失 [情境导学] 在研究单摆振动特点的物理课上,老师特意用大一些的木球
(2)由于把手转动的转速为 8 r/s,它给弹簧振子的驱动力频率为 f 驱=8 Hz, 周期 T 驱=18 s=0.125 s,故振子做受迫振动,振动达到稳定状态后,其振动 的频率 f(或周期 T)等于驱动力的频率(或周期),而跟固有频率(或周期)无关。
[答案] (1)简谐运动 0.25 s 4 Hz 阻尼振动 (2)受迫振动 0.125 s 8 Hz
提示:(1)洗衣机工作时电动机的转动会产生周期性驱动力,其转动频率即为 驱动力频率,使机身做受迫振动。
(2)洗衣机脱水时,电动机转速很快,转动频率很大,远大于洗衣机的固有频 率,机身做受迫振动的振幅较小。
(3)当脱水终止后,随着电动机转速的减小,其转动频率也在不断减小且越来 越接近机身的固有频率,会使“机身振动幅度越来越大”;当转动频率接近或等 于机身的固有频率时,机身会发生共振现象,即“有一小会儿振动得很剧烈”; 而后随着电动机转速的逐渐减小,驱动力频率逐渐远离机身的固有频率,“机身 的振动幅度会慢慢减小直至停下来”。
3.共振的应用与防止 (1)应用:共振转速计。 (2)防止:桥梁、码头等各种建筑的设计施工中,飞机、汽车、轮船的发 动机等机器设备的设计、制造、安装中,都必须防止共振产生危害。
[初试小题] 1.判断正误。
(1)受迫振动的频率等于振动系统的固有频率。 (2)驱动力频率越大,振幅越大。 (3)生活中应尽量使驱动力的频率接近振动系统的固有频率。 (4)驱动力的频率等于系统的固有频率时,发生共振现象。
6机械振动第六章
)ml
EI 2.43( ml3
)
140
例
k
k1
k
m1
m2
m1 m2 m , k1 ck
系统 1 m2 0
k
k1
k
m1
m2
系统 2: m1 0
k
k1
k
m1
m2
12
2 2
(k 2k1 )k (k k1 )m
1 2c 1 c
k m
有:
2 n1
1222 12 22
1 2
(1 2c) 1 c
xiT Mu Mi
I
r i 1
xi xiT M Mi
u
令
Qr
I
r i 1
xi xiT M Mi
及 Dr DQr
Dr
DQr
r
DD
i 1
xi xiT M Mi
D r i xi xiT M
M i1
i
则
Dr
Dr 1
r xr xrT M
Mr
例
k
k
k
精确解 取
m
m
m
1 1 1
D K 1
M
(
X
)
1
1
cr
c12
2 1
c12 r
则 RI (X ) 、RII (X ) 均大于基频(假定振型 相当于对系统加了约束,固有频率升高)
例
k
k
k
m
m
m
1 M m 1
2 1 0
1 1 1
K
k 1
2
1
1
0 1 1
R
1 k
1 1
机械振动和机械波知识点总结(最新整理)
机械振动和机械波一、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A ”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
机械振动概念、知识点总结
机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。
例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。
因为:乒乓球没有在平衡位置附近做往复运动。
(1)平衡位置:①物体所受回复力为零的位置。
②振动方向上,合力为零的位置。
③物体原来静止时的位置。
(2)机械振动的平衡位置不一定是振动范围的中心。
(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。
(4)回复力:沿振动方向,指向平衡位置的合力。
①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。
②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。
曲线振动(如单摆):回复力不一定等于振子的合外力。
③平衡位置,回复力为零。
例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。
答:错误。
正例:弹簧振子的平衡位置是合外力为零的位置。
反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。
(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。
(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。
振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。
正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。
机械振动学总结全
若用复数来表示,则有 机械振动学总结机 械 振 动 学 基 础第二节机械振动的运动学概念第三节机械振动是种特殊形式的运动。
在这运动过程中,机械振动系统将围绕其平衡位置作往复运动。
从 运动学的观点看,机械振动式研究机械系统的某些物理量在某一数值近旁随时间 t 变化的规律。
用函数关系式来描述其运动。
如果运动的函数值,对于相差常数 T 的不同时间有相同的数值,亦即可以用周期函数1来表示,则这一个运动时周期运动。
其中 T 的最小值叫做振动的周期,f 二1定义为振动的频率。
T简谐振动式最简单的振动,也是最简单的周期运动。
一、简谐振动.■, ... ■ ?. I .. ■;-.物体作简谐振动时,位移x 和时间t 的关系可用三角函数的表示为式中:A 为振幅,T 为周期,「和■■称为初相角。
如图所示的正弦波形表示了上式所描述的运动,角速度 •’称为简谐振动的角频率 简谐振动的速度和加速度就是位移表达式关于时间 t 的一阶和二阶导数,即可见,若位移为简谐函数,其速度和加速度也是简谐函数,且具有相同的频率。
因此在物体运动前 加速度是最早出现的量。
可以看出,简谐振动的加速度,其大小与位移成正比,而方向与位移相反,始终指向平衡位置。
这 是简谐振动的重要特征。
在振动分析中,有时我们用旋转矢量来表示简谐振动。
图 P6旋转矢量的模为振幅A ,角速度为角频率⑷z = Ae j(心z = Acos( t ) jAsin( t '-)用复指数形式描述简谐振动,给计算带来了很多方便。
因为复指数e j t 对时间求导一次相当于在其前乘以j ■,而每乘一次j ,相当于有初相角-2二•周期振动满足以下条件: 1)函数在一个周期内连续或只有有限个间断点,且间断点上函数左右极限存在;2)在一个周期内,只有有限个极大和极小值。
则都可展成Fourier 级数的形式,若周期为T 的周期振动函数,则有式中b n三、简谐振动的合成一、同方向振动的合成 1. 俩个同频率的简谐振动x 2 二 A 2sin( t 2) , x 2 二 A 2sin( 2t 2)它们的合成运动也是该频率的简谐振动2. 俩个不同频率振动的合成若「1—2,则合成运动为二、两垂直方向振动的合成1.同频率振动的合成如果沿x 方向的运动为沿y 方向的运动为2不同频率振动的合成对于俩个不等的简谐运动它们的合成运动也能在矩形中画出各种曲线第三节构成机械运动的基本元素构成机械振动的基本元素有惯性、 恢复性和阻尼。
物理中的机械振动知识点解析及解题技巧
物理中的机械振动知识点解析及解题技巧机械振动是物理学中的重要分支,研究物体在平衡位置附近做微小振幅周期性运动的规律。
在本文中,我们将对机械振动的知识点进行解析,并介绍一些解题技巧。
一、简谐振动简谐振动是理想化的机械振动模型,它假设振动系统没有能量损耗,且恢复力与位移成正比。
简谐振动的典型例子包括弹簧振子和摆锤等。
解析公式:1. 位移公式:x(t) = A*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
2. 速度公式:v(t) = -A*ω*sin(ωt+φ)。
3. 加速度公式:a(t) = -A*ω²*cos(ωt+φ)。
解题技巧:1. 周期与频率的关系:T = 1/f,其中T为周期,f为频率。
2. 角频率与频率的关系:ω = 2πf。
3. 振动的周期和频率与弹簧的劲度系数和质量有关:T = 2π√(m/k),其中m为质量,k为劲度系数。
二、阻尼振动阻尼振动是指振动系统中存在有能量消耗的情况下的振动现象。
根据阻尼的不同,可以分为无阻尼振动、欠阻尼振动和过阻尼振动。
解析公式:1. 无阻尼振动的位移公式:x(t) = A*cos(ωnt + φ),其中A为振幅,ωn为自然角频率,t为时间,φ为初相位。
2. 欠阻尼振动的位移公式:x(t) = A*e^(-βt)*cos(ωdt + φ)。
3. 过阻尼振动的位移公式:x(t) = A1*e^((-β1)t) + A2*e^((-β2)t),其中A1、A2为常数,β1、β2为自然频率。
解题技巧:1. 阻尼比:ζ = β/ωn,其中β为阻尼常数,ωn为自然角频率。
2. 衰减因子:η = e^(-βt)。
三、受迫振动受迫振动是指振动系统在受到外力作用下的振动现象。
当外力频率等于振动系统的固有频率时,会出现共振现象。
解析公式:1. 受迫振动的位移公式:x(t) = X*cos(ωt-δ),其中X为振幅,ω为外力角频率,t为时间,δ为初相位差。
6.机械振动 习题及答案
一、 选择题1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A )6π (B) 56π (C) 56π- (D) 6π- (E) 23π-2、已知一质点沿y 轴作简谐振动,如图所示。
其振动方程为3cos()4y A t πω=+,与之对应的振动曲线为 [ B ]3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大振幅2A处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8T(D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体,此三个系统振动周期之比为(A);21:2:1 (B) ;2:21:1 [ C ](C) ;21:2:1 (D) .41:2:15、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。
若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为(A);1s (B) ;32s (C) ;34s (D) .2s [ B ]6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分,且21nl l =,则相应的劲度系数1k ,2k 为 [ C ](A );)1(,121k n k k n n k +=+=(B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .11,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。
机械振动公式总结
机械振动公式总结机械振动是指物体在作有规律的往复运动时所表现出的现象,它广泛应用于工程领域,例如机械工程、建筑工程、航空航天工程等。
机械振动公式是描述机械振动性质和特点的数学公式,可以用于计算、分析和预测机械振动的参数和行为。
下面是一些常见的机械振动公式的总结。
1.简谐振动公式简谐振动是指在没有外力或外力恒定时,物体的振动是以弹性势能和动能的相互转化为基础的。
简谐振动公式可以表示为:x = A sin(ωt + φ)其中,x表示位移,单位为米;A表示振幅,单位为米;ω表示角速度,单位为弧度/秒;t表示时间,单位为秒;φ表示初相位,单位为弧度。
2.弹性力系数公式弹性力系数是描述弹性材料力学性质的一个参数,也是机械振动中重要的参数之一、弹性力系数公式可以表示为:F = kx其中,F表示受力,单位为牛顿;k表示弹性力系数,单位为牛顿/米;x表示位移,单位为米。
3.自然频率公式自然频率是指物体在没有外力作用时,在固有的弹性约束条件下产生的振动频率。
自然频率公式可以表示为:f=1/(2π)*√(k/m)其中,f表示自然频率,单位为赫兹;k表示弹性力系数,单位为牛顿/米;m表示质量,单位为千克。
4.阻尼振动公式阻尼振动是指在振动过程中存在能量损失的振动,由于摩擦、空气阻力等因素的存在。
阻尼振动公式可以表示为:x = e^(-βt) * (Acos(ωdt + φ1) + Bsin(ωdt + φ2))其中,x表示位移,单位为米;β表示阻尼系数,单位为弧度/秒;ωd表示阻尼角频率,单位为弧度/秒;t表示时间,单位为秒;A、B、φ1、φ2表示振动的参数。
5.多自由度振动公式多自由度振动是指多个物体同时进行复杂的振动过程,可以通过多自由度振动公式来描述。
多自由度振动公式可以表示为:M¨+KX=0其中,M表示质量矩阵,K表示刚度矩阵,X表示位移矩阵。
通过这些机械振动公式,我们可以计算出机械系统的振幅、频率、质量、弹性力系数等参数,进而进行分析和预测。
机械振动分析
机械振动分析机械振动是指机械系统或其部件在运转过程中产生的周期性的物理现象。
事实上,振动是机械系统中普遍存在的现象,它可能对机械设备的安全性、性能和可靠性产生重要影响。
因此,对机械振动进行分析和评估是非常重要的。
本文将介绍机械振动的分析方法和应用。
一、机械振动的类型机械振动可以分为自由振动和受迫振动两种类型。
1. 自由振动自由振动是指没有外部激励的振动。
当机械系统受到扰动后,会出现自由振动,振动的频率和振幅由系统的初始条件决定。
自由振动的数学模型可以用二阶线性微分方程描述。
2. 受迫振动受迫振动是指机械系统受到外部激励而发生的振动。
外部激励可以是周期性的力、电磁力或其他形式的力。
受迫振动的频率由外部激励的频率决定,而振幅则由系统的特性和外部激励的幅值决定。
二、机械振动的分析方法机械振动的分析方法主要包括理论分析和实验分析两种。
1. 理论分析理论分析是通过建立数学模型和方程,利用力学和振动学的原理来描述和解释机械系统的振动行为。
常用的理论分析方法有等效刚度法、拉格朗日方程法、哈密尔顿原理等。
理论分析可以提供对机械振动进行详细的建模和预测。
2. 实验分析实验分析是通过实际测试和测量来获取机械系统的振动数据,然后对数据进行分析和处理。
实验分析可以采用各种传感器和测量设备,如振动传感器、加速度计、激光测振仪等。
通过实验分析,可以获取机械系统在不同工况下的振动特性,并对振动源和振动传播路径进行识别和评估。
三、机械振动的应用机械振动分析在工程中具有广泛的应用。
以下是几个常见的应用领域:1. 故障诊断通过对振动信号的分析,可以判断机械系统是否存在故障。
故障往往会导致机械系统振动特性的异常变化,通过分析振动数据可以识别出故障的类型和位置,从而提前预警和采取相应的维修措施。
2. 结构优化在设计机械系统时,通过分析振动特性可以评估结构的强度和稳定性。
通过优化结构参数和材料选择,可以减小机械系统的振动响应,提高系统的性能和可靠性。
机械振动
第一章绪论§1-1 引言机械振动是机械运动的一种特殊形式,是指物体在其平衡位置附近所作的往复运动。
年没课程的一些名着,如Thomson和Meirovitch的着作,在份量和叙述方式上都不尽合适。
针对少学时(约30~36学时)的工科本科生的需要,在1983~1996年期间对本科生和工程师短训班的十五次讲授中,博采国内外一些较好着作的内容,较好的叙述方式,曾三次编写“机械振动”讲义,试图使读者在学习中能做到:学习振动分析的基本理论和方法,掌握现代数学和电子计算机这一强有力工具的初步应用;随机振动入门,着重于基本概念及其数学方法的工程应用实例;噪声的基本概念和测试方法;…为今后进一步学习应用打下基础,但内容又不过多、过深,略去定量的证明和公式繁琐的推导。
“机械振动”讲义注重实用性、实例的重点阐述,计算机例题的上机操作求解等基本技能的训练。
第二章叙述常系数线性微分方程的基本解法。
在给工科专业高年级学生讲授振动课程第七章“随机振动入门”,介绍随机振动的数学应用,阶跃激励、脉冲激励和任意激励的响应—卷积积分(杜哈美积分)。
随机激励下响应的付利叶积分法。
随机振动理论的初步应用。
振动对人体的影响,ISO2631标准。
机车车辆工程和汽车工程的应用实例。
第八章“噪声的测量”,介绍声学及噪声的基础知识,噪声测量仪表,测量方法,并附有噪声测量实验指导书。
本讲义自1983年开始教学实践以来,经1987、1990、1997年三次修订而成。
由陈石华教授(第一至六章)、刘永明博士、副教授(第七章)、施绍祺高级工程师(第八章)编写,全书由刘永明制图、电脑排版。
由于时间仓促、水平有限,书中不妥之处,热诚地欢迎读者指正。
杂的控制系统。
由于振动,机器在使用过程中往往产生巨大的反复变动的载荷,这将导致机器使用寿命的降低,甚至酿成灾难性的破坏事故。
如大桥因共振而毁坏;烟囱因风振而倒坍;飞机因颤振而坠落等等,文献均有记载。
为了防止这些事故的发生,若不针对事故的原因作正确的分析和研究,设计人员往往传统方式地加大结构断面尺寸,导致机器重量增加和材料的浪费。
高中物理机械振动知识点总结
一. 教案内容:第十一章机械振动本章知识复习归纳二. 重点、难点解读(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。
机械振动知识总结
一、单自由度系统的振动2()()0()(nmx t kx t x t w x t +=⇔+120)cos sin cos n n A w t A w t x =+=2()()()0()2()()0n n mx t cx t kx t x t w x t w x t ξ++=++= 211)(nn w t w t e X e ξξ--=+自然频率 阻尼率 22n c c mw mkξ==w 2()2()(()cos(n n nw td x t w x t w x t t C ew t ξξψ-++=-:尼激0 ()cos(n x t C w t =-幅频曲线及其特性 ()H w 1:此时力与位移相位相反sin nwt c =/2/22T T T -=⎰周期函数将失去周期性,而离散频谱将转化为连续谱,此时傅里()()(mx t cx t kx t ++21)[1(/)n n c k w w ∞==-∑00sin n dx x ξωω+0sin n n x t ωω +自由振动是强迫振动的基础,任一时刻的强迫振动响应其实只是该时刻前被激起的一系列自由振动的叠加。
2()2()()n nx t w x t w x t ξ++=1()()()2iwtt H w F w e dw π+∞-∞=⎰()()()mx t cx t kx t ++=拉普拉斯变换:()(0)(()()()F s mx ms X s D s D s ++=+拉氏反变换:11()[()]2jw jwx t L X s j γγπ+--==⎰牛顿第二定律、定轴转动方程、能量原理、拉格朗日方程一般情况采用解析法求解,对于非线性方程,常采用数值方法求解振动系统反作用力近似为位移和速度的函数:)x 泰勒展开并取cx 结论:弹簧刚度与阻尼系数实际上是泰勒展开式中定义:单位位移所需要的力。
弹簧串联、并联,关键在于共力还是共位移用积分计算结构运动时的动能,得到某结构的等效质量/d m ;经变形法;能量法:max V不变,响应振幅与激振力振幅正比,为滞后激励多少,Ψ初相位微小的阻尼就可以限制振幅的无限扩大共振需要一个较长的建立过程,机器需有足够的加速功率顺利通过共振区。
机械振动和机械波知识点的归纳
机械振动和机械波知识点的归纳一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动,又称简谐振动。
2、简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
干货-机械振动常用名词术语和释义
机械振动常用名词术语和释义1、机械振动:指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动,是机械系统对激励的响应。
振动的强弱用振动量来衡量,振动量可以是振动体的位移、速度或加速度。
2、自由振动:一般是指力学体系在经历某一初始扰动(位置或速度的变化)后,不再受外界力的激励和干扰的情形下所发生的振动。
3、受迫振动:是指在外来力函数的激励下而产生的振动。
4、自激振动:是指由振动体自身所激励的振动。
5、激励:引起系统运动的力作用或扰动。
6、响应:所有力作用于系统上产生的运动。
7、振幅:表示物体动态运动或振动的幅度,它是机械振动强度和能量水平的标志,也是机器振动严重程度的一个重要指标,是评判机器运转状态优劣的主要指标。
表述振动幅值的大小通常采用振动的位移、速度或加速度值为度量单位。
8、振动位移:常用峰峰值表示,单位一般为μm,速度常用有效值表示,也成为振动烈度,单位一般为mm/s,加速度常用峰值表示,单位一般为:m/s^2。
振幅的量值可以表示为峰峰值(pp)、单峰值(p)、有效值(rms)或平均值(ap)。
9、峰峰值:整个振动历程的最大值,即正峰与负峰之间的差值。
10、单峰值:振动加速度的量值是单峰值,正峰或负峰的最大值,单位是重力加速度[g]或米/秒平方[m/s2],1[g] = 9.81[m/s2]。
11、有效值:振动速度的量值为有效值,均方根值,单位是毫米/秒[mm/s]或英寸/秒[ips]。
12、峰峰值、单峰值和有效值的关系:只有在纯正弦波(如简谐振动)的情况下,单峰值等于峰峰值的1/2,有效值等于单峰值的0.707倍,平均值等于单峰值的0.637倍;平均值在振动测量中很少使用。
它们之间的换算关系是:峰峰值=2×单峰值=2×21/2×有效值。
[在低频范围内,振动强度与位移成正比;在中频范围内,振动强度与速度成正比;在高频范围内,振动强度与加速度成正比。
因为频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对较小且变化量更小,因此振动位移能够更清晰地反映出振动强度的大小;而频率高,意味着振动次数多、过程短,速度、尤其是加速度的数值及变化量大,因此振动强度与振动加速度成正比。
高一物理机械振动及其产生条件;简谐运动的特点、规律北师大版知识精讲
高一物理机械振动及其产生条件;简谐运动的特点、规律北师大版【本讲教育信息】一. 教学内容:机械振动及其产生条件;简谐运动的特点、规律;简谐运动的图像二. 知识总结归纳1. 机械振动及其产生条件:机械振动是指物体(或物体的一部分)在某一中心位置两侧所做的往复运动。
它的产生条件是:回复力不为零;阻力足够小。
回复力是使振动物体回到平衡位置的力。
它是以效果命名的力,类似于向心力,一般由振动方向上的某个力或某几个力的合力来提供。
2. 简谐运动的特点:回复力的大小与位移大小始终成正比,方向始终相反,即符合公式F =-kx 。
这也是判断一个机械振动是否是简谐运动的依据。
我们常见的两个简谐运动模型是弹簧振子和单摆。
大家想一想这两个典型运动的回复力由哪些力提供?在这里需要强调两个概念:一是平衡位置。
平衡位置是指物体在振动方向上所受合力为零的位置。
简谐运动一定有平衡位置,而机械振动有中心位置,不一定有平衡位置。
另一个是位移。
振动中物体的位移是表示物体即时位置的物理量,它始终以平衡位置为初始位置,可以用一个由平衡位置指向某一时刻位置的有向线段来表示。
3. 简谐运动的规律:简谐运动是一种复杂的非匀变速运动,要结合牛顿运动定律、动量定理、动能定理、机械能守恒定律来分析解决简谐运动的问题。
(1)简谐运动的对称性:振动物体在振动的过程中,在关于平衡位置对称的位置上,描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)大小相等。
(2)简谐运动的周期性:振动物体完成一次全振动(或振动经过一个周期),描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)又恢复到和原来一样。
简谐运动的周期是由振动系统的特性决定的,与振幅无关。
弹簧振子的周期只决定于弹簧的劲度系数和振子的质量,与其放置的环境和方式无关。
单摆在小角度摆动下的振动可视为简谐运动,其周期公式为=,其T 2 L g中L 为摆长(悬点到球心间的距离),g 为重力加速度,单摆周期与振幅、摆球质量无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
RJ
m
mg kl 0
T
m
F2
o
a
mg
T
x
当m有位移x时
mg T ma
a T k ( l x )R J R 联立得 J kx m 2 a R d2x k x0 2 2 dt m J R
k
RJ
m
T
m
F2
o
a
mg
T
x
2
x
d2x 2 x0 2 dt
简谐振动微分方程
通解
x A cos(t ) 谐振动运动方程
简谐振动定义(判据): 运动学判据 描述运动的物理量 遵从微分方程 动力学判据 物体所受合外力
d2x 2 x0 2 dt
或运动方程为
F kx
x A cos(t )
k 0,1,2,
两分振动相互减弱
如 A1=A2 , 则 A=0
二. 两个同方向频率相近简谐振动的合成 拍 分振动 合振动
x1 A cos( 1t ) x2 A cos( 2 t )
x x1 x2
x 2 A cos(
2 1
2
) t cos(
合振动是简谐振动, 其频率仍为
分析
A A12 A22 2 A1 A2 cos( 2 1 )
作 业
机械振动(二)
若两分振动同相:
2 1 2k
A A1 A2
k 0,1,2,
两分振动相互加强
若两分振动反相:
2 1 (2k 1)
A A1 A2
物体作简谐振动
m J R2 T 2 k 2
k 2 2 m J R
三、简谐振动的旋转矢量表示法
t=t A
t+0
0
A t=0
x
o
X
x A cos( t 0 )
超前和落后
两个谐振动
x1 A1 cos(t 1 ) x2 A2 cos(t 2 )
t —相位,决定谐振动物体的运动状态
x A cos(t )
v A sin( t )
是t =0时刻的位相—初相位
t 0时 x0 A cos
v0 A sin
v0 tan x 0
例:如图m=2×10-2kg, 弹簧的静止形变为l=9.8cm t=0时 x0=-9.8cm, v0=0 m ⑴ 取开始振动时为计时零点, 写出振动方程; (2)若取x0=0,v0>0为计时零点, 写出振动方程,并计算振动频率。 解:⑴ 确定平衡位置 mg=k l 取为原点 k=mg/ l 令向下有位移 x, 则 f=mg-k(l +x)=-kx 作谐振动 设振动方程为 x A cos( t
相位差 两振动相位之差。 (t 2 ) (t 1 ) 2 1
对两同频率的谐振动 = 2- 1 初相差
若=2-1>0, 称x2比x1超前 (或x1比x2落后)。
为简单起见 , 取0
当=2k ,k=0,±1,±2…,两振动步调相同,称同相 当=(2k+1) , k=0,1,2...两振动步调相反,称反相
O
f
mg
复摆:绕不过质心的水平固定轴转动的刚体 当 sin 时
d 2 mgh J 2 dt
mgh 2 J
O
h
C
d 2 0 2 dt
2
结论:复摆的小角度摆动振动是简谐振动。
mg
思考:下列运动是否为简谐振动? 1.乒乓球在地面上的上下跳动
v的旋转矢量与v轴夹角表示t 时刻相位 t 2
31.4
t 0
-15.7
2 由图知 2 3 6 1 s 1
31.4 A 10cm 3.14 vm
2
v
t 1s
o
15.7
x 10 cos(t
x A cos(t )
31.4
v A sin( t )
sin( 1 v A v 1 vm 2
t 1 v 15.7cms
1
1
6
)
7 1 6 6 v 31 . 4 1 m 3.14 s A 10cm 3.14 故振动方程为 x 10 cos(2cos(10t+)
m
X
g l
(2)按题意 t=0 时 x0=0,v0>0 1 2 2 x0=Acos0=0 , cos0=0 0=/2 ,3/2 v =-Asin>0 , sin <0, 取 =3/2 1.6 Hz
0 0 0
机械振动:物体在一定位置附近作来回往复的运动。
广义振动:任一物理量(如位移、电流等)在某一 数值附近反复变化。
6-1 简谐振动 (simple harmonic motion)
一、简谐振动的基本特征
弹簧振子(弹簧—物体系统 )模型
k O
m
F k a x m m
k 令 m
2
a x d2x a 2 dt
v0 A sin
A
x0 (
2
v0
)2
2、周期 、频率、圆频率
周期T :物体完成一次全振动所需时间。
A cos(t ) A cos (t T ) A cost T
T
2
频率:单位时间内振动的次数。
角频率
1 T 2 2 2 T
x=9.810-2cos(10t+3/2) m
固有频率
对同一谐振动取不同的计时起点不同,但、A不变
例:如图所示,振动系统由一倔强系数为k的 轻弹簧、 一半径为R、转动惯量为I的 定滑轮和一质量为m的 物体所组成。使物体略偏离平衡位置后放手,任其 振动,试证物体作简谐振动,并求其周期T. 解:取位移轴ox,m在平 衡位置时,设弹簧伸长量 为l,则
2
2
)
a A cos( t ) am cos( t )
x.v .a.
o
x
T/4
a
T/4
T t
v
vm
A
由图可见:
90
0
0
90
t+
o
am
·
x
v 超前 x 2 a 超前 v 2
v x vm cos(t 2) a x am cos(t ) A cos(t 2) A 2 cos(t )
用旋转矢量表示相位关系
y
A2
A2 A1
x
A1
2 即x2比x1超前 2 x
2 1
同相
A2 A1
反相
A2
x
A1
x
谐振动的位移、速度、加速度之间的相位关系
x A cos( t )
v A sin( t ) m cos( t
6
)cm
四、简谐振动的能量 谐振动系统的能量=系统的动能Ek+系统的势能Ep
某一时刻,谐振子速度为v,位移为x
v A sin(t )
1 E k mv 2 2 1 2 kA sin 2 ( t ) 2
x A cos(t )
1 2 E p kx 2 1 2 kA cos 2 ( t ) 2
例:已知某简谐振动的 速 a 2 A cos( t ) 1 度与时间的关系曲线如图 v(cms ) 所示,试求其振动方程。 31.4 解:方法1 15.7 用解析法求解 0 1 15 . 7 设振动方程为
v A sin( t )
t ( s)
2 a A cos 0 0 v0 A sin 15.7cms v0 15.7 1 1 A v m 31.4cms sin A 31.4 2 5 或 a0 0, 则cos 0 6 6 6 1
x1 (t ) A1 cos(t 1 ) x2 (t ) A2 cos(t 2 )
合振动 :
2
A2
x1
x x1 x2 x A cos(t )
2 2
1
x2
x
A A A 2 A1 A2 cos( 2 1 )
2 1
A1 sin 1 A2 sin 2 tg A1 cos 1 A2 cos 2
E p max , E p min , E p
情况同动能。
1 2 E E k E p kA 2
机械能
简谐振动系统机械能守恒
E
E
(1/2)kA2
o x
Ep
Ek
E p Ek
T t
t
6-2 简谐振动的合成
一、同方向、同频率谐振动的合成 质点同时参与同方向同频率 的谐振动 :
A A1
k m g l 9.8 10rad / s 0.098
O
x X
0
)
由初条件得
A x0 (
2
10rad / s
v0 )2 0.098m
m v0 0 arctg( ) 0 , x 0 由x0=Acos0=-0.098<0 cos0<0, 取0=