七年级数学上册2.4绝对值教学设计2华东师大版

合集下载

新华师大版七年级上册初中数学 2.4 绝对值 教案

新华师大版七年级上册初中数学 2.4 绝对值 教案

第二章有理数2.4 绝对值1.通过数轴上的点与原点的距离引出有理数的绝对值的概念.2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.求一个数的绝对值.绝对值在数轴上的意义问题.一、情境导入,激发兴趣创设情境:在一节体育课中,老师组织了一次游戏.如图所示,四位同学站在圆上,比赛谁最先到达圆的中心.提问:1.四位同学到达中心的距离相等吗?2.他们的方向会影响距离的长度吗?结论:与方向无关,距离相等.【教学说明】通过一个具体的实例,让学生体会只考虑距离,和方向无关,为学习绝对值打下基础.1. 找一找数轴上表示1与-1的点,3与-3的点,观察它们到原点的距离各是多少?结论: 1与-1到原点的距离相等,3与-3到原点的距离相等.【教学说明】让学生观察后回答,发现他们距离的关系.2.概念讲解在数轴上表示-6的点与原点的距离是6,数100的点与原点的距离是100.我们叫做-6的绝对值是6,100的绝对值是100,也就是说,把数轴上表示数a 的点与原点的距离叫做数a的绝对值,记做|a|.【教学说明】教师结合具体的例子,给出绝对值的概念,重点强调绝对值与数轴上的点之间的关系.3.随常练习(1)试一试,口答:|+2|=________ ||=________|+8.2|=________ |0|=________|-3|=________ |-0.2|=________|-8.2|=________(2)求下列各数的绝对值:-,,-4.75,+10.5.【教学说明】让学生结合绝对值的概念进行回答,进一步理解绝对值的概念,及时巩固所学知识.4.观察思考:通过求上面数的绝对值,观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?请同学们分类讨论,归纳出数a的绝对值的一般规律.【教学说明】学生先对照具体的数字思考规律,然后互相交流,总结正数、负数和0的绝对值分别是什么数,有什么规律.5.总结归纳一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数.【教学说明】教师根据学生的回答及时板书,再用字母代表的式子表示这个规律,形成知识体系.例1 求下列各数的绝对值:-152,+110,-4.75,10.5.例2 求下列式子的值:(1)|-(+)|;(2)-|-|.【教学说明】先让学生自主尝试,教师检查学生的掌握情况,及时点拨.1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑.从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.【教学说明】让学生总结和归纳,再一次回顾本节课所学知识,达到再巩固,再提高的目的.课本习题1.1。

七年级数学上册 第二章 有理数 2.4 绝对值教学设计 (新版)华东师大版

七年级数学上册 第二章 有理数 2.4 绝对值教学设计 (新版)华东师大版

2.4绝对值教学目标:1.理解、掌握绝对值概念.体会绝对值的作用与意义2.掌握求一个已知数的绝对值和有理数大小比较的方法.3.体验运用直观知识解决数学问题的成功.教学重点:绝对值的概念教学难点:绝对值的概念与两个负数的大小比较教学过程:一、学前准备问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近).【答案】不相同相同二、合作探究、归纳1.由上问题可以知道,10到原点的距离是,—10到原点的距离也是.到原点的距离等于10的数有个,它们的关系是一对.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣【答案】10 10 2 相反数2.练习(1)式子∣-5.7∣表示的意义是.【答案】它与原点的距离是5.7(2)—2的绝对值表示它离开原点的距离是个单位,记作.【答案】2 |-2|(3)∣24∣=. ∣—3.1∣=,∣—13∣=,∣0∣=.【答案】24 3.1 133.思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 用式子表示就是:当a 是正数(即a >0)时,∣a ∣=;当a 是负数(即a <0)时,∣a ∣=;当a =0时,∣a ∣=.【答案】它本身相反数 0a -a 0三、巩固新知,灵活应用例1求下列各数的绝对值: -215,110,-4.75,10.5 解:│-215│=215 101+=101|-4.75|=4.75|10.5|=10.5.例2 化简: (1)12⎛⎫-+ ⎪⎝⎭; (2)113-- 解:(1) 1111222⎛⎫-+=-= ⎪⎝⎭; (2) 111133--=- 随堂练习课本P 24第1.2.3大题四、小结:本节课的收获?你还有什么疑惑?五、当堂清查1.______7.3=-;______0=;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______5.55.6=---.4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.5.一个数的绝对值是32,那么这个数为______. 6.绝对值等于4的数是______.7.绝对值等于其相反数的数一定是…………………………………()A .负数B .正数C .负数或零D .正数或零8.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A .0个B .1个C .2个D .3个【答案】1. 3.7, 0, -0.752.31,45-,323. 15, 14.0,正数,负数5.32±6.4±7.C8.B。

华师大版-数学-七年级上册-华师大七年级2.4绝对值 教案

华师大版-数学-七年级上册-华师大七年级2.4绝对值 教案

华师大版七年级2.4 绝对值教案教学目标:知识与能力:理解绝对值的概念及表示法。

理解数的绝对值的几何意义。

掌握求一个数的绝对值及有关的简单计算,过程与方法:探索绝对值等于某一正数的有理数的求法及绝对值的简单应用增强应用意识,发展创新敬精神。

情感态度与价值观:让学生经历绝对值的产生过程,体会数形结合思想。

教学重点、难点重点:绝对值的概念和求一个数的绝对值。

难点:绝对值的几何意义。

课堂导入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。

例如有两位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10 Km到达A处,另一位同学乘上乙出租车向西行驶10 Km到达B处。

教学过程一、合作学习1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考两位同学付费额度是否一样?为什么?3:结论付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)这几位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。

说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。

同样数轴上+5和-5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作;-5的绝对值也是5,记作|-5| 。

其实际意义是:数轴上+5这个点到原点的距离为5。

(强调绝对值符号的书写格式)二、课内练习1、求下列各数的绝对值:-1.6 0 -10 +10 同时说出它们的几何意义。

2、说出下列各数的绝对值:-7 -2.05 0 1000由上述两题可概括出:(在教师的引导下让学生得出结论)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。

2.4绝对值-华东师大版七年级数学上册教案

2.4绝对值-华东师大版七年级数学上册教案

2.4 绝对值-华东师大版七年级数学上册教案
一、教学目标
1.了解绝对值的定义;
2.理解绝对值的性质;
3.能够运用绝对值解决实际问题。

二、教学内容
1.什么是绝对值;
2.绝对值的符号;
3.绝对值的性质;
4.实际问题应用。

三、教学重点与难点
1.绝对值的性质;
2.实际问题的应用。

四、教学方法
1.通过问题启发学生思考,探讨绝对值的定义;
2.通过例题和练习题辅助学生理解绝对值的性质;
3.联系实际生活中的场景,运用绝对值解决问题。

五、教学过程
1. 引入(5分钟)
老师可以放一些生活中的场景,引导学生思考这些数的差值和绝对值的关系。

2. 概念解释(10分钟)
通过对绝对值的定义进行解释,让学生了解“绝对值”的定义。

3. 绝对值的符号(10分钟)
介绍绝对值的符号,在黑板上画出来,让学生记忆。

4. 绝对值的性质(20分钟)
通过例题和练习题来辅助学生理解绝对值的性质,包括:同号相反数、异号相反数、非负数的绝对值等。

5. 实际问题的应用(15分钟)
联系实际生活中的场景,例如:记账问题、温度问题等,让学生运用绝对值解决问题。

6. 操作练习(10分钟)
通过一定数量的练习题来检验学生对绝对值的掌握程度。

六、教学反思
通过这堂课的教学,学生对绝对值的性质有了更深入的理解,能够灵活运用绝对值解决实际问题。

但同时,我也发现了一些问题,例如:有些学生在进行操作练习时依然存在不理解的情况,可能是因为不够耐心或者练习题的数量不够。

因此,我会在今后的教学中注意对学生的耐心指导和增加操作练习的数量。

华东师大版数学七年级上册优秀教学案例:2.4绝对值

华东师大版数学七年级上册优秀教学案例:2.4绝对值
2.作业反馈:教师及时批改学生的作业,给予评价和指导,帮助学生巩固所学知识。
五、案例亮点
1.生活情境导入:通过生活情境的导入,使学生能够直观地感受到绝对值在实际生活中的应用,提高了学生的学习兴趣,增加了学生的学习积极性。
2.小组合作学习:通过小组合作学习的方式,培养了学生的团队合作能力和解决问题的能力,同时也提高了学生的表达能力和逻辑思维能力。
6.教学评价多元化:教师采用了多元化的评价方式,不仅关注学生的知识掌握程度,还关注他们的学习过程、情感态度和合作能力,使评价更加全面、客观。
7.教学内容与过程详细:教师对每个教学环节进行了详细的规划和设计,使教学内容与过程紧密相连,提高了教学效果。
本节课主要内容是让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决实际问题。在教学过程中,我充分考虑学生的认知规律和学习兴趣,以生活情境导入,让学生感受绝对值在实际生活中的应用。在课堂活动中,我鼓励学生积极参与,通过小组讨论、探究活动等形式,让学生在实践中体验绝对值的意义,培养学生的合作意识和解决问题的能力。同时,我注重个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高。
2.采用自主学习、合作探究的方式,让学生在实践中体验绝对值的意义,培养他们的合作意识和解决问题的能力。
3.教师引导学生通过举例、归纳、总结等方法,探索绝对值的性质,培养他们的归纳总结能力和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,感受数学的趣味性和实用性,提高他们的学习积极性。
2.通过对绝对值的学习,使学生认识到数学与生活的紧密联系,增强他们的数学应用意识。
四、教学内容与过程
(一)导入新课
1.生活情境:以计算两地之间的距离为例,让学生思考如何表示两地之间的距离。引导学生发现,无论两地距离多远,都可以用一条线段来表示,线段的长度就是两地之间的距离。

华师大版数学七年级上册(教学设计)《2.4绝对值》

华师大版数学七年级上册(教学设计)《2.4绝对值》

《2.4绝对值》学生已经认识数轴,并且知道了相反数的概念,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法 。

借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证。

【知识与能力目标】1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小;2.通过应用绝对值解决实际问题体会绝对值的意义和作用。

【过程与方法目标】经历观察、操作、想象、推理、交流等活动,感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

【情感态度价值观目标】在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心。

【教学重点】理解绝对值的概念【教学难点】理解绝对值的概念教师准备:课件、多媒体;学生准备:三角板,练习本;一、导入新课师:上节课我们学习了数轴、原点、正方向、单位长度是数轴的三要素。

所有的有理数都能够在数轴上表示出来,那么数轴上的点到原点的距离我们怎样表示呢?这个距离取值范围是什么?这节课我们就来研究数轴上距离的问题:绝对值(板书)二、新课学习师:出示小黑板,请同学们观察数轴上的点到原点O有几个长度单位D B A C| | | | | | | | | | >-4 -3 -2 –1 0 1 2 3 4生:A点2 个单位长度,B点2 个单位长度,C点4 个单位长度,D点3 个单位长度。

师:在数轴上,一个数所在对应的点与原点的距离叫做该点的绝对值,绝对值的符号是| | ,如A、B、C、D各点的绝对值可以表示为 | + 2 | = 2 , | - 2 | = 2 ,| + 4 | = 4 ,| - 3 | = 3 。

2.4绝对值-华东师大版七年级数学上册教案

2.4绝对值-华东师大版七年级数学上册教案

2.4 绝对值-华东师大版七年级数学上册教案知识点本节课主要涵盖以下知识点:1.定义绝对值的含义和记号2.绝对值的性质和应用教学目标1.能够准确理解绝对值的定义和记号2.掌握绝对值的性质和计算方法3.能够在实际问题中合理应用绝对值教学重点1.绝对值的定义和记号2.绝对值的性质和计算方法教学难点1.绝对值和符号的关系2.绝对值的应用教学内容和方法教学内容1.绝对值的定义和记号2.绝对值的性质和计算方法教学方法1.讲解:通过讲解演示绝对值的含义和记号,让学生理解其概念2.实例:通过实例演示绝对值的性质和计算方法,让学生掌握其应用教学步骤步骤一:导入通过对学生提问“在数学中,什么是绝对值?”“你们知道绝对值的记号是什么吗?”来引导学生了解本节课的知识点,激发他们的兴趣。

步骤二:概念讲解1.定义:绝对值是一个数到零的距离,即一个数离零点的距离。

2.记号:绝对值的记号是一个竖线 |a|,表示a的绝对值。

步骤三:性质讲解1.绝对值非负:任何一个实数的绝对值,都是非负数。

2.绝对值相等:如果|a| = |b|,那么a和b的符号一定相同。

3.绝对值三角不等式:对于任何实数a和b,有|a + b| ≤ |a| + |b|。

步骤四:练习1.让学生计算一些绝对值的值,以加深对绝对值的理解。

2.让学生通过实例计算出绝对值的值,并学会正确的绝对值应用方法。

步骤五:归纳总结通过对本节课所学的知识点进行归纳总结,并让学生自己总结记忆,以提高学生的自我学习能力。

课后作业1.完成练习册上的练习,巩固对绝对值的掌握。

2.在日常生活中收集一些需要用到绝对值的实例,并对其进行解析。

教学反思本节课采用分步讲解法,通过将绝对值的定义、记号、性质和应用分步讲解,有效地提高了学生的学习效果。

同时,通过提出练习和作业,让学生有了更好的实践机会,促进了学生对绝对值知识点的理解与掌握。

华东师大版数学七年级上册说课稿:2.4绝对值

华东师大版数学七年级上册说课稿:2.4绝对值
这些媒体资源在教学中的作用是:形象生动地展示知识点,降低学习难度;提供丰富的学习资源,拓展学生的学习视野;提高学生的学习兴趣,激发学生的学习动机。
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:通过提问、解答学生疑问,引导学生思考,给予学生及时反馈,激发学生的学习兴趣。
2.互评:组织学生进行小组内互评,互相交流学习心得,发现彼此的优点和不足,相互促进。
3.教师评价:针对学生的自评和互评,给予针对性的反馈和建议,强调重点知识点,纠正错误观念,指导学习方法。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些绝对值的基本运算题,巩固学生的运算能力。
2.提高作业:设置一些综合性的题目,如绝对值方程、不等式的求解,提高学生的应用能力。
-左侧:绝对值的定义、性质、运算规则。
-中间:包含典型例题的解题过程和关键步骤。
-右侧:学习要点、注意事项和拓展提示。
2.风格:板书将以简洁、直观为主,使用不同颜色的粉笔突出重点,使用箭头和框线表示逻辑关系。
板书在教学过程中的作用是帮助学生构建知识框架,强化记忆,同时作为教学过程的视觉辅助工具。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
2.在解决实际问题时,学生可能难以将绝对值知识与其他数学知识相结合。
为应对这些问题,我将:
-在课堂上通过问答、小组讨论等形式,及时了解学生的理解程度,并给予个别指导。
-设计更多综合性的练习题,帮助学生将绝对值知识应用于其他数学领域。
课后,我将通过以下方式评估教学效果:
1.收集学生的作业,分析错误类型和普遍问题。
2.生生互动:组织学生进行小组合作,共同探讨绝对值的性质、运算规律和应用。设置竞赛、讨论等环节,鼓励学生积极参与,提高学生的合作意识。

数学七年级上册2.4《绝对值》教案(华东师大)

数学七年级上册2.4《绝对值》教案(华东师大)

《2.4绝对值》简阳市养马镇初级中学李发君教学目标:1、知识与技能目标:(1)、理解绝对值的代数意义和几何意义;会求一个有理数的绝对值。

(2)、知道一个有理数的绝对值是个非负数;能够利用绝对值解决相关问题。

2、过程与方法目标:(1)、经历从具体情境发现并提出问题,抽象出绝对值及其数学符号的过程,建立数感和符号感;通过从不同角度分析绝对值的意义和性质,体验分类发现解决问题的策略,初步形成评价与反思的意识.。

(2)、经历观察、发现、猜想、验证、归纳等数学活动,得出和认识绝对值的意义,发展学生发现、探索问题能力和发散思维能力以及应用意识。

3、情感与态度目标:(1)、体验绝对值是有效描述现实世界的重要手段,认识绝对值是解决问题和进行交流的重要工具。

(2)、培养学生勤于实践、勇于探索、合作交流的精神,增强学生学好数学的勇气和信心.教学重点:绝对值意义和性质的探索.教学难点:运用绝对值的意义和性质解决相关问题.教学准备:多媒体课件教学时数:一课时教学过程:一、情景引入①数学是根据生活需要产生的,在前面的学习中,由于生活需要,产生了负数,但在实际生活中,有时不需要考虑数的正负。

引例:出租车在一条东西方向的公路上运营,连续进行了三次运营,从起点先向东送至5km处,第一位乘客刚下车又马上接第二位乘客送西方向3km处,再送第三位乘客向西4km 处,已知出租车每行驶1km耗油0.5升,问这三次运营出租车共耗油多少升?在这个问题中,若分别记录三个里程为+5,-3,-4,出租车最后位于起点的西方2km处,但显然我们不能认为耗油为2×0.5=1升,而应是(5+3+4) ×0.5=6升②上面的问题不管数的正、负号,只看其绝对数值,这就是我们今天要学习的绝对值。

二、探究新知1、绝对值的意义①绝对值的几何意义及表示,教师结合引例的数轴表示进行讲解、演示;试一试:|+2|= |-101|= |-215|= |4.75|= |+10.5|= |-2|= |+101|= |215|= |-4.75|= |-10.5|= 观察上述结果你有什么发现?(正数、0、负数的绝对值有何规律?互为相反数的两个数它们的绝对值有什么关系?一个数的绝对值可能是负数吗?)②绝对值的代数意义和性质征集学生的思考结果,归纳出P30黑体字,师生共同用符号表示0,(有理数的绝对值都是非负数)如果一个数的绝对值是它本身,这个数是______。

华东师大版数学七年级上册2.4绝对值教案

华东师大版数学七年级上册2.4绝对值教案

系:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是0。

(3)a的绝对值是多少呢?(教师说明字母a可表示任意的数,可以表示正数,也可以表示负数,也可以表示0.) 若a>0,则|a|=a;若a<0,则|a|=-a;若a=0,则|a|=0.由以上可知:任何有理数的绝对值总是正数或0(也称非负数)。

三、巩固提高1.求下列各数的绝对值。

-5,0,-2.3,3,-92. 求8,-8,2.5,-2.5的绝对值.3.计算:(1)(2)-|-1.4|+|1.4|四、随堂练习课本24页,练习1,2,3五、小结1、本节课你有哪些收获?2、教师补充说明(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;(2)求一个数的绝对值必须先判断是正数还是负数.用字母表示规律是难点.这时教师放手,让学生有目的地考虑、分析,共同得出结论.教师引导,探索规律互为相反数的两数绝对值相等.学生自由练习,完成后组内交流,学生先口答总结,教师作点评。

作业布置课本24页习题1,2,选做4题2.4《绝对值》教学反思在学习本节课之前,学生已经认识数轴,并且知道了相反数的概念,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离。

并初步体会到了数形结合的思想方法在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

根据以上情况,我先通过具体问题把数轴、相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,在学习绝对值的概念时,针对具体的问题,让学生自主探究,养成他们独立思考问题的能力,并在探究中学会学习,从中体验学习的乐趣。

对绝对值的代数意义,通过独立思考,小组交流,共同订正最后形成结论。

虽然自认为备课充分,但上完课后感觉还有很多不足之处:1、在导入新课及后面的教学中和实际生活联系的不够紧密,数学是源于生活的一门科学,只有介绍生活中无处不在的数学因素,才能使学生体会到学习数学的趣味性。

七年级数学上册 2.4 绝对值教案 华东师大版

七年级数学上册 2.4 绝对值教案 华东师大版

2.4绝对值教学目的:1、要求学生理解一个数的绝对值的意义;2、会求出已知数的绝对值;3、通过绝对值和数轴的联系,让学生加深对数轴作用的认识。

教学分析:重点:通过对绝对值意义的学习,能熟练地求出一个数的绝对值。

难点:绝对值的几何意义的理解及运用。

教学过程:一、知识导向: 在相反数意义的学习基础上,通过对数值与距离的关系,分析有关绝对值的几何意义,并反过来进一步重新认识相反数的意义。

二、新课拆析:1、设疑:其一:如果我们要知道一辆汽车的行驶路程与耗油量的关系是否与汽车的行驶方向有关? 其二:如果我们要说出数轴上一点与原点的距离是还与这个点在数轴的正负半轴有关系?2、绝对值的几何意义及绝对值的求法、表示法数轴的几何意义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作:|a|(结合分析P29的“试一试”进行讲解)概括:一个正数的绝对值是它本身零的绝对值是零一个负数的绝对值是它的相反数即:不论有理表示:(a>0)|a |= 0 (a =0)(a<0)|a |≥ 0例:求下列各数的绝对值: 217-、101+、-4.75、10.5例:化简:(1) |-(21+)| (2)- | 311- |三、巩固训练:P31 e xc1、2、3四、知识小结:通过对绝对值的学习,明白绝对值的几何意义,懂得如何求出一个有理数的绝对值,并能记住任何一个数的绝对是都是非负数的性质。

五、家庭作业:P31 exc1、2、3、4六、每日预题:1、如何比较两个正数的大小?在数轴上如何比较两个数的大小2、如何通过数轴上的位置来总结两个负数的大小比较方法?数a取何值,它的绝对值总是正数或0(通常称为非负数)。

华东师大版七年级数学上册教案:2.4绝对值

华东师大版七年级数学上册教案:2.4绝对值

华东师大版七年级数学上册教案:2.4绝对值课题绝对值【学习目标】1.让学生能根据一个数的绝对值表示“距离”,初步理解绝对值的概念;2.让学生学会求一个数的绝对值,渗透数形结合的思想;3.学会绝对值的计算,并能应用绝对值解决实际问题,体会绝对值的意义和作用.【学习重点】绝对值的概念和求一个数的绝对值.【学习难点】绝对值的几何意义和代数意义.行为提示:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.(可设成抢答题型)行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:如图,数轴上有A、B、C、D四个点.(1)点A表示的数是__-2__,点A到原点的距离-2=__2__;是__2__,即⎪⎪⎪⎪(2)点B表示的数是__2__,点B到原点的距离是__2__,即⎪⎪⎪⎪2=__2__;(3)点C表示的数是__-0.5__,点C到原点的距-0.5=__0.5__;离是__0.5__,即⎪⎪⎪⎪(4)点D表示的数是__0.5__,点D到原点的距离0.5=__0.5__.是__0.5__,即⎪⎪⎪⎪归纳:(1)绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点到原点的距离,数a的绝对值记作“⎪⎪⎪⎪a”,读作a的绝对值;(2)在数轴上从绝对值的几何意义看:一个数的绝对值是两点(这个数到原点)的距离,所以一个数的绝对值不可能是一个负数,即数a的绝对值是一个非负数,故⎪⎪⎪⎪a≥0;(3)生活中时时处处可以体会到绝对值的存在.范例:从上题中发现的规律,求下列各数的绝对值.(1)⎪⎪⎪⎪+1=__1__,⎪⎪⎪⎪⎪⎪⎪⎪12=__12__,⎪⎪⎪⎪+2.2=__2.2__; (2)⎪⎪⎪⎪0=__0__; (3)⎪⎪⎪⎪-4=__4__,⎪⎪⎪⎪-3.6=__3.6__, ⎪⎪⎪⎪-2.2=__2.2__.仿例:求下列各数的绝对值:2.5,5,-4,-1.5,0.4,-3.3.解:⎪⎪⎪⎪2.5=2.5, ⎪⎪⎪⎪5=5, ⎪⎪⎪⎪-4=4, ⎪⎪⎪⎪-1.5=1.5,⎪⎪⎪⎪0.4=0.4, ⎪⎪⎪⎪-3.3=3.3.变例:一个数的绝对值是6,这个数是__±6__. 知识链接:任何有理数的绝对值都是非负数,即⎪⎪⎪⎪a ≥0,而两个非负数的和为0,则两个数均为0.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块一展示重点在于让学生理解并掌握绝对值的几何意义;知识模块二展示重点在于让学生会求一个数的绝对值;知识模块三展示重点在于让学生了解绝对值的非负性,并且知道几个非负数的和为0时,则每一个非负数都为0;知识模块四展示重点在于让学生掌握实际问题需要数值时考虑用绝对值.知识模块二 绝对值的代数意义阅读教材P 23~P 24,完成下面的内容.归纳:(1)一个正数的绝对值它本身;一个负数的绝对值是它的相反数;0的绝对值是0;(2)互为相反数的两个数的绝对值相等.即:⎪⎪⎪⎪a =⎪⎪⎪⎪-a .范例:化简:(1)⎪⎪⎪⎪-(+5); (2)+⎪⎪⎪⎪-(-5); (3)-⎪⎪⎪⎪+(-5).解:(1)原式=5;(2)原式=5;(3)原式=-5. 变例:绝对值小于6的负数是__―5,―4,―3,―2,―1__.知识模块三 绝对值的非负性范例:已知⎪⎪⎪⎪x +3+⎪⎪⎪⎪y -5=0,求x 、y 的值.解:∵⎪⎪⎪⎪x +3+⎪⎪⎪⎪y -5=0,⎪⎪⎪⎪x +3≥0,⎪⎪⎪⎪y -5≥0∴⎪⎪⎪⎪x +3=0,⎪⎪⎪⎪y -5=0,∴x +3=0,y -5=0,∴x =-3,y =5.仿例:已知⎪⎪⎪⎪x -3+⎪⎪⎪⎪2y -4=0,则x =__3__,y=__2__.归纳:(1)绝对值是__非负数__,即⎪⎪⎪⎪a ≥0; (2)几个非负数的和为零,则每个__非负数__为0.知识模块四 绝对值的实际应用范例:以下四个选项表示某天四个装粮食的袋子的净重(规定超过50kg 的部分为正)记录,则所装粮食最少的是( B )A .+0.5kgB .-0.5kgC .+0.3kgD .-0.3kg交流展示 生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.知识模块一绝对值的几何意义知识模块二绝对值的代数意义知识模块三绝对值的非负性知识模块四绝对的实际应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:_____________________________________________ ___________________________2.存在困惑:_____________________________________________ ___________________________。

七年级数学上册第2章有理数2.4绝对值教案新版华东师大版2

七年级数学上册第2章有理数2.4绝对值教案新版华东师大版2

2.4 绝对值【课程分析】本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算.通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力.最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值.【教材分析】1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础.绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示出负数后再比较.②求数轴上的两点间的距离,数a在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|.③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了.④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用.如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用.从前面四点的分析中,我们不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用.2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用.【教法分析】通过引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识.教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算做准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等、符号相反的两个数互为相反数;零的相反数是零.绝对值是有理数教学的难点,对它的认识和掌握要有一个过程,本节课的教学要求是让学生能熟练求出一个数的绝对值,不要拓展太多,不宜向学生提出过高要求.对于|a|的化简,可以让学有余力的学生考虑这一问题,本节课主要采用自主探究,讲练结合的方法进行教学.【学法分析】数轴的作用对本节的影响很大,在理解绝对值的概念时应结合数轴,理解“距离”的含义;另外在求一个数的绝对值时用了分类讨论的方法,这种方法在解答有关绝对值的问题中非常重要,应加强理解应用.【教学目标】知识与技能1.理解绝对值的意义.2.会求一个数的绝对值.3.理解绝对值的非负性.过程与方法1.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.2.通过对一个数的绝对值的求法体验对应思想.情感态度与价值观通过师生活动,学生自我探究,让学生充分参与到学习过程中来.【教学重难点】重点:绝对值的意义和绝对值的非负性.难点:正确理解绝对值的代数意义及其应用.【教学过程】一、创设问题情境设计意图:通过创设一定的问题情景,引发学生的思考,激发学生的学习热情,引入绝对值的概念.教师拿出准备好的数轴模型(数轴上白猫在表示-4的点上,黑猫在表示2的点上,花猫在表示7的点上,原点表示猫的家).猫妈妈说:今天放假,三只小猫可以到离家不超过5米的范围玩耍,否则就会有危险,回不了家.教师问:如果数轴上每个单位长度表示1米,同学们看一下三只小猫是否都能安全地回到家?给学生充分的时间观察、思考、相互讨论、探究.二、分析探索,问题解决设计意图:通过观察、讨论、归纳等方法,让学生结合数轴理解绝对值的概念.师:在生活中,有些问题我们只考虑数的大小而不考虑方向,如为了计算汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程而不是行驶的方向,这就需要引进一个新的概念——绝对值.(板书课题)带着这个问题自学课本第22页,并解决以下几个问题:(1)什么叫做绝对值?怎样用语言表达?其关键词是什么?(2)绝对值用符号怎样表示?学生自己看书,勾画重点字词.(培养学生的自主学习习惯) 三、知识理顺,得出结论设计意图:针对具体的问题,让学生自主探究,养成他们独立思考问题的能力,并在探究过程中学会学习,从中体验学习乐趣.(1)初步形成概念,由学生回答上面的两个问题(可让学生对照数轴,再说出几个正数、负数的绝对值).(2)深化对概念的理解:①绝对值的意义是在什么条件下给出的?②主要解决的是什么问题?由小组讨论解决.(引导学生得出:绝对值是利用数轴这一直观条件得出的.它主要是解决在数轴上表示数的点到原点有几个单位长度(距离)的问题,这是绝对值的几何意义.)(3)互为相反数的两个数的绝对值有什么关系?(相等)四、运用反思,拓展创新设计意图:通过具体题目的解答,加深学生对绝对值的性质的理解,能选择具体的方法去解答问题.对绝对值性质要让学生从文字语言和符号语言两种形式去描述,学生在熟悉理解的过程中,在具体的题目中可以反复对照与其相应的式子来深化.1.典例解析例求下列各数的绝对值.-21,+6,0,-7.8,15.5.师分析:先表示各数的绝对值,然后根据绝对值的意义写出结果,即“一添二去”.(添绝对值符号,再去掉绝对值的符号) 解:|-21|=21,|+6|=6,|0|=0,|-7.8|=7.8,|15.5|=15.5.反例强化:-21=21对吗?|-21|是负数吗?随堂练习:教材第24页练习第1题.2.议一议:①以上各数可以分为几类?.②每类数的绝对值与原数有什么关系?小组讨论后,写出它的关系.3.法则:绝对值的代数意义:正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是零.若a表示一个有理数,则|a|=a或|a|=-a或|a|=0.在由符号表示数的绝对值时,学生对绝对值的性质由感性阶段上升到了理性阶段,在这个过程中,渗透了对应思想、分类思想,还渗透了由具体到抽象的概括方法.随堂练习:教材第24页练习第2、3题.五、课堂小结设计意图:通过小结使学生对本节课的内容有一个完整系统的认识,通过作业,巩固所学的知识,让学生谈谈本节课的收获.六、课后作业1.将下列各数分别填在相应的集合中.-|-1|,-7.5,2,|-7.5|,|a|(a<0).正数集{ …},负数集{ …}.【答案】正数集{2,|-7.5|,|a|(a<0),…},负数集{-|-1|,-7.5,…}.2.若|a-1|+|b-2|=0,求a+b的值.【解】由绝对值的非负性可知,|a-1|≥0,|b-2|≥0,而|a-1|+|b-2|=0,因此|a-1|=0,|b-2|=0,即a-1=0,b-2=0,所以a=1,b=2, 所以a+b=1+2=3.【板书设计】一、创设问题情境二、分析探索,问题解决三、知识理顺,得出结论四、运用反思,拓展创新1.典例解析;2.议一议;3.法则.五、课堂小结六、课后作业。

七年级数学上册 2.4《绝对值》教学设计 (新版)华东师大版

七年级数学上册 2.4《绝对值》教学设计 (新版)华东师大版

§2.4绝对值教学目标(一)知识目标使学生掌握绝对值的几何意义和代数意义,会求一个数的绝对值。

(二)能力目标通过观察、比较、探索、分析和归纳等过程,使学生学会合作、交流,渗透数形结合的数学思想,培养学生运用知识分析问题和解决问题的能力。

(三)情感目标通过学习活动,培养学生独立思考、合作交流的良好学习习惯。

教学重点绝对值的意义和求法教学难点对绝对值的意义和性质的理解教学过程(一)创设问题情景观察并思考下列问题:若一辆汽车站在平坦的公路上行驶,汽车的耗油量与行程有关吗?与行驶的方向有关吗?(二)提出问题,导入新课1、若汽车在行驶中的耗油量0.3升/千米,汽车向东行驶5千米用去汽油______升, 汽车向西行驶5千米用去汽油______升。

引入课题:绝对值(板书)记作:a2、对绝对值的几何意义的理解:在数轴上表示5和-5,并观察到原点的距离是多少? 学生:=5_______ 5-=__________(从特殊到一般,让学生经历绝对值的形成过程,形象直观,易于理解,从而突破难点)3、课堂练习(利用几何意义求绝对值)(1)_____,2=+_________51=, ______2.8=+ (2)_______0=,(3)______3=-, ________2.0=-, _______2.8=-4、由特殊到到一般归纳结论:(1)、一个正数的绝对值是它本身;(2)、零的绝对值是零:(3)一个负数的绝对值是它的相反数。

(让学生完成23页的试一试,学生对当a<0时,0,≥-=a a a a 为有理数时和难于理解,注意举例说明.)5、例题讲解———(代数的几何意义的应用)例1、求下列各数的绝对值:-7.5, +101, -4.75, 10.5 (使学生学会运用绝对值的代数意义求数的绝对值,从而准确掌握绝对值的代数意义。

)(三)回顾反思例2、化简(1)⎪⎭⎫ ⎝⎛+-21; (2)311-- 让学生把今天学习的“绝对值”和上一节课学习的“相反数”及关于括号的化简准确无误地 分别开来。

嵩县师院附中七年级数学上册第二章有理数2.4绝对值教学设计2新版华东师大版

嵩县师院附中七年级数学上册第二章有理数2.4绝对值教学设计2新版华东师大版

绝对值教学目标:1.理解、掌握绝对值概念.体会绝对值的作用与意义2.掌握求一个已知数的绝对值和有理数大小比较的方法.3.体验运用直观知识解决数学问题的成功.教学重点:绝对值的概念教学难点:绝对值的概念与两个负数的大小比较教学过程:一、学前准备问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近).【答案】不相同相同二、合作探究、归纳1.由上问题可以知道,10到原点的距离是,—10到原点的距离也是.到原点的距离等于10的数有个,它们的关系是一对.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣【答案】10 10 2 相反数2.练习(1)式子∣-5.7∣表示的意义是.【答案】它与原点的距离是5.7(2)—2的绝对值表示它离开原点的距离是个单位,记作.【答案】2 |-2|(3)∣24∣=. ∣—3.1∣=,∣—13∣=,∣0∣=.【答案】24 3.1 13 03.思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 用式子表示就是:当a 是正数(即a>0)时,∣a ∣=;当a 是负数(即a<0)时,∣a ∣=;当a=0时,∣a ∣=.【答案】它本身相反数 0a -a 0三、巩固新知,灵活应用例1求下列各数的绝对值: -215,110,-4.75,10.5解:│-215│=215101+=101|-4.75|=4.75|10.5|=10.5.例2 化简: (1)12⎛⎫-+ ⎪⎝⎭; (2)113--解:(1) 1111222⎛⎫-+=-= ⎪⎝⎭; (2) 111133--=-随堂练习课本P24第大题四、小结:本节课的收获?你还有什么疑惑?五、当堂清查1.______7.3=-;______0=;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______5.55.6=---. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.5.一个数的绝对值是32,那么这个数为______.6.绝对值等于4的数是______.7.绝对值等于其相反数的数一定是…………………………………()A .负数B .正数C .负数或零D .正数或零8.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A .0个B .1个C .2个D .3个【答案】1. 3.7, 0, -0.752.31,45-,323. 15, 14.0,正数,负数5.32±6.4±7.C8.B第四章几何图形初步4.1 几何图形课时2 从不同方向看物体及立体图形的展开图与折叠【知识与技能】(1)能从实物中抽象出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题转化为平面图形的问题进行研究和解决,探究平面图形与立体图形之间的关系【过程与方法】经历探究平面图形与立体图形之间的关系,发展空间观念,培养观察、分析、抽象、概括的能力以及动手操作的能力.【情感态度与价值观】通过本节课的数学活动,使学生养成主动探索、求知的学习态度,激发学生对数学知识的求知欲,并让学生体会数学活动中小组合作的重要性.熟悉常见的立体图形的表面展开图,并能根据立体图形的表面展开图还原立体图形;从不同方向观察立体图形得到的平面图形.由立体图形的表面展开图还原立体图形.多媒体课件,正方体形状的纸盒、乒乓球、热水瓶、玻璃杯.情境1:教师:在生活中,我们经常见到哪些正方体形状的纸盒?将正方体形状的纸盒的表面展开后的形状是怎样的?让学生自由回答,学生可能会说出不同的展开方式,老师给予肯定.情境2:教师提问:同学们会背诵古诗《题西林壁》吗?学生回答:题西林壁横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.教师:这首苏轼的诗表现了观察庐山的几种方式:横看、侧看、远看、近看、身处山中看,也说明了观察物体是有讲究的.这节课我们一起研究观察物体的数学方法:展开、折叠和从不同方向看物体.一、思考探究,获取新知探究1:教师提问:请同学们将准备好的正方体形状的纸盒沿某些棱剪开,看看能得到哪些平面图形?注意剪开正方体形状的纸盒中的某些棱的过程中,6个面中每个面至少有一条棱与其他面相连.(学生进行裁剪,教师巡视)学生展示他们裁剪的情况如图4-1.1-5.教师提问:能否将得到的平面图形进行分类?你是按什么规律来分类的?学生思考、讨论、总结如下:第一类,中间四连方,两侧各一个,共6种:第二类,中间三连方,两侧分别有一个和二个,共3种;第三类,中间二连方,两侧各二个,只有1种;第四类,两排各三个,只有1种.教师提问:圆柱、圆锥的表面展开图是什么样的,自己动手画一画.学生思考回答:如图4-1.1-6.探究2:教师在讲台上摆放乒乓球、热水瓶、玻璃杯,请三位学生站在不同的位置分别观察这三个物体.他们分别能看到什么?学生交流,回答:我们从不同的方向观察同一物体时,可能看到不同的图形.二、典例精析,掌握新知本节课主要学习了立体图形的折叠、展开与从不同方向观察立体图形,能将棱柱、圆柱、棱锥、圆锥的表面展开,也能将其表面展开图还原成立体图形,并且能画出从不同方向观察常见立体图形所得的三种视图.教材P121习题4.1第4,6,7题相交线与平行线一、选择题(每题5分,共35分)1.两条平行线被第三条直线所截,那么一组同位角的平分线的关系是().A.互相垂直B.互相平行C.相交但不垂直D.不能确定2.下列说法正确的是().A.相等的角是对顶角B.两直线平行,同位角相等C.同旁内角互补D.两直线平行,同位角互补3.如图1所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于().A.78°B.90°C.88°D.92°4.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④5.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是().A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°6.线段AB是由线段CD经过平移得到的,那么线段AC与BD的关系为().A.平行B.相交C.相等D.平行且相等7.如果两个角有一条边在同一条直线上,而另一条边互相平行,那么这两个角的关系是().A.相等B.互补C.相等或互补D.没有关系二、填空题(每题5分,共35分)8. a∥b,a∥c则_______∥_______,根据______.10.在同一平面上,如果AB⊥EF,AC⊥EF,那么点C与直线AB的位置关系是______.11.把△ABC向右平移4cm得△A1B1C1,再把△A1B1C1向下平移3cm得△A2B2C2,若把△A2B2C2看成是由△ABC经一次平移得到的,请量一量,其平移的距离是______.cm.12.船的航向从正北方向依逆时针方向驶向西南方向,它转了_____度.13.已知梯形ABCD,AD∥BC,BC=6,AD=3,AB=4,CD=2,AB平移后到DE处,则△CDE 的周长是_____14.如果△ABC经过平移后得到△DEF,若∠A=41°,∠C=32°,EF=3cm,则∠E=______.,BC=______ cm三、解答题(每题10分,共30分)15.如图,AC⊥AB,∠1=30°,∠B=60°,(1)你能确定AD与BC平行吗?(2)能确定AB平行于CD吗?16.如图,AD平分∠EAC,AD∥BC,你能确定∠B与∠C的数量关系吗?17.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.参考答案一、 1.B 2.B 3.C 4.A 5.D 6.D 7.C二、 8. b,c,平行于同一条直线的两条直线平行9. 对应角、对应边,形状、大小10. 在直线AB上11. 512. 13513. 914. 107°,3三、15.【思考与分析】通过观察图形并结合题中条件我们可以得到:∠ACB=180°-∠BAC -∠ABC=180°-90°-60°=30°.由此可得AD∥BC.但是由题中条件我们求不出∠D或者∠ACD,因此不能判定AB与CD是否平行.解:(1)因为∠BAC=90°,∠B=60°,且∠BAC+∠B+∠ACB=180°,所以∠ACB=180°-∠BAC-∠B=180°-90°-60°=30°.所以AD∥BC(内错角相等,两直线平行). (2)不能确定.因为求不出∠D或者∠ACD,找不到两直线平行的判定条件,所以AB与CD不一定平行.16.【解题思路】我们通过观察图形并结合题中条件可知,要想知道∠B与∠C的数量关系,就得利用AD∥BC,从而得到∠B=∠1,∠C=∠2.只要∠1=∠2,那么∠B=∠C.而题中给出了AD平分∠EAC,正好得到∠1=∠2!解:因为AD∥BC,所以∠B=∠1(两直线平行,同位角相等).所以∠C=∠2(两直线平行,内错角相等).又因为AD平分∠EAC,所以∠1=∠2.所以∠B=∠C.17.【思考与分析】经过仔细分析我们可知,题目要求∠A和∠D的度数,而条件只给出了∠A和∠C的关系.因此,分清∠A.∠C和∠D三者之间的关系是解题的关键.解:因为AB∥CD,所以∠A+∠D=180°.所以∠A=180°-∠D.因为AD∥BC,所以∠C+∠D=180°.所以∠C=180°-∠D.所以∠A=∠C.再由2∠A+3∠C=180°解得∠A=∠C =36°.所以∠D=144°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值
教学目标:
1.理解、掌握绝对值概念.体会绝对值的作用与意义
2.掌握求一个已知数的绝对值和有理数大小比较的方法.
3.体验运用直观知识解决数学问题的成功.
教学重点:绝对值的概念
教学难点:绝对值的概念与两个负数的大小比较
教学过程:
一、学前准备
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近).
【答案】不相同相同
二、合作探究、归纳
1.由上问题可以知道,10到原点的距离是,—10到原点的距离也是.
到原点的距离等于10的数有个,它们的关系是一对.
定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣
【答案】10 10 2 相反数
2.练习
(1)式子∣-5.7∣表示的意义是.
【答案】它与原点的距离是5.7
(2)—2的绝对值表示它离开原点的距离是个单位,记作.
【答案】2 |-2|
(3)∣24∣=. ∣—3.1∣=,∣—
1
3∣=,∣0∣=.
【答案】24 3.1 1
3 0
3.思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 用式子表示就是:
当a 是正数(即a>0)时,∣a ∣=;
当a 是负数(即a<0)时,∣a ∣=;
当a=0时,∣a ∣=.
【答案】它本身相反数 0
a -a 0
三、巩固新知,灵活应用
例1求下列各数的绝对值: -215,1
10,-4.75,10.5
解:│-215│=215
101+=101
|-4.75|=4.75
|10.5|=10.5.
例2 化简: (1)12⎛⎫-+ ⎪⎝
⎭; (2)113-- 解:(1) 1111222⎛⎫-+=-= ⎪⎝
⎭; (2) 111
133--=-
随堂练习
课本P24第1.2.3大题
四、小结:
本节课的收获?
你还有什么疑惑?
五、当堂清查
1.______
7.3=-;______0=;______75.0=+-.
2.
______31=+;______45=--;______32=-+. 3.______510=-+-;______5.55.6=---.
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是32
,那么这个数为______.
6.绝对值等于4的数是______.
7.绝对值等于其相反数的数一定是…………………………………()
A .负数
B .正数
C .负数或零
D .正数或零
8.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.
其中正确的有…………………………………………………()
A .0个
B .1个
C .2个
D .3个
【答案】
1. 3.7, 0, -0.75
2.31,45-,32
3. 15, 1
4.0,正数,负数
5.32±
6.4±
7.C
8.B。

相关文档
最新文档