几何最值及路径长
初中数学精讲隐圆模型(线段最值和轨迹问题)
几何模型11——隐圆问题在初中数学中利用隐圆解决平面几何问题大致分为三类,第一类是定点加定长构造圆形,第二类是定弦定角,第三类是从动模型之轨迹为圆也就是常说的“瓜豆原理”,在初中数学当中构造定弦定角构造圆形在压轴题当中经常出现,定弦定角构造圆形圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。
定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(很多时候一般是找出张角的补角),(补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,求A′C的长的最小值变式1.如图,在矩形ABCD中,AB=2,AD=,点E为AB中点,点F为AD 边上从A到D运动的一个动点,连接EF,将△AEF沿EF折叠,点A落在点G处,在运动的过程中,求点G运动的路径长(1)直径所对的圆周角是直角. 构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:例2.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,求点F 所经过的路径长变式1.如图,在正方形ABCD 中,AB =2,动点E 从点A 出发向终点D 运动,同时动点F 从点D 出发向终点C 运动,点E ,F 的运动速度相同,当它们到达各自的终点时停止运动.运动过程中线段AF ,BE 相交于点P ,求线段DP 长的最小值变式2.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .P PA BOP变式3.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,求点F 的运动路径长变式4.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )(2)定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A点轨迹是一个圆.∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.例3.如图,△ABC 是等边三角形,边长为6,E 、F 分别是BC 、AC 上的动点,且CE =AF ,连接AE 、BF 交于点G ,求CG 最小值60°120°O P ABO120°120°P ABP PAB P30°O 60°BAP 90°45°ABO P变式2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠P AB=∠ACP,求线段PB长度的最小值变式3.边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.例4.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,求内心I所经过的路径长变式1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是.变式2.如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;例5.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213+C.5D.13-B.29变式1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.2D.241-4例6.如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆: 考虑∠PAQ=60°,可得Q 点轨迹圆圆心M 满足∠MAO=60°;考虑AP=AQ ,可得Q 点轨迹圆圆心M 满足AM=AO ,且可得半径MQ=PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .例7.如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.【解析】E 是主动点,F 是从动点,D 是定点,E 点满足EO=2,故E 点轨迹是以O 为圆心,2为半径的圆.答案为52-2 变式1.如图,已知在扇形AOB 中,OA =3,∠AOB =120º,C 是在上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 运动的路径长?OPA Q60°MQAPOO AB CD E F O A B C D EF M变式2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.变式3.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.。
几何中的最值问题
几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。
在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。
本文将从不同角度介绍几何中的最值问题及其应用。
一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。
最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。
此外,还有最大和最小的边界问题。
这些问题需要考虑的是给定条件下的最大可行解或最小可行解。
例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。
这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。
二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。
这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。
例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。
为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。
对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。
另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。
三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。
这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。
例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。
如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。
通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。
初中数学最值问题解题技巧,初中几何最值问题方法归纳总结
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
立体几何的最值问题
立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
初中几何最值问题类型
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
初中数学中考几何最值问题
. 张庄
桥.
. 李庄
利用对称点、平移研究最值
已知:点M(2,3) ,点N(4,5) ,线段AB在X 轴上,线段AB的长为2,当点B坐标为 多少时,四边形MNBA的周长 最小。
N
M
AB
∟
M1
M2
利用对称点、平移研究最值
已知:等腰直角三角形ABC和等腰直角三 角形EFH的直角边长分别为2 2 和 2 ,斜
A
P
0
B
在菱形中的运用
(2018贵港)已知:菱形ABCD的边长为4 ,
B=600 . E为BC上的一动点,F为AB上的
一动点,P为AC上一个定点,则PE+PF的
最小值为 (
)
A
F
∟
F1
B
D
P E
C
在角中的运用
已知: AOB=450,点P是 AOB内一点,
PO= 10,Q、R分别是OA和OB上的动点,
A A
B
B
模型二:如图,A、B两点在直线l同侧,
请在l上找一点P1,使AP1+BP1最小;在l 上找一点P2,使AP2-BP2最大。
A
A
B
B
在正方形中的运用
(2017泰安)如图 所示,正方形ABCD的面积 为12,△ABE是等边三角形,点E在正方形 ABCD内,在对角线AC上有一点P,使 PD+PE 的和最小,则这个最小值为( )
BC,CD的动点(均不与顶点重合),当 四边形AEPQ的周长取最小值时, 求:四边形AEPQ的面积。
D
C
Байду номын сангаас
A
EB
三、从平移的角度研究最值问题
从平移角度研究最值
利用基本不等式求最值的类型及方法
利用基本不等式求最值的类型及方法基本不等式是利用数学推理和不等式性质来求解最值问题的一种方法。
在解决最值问题时,运用基本不等式能够有效地简化计算过程,并找到最优解。
下面将介绍几种常见的类型和方法。
1.求函数最值:假设已知一个函数f(x),要求其在一些区间[a,b]上的最大值或最小值。
可以利用基本不等式结合导数来求解。
首先,对函数f(x)求导得到极值点,即f'(x)=0的解,然后利用基本不等式推论得到最值。
2. 求二次函数最值:对于一个二次函数f(x) = ax² + bx + c(a≠0),可以通过求解二次函数的顶点来确定其最值。
二次函数的最大值或最小值在顶点处取得。
通过计算出二次函数的顶点坐标,可以得到函数的最值。
3.求几何问题最值:在几何问题中,常常需要求解最长距离、最短路径等最值问题。
对于空间几何问题,可以利用三角不等式和柯西-施瓦茨不等式等基本不等式进行推导,找到满足条件的最优解。
4.求代数问题最值:在代数问题中,常常需要求解最大值或最小值。
例如,求解多项式函数的最值、线性规划等问题。
可以利用基本不等式来对多项式进行分解和化简,从而找到最大值或最小值。
5.求概率问题最值:在概率问题中,需要求解满足一定概率条件的最值问题。
例如,已知一些事件发生的概率,求解最大化或最小化概率的问题。
通过利用基本不等式可以对概率进行推导和计算,找到满足条件的最值。
在使用基本不等式求解最值问题时,需要注意以下几个基本方法:1.将问题抽象化:将具体的问题转化为符号运算和数学模型,将需要求解的最值问题用数学语言表达出来。
2.应用基本不等式:根据不同的问题类型,运用相应的基本不等式进行推导和计算。
常用的基本不等式有柯西-施瓦茨不等式、均值不等式、三角不等式等。
3.约束条件转化:将约束条件转化为等式或不等式,以便进行运算。
4.求解极值点:通过对函数求导,找到函数的极值点。
利用基本不等式结合导数求解最值问题。
几何中的最值
几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。
求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。
求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。
一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。
2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。
3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
空间几何体中最值问题的常用求法
ʏ廖子宜立体几何中的最值问题主要与空间图形的距离㊁角㊁面积㊁体积有关,是高考命题的热点㊂此类问题涉及知识面较广,灵活性较大,常用的求法有:二次函数性质法㊁基本不等式法㊁射影法㊁两点之间线段最短法㊁垂线段最短法㊁三角函数性质法等㊂一㊁二次函数性质法例1 如图1,一个圆锥的底面半径为2c m ,高为6c m ,其中有一个高为x c m 的内接圆柱㊂当x 取何值时,圆柱的侧面积最大?图1解:依题意得S 圆柱侧=2πr x =2π2-x 3x =4πx -2π3x 2,x ɪ(0,6)㊂当x =-4π2-2π3=3时,这个二次函数有最大值6π,故当圆柱的高为3c m 时,圆柱的侧面积最大,其最大值为6πc m 2㊂评注:二次函数y =a x 2+b x +c (a ʂ0),当a >0时,有最小值;当a <0时,有最大值㊂二㊁基本不等式法例2 已知圆柱的轴截面的周长L 为定值,则圆柱侧面积的最大值是㊂解:设圆柱的底面直径和高分别为d ,h ,则d +h =L 2,所以S 圆柱侧=πd h ɤπd +h 22=πL216(当且仅当d =h 时取等号)㊂故圆柱侧面积的最大值为πL216㊂评注:基本不等式为:a ,b ɪR +,a +b ȡ2a b ,当且仅当a =b 时等号成立㊂基本不等式逆用为:a ,b ɪR +,a b ɤa +b 22,当且仅当a =b 时等号成立㊂三㊁射影法例3 如图2,棱长为1的正方体A B C D -A 1B 1C 1D 1中,若G ,E 分别是B B 1,C 1D 1的中点,点F 是正方形A D D 1A 1的中心,则四边形B GEF 在正方体侧面及底面共6个面内的射影图形的面积的最大值是㊂图2解:显然,四边形B G E F 在前后侧面上的射影图形的面积相等㊂易知点E 在前面平面上的射影是A 1B 1的中点E 1,点F 在前面平面上的射影是A A 1的中点F 1,可得四边形B G E 1F 1的面积为12㊂同理可得,四边形B G E F 在左右侧面上的射影图形的面积相等且等于18;在上下底面上的射影图形的面积相等且等于38㊂故四边形B G E F 在前后侧面上的射影图形的面积最大,其最大值为12㊂评注:解题的关键是找到四边形B G E F 四个顶点在各个面上的射影点的位置,再根据正方体的性质计算其面积㊂四㊁两点之间线段最短法例4 如图3所示,已知圆柱的高为80c m ,底面半径为10c m ,轴截面上有P ,Q 两点,且P A =40c m ,B 1Q =30c m ,若一只蚂蚁沿着侧面从P 点爬到Q 点,则蚂蚁爬过的最短路径长为㊂91知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.图3解:将圆柱侧面沿母线A A 1展开,得到如图4所示的矩形㊂图4易得A 1B 1=10π㊂过点Q 作Q S ʅA A 1于点S ,在R tәP Q S 中,P S =80-40-30=10,Q S =A 1B 1=10π,所以P Q =P S 2+Q S 2=10π2+1,即蚂蚁爬过的最短路径长是10π2+1cm ㊂评注:求几何体表面上两点间的最小距离,可将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图,把求曲线长问题转化为求平面上的线段长问题㊂五㊁垂线段最短法例5 如图5,在棱长为2的正方体A B C D -A 1B 1C 1D 1中,E 为B C 的中点,点P 在线段D 1E 上,则点P 到直线C C 1的距离的最小值为㊂图5解:过E 作E E 1ʅ底面A 1B 1C 1D 1交B 1C 1于E 1,过P 作P H ʅD 1E 1于H ㊂连接C 1H ,作P P 1ʅC C 1于P 1㊂易知四边形P P 1C 1H 是矩形,点P 在线段E D 1上运动,点P 到直线C C 1的距离是C 1H ㊂当C 1H 为R t әC 1D 1E 1的底边D 1E 1上的高时,C 1H 最小,记高为h ㊂依题意得C 1D 1=2,C 1E 1=1,所以D 1E 1=5㊂由12C 1D 1㊃C 1E 1=12D 1E 1㊃h ,可得h =255㊂故点P 到直线C C 1的距离的最小值为255㊂评注:当点P 在D 1E 上移动时(不含端点),四边形P P 1C 1H 一定是矩形;当点P 与D 1或E 重合时,点P 到直线C C 1的距离的最小值为C 1D 1或CE ,此时显然不是最小值㊂六㊁三角函数性质法例6 如图6所示,边长A C =3,B C =4,A B =5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30ʎ角,当遮阳棚A B C 与地面的夹角等于时,才能保证所遮影面A B D 的面积最大㊂图6解:易知әA B C 为直角三角形㊂在平面A B C 内,由C 向A B 引垂线,垂足为Q ,则D Q 为C D 在地面上的射影,且A B ʅ平面C QD ㊂因为太阳光与地面成30ʎ角,所以øC D Q =30ʎ㊂在әC D Q 中,C Q =125,由正弦定理得C Q s i n 30ʎ=Q D s i nøQ C D ,所以Q D =245s i nøQ C D ㊂为使面A B D 的面积最大,需Q D 最大即可,只有当øQ C D =90ʎ时才可达到最大,从而øC Q D =60ʎ㊂故当遮阳棚A B C 与地面成60ʎ角时,才能保证所遮影面A B D 面积最大㊂评注:正弦函数y =s i n x 在0,π2上单调递增,在π2,π上单调递减㊂作者单位:福建省泉州市外国语学校(责任编辑 郭正华)2 知识结构与拓展 高一数学 2023年4月Copyright ©博看网. All Rights Reserved.。
初中几何最值问题的常用解法
初中几何最值问题的常用解法
初中几何最值问题的常用解法有以下几种:
1. 利用图形的性质和特点:根据所给的几何图形,利用其性质和特点推导出最值问题的解答。
例如,利用等腰三角形的性质,可以求解最短路径问题;利用圆的性质,可以求出最大面积问题等。
2. 利用相似三角形:当给定的几何图形不易直接求解时,可以通过构建相似三角形来求解最值问题。
通过建立相似三角形的比较关系,可以求得所需的未知数,并得到最值问题的解答。
3. 利用变量法:将所给的几何图形进行变量代换,将问题转化为代数问题。
通过对新的代数表达式进行求导或求极值的方法,可以求解最值问题。
4. 利用平面几何基本定理:平面几何基本定理是初中几何学中的核心理论,其中包括了如角等分线定理、平行线性质定理、正弦定理、余弦定理等。
利用这些定理,可以有效地解决几何最值问题。
总之,初中几何最值问题的解决方法需要深入理解几何图形的性质和运用几何定理,同时也需要灵活运用代数方法和应用数学思维来解决问题。
立体几何解析几何最值问题
立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。
在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。
在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。
解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。
解析几何中最值问题的解决方法通常是通过求导来进行。
我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。
这种方法在求解平面最值问题时非常有效。
而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。
解决这类问题可以利用几何性质和定理来进行推导和求解。
比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。
具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。
例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。
2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。
例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。
3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。
例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。
总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。
动点产生的几何最值问题大全
动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。
以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。
这可以涉及到直线、圆、多边形等图形。
2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。
例如,求动点构成的三角形、矩形等的最大面积。
3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。
4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。
5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。
6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。
7. 对称问题:利用对称性质来解决与动点相关的最值问题。
这些只是一些常见的类型,实际问题可能更加复杂和多样化。
解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。
具体的解决方法会根据问题的具体情况而有所不同。
中考数学中的最值问题解法
中考数学几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21+B .5C .1455D .52例2.在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。
例3.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 ▲ cm 。
练习题:1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6(4)π+㎝ B 、5cm C 、35㎝ D 、7cm3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ .二、应用垂线段最短的性质求最值:典型例题:例1. (2012山东莱芜4分)在△AB C 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .例2.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1B .3C . 2D .3+1例3.已知梯形ABCD ,AD∥BC,AB⊥BC,AD =1,AB =2,BC =3,问题1:如图1,P 为AB 边上的一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ ,DC 的长能否相等,为什么?问题2:如图2,若P 为AB 边上一点,以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题3:若P 为AB 边上任意一点,延长PD 到E ,使DE =PD ,再以PE ,PC 为边作平行四边形PCQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.问题4:如图3,若P 为DC 边上任意一点,延长PA 到E ,使AE =nPA(n 为常数),以PE 、PB 为边作平行四边形PBQE ,请探究对角线PQ 的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.例4. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-) 例5.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 到线段EF 的最大距离为.其中正确结论的个数是【 】A .1个B .2个C .3个D .4个例6.如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC(余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.例8. 如图,△ABC中,∠BAC=60°,∠ABC=45°,,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为▲ .例9. 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.例10.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.例11. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、42如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为【】A.13 B.5 C.3 D.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为▲ .5.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由.三、应用轴对称的性质求最值:典型例题:例1. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为▲ cm.例2. 如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为【】A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的值最小的点,坐标系如图所示.若P是x轴上使得PA PB⋅=▲.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为▲ .例5.如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是▲。
几何中的最值问题:中考数学最短路径与最大面积
几何中的最值问题:中考数学最短路径与最大面积在几何学中,最值问题是重要的一类问题,其中最短路径和最大面积问题在中考数学中较为常见。
通过研究这些问题,我们可以更好地理解数学中的优化问题和几何学中的应用。
一、最短路径问题在平面直角坐标系中,两点之间的距离可以用勾股定理求解,但是,如果我们要从一个点出发,通过多个点,最终到达另一个点,该如何求解最短路径呢?这就需要用到最短路径问题中的“迪杰斯特拉算法”。
迪杰斯特拉算法是求解单源最短路径的有效算法,它的基本思想是:在图中选定一个源点,然后考虑从该点出发到其他各点的最短路径。
将所有点分成两部分:已确定最短路径的点集合S和未确定最短路径的点集合V-S。
从已确定集合S到未确定集合V-S的边中选择一条权值最小的边,加入到已确定的集合中。
例如,我们要从点A到点D,并且需要通过点B和点C,求解它们之间的最短路径。
首先,我们从起点A开始,标记距离该点的距离为0,其他点的距离为无穷大。
然后,我们选择距离起点最近的点B,并将从A到B的距离标记为4。
接着,我们计算通过点B是否可以到达点C和点D,并分别标记其距离为9和8。
此时,已确定的集合S中包含了点A和点B,未确定集合V-S中包含了点C和点D。
我们再从V-S中找到距离两点最短的边,加入到S中,继续更新可达点的距离,直到所有点的距离都被确定为止。
二、最大面积问题最大面积问题是求解一个给定形状的图形中的最大面积。
在几何学中,一个图形的面积通常可以表示为底边长度和高的函数,因此,我们只需要求解函数的最大值,即可找到最大面积。
例如,当我们要求解一个三角形的最大面积时,应该如何做呢?我们可以利用三角形面积公式S=1/2×底边长度×高,将高看做三角形底边的函数,例如,高为h时,底边长度为a。
然后,我们对该函数求导,令导数为0,即可得到该函数的最大值。
最后,将该最大值代入原函数中,即可求出最大面积。
类似地,我们可以求解其他图形的最大面积,例如长方形、正方形和圆形。
解析几何最值问题
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。
费马光行最速原理与三大几何最值问题
费马光行最速原理与三大几何最值问题费马光行最速原理是光学领域中的一个重要原理,它可以用来推导光线在介质中的传播路径。
费马原理的基本思想是,光线在传播过程中会选择一条路径,使得从光源到达目标点的传播时间最短。
这一原理可以应用于求解许多与光线传播相关的问题,其中包括三大几何最值问题:最短路径问题、最短时间问题和最短光程问题。
最短路径问题是几何学中的一个经典问题,它要求在给定的几何图形中寻找一条路径,使得该路径的长度最短。
通过应用费马原理,可以解决最短路径问题。
假设有一个光源和一个目标点,通过求解费马方程,可以确定光线在介质中的传播路径。
在任何一点上,光线的路径都使得从光源到目标点的传播时间最短。
因此,该路径也是光线在给定几何图形中的最短路径。
最短时间问题是光学中的另一个重要问题,它要求在给定的介质中,寻找一条路径,使得光线在传播过程中所花费的时间最短。
费马原理可以应用于求解最短时间问题。
根据费马原理,光线在传播过程中会选择一条路径,使得从光源到达目标点所需的传播时间最短。
因此,求解最短时间问题可以通过求解费马方程来实现。
最短光程问题是光学中的第三个几何最值问题,它要求在给定的介质中寻找一条路径,使得该路径的光程最短。
光程是光线在传播过程中所经过的所有介质的折射率与对应路程的乘积之和。
费马原理可以用来解决最短光程问题。
根据费马原理,光线在传播过程中会选择一条路径,使得该路径的光程最短。
因此,求解最短光程问题可以通过求解费马方程来实现。
总结起来,费马光行最速原理可以应用于求解三大几何最值问题:最短路径问题、最短时间问题和最短光程问题。
通过求解费马方程,可以确定光线在介质中的传播路径,使得路径在各个问题中的相应最值达到最小。
费马光行最速原理在光学中有广泛的应用,不仅有助于理解光的传播机理,还可以用于设计光学元件和解决光学问题。
几何最值(瓜豆原理)
最值之瓜豆原理瓜豆原理引例1 :如图」P是直线BC上一动点,连接AP ,取AP中点Q,当点P在BC上运动时,Q点轨迹是?弓I例2 :如图,八APQ是等腰直角三角形r zPAQ = 90°且AP = AQ ,当点P在直线BC上运动时1求Q点轨迹?A引例3 :如圄,P是圆。
上一个动点,A为定点1连接AP , Q为AP中点:当点P在圆。
上运动时.Q点轨迹是?引例4 :如圄,P是圆。
上一个动点,A为定点,连接AP,作AQ_L AP且AQ = AP :当点P在圆0上运动时.Q点轨迹是?称点P为“主动点"点Q为"从动点二此类问题的必要条件:两个足量:(1 )主动点、从动点与定点连线的夹角是定量(/PAQ是定值)(2 )主动点、从动点到定点的距离之比是定量(AP:AQ是定值)按以上两点即可确定从动点轨迹圆,。
与P的关系相当于旋转+伸能.古人云:种瓜得瓜,种豆得豆,“种’圆得圆「种”线得线」称之‘瓜豆原理’N如圄,P是圆O上一个动点.A为定点,连接AP ,以AP为斜边作等腰直角&APQ 当点P在圆0上运动时,如何作出Q点轨迹?3 .如图「已知AB=2」点D是等腰Rt .ABC斜边AC上的一动点」以BD为一边向右下方作等边心BDE1当动点D由点A运动到点C时,求动点E运动的轨迹长.变式1如图11,已知AB=2 ,点D是等腰R3ABC斜边AC上的一动点『以BD为一边向右下方作以ZE为直角的等膜Rt'SDE」当动点口由点A运动到点C时,求动点E运动的轨迹长.变式2.如图2 ,已知AB = 2,点口是等腰R6ABC斜边AC上的一动点,以BD为一边向右下方作以zBDE为直角的等暧Rt^BDE ,当动点D由点A运动到点C时,求动点E运动的轨迹长变式3.如图1 ,已知AB=2 ,点D是等腰Rt^ABC斜边AC上的一动点,以BD为一边向右下方作正方形BDEF ,当动点D由点A运动到点C时,求动点E运动的轨迹长.变式4.如图2 r已知AB=2 ,点D是等腰R3ABC斜边AC上的一动点,以BD为一边向右下方作等腰A BDE ,且顶角ZBDE = 120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页第2页走进名校 初三数学几何最值及路径长讲义一、知识点睛1. 解决几何最值问题的通常思路①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题. 转化原则:尽量减少变量,向定点、定线段、定图形靠拢. 理论依据:两点之间,线段最短(已知两个定点) 垂线段最短(已知一个定点、一条定直线)三角形三边关系(已知两边长固定或其和、差固定) 过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦 常用模型、结构示例: ①奶站模型PABlB'B'lBAP求P A +PB 的最小值, 求|P A -PB |的最大值, 使点在线异侧 使点在线同侧 ②天桥模型NMB'lBA固定长度线段MN 在直线l 上滑动,求AM +MN +BN 的最小值,需平移BN (或AM ),转化为奶站模型解决 ③折叠求最值结构A MA'NBC求BA ′的最小值,转化为求BA ′+A ′N +NC 的最小值(利用A ′N +NC 为定值)2. 解决路径长问题的思路①分析定点、动点,寻找不变特征;②猜测、验证,确定运动路径;猜测常通过“起点、终点、特殊点”,结合不变特征验证.③设计方案,求出路径长.二、精讲精练1. 如图,在平面直角坐标系中,Rt △OAB 的直角顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上一动点,则PA +PC 的最小值为____. yxPCBAOQPED C BA第1题图 第2题图2. 如图,在矩形ABCD 中,AB =4,BC =8,E 为CD 边的中点.若P ,Q 为BC 边上的两动点,且PQ =2,则当BP =_______时,四边形APQE 的周长最小.3. 如图,在三角形纸片ABC 中,已知∠ABC =90°,AC =5,BC =4.过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN .当点P 在直线l 上移动时,折痕的端点M ,N 也随之移动,若限定端点M ,N 分别在AB ,BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值之差为__________.lPCNBM A第3题图 第4题图4. 如图,在△ABC 中,∠BAC =120°,AB=AC =4,M ,N 两点分别是边AB ,AC 上的动点,将△AMN 沿MN 翻折,A 点的对应点为A',连接BA',则BA'的最小值是___________.5. 如图,∠MON=90°,矩形ABCD 的顶点A ,B 分别在OM ,ON 上,当点B 在ON 上运A MA'N BC第3页第4页……………………………答……………………………………………………题…………………………………………线……………………………………………………密……………………………………………………封…………………………………………线………………………动时,点A 随之在OM 上运动,且矩形ABCD 的形状和大小保持不变.若AB =2,BC =1,则运动过程中点D 到点O 的最大距离为( ) A .2+1B .5C .1455D .52DCAB ON M F DEAH GBC第5题图 第6题图6. 如图,E ,F 是正方形ABCD 的边AD 上的两个动点,且满足AE =DF .连接CF 交BD于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是__________.7. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于点E ,PF⊥AC 于点F ,M 为EF 中点,则AM 的最小值为___________.M FE PCBA第7题图 第8题图8. 如图,在Rt △AOB 中,OA =OB =32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则PQ 长度的最小值为___________. 9. 如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点.若⊙O 的半径为7,则GE +FH 的最大值为_________________.OHGFECB AOO'D'A'DCBA第9题图 第10题图10. 边长为2的正方形ABCD 的两条对角线交于点O ,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A'BCD'.设A'C ,BD'交于点O',若旋转了60°,则由点O 运动到点O'所经过的路径长为___________. 11. 如图,木棒AB 的长为2a ,斜靠在与地面OM 垂直的墙壁ON 上,且与地面的倾斜角(∠ABO )为60°.当木棒A 端沿NO 向下滑动到A',B 端沿直线OM 向右滑动到B',若(32)AA'=a ,则木棒的中点P 随之运动的路径长为____________.FO 2O 1P K H GD ECBA第11题图 第12题图12. 如图,已知线段AB =10,AC =BD =2,点P 是线段CD 上一动点,分别以AP ,PB 为边向上、向下作正方形APEF 和正方形PHKB .设正方形对角线的交点分别为O 1,O 2,当点P 从点C 运动到点D 时,线段O 1O 2的中点G 运动的路径长为_________.13. 已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接ED ,以ED 为边在ED 右侧作等边三角形EDF .设△EDF 的中心为O ,则点E 由点B 向点A 运动的过程中,点O 运动的路径长为_____________.几何最值及路径长(随堂测试)1. 如图,△ABC 是以AB 为斜边的直角三角形,AC =4,BC =3,P 为AB 上一动点,且PE⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 长度的最小值是____________.F EP CBAAB CP QC'第1题图 第2题图2. 在Rt △ABC 中,∠ACB =90°,AC =BC =6,P ,Q 两点分别是边AC ,BC 上的动点.将PBOAQ OFEDCBA第5页第6页△PCQ 沿PQ 翻折,点C 的对应点为C′,连接AC′,则AC′的最小值是_____________. 3. 如图,在以坐标原点O 为圆心,2为半径的圆上任取一点A ,过点A 作AM ⊥y 轴于点M ,AN ⊥x 轴于点N .若点P 为MN 的中点,则当点A 沿着圆周在第一象限内按顺时针方向走完45°弧长时,点P 走过的路径长为_____________.几何最值及路径长(作业)1. 如图,当四边形P ABN 的周长最小时,a 的值为_________.xyOA (1,-3)B (4,-1)P (a ,0)N (a +2,0)第1题图 第2题图2. 如图,A ,B 两点在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值为______________.3. 动手操作:在矩形纸片ABCD 中,AB =5,AD =13.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为______________.B CA'AD QP4. 如图,在矩形ABCD 中,AB =12,AD =3,E ,F 分别为AB ,CD 上的两个动点,则AF +FE +EC的最小值为__________.C'QPC B A第4题图 第5题图5. 在Rt △ABC 中,∠ACB =90°,AC =9,BC =12,P ,Q 两点分别是边AC ,BC 上的动点.将△PCQ 沿PQ 翻折,点C 的对应点为C′,连接AC′,则AC′的最小值是_____________. 6. 如图,在△ABC 中,∠ACB =90°,AC =6,BC =2,点A ,C 分别在x 轴、y 轴上.当点A在x 轴上运动时,点C 随之在y 轴上运动,则在运动过程中,点B 到原点的最大距离为_____.第6题图 第7题图7. 如图,已知AB =10,点C ,D 在线段AB 上,且AC =BD =2.P 是线段CD 上的一动点,分别以AP ,PB 为边在线段AB 的同侧作等边三角形AEP 和等边三角形PFB ,连接EF ,设EF 的中点为G .当点P 从点C 运动到点D 时,点G 移动的路径长为___________. 8. 如图,正方形ABCD 的边长为2,将长为2的线段EF 的两端放在正方形的相邻两边上同时滑动.如果点E 从点A 出发,按A →B →C →D →A 的方向滑动到点A 为止,同时点F 从点B 出发,按B →C →D →A →B 的方向滑动到点B 为止,则在这个过程中,线段EF 的中点M 所经过的路径所围成的图形面积为___________.FMEDCBAx yCEF G D BO A第8题图 第9题图9. 如图,以G (0,1)为圆心,2为半径的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为__________NM P D CBABCADE FDCBAGFEBDP C A yBED A PN M AO y xy x CBA O第7页第8页……………………………答……………………………………………………题…………………………………………线……………………………………………………密……………………………………………………封…………………………………………线………………………【参考答案】FO1EF EFO1 A C PEGDB1.3122.4 3.71-4.434-5.A 6.51-7.1258.229.21210.3π11.12aπ12.3213.43 3【参考答案】1.1252.626-3.4π【参考答案】1.742.5 3.4 4.155.3 6.313+7.3 8.4-π9.33π第9页第10页。