2018版高中数学(人教A版)必修5同步教师用书:必修5 第2章 2.1 第1课时 数列的概念与简单表示法

合集下载

人教A版高中数学必修5《二章 数列 2.1 数列的概念与简单表示法 阅读与思考 斐波那契数列》优质课教案_0

人教A版高中数学必修5《二章 数列  2.1 数列的概念与简单表示法  阅读与思考 斐波那契数列》优质课教案_0

随风潜人夜,润物细无声《神奇的斐波那契数列》教学设计《普通高中数学课程标准(实验)》在前言中指出:数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。

数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。

数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。

在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。

数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

《普通高中数学课程标准(实验)》将“体现数学的文化价值”作为课程的基本理念之一并在教学建议中明确指出:“数学是人类文化的重要组成部分,是人类社会进步的产物,也是推动社会发展的动力.教学中应引导学生初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值、人文价值、开阔视野。

长期以来,在高考这根指挥棒下,学习逐渐服从于知识,服从于做题,服从于高考。

在数学教学上,老师教的许多内容既枯燥又抽象.大多数教师以做题为主要教学方法,以解题为主要目的,不关注数学问题的文化性; 学生在单一的数字、定义、定理、公理、公式的围攻下,对单纯的数学问题感到枯燥,厌倦,对数学的兴趣逐渐淡薄,认为数学毫无用处,数学问题被当成了获取分数的工具.因此如何将数学文化的内容有机地结合到日常的教学中,使学生在潜移默化中体会到数学的文化价值?这需要我们每位教师认真思考这个问题一、教材分析:本节课选自人教版《数学5》(必修)第二章《数列》第2.1节后的《阅读与思考》部分。

【人教A版】高中数学必修5教学同步讲练第二章《等比数列前n项和的示解》练习题(含答案)

【人教A版】高中数学必修5教学同步讲练第二章《等比数列前n项和的示解》练习题(含答案)

第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解A 级 基础巩固一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .1282.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)43.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .1934.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 7.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.8.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n .B级能力提升1.在等比数列{a n}中,a1+a2+…+a n=2n-1(n∈N*),则a21+a22+…+a2n等于()A.(2n-1)2 B.13(2n-1)2C.4n-1 D.13(4n-1)2.设等比数列{a n}的公比为q,前n项和为S n,若S n+1,S n,S n+2成等差数列,则q的值为________.3.等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n)均在函数y=b x+r(b>0且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n+14a n(n∈N*),求数列{bn}的前n项和T n.第二章 数列2.5 等比数列的前n 项和第1课时 等比数列前n 项和的示解(参考答案)一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128解析:设数列{a n }的公比为q (q >0),则有a 5=a 1q 4=16, 所以q =2,数列的前7项和为S 7=a 1(1-q 7)1-q =1-271-2=127. 答案:C2.已知等比数列{a n }中,a n =2×3n -1,则由此数列的偶数项所组成的新数列的前n 项和S n 的值为( )A .3n -1B .3(3n -1) C.9n -14D.3(9n -1)4解析:因为a n =2×3n -1,则数列{a n }是以2为首项,3为公比的等比数列,由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列,则前n 项和为S n =6(1-9n )1-9=3(9n -1)4.答案:D3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )A .190B .191C .192D .193解析:设最下面一层灯的盏数为a 1,则公比q =12,n =7,由a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1271-12=381,解得a 1=192.答案:C4.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10)D .3(1+3-10)解析:因为3a n +1+a n =0,a 2=-43≠0,所以a n ≠0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).答案:C5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-15B .-5C .5 D.15解析:由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n =1,解得a n +1a n =3,所以数列{a n }是公比为3的等比数列.因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3,所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.答案:B 二、填空题6.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=60,则a 7+a 8=________. 解析:因为a 1+a 2=a 1(1+q )=30,a 3+a 4=a 1q 2(1+q )=60,所以q 2=2,所以a 7+a 8=a 1q 6(1+q )=[a 1(1+q )]·(q 2)3=30×8=240.答案:2407.设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.解析:法一:a 1+|a 2|+a 3+|a 4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15. 法二:因为a 1+|a 2|+a 3+|a 4|=|a 1|+|a 2|+|a 3|+|a 4|,数列{|a n |}是首项为1,公比为2的等比数列,故所求代数式的值为1-241-2=15.答案:158.(2016·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:a 1+a 2=4,a 2=2a 1+1⇒a 1=1,a 2=3,再由a n +1=2S n +1,a n =2S n -1+1(n ≥2)⇒a n +1-a n =2a n ⇒a n +1=3a n (n ≥2),又a 2=3a 1,所以a n +1=3a n (n ≥1),S 5=1-351-3=121.答案:1 121 三、解答题9.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解:(1)设等差数列{a n }的公差为d ,由已知条件可得 ⎩⎨⎧a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1,S n2=a 12+a 24+…+a n2n . 所以,当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝ ⎛⎭⎪⎫12+14+…+12n -1-2-n 2n =1-⎝ ⎛⎭⎪⎫1-12n -1-2-n 2n =n 2n ,所以S n =n2n -1,综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.10.数列{a n }满足a 1=1,na n +1=(n +1)a n +n (n +1),n ∈N *.(1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)设b n =3n ·a n ,求数列{b n }的前n 项和S n . (1)证明:由已知可得a n +1n +1=a nn+1, 即a n +1n +1-a nn=1, 所以⎩⎨⎧⎭⎬⎫a n n 是以a 11=1为首项,1为公差的等差数列.(2)解:由(1)得a nn =1+(n -1)·1=n , 所以a n =n 2.从而b n =n ·3n 。

人教A版高中数学必修5同步 解三角形

人教A版高中数学必修5同步 解三角形
(4)中bsin A=20 3 sin 45°=10 ,6 所以bsin A<a<b,所以有两解. (5)中bsin A=1 0 s3 in 60°=5,所以a<bsin A,所以无解.
3
类型三 用正弦定理进行边角互化
角度1 运算求解问题
【典例】(2019·鹤岗高一检测)在锐角△ABC中,角A,B
sin A sin B
(3)√.在△ABC中,sin A>sin B⇔a>b⇔A>B.
(4)×.由正弦定理知 a ,即b
sin A sin B
,所2以= 2 3
sin 30 sin B
sin B= 3 ,则B=60°或120°,又因为b>a,所以B>A,故
2
B=60°或120°.
2.在△ABC中,a=8,B=60°,C=75°,则b= ( )
【思维·引】方法一:边化角,即由正弦定理,令a=
2Rsin A,b=2Rsin B,c=2Rsin C(其中R是△ABC外接
圆的半径).代入等式左边进行化简;
方法二:角化边,即由正弦定理,令sin A= a ,sin B=
2R
b ,sin C= c .代入等式左边进行化简.
2R
2R
【证明】方法一:由正弦定理,令a=2Rsin A, b=2Rsin B,c=2Rsin C.代入得: 左边=2R(sin Asin B-sin Asin C+sin Bsin Csin Bsin A+sin Csin A-sin Csin B)=0=右边, 所以等式成立.
【思维·引】1.根据正弦定理可得 a c ,解三
sin A sin C
角方程可得角C.
2.根据题目条件,根据正弦定理可得sin C= c s i n B ,求

高中数学第二章数列2.1.2数列的递推公式人教A版必修5

高中数学第二章数列2.1.2数列的递推公式人教A版必修5
(1)“基础”——数列{an}的第 1 项或前几项; (2)递推关系——数列{an}的任一项 an 与它的前一项 an-1(或前几项)之 间的关系,并且这个关系可以用一个公式来表示.如果两个条件缺一个,数列 就不能确定. 2.数列递推公式的主要题型: (1)根据数列的递推公式和第 1 项(或其他项)求数列的前几项; (2)根据数列的递推公式求数列的通项公式.
第2课时 数列的递推公式
课程目标
1.理解数列的函数特性,掌握判断数列增减性 的方法. 2.知道递推公式是给出数列的一种形式. 3.能够根据递推公式写出数列的前几项.
学习脉络
递推公式 如果已知数列{an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或
前几项)间的关系可用一个公式来表示,那么这个公式叫做数列{an}的递推 公式.用递推公式给出数列的方法叫做递推法.
又 a1=1,∴an=2n-1(n≥2).当 n=1 时,a1=1 也满足上式,故数列{an}的一个
通项公式为 an=2n-1,an+1-an=2(n+1)-1-(2n-1)=2>0,∴an+1>an.
∴数列{an}是单调递增数列.
首页
J 基础知识 ICHU ZHISHI
Z S 重点难点 HONGDIAN NANDIAN
探究四
探究一 判断数列的单调性
数列的单调性一般要通过比较 an+1 与 an 的大小来判断,具体为: an+1-an>0⇔an+1>an⇔数列{an}单调递增;
an+1-an<0⇔an+1<an⇔数列{an}单调递减.
探究一
探究二
探究三
探究四

高中数学必修5第2章2.5.1同步训练及解析

高中数学必修5第2章2.5.1同步训练及解析

人教A 高中数学必修5同步训练1.在等比数列{a n }中a 1=8,q =12,a n =12,则S n 等于( )A .31 B.312C .8D .15 答案:B2.数列12,14,18,…的前10项和等于( )A.11024B.511512C.10231024D.1512 答案:C3.在等比数列{a n }中,q =12,S 5=2,则a 1等于________.答案:32314.等比数列{a n }中,a 2=9,a 5=243,求数列{a n }的前4项之和.解:⎩⎪⎨⎪⎧ a 2=9a 5=243,即⎩⎪⎨⎪⎧ a 1q =9a 1q 4=243,解得⎩⎪⎨⎪⎧a 1=3q =3.所以S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.一、选择题1.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则S 6等于( ) A.218 B .-218 C.178 D .-178解析:选A.设公比为q ,由题意,得⎩⎪⎨⎪⎧a 1q 4=-2,a 1q 7=16,解得q =-2,a 1=-18.所以S 6=a 1(1-q 6)1-q=218.2.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( )A .4B .-4C .2D .-2 解析:选A.S 5=a 1(1-q 5)1-q ,∴44=a 1[1-(-2)5]1-(-2),∴a 1=4,故选A.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-11 解析:选D.由8a 2+a 5=0,得8a 1q +a 1q 4=0,所以q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.1+2+2+22+…+128的值是( ) A .128+64 2 B .128-64 2 C .255+127 2 D .255-127 2 答案:C5.若等比数列{a n }的前n 项和为S n =32n +m (n ∈N *),则实数m 的取值为( )A .-32B .-1C .-3D .一切实数解析:选C.a 1=S 1=32+m ,又a 1+a 2=34+m ,所以a 2=-34.又a 1+a 2+a 3=38+m ,所以a 3=-38.所以a 22=a 1a 3, 即916=(32+m )(-38),解得m =-3. 6.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.158或5B.3116或5C.3116D.158解析:选C.若q =1,则由9S 3=S 6得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1. 由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2.故a n =a 1q n -1=2n -1,1a n =(12)n -1.所以数列{1a n }是以1为首项,12为公比的等比数列,其前5项和为S 5=1×[1-(12)5]1-12=3116.二、填空题7.设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=__________. 解析:设等比数列的公比为q ,则由S 6=4S 3知q ≠1. ∴S 6=1-q 61-q =4(1-q 3)1-q.∴q 3=3.∴a 1q 3=3.答案:38.等比数列的公比为2,前4项之和等于10,则前8项之和等于________.解析:S 8-S 4=q 4·S 4=24·10=160,S 8=170. 答案:1709.等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=__________.解析:∵{a n }是等比数列,∴a n +2+a n +1=6a n 可化为a 1q n +1+a 1q n =6a 1q n -1,∴q 2+q -6=0.又∵q >0,∴q =2.∴S 4=a 1(1-q 4)1-q =12(1-24)1-2=152.答案:152三、解答题10.在等比数列{a n }中,a 3=-12,前3项和S 3=-9,求公比q . 解:法一:由已知可得方程组⎩⎪⎨⎪⎧a 3=a 1·q 2=-12, ①S 3=a 1(1+q +q 2)=-9. ② ②÷①得1+q +q 2q 2=34,即q 2+4q +4=0.所以q =-2.法二:a 3,a 2,a 1成等比数列且公比为1q.所以S 3=a 3+a 2+a 1=a 3[1-(1q)3]1-1q=-12(q 3-1)q 2(q -1)=-9.所以q 2+4q +4=0,即(q +2)2=0.所以q =-2.11.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0.又q ≠0,从而q =-12.(2)由已知可得a 1-a 1(-12)2=3,故a 1=4.从而S n =4[1-(-12)n ]1-(-12)=83[1-(-12)n ].12.一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.解:设该等比数列有2n 项,则奇数项有n 项,偶数项有n 项,设公比为q ,由等比数列性质可得S 偶S 奇=17085=2=q .又∵S 奇+S 偶=a 1(1-q 2n )1-q =255,a 1=1,∴2n =8.∴此数列的公比为2,项数为8.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5
返回
本课结束
第二章 数 列
§2.5 等比数列的前n项和(一)
学习 目标
1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单 问题.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
知识点一 等比数列前n项和公式 1.等比数列前n项和公式
反思与感悟
解析答案
跟踪训练3 在等比数列{an}中,a2=3,a5=81. (1)求an及其前n项和Sn; 解 设{an}的公比为q,依题意得
a1q=3 a1q4=81
,解得aq1==31

因此,an=3n-1,Sn=111--33n=3n-2 1.
解析答案
1 (2)设 bn=1+log3an,求数列bn·bn+1的前 10 项和 T10.
+a5+a6+a7等于( )
11
19
A. 8
B.16
9
3
C.8
D.4
解析答案
12345
3.设等比数列{an}的公比 q=3,前 n 项和为 Sn,则Sa42等于___4_30____. 解析 由题意得 S4=a111--334=40a1,又 a2=3a1, ∴Sa42=430.
解析答案
12345
4.等比数列{an}中,a2=9,a5=243,则{an}的前4项和是___1_2_0___. 解析 ∵a5=a2·q3,∴q3=2943=27. ∴公比q=3,从而a1=3, ∴S4=a111--qq4=311--334=120.
解析答案
12345
5.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ________,S5=________.

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质

-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.

1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,

人教A版高中数学高二版必修5教师用书 第二章 数列

人教A版高中数学高二版必修5教师用书 第二章 数列

知识点新课程标准的要求层次要求领域目标要求数列的概念与递推公式1.了解数列的概念,体会数列是一种特殊函数,能根据数列的前几项写出简单数列的通项公式2.类比函数理解数列的几种表示方法(列表、图象、通项公式等),能根据项数多少、数列的性质对数列分类3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项,能求某些数列的通项公式1.本章学习应使学生认识到数学来源于生活实际,生活中又充满了数学,数学中有无穷的奥秘.学会从生活实际中发现数学规律,体会数学美,体验探索的乐趣.了解我国数学家对数列的贡献,培养学生的爱国热情.通过了解数学家对数列问题锲而不舍的探索过程,培养学生学习数学的兴趣2.养成收集资料、自主探索、合作交流的习惯,提高数学建模能力,提高应用意识和实践能力3.进一步体会从特殊到一般,由已知到未知,从有限到无限的认识事物的规律,养成既大胆猜想又严格证明的科学精神等差数列1.掌握等差数列和等差中项的概念,会用定义判定数列是否是等差数列2.掌握等差数列的通项公式及推导方法,会应用直线、一次函数等有关知识研究等差数列的性质,能熟练运用通项公式求有关的量:a1,d,n,a n,S n3.掌握等差数列的前n项和公式及推导方法,能熟练运用通项公式、前n项和公式,对于a1,d,n,a n,S n中已知三个量求另外两个量;能灵活运用公式解决与等差数列有关的综合问题;能构建等差数列模型解决实际问题等比数列1.掌握等比数列和等比中项的概念,能利用定义判定数列是否是等比数列2.掌握等比数列的通项公式及推导方法,能类比指数函数利用等比数列的通项公式研究等比数列的性质,能熟练运用通项公式求有关的量:a1,q,n,a n,S n3.掌握等比数列的前n项和公式及推导方法,能熟练运用通项公式、前n项和公式,对于a1,q,n,a n,S n中已知三个量求另外两个量;能灵活运用公式解决有关等比数列的综合问题;能构建等比数列模型解决实际问题等差数列与等比数列的综合应用1.能通过类比、转化等方法解决与等差数列、等比数列有关的一些问题2.能用等差数列、等比数列的知识解决实际问题数列是高中数学的主干知识之一,是衔接初等数学与高等数学的桥梁,其中等差、等比数列是最重要、最基本的两种特殊数列,包含的主要内容有等差、等比数列的概念、判定、通项公式、前n项和公式、性质、简单应用等.在教学过程中应注意以下几点:1.注重基础,要求学生熟练掌握两类数列的通项公式、求和公式等,能灵活应用数列的性质.2.授课时有意识地总结一些常用的解题方法:通项公式的求法,等差、等比数列的判定,常用的求和方法等.3.强化训练,提升学生的计算能力,数列的很多题目计算量比较大,等比数列运算中常常会综合指数幂的运算等,这些都要求学生多加训练.4.强化思想方法的应用,本章用得较多的有函数与方程思想、分类讨论思想、化归与转化思想等.5.在平时的练习中,要注意引导学生对一些易错点多总结,如在利用等比数列求和公式时要注意公比为1的情况,数列求和中对项数的确定等.第1课时数列的概念与简单表示法1.掌握数列、数列中的项、数列的通项公式等概念,能根据数列的前几项求数列的通项公式.2.能根据数列的通项公式求数列中的指定项.3.掌握数列的一些简单性质以及递增数列、递减数列等概念.4.了解递推公式是给出数列的一种方法,会根据递推公式写出数列的前几项.重点:由数列的前几项写出其通项公式.难点:理解数列是一种特殊的函数.小明妈妈从小明1周岁开始在每年的生日这天都要给小明测出身高,并按时间顺序记录下来,得到一列数.日常生活中你还能举出这样的例子吗?问题1:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.数列中排在第n位的数称为这个数列的第n项,记为a n.问题2:(1)数列的一般形式可以写成:a1,a2,a3,…,a n,…,简记为{a n}.(2)如果数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的通项公式.(3)数列的分类分类标准名称含义例子数列按项的个数有穷数列项数有限的数列1,2,3,…,10无穷数列项数无限的数列1,4,9,…,n2,…按项的变递增数列自第二项起,每一项大2,4,6,8,…化趋势于它的前一项的数列递减数列自第二项起,每一项小于它的前一项的数列1,,,,…常数列各项都相等的数列2,2,2,…摆动数列自第二项起,有些项大于它的前一项,有些项小于它的前一项的数列1,-2,3,-4,…问题3:数列概念的本质:从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集(N*)或它的有限子集({1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值.数列的通项公式a n就是相应函数的解析式f(n).问题4:数列中的项与集合中的元素相比较,有哪些异同?在世界数学史上,对数列的讨论具有悠久的历史.中国、巴比伦、古希腊、埃及和印度等,都曾经研究过数列,中国古代数学名著《周髀算经》《九章算术》《孔子算经》《张邱建算经》等,对等差数列和等比数列都列举过计算的例子,说明中国古代对数列的研究做出过一定的贡献.1.已知数列{a n},a n=(n∈N*),那么是这个数列的第()项.A.9B.10C.11D.12【解析】由=可解得n=10或n=-12(舍去),所以n=10.【答案】B2.图中表示的1,4,9,16,…这样的数称为正方形数.那么第n个正方形数为().A.nB.n(n+1)C.n2D.n2+1【解析】各正方形数依次构成一个数列,记作{a n},则a1=1=12,a2=4=22,a3=9=32,a4=16=42,所以第n 个正方形数为a n=n2.【答案】C3.已知数列的前四项是3,5,9,17,则该数列的第5项是.【解析】归纳前四项可得a1=21+1,a2=22+1,a3=23+1,a4=24+1,所以第5项为a5=25+1=33.【答案】334.已知数列{a n}中,a n=n+3(n∈N*,n≤7),试用图象表示出这个数列.【解析】如图所示.根据数列的前几项归纳数列的通项公式写出下面各数列的一个通项公式,使它的前几项分别是下列各数.(1)1,2,3,4;(2),-1,,-,;(3)9,99,999,9999.【方法指导】根据给定的项,写出数列的一个通项公式,关键是找到n与a n的关系.例如:(1)中的各项可分别写为1+,2+,3+,4+,这样就很容易得出其通项公式;(2)中注意正负号如何调整;(3)中的各项可分别写为101-1,102-1,103-1,104-1.【解析】(1)a n=n+;(2)a n=(-1)n+1;(3)a n=10n-1.【小结】解决此类题目时要把握好以下几个方面:①当给定的项由几部分组成时,我们可以“各个击破”,同时也要注意各部分之间的联系;②正负号可利用(-1)n或(-1)n+1来调整;③熟练掌握常见数列的通项公式,比如:1,2,3,4,…;2,4,6,8,…;1,4,9,16,…;2,4,8,16,…它们的通项公式可以分别为a n=n,a n=2n,a n=n2,a n=2n.根据数列的通项探究数列的项数列{a n}中,已知a n=(n∈N*).(1)写出a10,a n+1,;(2)79是否是数列中的项?若是,是第几项?【方法指导】分别用10,n+1,n2替换通项公式中的n求解出数列中的a10,a n+1,项,再令a n=79求解出n的值进行判断.【解析】(1)∵a n=(n∈N*),∴a10==,a n+1==,==.(2)令79=,解方程得n=15或n=-16,∵n∈N*,∴n=15,即79为该数列的第15项.【小结】该题考查数列通项的定义,判断数列项的归属,由通项公式可以求得数列中的任意一项,也可以由确定性判断一个数是不是数列中的项,判断时假设此数为数列中的第n项,代入通项公式求解n,若求得结果为正整数,则是数列中的项,否则不是.求数列中的最大项已知数列{a n}的通项公式为a n=-n2+7n-50,求数列{a n}中的最大项.【方法指导】由通项公式可知a n是关于n的二次函数,求二次函数最值可采用配方法,此时要注意其中自变量n为正整数.【解析】∵a n=-(n-)2-,∴数列{a n}中的最大项是-.[问题]上述解法正确吗?[结论]错误,在数列{a n}中,n∈N*,故n不能等于.于是,正确的解法如下:(法一)a n=-n2+7n-50=-(n-)2-,其对称轴为n=,所以当n=3或4时,a n取得最大值,为a3=-32+7×3-50=-38,a4=-42+7×4-50=-38.(法二)设数列{a n}中第n项最大,则即解得所以当n=3或4时,a n取得最大值,且最大项为a3=a4=-38.【小结】法一中的关键是配方,障碍点在于n的取值是,还是3,4,或者是3,4中的一个.法二中的关键是不等式组的建立,思维障碍点在于解得后如何处理.求下列数列的一个通项公式:(1)1+,1-,1+,1-,…;(2),,,,,….【解析】(1)a n=1+(-1)n-1.(2)a n=.设数列,,2,,,…,则4是这个数列的().A.第9项B.第10项C.第11项D.第12项【解析】此数列即为,,,,,…通项公式为a n=,令4=,得n=11,∴选C.【答案】C数列{a n}中,a n=n-,求数列{a n}的最大项和最小项.【解析】由题意得a n=n-=-,∴数列{a n}是递增数列,∴数列{a n}的最小项为a1=1-,没有最大项.1.1,,,,…的一个通项公式a n等于().A. B.C.D.【解析】若把换成,同时首项1换成,规律就明显了.其一个通项应该为:a n=.【答案】C2.数列{a n}中,a n=-2n2+16n+3,则其中最大项为().A.a3B.a4C.a1D.a10【解析】a n=-2(n-4)2+35,故当n=4时,a n取最大值.【答案】B3.已知数列1,,,,…,,…,则3是它的第项.【解析】∵a n=,由=3,得n=23,∴3是该数列第23项.【答案】234.已知数列{a n}的通项公式为a n=.(1)求这个数列的第10项;(2)是不是该数列中的项?为什么?【解析】(1)当n=10时,a10==.(2)设是该数列中的第m项,则=,得9m2-303m+100=0,即m=或m=,均不是正整数.故不是数列{a n}中的项.(2013年·陕西卷)观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为.【解析】根据等式两边的规律可知:第n个等式为(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1).【答案】(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)1.数列{a n}的通项公式a n=,则-3的项数为().A.3B.5C.9D.10【解析】a n==-,所以令-=-3,所以n=9.【答案】C2.数列,-,,-,…的一个通项公式是().A.a n=(-1)n+1B.a n=(-1)nC.a n=(-1)n+1D.a n=(-1)n【解析】数列,-,,-,…的前四项正负相间隔,奇数项为正,偶数项为负,所以第n项的符号为(-1)n+1,分母为2n,分子为奇数,所以选C.【答案】C3.已知数列{a n}的通项公式a n=n2-4n-12(n∈N*),则(1)这个数列的第4项是;(2)这个数列从第项起,以后各项都为正数.【解析】(1)a4=42-4×4-12=-12;(2)a n=(n+2)(n-6),当n≥7时,a n>0.【答案】-1274.已知数列{a n}的通项公式为a n=n(n+2),问:(1)80、90是不是该数列的项?如果是,是第几项?(2)从第几项开始,该数列的项大于10000?【解析】(1)令n(n+2)=80,得n1=8,n2=-10(舍),∴80是数列的第8项.令n(n+2)=90,此方程无正整数解,∴90不是该数列的项.(2)∵a99=99×101<10000,而a100=100×102>10000,又该数列为递增数列,∴从第100项开始,该数列的项大于10000.5.若数列{a n}的通项公式a n=,记f(n)=2(1-a1)(1-a2)…(1-a n),试通过计算f(1),f(2),f(3)的值,推测出f(n)等于().A.B.C.D.【解析】f(1)=2(1-a1)==,f(2)=2(1-)(1-)==,f(3)=2(1-a1)(1-a2)(1-a3)=2(1-)(1-)(1-)==,可猜测f(n)=.【答案】C6.数列,,,,…,有序数对(a,b)可以是().A.(21,-5)B.(16,-1)C.(-,)D.(,-)【解析】由数列的前4项可归纳出数列分母的通项公式为n(n+2),∴a+b=15;分子的通项公式为,∴==,解得∴选D.【答案】D7.已知数列{a n}的通项公式是a n=,那么这个数列是数列(填“递增”或“递减”).【解析】∵a n+1-a n=-=>0,∴a n+1>a n,数列{a n}为递增数列.【答案】递增8.根据下面数列前几项的值,写出数列的一个通项公式:(1),,,,,…;(2)1,3,3,5,5,7,7,9,9,…;(3)2,-6,12,-20,30,-42,….【解析】(1)a n=;(2)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n=n+;(3)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n=(-1)n+1n(n+1).9.数列{a n}中,a n=3n2-28n+1,则a n取最小值时n的值为.【解析】a n=3n2-28n+1=3(n-)2-,∴n=5时,a n取最小值.【答案】510.数列{a n}中,a n=.(1)求这个数列的第50项;(2)求证:a n∈(0,1);(3)在区间(,)内有无数列的项?若有,有几项?若无,说明理由.【解析】(1)∵a n==,∴a50=.(2)∵a n==1-,n∈N*,又0<<1,∴a n∈(0,1).(3)由<a n<,得<<.∴解得1<n<,∴当且仅当n=2时,在区间(,)内有数列中的一项.第2课时递推公式与数列的函数思想1.了解递推公式是给出数列的一种方法,会根据递推公式写出数列的前几项.2.了解数列的表示法,会用通项公式、列表法、图象法、递推公式法表示数列.3.掌握数列是特殊的函数,能够运用函数的观点认识数列.重点:根据递推公式写出数列的前几项和利用函数的观点认识、解决数列问题.难点:利用函数的观点解决数列中的单调性和最值问题.多米诺骨牌是一种用木制、骨制或塑料制成的长方形骨牌.玩时将骨牌按一定间距排列成行,轻轻碰倒第一枚骨牌,其余的骨牌就会产生连锁反应,依次倒下.问题1:如果数列{a n}的第n项与它前一项或几项的关系可以用一个式子a n=f(a n-1)来表示,那么这个公式叫作这个数列的递推公式.问题2:由递推公式求数列的每一项,需知数列的第一项或前两项.问题3:数列的表示方法有通项公式、列表法、图象法、递推公式.问题4:从函数角度,数列可以看作是一个定义域是正整数集N*(或它的有限子集)的数从小到大依次取值时对应的一列函数值.如果能用解析式表示出来,就是数列的通项公式,也就是第n 项a n与项数n之间的函数关系.函数可以研究函数的单调性和最值等性质,数列也可以研究单调性与最值.公元1202年,一位意大利比萨的商人斐波拉契(Fibonacci,约1170-1250年)在他的《算盘全书》中提出过一个“养兔问题”:某人买回一对小兔,一个月后小兔长成大兔.再过一个月,大兔生了一对小兔,以后,每对大兔每月都生一对小兔,小兔一个月后长成大兔,根据这个规律依次写出每个月的兔子对数的总数,即:1,1,2,3,5,8,13,21,34,55,….这就是著名的斐波拉契数列.1.已知数列{a n}的图象在函数y=的图象上,当x取正整数时,则其通项公式为().A.a n=(x∈R)B.a n=(n∈N*)C.a n=(x∈N)D.a n=(n∈N)【解析】数列{a n}对应的点列为(n,a n),即有a n=(n∈N*).【答案】B2.已知数列{a n}的首项a1=1,且满足a n+1=a n+,则此数列的第三项是().A.1B.C.D.【解析】∵a1=1,a n+1=a n+,∴a2=a1+=1,a3=a2+=,故选C.【答案】C3.数列{a n}中,a1=1,a n=+1,则a4= .【解析】a2=+1=1+1=2,a3=+1=,a4=+1=+1=.【答案】4.数列{a n}中,已知a n=2n+1-3.(1)写出a3,a4;(2)253是否是数列的项?如果是,是第几项?【解析】(1)a3=13,a4=29.(2)令2n+1-3=253,则2n+1=256,∴n+1=8,∴n=7,∴253是第7项.根据递推公式求数列的项已知在数列{a n}中,a1=1,a2=3,a n=a n-1+(n≥3),则a5等于().A. B.C.4 D.5【方法指导】根据已知项和给定的递推关系式逐项写出即可.【解析】根据递推公式可得:a3=a2+=4,a4=a3+=,a5=a4+=.【答案】A【小结】充分利用递推关系,由a1、a2,先依次求出a3、a4,再求出a5.周期变化的数列探究对于数列{a n},a1=4,a n+1=f(a n),n∈N*,依照下表:x12345f(x)54312(1)求a2,a3,a4;(2)求a2015.【方法指导】数列作为特殊的函数,可利用函数方法来解.【解析】(1)a1=4,a2=f(4)=1,a3=f(1)=5,a4=f(5)=2.(2)由(1)知a1=4,a2=1,a3=5,a4=2,a5=f(2)=4,…,该数列是周期为4的周期数列,所以a2015=a3=5.【小结】通过求数列的前几项,发现规律,找到周期是本题的关键.求数列的最大项已知数列{a n}的通项a n=(n+1)()n(n∈N*),试问该数列{a n}有没有最大项?若有,求出最大项和最大项的系数;若没有,请说明理由.【方法指导】数列中寻找最大项,就要判断数列的单调性,判断数列的单调性可以借助函数的单调性判断,也可以只需连续前后两项进行比较,可以用作差法,也可以用作商法判断.【解析】(法一)∵a n+1-a n=(n+2)()n+1-(n+1)·()n=()n·,∵当n<9时,a n+1-a n>0,即a n+1>a n,当n>9时,a n+1-a n<0,即a n+1<a n.∴该数列中有最大项为第9项,且a9=10×()9.(法二)∵a n=(n+1)()n>0,∴=[(n+2)()n+1]÷[(n+1)()n]=.显然当n<9时,有a n+1>a n,当n>9时,a n+1-a n<0,即a n+1<a n.∴该数列中有最大项为第9项,且a9=10×()9.[问题]上述解法正确吗?[结论]忽略了n=9时的情况,a9=a10,则最大项为第9、10项.于是,正确解答如下:(法一)∵a n+1-a n=(n+2)()n+1-(n+1)·()n=()n·,当n<9时,a n+1-a n>0,即a n+1>a n;当n=9时,a n+1-a n=0,即a n+1=a n;当n>9时,a n+1-a n<0,即a n+1<a n.故a1<a2<a3<…<a9=a10>a11>a12>…,∴该数列中有最大项为第9、10项,且a9=a10=10×()9.(法二)∵a n=(n+1)()n>0,∴=[(n+2)()n+1]÷[(n+1)()n]=.令10(n+2)=11(n+1),得n=9.显然n<9时,有a n+1>a n;当n>9时,有a n+1<a n.故a1<a2<a3<…<a9=a10>a11>a12>…,∴该数列中有最大项为第9、10项,且a9=a10=10×()9.【小结】判断数列的单调性可以借助基本函数的单调性,也可以比较连续两项的大小关系.在比较连续两项之间的大小关系时,关键是不等式组或的建立,要注意等号是否成立,即两项有无可能相等.数列{a n}的首项和递推公式分别是a1=0,a n+1=a n+(2n-1)(n∈N*),求其通项公式.【解析】令n=1,2,3,4,得a1=0,a2=a1+1=1=12,a3=a2+3=4=22,a4=a3+5=9=32,a5=a4+7=16=42,可归纳出a n=(n-1)2.已知数列{a n}满足a1=2,a n+1=,求a2013的值.【解析】∵a1=2,a n+1=,∴a n+2====-,于是a n+4=-=a n.∴{a n}为周期数列,周期T=4.又a1=2,a2=-3,a3=-,a4=,a5=2,∴a2013=a4×503+1=a1=2.已知a n=n×0.8n(n∈N*).(1)判断数列{a n}的单调性;(2)求数列{a n}的最大项.【解析】(1)∵a n+1-a n=×0.8n(n∈N*),∴n<4时,a n<a n+1;n=4时,a4=a5;n>4时,a n>a n+1.即a1,a2,a3,a4单调递增,a4=a5,而a5,a6…单调递减.(2)由(1)知,数列{a n}的第4项和第5项相等且最大,最大项是=.1.数列{a n}中,a n+2=a n+1-a n,a1=2,a2=5,则a2015的值是().A.-2B.2C.-5D.5【解析】因为a n+2=a n+1-a n,a1=2,a2=5,所以a3=3,a4=-2,a5=-5,a6=-3,a7=2,a8=5,利用数列的周期为6,a2015=a6×335+5=a5=-5.【答案】C2.已知数列{a n},a n=2n2-10n+3,它的最小项是().A.第一项B.第二项C.第三项D.第二项或第三项【解析】a n=2n2-10n+3=2(n-)2-,而2和3与的距离相等,故最小项是第二项或第三项.【答案】D3.已知数列{a n}中,a1=1,a n+1-a n=(-1)n,则a100= .【解析】由a1=1,得a2=a1-1=0,a3=a2+1=1,a4=a3-1=0,由此可归纳:a2n=0,∴a100=0.【答案】04.若数列{a n}满足a1=,a n=1-(n≥2且n∈N*),求a2015.【解析】a1=,a n=1-(n≥2且n∈N*),令n=2,则有a2=-1;令n=3,a3=2;令n=4,a4=;令n=5,a5=-1;….所以{a n}是以3为最小正周期的数列.则a2015=a671×3+2=a2=-1.(2011年·浙江卷)若数列{n(n+4)()n}中的最大项是第k项,则k= .【解析】设a n=n(n+4)()n,a n+1=(n+1)(n+5)·()n+1,若=>1,则n2>10,即当n≥4,a n≥a n+1;同理得n≤3时,有a n≤a n+1,a3==,a4=,因此第4项最大,k=4.【答案】41.在数列{a n}中,a1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N*),则的值是().A. B. C. D.【解析】由已知得a n=1+,∴a2=1+=2,a3=1+=,a4=1+=3,a5=1+=,∴=×=.【答案】C2.设数列{a n}中,a1=2,a n+1=2a n+3,则a4等于().A.30B.35C.37D.40【解析】a2=2a1+3=7,a3=2a2+3=17,a4=2a3+3=37.【答案】C3.已知数列{a n}的通项公式是a n=(-1)n(n+1),则a1+a2+a3+…+a10= .【解析】由a n=(-1)n(n+1),得a1+a2+a3+…+a10=-2+3-4+5-6+7-8+9-10+11=5.【答案】54.已知数列{a n}的通项a n=(a,b,c均为正实数),比较a n与a n+1的大小关系.【解析】∵a n==(a,b,c均为正实数),f(n)=是减函数,∴a n=是增函数,∴a n<a n+1.5.在数列{a n}中,已知a1=1,且当n≥2时,a1a2…a n=n2,则a3+a5等于()A.B.C.D.【解析】a3==,a5==,∴a3+a5=.【答案】B6.若a n=,则a n与a n+1的大小关系为().A.a n>a n+1B.a n<a n+1C.a n=a n+1D.不能确定【解析】a n==,易知a n是关于n的增函数,故a n<a n+1.【答案】B7.数列{a n}满足a n+1=若a1=,则a20的值为.【解析】逐步计算,可得a1=,a2=-1=,a3=-1=,a4=,a5=-1=,…,这说明数列{a n}是周期数列,且T=3,所以a3×6+2=a2=.【答案】8.设函数f(x)=log2x-log x4(0<x<1),数列{a n}的通项a n满足f()=2n(n∈N*).(1)求数列{a n}的通项公式;(2)证明:数列{a n}是递增数列.【解析】(1)由已知得log2-lo4=2n,即a n-=2n,变形整理得-2na n-2=0⇒a n=n±,又0<x<1,所以0<<1,故a n<0,所以a n=n-.(2)因为a n=n-=-单调递增,所以数列{a n}是递增数列.9.已知数列{a n}的通项公式为a n=(n∈N*,且n≤20),则数列{a n}的最小项为第项.【解析】可结合函数f(x)==1+,作出f(n)=a n=的图象,观察知数列{a n}的最小项为a3.【答案】310.已知数列{a n}的通项公式为a n=试判断该数列是递增数列还是递减数列,并证明你的结论.【解析】数列{a n}为递增数列.证明:当n≥2时,a n+1=(n+2)+log2(),a n+1-a n=1+log2().显然log2()>0,故a n+1>a n.又a2=3+log2=log2>log2=,∴a2>a1,∴{a n}是递增数列.第3课时等差数列的概念及其性质1.理解等差数列、公差、等差中项的概念.2.探索并掌握等差数列的通项公式,灵活运用通项公式求解计算,做到“知三求一”.重点:等差数列的概念和通项公式.难点:等差数列通项的求法及其应用.《蒙学诗》一去二三里,烟村四五家,亭台六七座,八九十枝花.它的意思是:我到外面游玩,不知不觉离家已有两、三里地,看到不远处的小村庄里,有四、五户人家已经冒起了炊烟.我信步走来,又看到路边有六、七处精美的亭阁楼台,独自静静观赏,才发现身边的树枝上挂着……八朵、九朵,哦,不,十朵花,真是赏心悦目!这首五言绝句是描写风景的优美.它把“一”到“十”的数字嵌入诗中,组合成一幅静美如画的山村风景图,质朴素淡,令人耳目一新.问题1:(1)等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差.(2)等差中项的概念:如果a,A,b成等差数列,那么A叫作a与b的等差中项.其中A= .问题2:等差数列{a n}的首项为a1,公差为d,等差数列的通项公式是a n=a1+(n-1)d ,如何推导的?(法一)归纳猜想:根据等差数列的定义,将{a n}中的每一项都用a1和d表示出来.a2= a1+d ;a3=a2+d= a1+2d ;a4=a3+d= a1+3d ;…;a n= a1+(n-1)d .(法二)累加法:将各式相加可得a n-a1=(n-1)d,故a n= a1+(n-1)d .问题3:根据等差数列的概念,如何判断数列的单调性,如何判断一个数列是否为等差数列?等差数列满足a n-a n-1=d(d为常数,n≥2)或a n+1-a n=d(d为常数,n∈N*).当d>0时,数列为递增数列;当d<0时,数列为递减数列;当d=0时,数列为常数列.要判断一个数列是否为等差数列,只需判断a n-a n-1=d(d为常数,n≥2)或a n+1-a n=d(d为常数,n∈N*)是否成立.问题4:(1)在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项,即2a n=a n-1+a n+1(n≥2).推广:若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(2)等差数列的通项公式a n=a1+(n-1)d 中一共涉及了四个量,用方程的观点来看,如果三个量已知,就可求出剩余的一个未知量,即“知三求一”.(3)用函数的观点来认识等差数列的通项公式,可以发现点(n,a n)分布在一次函数的图象上,结合函数性质可认识数列的增减性.公元前1世纪的《周髀算经》将日行轨道按季节不同分成七个同心圆,称为“七衡图”.已知内衡直径a1=238000里,两衡间距为=19833万里,则其余各衡的直径依次为a2=a1+d,a3=a1+2d,…,a7=a1+6d.显然,从中可归纳出一般等差数列的通项公式a n=a1+(n-1)d.1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差为().A.2B.3C.-2D.-3【解析】依题意可得a n+1-a n=-2或a2-a1=(3-4)-(3-2)=-2.【答案】C2.已知等差数列{a n}中,首项a1=4,公差d=-2,则数列{a n}的通项公式是().A.a n=4-2nB.a n=2n-4C.a n=6-2nD.a n=2n-6【解析】通项公式a n=a1+(n-1)d=4+(n-1)(-2)=6-2n.【答案】C3.与的等差中项是.【解析】因为=2-,=-(+2),由等差中项的定义可知,与的等差中项是[(2-)-(2+)]=-.【答案】-4.已知等差数列的前三项为3,7,11,求该数列的第4项和第10项.【解析】根据题意可知:a1=3,d=7-3=4,∴该数列的通项公式为:a n=3+(n-1)×4,即a n=4n-1(n∈N*),∴a4=4×4-1=15,a10=4×10-1=39.求等差数列的通项已知等差数列{a n}中,a3a7=-16,a4+a6=0,求{a n}的通项公式.【方法指导】根据给定的a3a7=-16,a4+a6=0,可以得到关于a1和d的方程组,通过解方程组可得其通项公式.【解析】设{a n}的首项为a1,公差为d,则即解得或故数列的通项公式为a n=-8+2(n-1)=2n-10或a n=8-2(n-1)=-2n+10.【小结】本题体现了方程(组)的思想,这种思想在数列中经常用到.紧紧把握住等差数列的基本量(首项a1和公差d)是解决此类问题的关键.等差数列的判断已知数列{a n}的通项为a n=lg3n,试判断该数列是否为等差数列.若是,其公差是多少?【方法指导】可以利用等差数列的定义来证明,看a n+1-a n是否等于一个与n无关的常数.【解析】a n=lg3n=n lg3,则a n+1-a n=(n+1)lg3-n lg3=lg3,是常数.故数列{a n}是等差数列,公差为lg3.【小结】判断或证明一个数列为等差数列,主要是利用等差数列的定义,确定a n+1-a n是一个与n 无关的常数.等差数列的实际应用《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为().A.1升B.升C.升D.升【方法指导】设出等差数列{a n}的基本量,将所给条件用基本量表示,利用基本量法求解.【解析】设所构成的等差数列{a n}的首项为a1,公差为d,由题意得即解得所以a5=a1+4d=.【答案】B【小结】求解此类问题的关键是把实际问题转化为等差数列问题,利用等差数列的定义、通项公式设出基本量a1和d,解方程即可.在等差数列{a n}中,已知a1+a6=12,a4=7.(1)求a9.(2)求此数列在[101,1000]内共有多少项.【解析】(1)设{a n}的首项为a1,公差为d,则则∴a9=a1+8d=1+8×2=17.(2)a n=1+(n-1)×2=2n-1,令101≤2n-1≤1000,则51≤n≤500.5,故共有450项.已知数列{a n}中,a1=,数列a n=2-(n≥2,n∈N*),数列{b n}满足b n=(n∈N*),求证:数列{b n}为等差数列.【解析】因为b n===,而b n-1=,所以b n-b n-1=-=1(n≥2,n∈N*),故数列{b n}是首项为-,公差为1的等差数列.夏季高山上的温度从山脚起,每升高100m,降低0.7℃,已知山顶处的温度是14.8℃,山脚处的温度为26℃,求此山相对于山脚处的高度.【解析】因为每升高100m温度降低0.7℃,所以该处温度的变化是一个等差数列问题.山脚温度为首项a1=26,山顶温度为末项a n=14.8,所以26+(n-1)(-0.7)=14.8,解之可得n=17,此山的高度为(17-1)×100=1600(m).答:此山相对于山脚处的高度是1600m.1.lg(-)与lg(+)的等差中项为().A.0B.lgC.lg(5-2)D.1【解析】等差中项为===0.【答案】A2.等差数列的相邻四项是1,a,-7,b,那么a、b的值分别是().A.3,-11B.-3,-11C.-3,11D.3,11【解析】根据等差中项的定义得a==-3,-14=a+b=-3+b,∴b=-11.【答案】B3.已知数列{a n}为等差数列,a3=,a7=-,则a15的值为.【解析】设{a n}的首项为a1,公差为d,则解得所以a15=+(15-1)×(-)=-.4.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次.奥运会如果因故不能进行,届数照算.(1)试写出由举行奥运会的年份构成的数列的通项公式;(2)2008年北京奥运会是第几届?2050年举行奥运会吗?【解析】(1)由题意知:举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列,∴a n=1896+4(n-1)=1892+4n(n∈N*).(2)令a n=2008,则2008=1892+4n,得n=29,故2008年北京奥运会是第29届奥运会.令a n=2050,则2050=1892+4n,无正整数解,故2050年不举行奥运会.(2013年·广东卷)在等差数列{a n}中,已知a3+a8=10,则3a5+a7= .【解析】设公差为d,则a3+a8=10⇒2a1+9d=10,而3a5+a7=4a1+18d=2(2a1+9d)=20.【答案】201.在等差数列{a n}中,a1+a9=10,则a5的值为().A.5B.6C.8D.10【解析】由等差中项的定义得a1+a9=2a5,所以a5=5.【答案】A2.在等差数列{a n}中,a2=2,a3=4,则a10等于().A.12B.14C.16D.18【解析】设等差数列{a n}的公差为d,由a2=2,a3=4,得解得∴a10=a1+(10-1)×d=9d=18.【答案】D3.若2、a、b、c、9成等差数列,则c-a= .【解析】设等差数列2,a,b,c,9的公差为d,则9-2=4d,∴d=,c-a=2d=2×=.【答案】4.已知数列{a n}满足a1=,且当n>1,n∈N*时,有=.(1)求证:数列{}为等差数列;(2)试问a1a2是否是数列{a n}中的项?如果是,是第几项;如果不是,请说明理由.【解析】(1)当n≥2时,由=得,a n-1-a n-4a n-1a n=0,两边同除以a n a n-1得,-=4,即-=4对任意n>1且n∈N*成立,∴{}是以=5为首项,d=4为公差的等差数列.(2)由(1)得,=+(n-1)d=4n+1,∴a n=.∴a1a2=×=.设a1a2是数列{a n}的第t项,则a t==,解得t=11∈N*,∴a1a2是数列{a n}的第11项.5.在x和y(x≠y)两数之间插入n个数,使它们与x,y组成等差数列,则该数列的公差为().A. B.C. D.【解析】由题意知x和y分别为该数列的第1项和第n+2项,则该数列的公差d==.【答案】B6.已知{a n}为等差数列,若a3+a4+a8=9,则a5等于().A.-3B.2C.3D.-2【解析】由a3+a4+a8=3a5知a5=3,∴选C.【答案】C7.已知{}是等差数列,且a4=6,a6=4,则a10= .【解析】-=-=2d,即d=.所以=+4d=+=,所以a10=.【答案】8.已知a,b,c成等差数列,那么a2(b+c),b2(c+a),c2(a+b)是否成等差数列?【解析】成等差数列,证明如下:∵a,b,c成等差数列,∴a+c=2b,a2(b+c)+c2(a+b)-2b2(c+a)=a2c+c2a+ab(a-2b)+bc(c-2b)=a2c+c2a-2abc=ac(a+c-2b)=0,∴a2(b+c)+c2(a+b)=2b2(c+a),∴a2(b+c),b2(c+a),c2(a+b)成等差数列.9.数列{a n}中,各项均为正数,且满足a n+1=a n+2+1,a1=2,则数列{a n}的通项公式为.【解析】由a n+1=a n+2+1得a n+1=(+1)2,∵{a n}各项均为正数,∴=+1,∴-=1,∴{}为等差数列,∴=+(n-1)×1,∴a n=(n+-1)2.【答案】a n=(n+-1)210.已知数列{a n}是等差数列(a k与公差d均不为0).(1)求证:k取任何正整数,方程a k x2+2a k+1x+a k+2=0都有一个相同的实根.。

高中数学必修5全册人教A版-2024鲜版

高中数学必修5全册人教A版-2024鲜版
高中数学必修5全册 人教A版
2024/3/28
1
目录
2024/3/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间位置关系 • 直线与方程 • 圆与方程
2
01
ห้องสมุดไป่ตู้
集合与函数概念
2024/3/28
3
集合含义与表示
集合的概念
集合是具有某种特定性质的事物的总体,构成集合的事 物称为元素。
4F > 0$。
圆的参数方程
$left{ begin{matrix} x = a + rcostheta y = b + rsintheta
end{matrix} right.$,其中 $theta$为参数。
2024/3/28
30
直线与圆、圆与圆位置关系
直线与圆的位置关系
通过比较圆心到直线的距离$d$与半 径$r$的大小关系,可以判断直线与 圆的位置关系(相离、相切、相交) 。
奇偶性
设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有f(-x)=-f(x),则这个函数叫做 奇函数;如果对D内的任意一个x,都有f(-x)=f(x),则这个函数叫做偶函数。
周期性
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时, f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的 周期。
方程的根与函数的零点
了解方程的根与函数零点之间的关系,掌握求解函数零点的方法。
函数模型与方程的应用
了解函数模型与方程在实际问题中的应用,如经济学中的供需平衡 、物理学中的运动方程等。

高中数学必修5课件:第2章2-2-1等差数列

高中数学必修5课件:第2章2-2-1等差数列

第二章 数列
解析: (1)证明:bn+1-bn=an+11-2-an-1 2 =4-a41n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12, ∴数列{bn}是首项为12,公差为12的等差数列.
数学 必修5
第二章 数列
(2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. ∴数列{an}的通项公式为an=2n+2.
数学 必修5
第二章 数列
[规范解答] 方法一:设等差数列{an}的前三项分别为
a1,a2,a3.依题意得aa11·+a2a·a23+=a63=6,18,
∴a31a·1+a1+3dd=·1a81,+2d=66,
2分
解得ad1==-115 或ad1==51.,
6分
数学 必修5
第二章 数列
∵数列{an}是递减等差数列,∴d<0. 故取a1=11,d=-5, ∴an=11+(n-1)·(-5)=-5n+16. 即等差数列{an}的通项公式为an=-5n+16. 令an=-34,即-5n+16=-34,得n=10. ∴-34是数列{an}的项,且为第10项.
由aa190<>11,, 得221155++98dd><11,,
解得785<d<235.
故选 C. 【错因】 在解决本题时,必须深刻理解“从第10项起开
始比1大”的含义.尤其是“开始”这个词,它不仅表明 “a10>1”,而且还隐含了“a9≤1”这一条件,所对上述两个错 解都未从题干中彻底地挖掘出隐含条件.
第二章 数列
4.已知三个数成等差数列,它们的和为18,它们的平方 和为116,求这三个数.

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

人教A版高中数学必修5第二章 数列2.1 数列的概念与简单表示法课件(5)

人教A版高中数学必修5第二章 数列2.1 数列的概念与简单表示法课件(5)

通项为:an=
1 1+ 5 [( 2
5
)n-(
1- 2
5 )n].有趣的是:这样一个完全是自然数的数
列,通项公式居然是用无理数来表达的.
• 斐波那契数还可以在植物的叶、 枝、茎等排列中发现.例如: 在树木的枝干上选一片叶子, 记其为数0,然后依序点数叶子 (假定没有折损),直到到达与 那片叶子正对的位置,则其间 的叶子数多半是斐波那契 数.叶子从一个位置到达下一 个正对的位置称为一个循回, 叶子在一个循回中旋转的圈数 也是斐波那契数.在一个循回 中叶子数与叶子旋转圈数的比
(3)这个数列可以改写为 10-1,100-1,1 000-1,10 000-1,…,所以这个数 列的一个通项公式是 an=10n-1.
(4)将每一项都统一写成分母为 2 的分数,即12,42,92,126,225,…,所以它 的一个通项公式是 an=n22.
• 『规律总结』 根据数列的前几项求其通项公式,一般通 项公式不唯一,我们常常取其形式上较简便的一个即
可.解答时,主要靠观察、分析、比较、归纳、联想、转
化等方法.观察时特别注意:①各项的符号特征;②分式 的分子、分母特征;③相邻项的变化规律(绝对值的增 减).处理方法常用的有:①化异为同(统一分子、或分母 的结构形式);②拆项;③用(-1)n等表示符号规律;④与 特殊数列(自然数、偶数、奇数、自然数的平方,2n等)的 联系.
[解析] (1)这个数列各项的整数部分分别为 1,2,3,4,…,恰好是序号 n;分 数部分分别为12,23,34,45,…,与序号 n 的关系是n+n 1,
所以这个数列的一个通项公式是 an=n+n+n 1=nn2++21n. (2)这个数列可以改写为 10+1,100+2,1 000+3,10 000+4,…,所以这个数 列的一个通项公式是 an=10n+n.

高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)

高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)

(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5的全部内容。

2。

5 错误!第一课时等比数列的前n项和(1)公比是1的等比数列的前n项和如何计算?(2)能否根据首项、末项与项数求出等比数列的前n项和?(3)能否根据首项、公比与项数求出等比数列的前n项和?(4)等比数列前n项和的性质有哪些?[新知初探]1.等比数列的前n项和公式已知量首项a1与公比q首项a1,末项a n与公比q公式S n=错误!S n=错误![在应用公式求和时,应注意到S n错误!常数列求和,即S n=na1.2.等比数列前n项和的性质(1)等比数列{a n}中,若项数为2n,则错误!=q;若项数为2n+1,则错误!=q。

(2)若等比数列{a n}的前n项和为S n,则S n,S2n-S n,S3n-S2n…成等比数列(其中S n,S2n -S n,S3n-S2n…均不为0).(3)若一个非常数列{a n}的前n项和S n=Aq n-A(A≠0,q≠0,n∈N*),则数列{a n}为等比数列,即S n=Aq n-A(A≠0,q≠0,q≠1,n∈N*)⇔数列{a n}为等比数列.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)求等比数列{a n}的前n项和时可直接套用公式S n=a11-q n1-q来求( )预习课本P55~58,思考并完成以下问题(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为S n=na()(3)若某数列的前n项和公式为S n=-aq n+a(a≠0,q≠0且q≠1,n∈N*),则此数列一定是等比数列( )解析:(1)错误.在求等比数列前n项和时,首先应看公比q是否为1,若q≠1,可直接套用,否则应讨论求和.(2)正确.若数列既是等差数列,又是等比数列,则是非零常数列,所以前n项和为S n=na。

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

【人教A版】高中数学必修1-5教材课后习题答案全套完整WORD版

人教A版高中数学必修1-5教材课后习题答案目录必修1第一章课后习题解答 (1)必修1第二章课后习题解答 (33)必修1第三章课后习题解答 (44)必修2第一章课后习题解答 (51)必修2第二章课后习题解答 (56)必修2第三章课后习题解答 (62)必修2第四章课后习题解答 (78)必修3第一章课后习题解答 (97)必修3第二章课后习题解答 (110)必修3第三章课后习题解答 (120)必修4第一章课后习题解答 (125)必修4第二章课后习题解答 (147)必修4第三章课后习题解答 (162)必修5第一章课后习题解答 (177)必修5第二章课后习题解答 (188)必修5第三章课后习题解答 (201)新课程标准人教A 版高中数学必修1第一章课后习题解答1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空: (1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集. 解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程的所有实数根组成的集合为; (2)因为小于的素数为,所以由小于的所有素数组成的集合为;(3)由,得,290x -={3,3}-82,3,5,78{2,3,5,7}326y x y x =+⎧⎨=-+⎩14x y =⎧⎨=⎩即一次函数与的图象的交点为,所以一次函数与的图象的交点组成的集合为;(4)由,得, 所以不等式的解集为.1.1.2集合间的基本关系 练习(第7页) 1.写出集合的所有子集.1.解:按子集元素个数来分类,不取任何元素,得; 取一个元素,得; 取两个元素,得;取三个元素,得,即集合的所有子集为.2.用适当的符号填空:(1)______; (2)______; (3)______; (4)______; (5)______; (6)______. 2.(1)是集合中的一个元素;(2); (3) 方程无实数根,; (4)(或) 是自然数集合的子集,也是真子集;(5)(或) ;(6)方程两根为. 3.判断下列两个集合之间的关系: (1),;3y x =+26y x =-+(1,4)3y x =+26y x =-+{(1,4)}453x -<2x <453x -<{|2}x x <{,,}a b c ∅{},{},{}a b c {,},{,},{,}a b a c b c {,,}a b c {,,}a b c ,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅a {,,}a b c 02{|0}x x =∅2{|10}x R x ∈+={0,1}N {0}2{|}x x x ={2,1}2{|320}x x x -+={,,}a a b c ∈a {,,}a b c 20{|0}x x ∈=2{|0}{0}x x ==2{|10}x R x ∅=∈+=210x +=2{|10}x R x ∈+==∅{0,1}N {0,1}N ⊆{0,1}N {0}2{|}x x x =2{0}{|}x x x ⊆=2{|}{0,1}x x x ==2{2,1}{|320}x x x =-+=2320x x -+=121,2x x =={1,2,4}A ={|8}B x x =是的约数(2),;(3),.3.解:(1)因为,所以;(2)当时,;当时,, 即是的真子集,;(3)因为与的最小公倍数是,所以. 1.1.3集合的基本运算 练习(第11页) 1.设,求. 1.解:,.2.设,求. 2.解:方程的两根为, 方程的两根为,得, 即.3.已知,,求. 3.解:,.4.已知全集,,求. 4.解:显然,,{|3,}A x x k k N ==∈{|6,}B x x z z N ==∈{|410}A x x x N +=∈是与的公倍数,{|20,}B x x m m N +==∈{|8}{1,2,4,8}B x x ==是的约数AB 2k z =36k z =21k z =+363k z =+B A BA 41020AB ={3,5,6,8},{4,5,7,8}A B ==,A B A B {3,5,6,8}{4,5,7,8}{5,8}A B =={3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==22{|450},{|1}A x x x B x x =--===,A B A B 2450x x --=121,5x x =-=210x -=121,1x x =-={1,5},{1,1}A B =-=-{1},{1,1,5}A B A B =-=-{|}A x x =是等腰三角形{|}B x x =是直角三角形,A B A B {|}A B x x =是等腰直角三角形{|}A B x x =是等腰三角形或直角三角形{1,2,3,4,5,6,7}U ={2,4,5},{1,3,5,7}A B ==(),()()U U U A B A B {2,4,6}UB ={1,3,6,7}UA =则,.1.1集合习题1.1 (第11页) A 组 1.用符号“”或“”填空:(1)_______; (2)______; (3)_______;(4_______; (5; (6)_______.1.(1) 是有理数; (2)是个自然数; (3)是个无理数,不是有理数; (4是实数;(5)是个整数;(6) 是个自然数.2.已知,用 “”或“” 符号填空:(1)_______; (2)_______; (3)_______. 2.(1); (2); (3). 当时,;当时,; 3.用列举法表示下列给定的集合: (1)大于且小于的整数; (2); (3).3.解:(1)大于且小于的整数为,即为所求;(2)方程的两个实根为,即为所求;(3)由不等式,得,且,即为所求.4.试选择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(){2,4}U A B =()(){6}U U A B =∈∉237Q 23N πQ R Z 2N 237Q ∈23723N ∈239=Q π∉πR Z 3=2N ∈25={|31,}A x x k k Z ==-∈∈∉5A 7A 10-A 5A ∈7A ∉10A -∈2k =315k -=3k =-3110k -=-16{|(1)(2)0}A x x x =-+={|3213}B x Z x =∈-<-≤162,3,4,5{2,3,4,5}(1)(2)0x x -+=122,1x x =-={2,1}-3213x -<-≤12x -<≤x Z ∈{0,1,2}24y x =-(2)反比例函数的自变量的值组成的集合;(3)不等式的解集.4.解:(1)显然有,得,即,得二次函数的函数值组成的集合为; (2)显然有,得反比例函数的自变量的值组成的集合为;(3)由不等式,得,即不等式的解集为.5.选用适当的符号填空: (1)已知集合,则有:_______; _______;_______; _______;(2)已知集合,则有: _______; _______; _______; _______;(3)_______;_______.5.(1); ;; ;,即;(2);; ; =;;(3); 菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形. 6.设集合,求.2y x =342x x ≥-20x ≥244x -≥-4y ≥-24y x =-{|4}y y ≥-0x ≠2y x ={|0}x x ≠342x x ≥-45x ≥342x x ≥-4{|}5x x ≥{|233},{|2}A x x x B x x =-<=≥4-B 3-A {2}B B A 2{|10}A x x =-=1A {1}-A ∅A {1,1}-A {|}x x 是菱形{|}x x 是平行四边形{|}x x 是等腰三角形{|}x x 是等边三角形4B -∉3A -∉{2}B BA 2333x x x -<⇒>-{|3},{|2}A x xB x x =>-=≥1A ∈{1}-A ∅A {1,1}-A 2{|10}{1,1}A x x =-==-{|}x x 是菱形{|}x x 是平行四边形{|}x x 是等边三角形{|}x x 是等腰三角形{|24},{|3782}A x x B x x x =≤<=-≥-,A B A B6.解:,即,得,则,.7.设集合,,求,,,.7.解:,则,,而,, 则,.8.学校里开运动会,设,,,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1);(2).8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为.(1); (2).9.设,,,,求,,.9.解:同时满足菱形和矩形特征的是正方形,即,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即,.3782x x -≥-3x ≥{|24},{|3}A x x B x x =≤<=≥{|2}A B x x =≥{|34}A B x x =≤<{|9}A x x =是小于的正整数{1,2,3},{3,4,5,6}B C ==A B AC ()A B C ()A B C {|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数{1,2,3}A B ={3,4,5,6}A C ={1,2,3,4,5,6}B C ={3}B C =(){1,2,3,4,5,6}A B C =(){1,2,3,4,5,6,7,8}A B C ={|}A x x =是参加一百米跑的同学{|}B x x =是参加二百米跑的同学{|}C x x =是参加四百米跑的同学AB AC ()A B C =∅{|}A B x x =是参加一百米跑或参加二百米跑的同学{|}A C x x =是既参加一百米跑又参加四百米跑的同学{|}S x x =是平行四边形或梯形{|}A x x =是平行四边形{|}B x x =是菱形{|}C x x =是矩形B C A B S A {|}B C x x =是正方形{|}AB x x =是邻边不相等的平行四边形{|}SA x x =是梯形10.已知集合,求,,,.10.解:,,,,得,,,.B 组 1.已知集合,集合满足,则集合有 个.1. 集合满足,则,即集合是集合的子集,得个子集.2.在平面直角坐标系中,集合表示直线,从这个角度看,集合表示什么?集合之间有什么关系? 2.解:集合表示两条直线的交点的集合, 即,点显然在直线上, 得.3.设集合,,求.3.解:显然有集合,当时,集合,则; 当时,集合,则; 当时,集合,则;{|37},{|210}A x x B x x =≤<=<<()R A B ()R A B ()R A B()R A B {|210}A B x x =<<{|37}A B x x =≤<{|3,7}RA x x x =<≥或{|2,10}RB x x x =≤≥或(){|2,10}RA B x x x =≤≥或(){|3,7}RA B x x x =<≥或(){|23,710}R A B x x x =<<≤<或(){|2,3710}R A B x x x x =≤≤<≥或或{1,2}A =B {1,2}A B =B 4B A B A =B A ⊆B A 4{(,)|}C x y y x ==y x =21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭,C D 21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭21,45x y x y -=+=21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭(1,1)D y x =DC {|(3)()0,}A x x x a a R =--=∈{|(4)(1)0}B x x x =--=,A B A B {|(4)(1)0}{1,4}B x x x =--==3a ={3}A ={1,3,4},A B A B ==∅1a ={1,3}A ={1,3,4},{1}A B A B ==4a ={3,4}A ={1,3,4},{4}A B A B ==当,且,且时,集合,则.4.已知全集,,试求集合. 4.解:显然,由,得,即,而,得,而,即.第一章 集合与函数概念 1.2函数及其表示 1.2.1函数的概念 练习(第19页)1.求下列函数的定义域:(1); (2).1.解:(1)要使原式有意义,则,即,得该函数的定义域为; (2)要使原式有意义,则,即,得该函数的定义域为.2.已知函数, (1)求的值;(2)求的值.2.解:(1)由,得, 同理得,1a ≠3a ≠4a ≠{3,}A a ={1,3,4,},A B a A B ==∅{|010}U A B x N x ==∈≤≤(){1,3,5,7}U A B =B {0,1,2,3,4,5,6,7,8,9,10}U =U A B =UB A⊆()U UA B B=(){1,3,5,7}U A B ={1,3,5,7}UB =()UU B B ={0,2,4,6,8.9,10}B =1()47f x x =+()1f x =470x +≠74x ≠-7{|}4x x ≠-1030x x -≥⎧⎨+≥⎩31x -≤≤{|31}x x -≤≤2()32f x x x =+(2),(2),(2)(2)f f f f -+-(),(),()()f a f a f a f a -+-2()32f x x x =+2(2)322218f =⨯+⨯=2(2)3(2)2(2)8f -=⨯-+⨯-=则,即;(2)由,得, 同理得, 则,即. 3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度与时间关系的函数和二次函数;(2)和.3.解:(1)不相等,因为定义域不同,时间;(2)不相等,因为定义域不同,. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为的圆形木头锯成矩形木料,如果矩形的一边长为,面积为,把表示为的函数.1.解:显然矩形的另一边长为,,且, 即. 2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.(2)(2)18826f f +-=+=(2)18,(2)8,(2)(2)26f f f f =-=+-=2()32f x x x =+22()3232f a a a a a =⨯+⨯=+22()3()2()32f a a a a a -=⨯-+⨯-=-222()()(32)(32)6f a f a a a a a a +-=++-=222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=h t 21305h t t =-21305y x x =-()1f x =0()g x x =0t >0()(0)g x x x =≠25cm xcm 2ycm y x 2250x cm -222502500y x x x x =-=-050x <<22500(050)y x x x =-<<2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数的图象.3.解:,图象如下所示.,从到的映射4.设正弦”,与中元素相对应是“求中的元素是什么?与中的元素相对应的的中元素是什么?4.解:因为,所以与中元素相对应的中的元素是;因为,所以与中的元素相对应的中元素是. 1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:|2|y x =-2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩{|},{0,1}A x x B ==是锐角A B A 60B B 22A 3sin 602=A 60B 322sin 452=B 22A 45离开家的距离 时间 (A ) 离开家的距离 时间 (B ) 离开家的距离 时间 (C ) 离开家的距离时间 (D )(1); (2);(3); (4). 1.解:(1)要使原式有意义,则,即,得该函数的定义域为;(2),即该函数的定义域为;(3)要使原式有意义,则,即且,得该函数的定义域为;(4)要使原式有意义,则,即且, 得该函数的定义域为. 2.下列哪一组中的函数与相等?(1); (2);(3). 2.解:(1)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等;(2)的定义域为,而的定义域为, 即两函数的定义域不同,得函数与不相等; (3)对于任何实数,都有,即这两函数的定义域相同,切对应法则相同,得函数与相等.3.画出下列函数的图象,并说出函数的定义域和值域.3()4x f x x =-()f x=26()32f x x x =-+()1f x x =-40x -≠4x ≠{|4}x x ≠x R ∈()f x =R 2320x x -+≠1x ≠2x ≠{|12}x x x ≠≠且4010x x -≥⎧⎨-≠⎩4x ≤1x ≠{|41}x x x ≤≠且()f x ()g x 2()1,()1x f x x g x x =-=-24(),()f x x g x ==2(),()f x x g x ==()1f x x =-R 2()1x g x x =-{|0}x x ≠()f x ()g x 2()f x x =R 4()g x ={|0}x x ≥()f x ()g x 2x =()f x ()g x(1); (2); (3); (4).3.解:(1)定义域是,值域是; (2)定义域是,值域是;(3)3y x =8y x =45y x =-+267y x x =-+(,)-∞+∞(,)-∞+∞(,0)(0,)-∞+∞(,0)(0,)-∞+∞定义域是,值域是;(4)定义域是,值域是.4.已知函数,求,,,. 4.解:因为,所以,即;同理,, 即;, 即;, 即. 5.已知函数, (1)点在的图象上吗?(2)当时,求的值; (3)当时,求的值.(,)-∞+∞(,)-∞+∞(,)-∞+∞[2,)-+∞2()352f x x x =-+(2)f -()f a -(3)f a +()(3)f a f +2()352f x x x =-+2(2)3(2)5(2)2852f -=⨯--⨯-+=+(2)852f -=+22()3()5()2352f a a a a a -=⨯--⨯-+=++2()352f a a a -=++22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++2(3)31314f a a a +=++22()(3)352(3)3516f a f a a f a a +=-++=-+2()(3)3516f a f a a +=-+2()6x f x x +=-(3,14)()f x 4x =()f x ()2f x =x5.解:(1)当时,, 即点不在的图象上;(2)当时,, 即当时,求的值为;(3),得, 即.6.若,且,求的值. 6.解:由,得是方程的两个实数根,即,得,即,得, 即的值为.7.画出下列函数的图象:(1); (2).7.图象如下:3x =325(3)14363f +==-≠-(3,14)()f x 4x =42(4)346f +==--4x =()f x 3-2()26x f x x +==-22(6)x x +=-14x =2()f x x bx c =++(1)0,(3)0f f ==(1)f -(1)0,(3)0f f ==1,320x bx c ++=13,13b c +=-⨯=4,3b c =-=2()43f x x x =-+2(1)(1)4(1)38f -=--⨯-+=(1)f -80,0()1,0x F x x ≤⎧=⎨>⎩()31,{1,2,3}G n n n =+∈。

人教a版必修5学案:第2章《数列》本章回顾(含答案)

人教a版必修5学案:第2章《数列》本章回顾(含答案)

本章回顾识结构点回放想方法一、取倒数法和取对数法求通项例1 已知数列{a n }满足a n +1=2n +1·a na n +2n +1,a 1=2.求a n .解 对a n +1=2n +1a na n +2n +1两边取倒数得:1a n +1=a n +2n +12n +1a n, ∴1a n +1=1a n +⎝⎛⎭⎫12n +1. 令b n =1a n,则b n +1=b n +⎝⎛⎭⎫12n +1. ∴b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n =1-⎝⎛⎭⎫12n.∴a n =1b n =11-⎝⎛⎭⎫12n =2n2n -1.例2 在数列{a n }中,a n +1=3a 2n ,a 1=3.求a n . 解 由已知,a n >0,对a n +1=3a 2n 两边取常用对数得:lg a n +1=2lg a n +lg 3. 令b n =lg a n .则b n +1=2b n +lg 3. ∴b n +1+lg 3=2(b n +lg 3). ∴{b n +lg 3}是等比数列,首项是b 1+lg 3=lg 3+lg 3=2lg 3.∴b n +lg 3=2n -1·(b 1+lg 3)=2n lg 3.∴b n =(2n-1)lg 3=lg 123n-=lg a n .∴a n =123n-二、运用恒等变形求数列前n 项和 例3 (2009·山东日照一模)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.(1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3 (n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1, 即a n =3a n -1 (n ≥2).故数列{a n }为等比数列,且q =3. 又当n =1时,2a 1=3a 1-3, ∴a 1=3.∴a n =3n .(2)证明 b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1<1.例4 已知数列{a n }的前n 项和S n ,对一切正整数n ,点(n ,S n )都在函数f (x )=2x +2-4的图象上.(1)求数列{a n }的通项公式; (2)设b n =a n ·log 2a n ,求数列{b n }的前n 项和T n .解 (1)由题意,S n =2n +2-4,n ≥2时,a n =S n -S n -1=2n +2-2n +1=2n +1, 当n =1时,a 1=S 1=23-4=4,也适合上式,∴数列{a n }的通项公式为a n =2n +1,n ∈N *.(2)∵b n =a n log 2a n =(n +1)·2n +1,∴T n =2·22+3·23+4·24+…+n ·2n +(n +1)·2n +1,①2T n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2.② ②-①得,T n =-23-23-24-25-…-2n +1+(n +1)·2n +2=-23-23(1-2n -1)1-2+(n +1)·2n +2=-23-23(2n -1-1)+(n +1)·2n +2=(n +1)·2n +2-23·2n -1=(n +1)·2n +2-2n +2=n ·2n +2.三、运用方程(组)的思想解数列问题例5 等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.解 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d , a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列得a 3a 10=a 26,即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200.当d =1时,a 1=a 4-3d =10-3×1=7.∴S 20=20a 1+20×192d =20×7+190=330.例6 (2009·江苏通州模拟)已知数列{a n }和{b n }满足a 1=m ,a n +1=λa n +n ,b n =a n -2n 3+49. (1)当m =1时,求证:对于任意的实数λ,数列{a n }一定不是等差数列;(2)当λ=-12时,试判断数列{b n }是否为等比数列.(1)证明 当m =1时,a 1=1,a 2=λ+1,a 3=λ(λ+1)+2=λ2+λ+2. 假设数列{a n }是等差数列,由a 1+a 3=2a 2, 得λ2+λ+3=2(λ+1),即λ2-λ+1=0,Δ=-3<0,∴方程无实根.故对于任意的实数λ,数列{a n }一定不是等差数列.(2)解 当λ=-12时,a n +1=-12a n +n ,b n =a n -2n 3+49.b n +1=a n +1-2(n +1)3+49=⎝⎛⎭⎫-12a n +n -2(n +1)3+49 =-12a n +n 3-29=-12⎝⎛⎭⎫a n -2n 3+49=-12b n . 又b 1=m -23+49=m -29,∴当m ≠29时,数列{b n }是以m -29为首项,-12为公比的等比数列;当m =29时,数列{b n }不是等比数列.四、运用函数的思想解数列问题例7 设b n =(1+r )q n -1,r =219.2-1,q =12,求数列⎩⎨⎧⎭⎬⎫log 2 b n +1log 2 b n 的最大项和最小项的值.解 log 2 b n +1log 2 b n =log 2[(1+r )q n ]log 2[(1+r )q n -1]=log 2(1+r )+n log 2 q log 2(1+r )+(n -1)log 2 q =1+1n -20.2. 记c n =log 2 b n +1log 2 b n ,则c n =1+1n -20.2.作出函数y =1x -20.2+1的图象.易知:c 20<c 19<…<c 1<1,c 21>c 22>…>1. ∴最高点为(21,c 21),最低点(20,c 20).∴最大项为c 21,c 21=2.25,最小项为c 20,c 20=-4. 五、构建数列模型解实际应用题例8 甲、乙两大超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?解 (1)设甲、乙两超市第n 年的销售额分别为a n ,b n . 则有:a 1=a ,n ≥2时:a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a .∴a n =⎩⎪⎨⎪⎧a , n =1,(n -1)a , n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +a ⎝⎛⎭⎫23+a ⎝⎛⎭⎫232+…+a ⎝⎛⎭⎫23n -1 =⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a ,(n ∈N *). (2)易知b n <3a ,所以乙将被甲超市收购,由b n <12a n 得:⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a . ∴n +4⎝⎛⎭⎫23n -1>7,∴n ≥7.即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.例9 某油料库已储油料a t ,计划正式运营后的第一年进油量为已储油量的25%,以后每年的进油量为上一年底储油量的25%,且每年运出b t ,设a n 为正式运营第n 年底的储油量.(1)求a n 的表达式并加以证明;(2)为应对突发事件,该油库年底储油量不得少于23a t ,如果b =724a t ,该油库能否长期按计划运营?如果可以请加以证明,如果不行请说明理由.(取lg 2=0.30,lg 3=0.48).解 (1)依题意油库原有储油量为a t ,则a 1=(1+25%)a -b =54a -b ,a n =(1+25%)a n -1-b =54a n -1-b (n ≥2,n ∈N *),令a n -x =54(a n -1-x ),则a n =54a n -1-x4,于是b =x 4,即x =4b ,∴a n -4b =54(a n -1-4b ),∴数列{a n -4b }是公比为54,首项为54a -5b 的等比数列.a n -4b =(a 1-4b )⎝⎛⎭⎫54n -1=⎝⎛⎭⎫54a -b -4b ⎝⎛⎭⎫54n -1 =⎝⎛⎭⎫54na -5b ·⎝⎛⎭⎫54n -1, ∴a n =⎝⎛⎭⎫54na +4b -5b ⎝⎛⎭⎫54n -1=⎝⎛⎭⎫54n a -4b ⎣⎡⎦⎤⎝⎛⎭⎫54n -1. (2)若b =724a t 时,该油库第n 年年底储油量不少于23a t ,即⎝⎛⎭⎫54n a -⎣⎡⎦⎤⎝⎛⎭⎫54n -1×4×724a ≥23a ,即⎝⎛⎭⎫54n ≤3,∴n ≤log 54 3=lg 31-3lg 2=0.481-3×0.3=4.8,可见该油库只能在5年内运营,因此不能长期运营.思妙解1.等差数列性质多,三点共线可求和例1 在等差数列{a n }中,S 10=20,S 50=200,求S 2 010的值.解 由S n =An 2+Bn ,知S n n=An +B ,所以点⎝⎛⎭⎫n ,S n n 在直线y =Ax +B 上,于是点⎝⎛⎭⎫10,S 1010,⎝⎛⎭⎫50,S 5050,⎝⎛⎭⎫2 010,S 2 0102 010三点共线,∴S 5050-S 101050-10=S 2 0102 010-S 50502 010-50成立. 把S 10=20,S 50=200代入上式, 解得:S 2 010=205 020.2.数列图象莫轻视,大题小作显神奇例2 设等差数列{a n }的前n 项和为S n ,已知a 1>0,S 12>0,S 13<0,指出S 1,S 2,…,S 12中哪一个值最大,并说明理由?解 ∵{a n }是等差数列,∴S n =d2n 2+⎝⎛⎭⎫a 1-d 2n , ∵S 12>0,S 13<0.∴a 13=S 13-S 12<0, ∵a 1>0,a 13<0,∴d<0.∴点(n ,S n )分布在开口方向向下的抛物线y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象上. 设二次函数y =d2x 2+⎝⎛⎭⎫a 1-d 2x 的对称轴为n 0,则2n 0是二次函数的一个零点. ∵S 12>0,S 13<0,∴12<2n 0<13, ∴6<n 0<6.5.易知n =6对应的A 点(6,S 6)与对称轴的距离比n =7对应的B 点(7,S 7)与对称轴的距离更小.∴A 点为最高点,S 6最大.。

【人教A版】高中数学必修5同步辅导与检测:第二章2.4第1课时等比数列的概念与通n项公式(含答案)

【人教A版】高中数学必修5同步辅导与检测:第二章2.4第1课时等比数列的概念与通n项公式(含答案)

第二章 数列2.4 等比数列第1课时 等比数列的概念与通n 项公式A 级 基础巩固一、选择题1.在数列{a n }中,对任意n ∈N *,都有a n +1-2a n =0,则2a 1+a 22a 3+a 4的值为( )A.14B.13C.12D .1 解析:a 2=2a 1,a 3=2a 2=4a 1,a 4=8a 1,所以2a 1+a 22a 3+a 4=4a 116a 1=14. 答案:A2.公差不为0的等差数列的第2,3,6项构成等比数列,则公比是( )A .1B .2C .3D .4解析:设等差数列的第2项是a 2,公差是d ,则a 3=a 2+d ,a 6=a 2+4d .由等差数列的第2,3,6项构成等比数列,得(a 2+d )2=a 2(a 2+4d ),则d =2a 2,公比q =a 3a 2=a 2+d a 2=a 2+2a 2a 2=3.答案:C3.若正数a ,b ,c 组成等比数列,则log 2a ,log 2b ,log 2c 一定是( )A .等差数列B .既是等差数列又是等比数列C .等比数列D .既不是等差数列也不是等比数列解析:由题意得b 2=ac (a ,b ,c >0),所以log 2b 2=log 2ac即2log 2b =log 2a +log 2c ,所以log 2a ,log 2b ,log 2c 成等差数列.答案:A4.已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .±6D .±12解析:a =1+22=32, b 2=(-1)(-16)=16,b =±4,所以ab =±6.答案:C5.(2016·四川卷)某公司为激励创新,计划逐步加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A .2018年B .2019年C .2020年D .2021年解析:设第n 年的研发投资资金为a n ,a 1=130,则a n =130×1.12n -1,由题意,需a n =130×1.12n -1≥200,解得n ≥5,故从2019年该公司全年的投入的研发资金超过200万,选B.答案:B二、填空题6.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为________.解析:a 4=a 1q 3=18×23=1, a 8=a 1q 7=18×27=16, 所以a 4与a 8的等比中项为±16=±4.答案:±47.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列的公比为q ,由⎩⎨⎧a 1+a 3=10,a 2+a 4=5得⎩⎨⎧a 1(1+q 2)=10,a 1q (1+q 2)=54,解得⎩⎪⎨⎪⎧a 1=8,q =12,所以a 1a 2…a n =a n 1q 1+2+…+(n -1)=8n ×⎝ ⎛⎭⎪⎫12n (n -1)2=2-12n 2+72n ,于是当n =3或4时,a 1a 2…a n 取得最大值26=64.答案:648.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 6+a 7a 8+a 9等于________. 解析:设等比数列{a n }的公比为q ,由于a 1,12a 3,2a 2成等差数列, 则2⎝ ⎛⎭⎪⎫12a 3=a 1+2a 2,即a 3=a 1+2a 2, 所以a 1q 2=a 1+2a 1q .由于a 1≠0,所以q 2=1+2q ,解得q =1±2.又等比数列{a n }中各项都是正数,所以q >0,所以q =1+ 2.所以a 6+a 7a 8+a 9=a 1q 5+a 1q 6a 1q 7+a 1q 8=1q 2=1(1+2)2=3-2 2. 答案:3-2 2三、解答题9.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式. 解:设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3.q =2q , 所以2q +2q =203. 解得q =13或q =3. 当q =13时,a 1=18, 所以a n =18×⎝ ⎛⎭⎪⎫13n -1=2×33-n . 当q =3时,a 1=29, 所以a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.10.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2·a 5=827. (1)求证:{a n }是等比数列,并求出其通项.(2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由.解:(1)因为2a n =3a n +1,所以a n +1a n =23. 又因为数列{a n }的各项均为负数,所以a 1≠0,所以数列{a n }是以23为公比的等比数列. 所以a n =a 1·q n -1=a 1·⎝ ⎛⎭⎪⎫23n -1. 所以a 2=a 1·⎝ ⎛⎭⎪⎫232-1=23a 1, a 5=a 1·⎝ ⎛⎭⎪⎫235-1=1681a 1, 又因为a 2·a 5=23a 1·1681a 1=827, 所以a 21=94. 又因为a 1<0,所以a 1=-32. 所以a n =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n -2(n ∈N *). (2)令a n =-⎝ ⎛⎭⎪⎫23n -2=-1681, 则n -2=4,n =6∈N *,所以-1681是这个等比数列中的项,且是第6项. B 级 能力提升1.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( )A .-4B .-2C .2D .4答案:A2.已知等比数列{a n },若a 3a 4a 8=8,则a 1a 2…a 9=________. 答案:5123.设关于x 的二次方程a n x 2-a n +1x +1=0(n =1,2,3,…)有两根α和β,且满足6α-2αβ+6β=3.(1)试用a n 表示a n +1;(2)求证:⎩⎨⎧⎭⎬⎫a n -23是等比数列;(3)当a 1=76时,求数列{a n }的通项公式及项的最值.(1)解:根据根与系数的关系,得⎩⎪⎨⎪⎧α+β=an +1a n ,αβ=1a n .代入题设条件6(α+β)-2αβ=3,得6a n +1a n -2a n =3.所以a n +1=12a n +13.(2)证明:因为a n +1=12a n +13,所以a n +1-23=12⎝ ⎛⎭⎪⎫a n -23.若a n =23,则方程a n x 2-a n +1x +1=0可化为23x 2-23x +1=0,即2x 2-2x +3=0.此时Δ=(-2)2-4×2×3<0,所以a n ≠23,即a n -23≠0. 所以数列⎩⎨⎧⎭⎬⎫a n -23是以12为公比的等比数列. (3)解:当a 1=76时,a 1-23=12, 所以数列⎩⎨⎧⎭⎬⎫a n -23是首项为12,公比为12的等比数列. 所以a n -23=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n , 所以a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…, 即数列{a n }的通项公式为a n =23+⎝ ⎛⎭⎪⎫12n ,n =1,2,3,…. 由函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减知,当n =1时,a n 的值最大,即最大值为a 1=76.。

高中数学新人教A版必修5 第二章 2.1 第二课时 数列的通项公式与递推公式

高中数学新人教A版必修5   第二章   2.1  第二课时 数列的通项公式与递推公式

第二课时数列的通项公式与递推公式预习课本P30~31,思考并完成以下问题(1)什么叫数列的递推公式?(2)由数列的递推公式能否求出数列的项?[新知初探]数列的递推公式定义:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)(n≥2)间的关系可以用一个公式表示,那么这个公式叫做这个数列的递推公式.[点睛](1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式.(2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,用符合要求的正整数依次去替换n,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)根据通项公式可以求出数列的任意一项()(2)有些数列可能不存在最大项()(3)递推公式是表示数列的一种方法()(4)所有的数列都有递推公式()解析:(1)正确.只需将项数n代入即可求得任意项.(2)正确.对于无穷递增数列,是不存在最大项的.(3)正确.递推公式也是给出数列的一种重要方法.(4)错误.不是所有的数列都有递推公式.例如2精确到1,0.1,0.01,0.001,…的近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式.答案:(1)√(2)√(3)√(4)×2.符合递推关系式a n=2a n-1的数列是()A.1,2,3,4,…B.1,2,2,22,…C.2,2,2,2,… D .0,2,2,22,…解析:选B B 中从第二项起,后一项是前一项的2倍,符合递推公式a n =2a n -1. 3.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5D .19解析:选D 由a n +1=a n +2-a n ,得a n +2=a n +a n +1, 则a 3=a 1+a 2=7,a 4=a 2+a 3=12,a 5=a 3+a 4=19. 4.已知a 1=1,a n =1+1a n -1(n ≥2),则a 5=________.解析:由a 1=1,a n =1+1a n -1,得a 2=2,a 3=32,a 4=53,a 5=85.答案:85由递推公式求数列的项[典例] 数列{a n }中,a 1=1,a 2=3,a 2n +1-a n a n +2=(-1)n,求{a n }的前5项.[解] 由a 2n +1-a n a n +2=(-1)n,得a n +2=a 2n +1-(-1)na n,又∵a 1=1,a 2=3,∴a 3=a 22-(-1)1a 1=32+11=10,a 4=a 23-(-1)2a 2=102-13=33,a 5=a 24-(-1)3a 3=332+110=109.∴数列{a n }的前5项为1,3,10,33,109.由递推公式求数列的项的方法(1)根据递推公式写出数列的前几项,首先要弄清楚公式中各部分的关系,依次代入计算即可.(2)若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式.(3)若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式. [活学活用]已知数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=67,则a 2 018=________.解析:计算得a 2=2a 1-1=57,a 3=2a 2-1=37,a 4=2a 3=67.故数列{a n }是以3为周期的周期数列,又因为2 018=672×3+2,所以a 2 018=a 2=57.答案:57由递推公式求通项公式题点一:累加法求通项公式1.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,求数列的通项公式a n .解:∵a n +1-a n =1n (n +1),∴a 2-a 1=11×2;a 3-a 2=12×3;a 4-a 3=13×4;…a n -a n -1=1(n -1)n; 以上各式累加得,a n -a 1=11×2+12×3+…+1(n -1)n=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n. ∴a n +1=1-1n ,∴a n =-1n (n ≥2).又∵n =1时,a 1=-1,符合上式,∴a n =-1n .题点二:累乘法求通项公式2.设数列{a n }中,a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),求数列的通项公式a n . 解:∵a 1=1,a n =⎝⎛⎭⎫1-1n a n -1(n ≥2),∴an a n -1=n -1n , a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n ×n -2n -1×n -3n -2×…×23×12×1=1n . 又∵n =1时,a 1=1,符合上式,∴a n =1n .由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.数列的最大、最小项问题[典例] 已知数列{a n }的通项公式是a n =()n +1·⎝⎛⎭⎫1011n ,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.[解] 法一:a n +1-a n=(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =(9-n )⎝⎛⎭⎫1011n11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,(n >1)即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,(n >1)解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝⎛⎭⎫10119.(1)由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.(2)可以利用不等式组⎩⎪⎨⎪⎧ a n -1≤a n ,a n ≥a n +1,(n >1)找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,(n >1)找到数列的最小项.[活学活用]数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项D .第7项解析:选B a n =3n 2-28n =3⎝⎛⎭⎫n -1432-1963, 当n =143时,a n 最小,又n ∈N *, 故n =5时,a n =3n 2-28n 最小.层级一 学业水平达标1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34D.58解析:选B 由a 1=1,∴a 2=12a 1+12=1,依此类推a 4=12.2.在递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( ) A .R B .(0,+∞) C .(-∞,0)D .(-∞,0]解析:选C ∵{a n }是递减数列, ∴a n +1-a n =k (n +1)-kn =k <0.3.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.3115 解析:选C 由题意a 1a 2a 3=32,a 1a 2=22, a 1a 2a 3a 4a 5=52,a 1a 2a 3a 4=42,则a 3=3222=94,a 5=5242=2516.故a 3+a 5=6116.4.已知数列{a n }满足要求a 1=1,a n +1=2a n +1,则a 5等于( ) A .15 B .16 C .31D .32 解析:选C ∵数列{a n }满足a 1=1,a n +1=2a n +1,∴a 2=2×1+1=3,a 3=2×3+1=7,a 4=2×7+1=15,a 5=2×15+1=31.5.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =a b n -1,则b 6的值是( )A .9B .17C .33D .65解析:选C ∵b n =a b n -1,∴b 2=a b 1=a 2=3,b 3=a b 2=a 3=5,b 4=a b 3=a 5=9,b 5=a b 4=a 9=17,b 6=a b 5=a 17=33.6.已知数列{a n }满足a 1=23,a n +1=n n +1a n,得a n =________.解析:由条件知a n +1a n=nn +1,分别令n =1,2,3,…,n -1,代入上式得n -1个等式,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n ⇒a n a 1=1n .又∵a 1=23,∴a n =23n .答案:23n7.数列{a n }的通项公式为a n =n 2-6n ,则它最小项的值是________. 解析:a n =n 2-6n =(n -3)2-9,∴当n =3时,a n 取得最小值-9. 答案:-98.已知数列{a n },a n =b n +m (b <0,n ∈N *),满足a 1=2,a 2=4,则a 3=________.解析:∵⎩⎪⎨⎪⎧ 2=b +m ,4=b 2+m ,∴⎩⎪⎨⎪⎧b =-1,m =3.∴a n =(-1)n +3,∴a 3=(-1)3+3=2. 答案:29.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式. (1)a 1=0,a n +1=a n +2n -1(n ∈N *); (2)a 1=1,a n +1=a n +a nn +1(n ∈N *);(3)a 1=2,a 2=3,a n +2=3a n +1-2a n (n ∈N *). 解:(1)a 1=0,a 2=1,a 3=4,a 4=9.猜想a n =(n -1)2. (2)a 1=1,a 2=32,a 3=42,a 4=52.猜想a n =n +12.(3)a 1=2,a 2=3,a 3=5,a 4=9.猜想a n =2n -1+1.10.已知函数f (x )=x -1x .数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 解:∵f (x )=x -1x ,∴f (a n )=a n -1a n,∵f (a n )=-2n .∴a n -1a n=-2n ,即a 2n +2na n -1=0.∴a n =-n ±n 2+1.∵a n >0,∴a n =n 2+1-n .层级二 应试能力达标1.若数列{a n }满足a n +1=4a n +34(n ∈N *),且a 1=1,则a 17=( ) A .13 B .14 C .15D .16解析:选A 由a n +1=4a n +34⇒a n +1-a n =34,a 17=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 17-a 16)=1+34×16=13,故选A.2.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+lg n B .2+(n -1)lg n C .2+n lg nD .1+n +lg n解析:选A 由a n +1=a n +lg ⎝⎛⎭⎫1+1n ⇒a n +1-a n =lg ⎝⎛⎭⎫1+1n ,那么a n =a 1+(a 2-a 1)+…+(a n -a n -1)=2+lg 2+lg 32+lg 43+…+lg n n -1=2+lg (2×32×43×…×n n -1)=2+lg n .3.已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( ) A .(-∞,3] B .(-∞,4] C .(-∞,5)D .(-∞,6)解析:选D 依题意,a n +1-a n =-2(2n +1)+λ<0,即λ<2(2n +1)对任意的n ∈N *恒成立.注意到当n ∈N *时,2(2n +1)的最小值是6,因此λ<6,即λ的取值范围是(-∞,6).4.已知函数f (x )=⎩⎪⎨⎪⎧x +12,x ≤12,2x -1,12<x <1,x -1,x ≥1,若数列{a n }满足a 1=73,a n +1=f (a n ),n ∈N *,则a 2 017+a 2 018等于( )A .4 B.32 C.76D.116解析:选B a 2=f ⎝⎛⎭⎫73=73-1=43; a 3=f ⎝⎛⎭⎫43=43-1=13; a 4=f ⎝⎛⎭⎫13=13+12=56; a 5=f ⎝⎛⎭⎫56=2×56-1=23;a 6=f ⎝⎛⎭⎫23=2×23-1=13; 即从a 3开始数列{a n }是以3为周期的周期数列. ∴a 2 017+a 2 018=a 4+a 5=32.故选B.5.若数列{a n }满足(n -1)a n =(n +1)a n -1,且a 1=1,则a 100=________. 解析:由(n -1)a n =(n +1)a n -1⇒a n a n -1=n +1n -1,则a 100=a 1·a 2a 1·a 3a 2·…·a 100a 99=1×31×42×…×10199=5 050.答案:5 0506.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,a n 为偶数,3a n +1,a n 为奇数.若a 6=1,则m 所有可能的取值为________.解析:若a 5为奇数,则3a 5+1=1,a 5=0(舍去). 若a 5为偶数,则a 52=1,a 5=2.若a 4为奇数,则3a 4+1=2,a 4=13(舍去).若a 4为偶数,则a 42=2,a 4=4.若a 3为奇数,则3a 3+1=4,a 3=1,则a 2=2,a 1=4. 若a 3为偶数,则a 32=4,a 3=8.若a 2为奇数,则3a 2+1=8,a 2=73(舍去).若a 2为偶数,则a 22=8,a 2=16.若a 1为奇数,则3a 1+1=16,a 1=5. 若a 1为偶数,则a 12=16,a 1=32.答案:4,5,327.已知数列{a n }的通项公式为a n =n 22n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.解:存在最大项.理由:a 1=12,a 2=2222=1,a 3=3223=98,a 4=4224=1,a 5=5225=2532,….∵当n ≥3时,a n +1a n=(n +1)22n +1×2n n 2=(n +1)22n 2=12⎝⎛⎭⎫1+1n 2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8.∴当n=3时,a3=98为这个数列的最大项.8.已知数列{a n}满足a1=12,a n a n-1=a n-1-a n(n≥2),求数列{a n}的通项公式.解:∵a n a n-1=a n-1-a n,∴1a n-1a n-1=1.∴1a n=1a1+⎝⎛⎭⎫1a2-1a1+⎝⎛⎭⎫1a3-1a2+…+⎝⎛⎭⎫1a n-1a n-1=2+1+1+…+1(n-1)个1=n+1.∴1a n=n+1,∴a n=1n+1(n≥2).又∵n=1时,a1=12,符合上式,∴a n=1n+1.。

新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法

新课标高中数学人教A版必修五全册课件2.1数列的概念与简单表示法
2.1数列的概念与
简单表示法(二)
第一页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
A. 380
B. 39 C. 32 D. 18
第二页,编辑于星期日:十三点 十七分。
复习引入
练习. 1. 以下四个数中,是数列{n(n+1)}中的 一项的是 ( A )
第十三页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式: a1 1,
第十四页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2,
第十五页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
给出,
写出这个数列的前五项.
第二十四页,编辑于星期日:十三点 十七分。
讲解范例:
例1.已知数列{an}的第一项是1,以后
的各项由公式
1 an 1 an1 给出,
写出这个数列的前五项.
1, 2, 3 , 5 , 8 . 235
第二十五页,编辑于星期日:十三点 十七分。
小结:
若记数列 {an }的前n项之和为 Sn ,则
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,,
第十六页,编辑于星期日:十三点 十七分。
讲授新课
观察以下数列,并写出其通项公式:
a1 1, a2 3 1 2 a1 2, a3 5 a 2 2,, an an1 2
第十七页,编辑于星期日:十三点 十七分。
他项.
3. 用递推公式求通项公式的方法: 观察法、累加法、迭乘法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 数列的概念与简单表示法第1课时数列的概念与简单表示法1.理解数列的概念.(重点)2.掌握数列的通项公式及应用.(重点)3.能根据数列的前几项写出数列的一个通项公式.(难点、易错点)[基础·初探]教材整理1数列的定义及分类阅读教材P28~P29第10行,完成下列问题.1.数列的概念及一般形式2.数列的分类类别含义按项的有穷数列项数有限的数列个数无穷数列项数无限的数列按项的 变化趋 势递增数列从第2项起,每一项都大于它的前一项的数列递减数列 从第2项起,每一项都小于它的前一项的数列 常数列 各项相等的数列摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列判断(正确的打“√”,错误的打“×”)(1)1,7,0,11,-3,…,-1 000不构成数列.( ) (2){a n }与a n 是一样的,都表示数列.( ) (3)数列1,0,1,0,1,0,…是常数列.( )(4)数列1,2,3,4和数列1,2,4,3是同一个数列.( )【解析】 (1)×.因为只要按一定顺序排成的一列数就是一个数列,所以1,7,0,11,-3,…,-1 000是一个数列.(2)×.因为{a n }代表一个数列,而a n 只是这个数列中的第n 项,故{a n }与a n 是不一样的.(3)×.因为各项相等的数列为常数列,而1,0,1,0,1,0,…为摆动数列,而非常数列.(4)×.两个数列只有项完全相同,且排列的顺序也完全相同才称为同一个数列,数列1,2,3,4与1,2,4,3虽然所含项相同,但各项排列顺序不同,故不是同一个数列.【答案】 (1)× (2)× (3)× (4)× 教材整理2 数列与函数的关系阅读教材P 29第11行~P 30倒数第3行,完成下列问题. 1.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列与函数的关系从函数的观点看,数列可以看作是特殊的函数,关系如下表: 定义域 正整数集N *(或它的有限子集{1,2,3,…,n })解析式 数列的通项公式值域 自变量从小到大依次取值时对应的一列函数值构成 表示方法(1)通项公式(解析法);(2)列表法;(3)图象法1.下列四个数中,哪个是数列{n (n +1)}中的一项( ) A .380 B .392 C .321 D .232【解析】 因为19×20=380,所以380是数列{n (n +1)}中的第19项.应选A. 【答案】 A2.数列0.3,0.33,0.333,0.333 3,…的通项公式是a n =( ) A.19(10n -1) B .13⎝ ⎛⎭⎪⎫1-110n C.29(10n -1) D .310(10n -1)【解析】 1-1101=0.9,1-1102=0.99,…,故原数列的通项公式为a n =13⎝ ⎛⎭⎪⎫1-110n .应选B. 【答案】 B3.观察下列数列的特点,用适当的一个数填空:1, 3, 5, 7,________,11,….【解析】 据规律填写可知通项为a n =2n -1,∴a 5=3. 【答案】 34.数列{a n }满足a n =log 2(n 2+3)-2,则log 23是这个数列的第________项. 【解析】 令a n =log 2(n 2+3)-2=log 23,解得n =3. 【答案】 3[小组合作型]数列的概念及分类已知下列数列:①2 011,2 012,2 013,2 014,2 015,2 016;②1,12,14,…,12n-1,…;③1,-23,35,…,(-1)n-1·n2n-1,…;④1,0,-1,…,sin nπ2,…;⑤2,4,8,16,32,…;⑥-1,-1,-1,-1.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________(填序号).【精彩点拨】紧扣有穷数列,无穷数列,递增数列,递减数列,常数列及摆动数列的定义求解.【自主解答】①为有穷数列且为递增数列;②为无穷、递减数列;③为无穷、摆动数列;④是摆动数列,是无穷数列,也是周期为4的周期数列;⑤为递增数列,也是无穷数列;⑥为有穷数列,也是常数列.【答案】①⑥②③④⑤①⑤②⑥③④1.与集合中元素的性质相比较,数列中的项的性质具有以下特点:(1)确定性:一个数是或不是某一数列中的项是确定的,集合中的元素也具有确定性;(2)可重复性:数列中的数可以重复,而集合中的元素不能重复出现(即互异性);(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序有关,而集合中的元素没有顺序(即无序性);(4)数列中的每一项都是数,而集合中的元素还可以代表除数字外的其他事物.2.判断数列是哪一种类型的数列时要紧扣概念及数列的特点.对于递增、递减、摆动还是常数列要从项的变化趋势来分析;而有穷还是无穷数列则看项的个数有限还是无限.[再练一题]1.给出下列数列:(1)2006~2013年某市普通高中生人数(单位:万人)构成数列82,93,105,119,129,130,132,135.(2)无穷多个3构成数列3,3,3,3,….(3)-2的1次幂,2次幂,3次幂,4次幂,…构成数列-2,4,-8,16,-32,….其中,有穷数列是________,无穷数列是________,递增数列是________,常数列是________,摆动数列是________.【解析】(1)为有穷数列;(2)(3)是无穷数列,同时(1)也是递增数列;(2)为常数列;(3)为摆动数列.【答案】(1)(2)(3)(1)(2)(3)由数列的前几项求通项公式写出下列数列的一个通项公式:(1)12,2,92,8,252,…;(2)9,99,999,9 999,…;(3)22-11,32-23,42-35,52-47,…;(4)-11×2,12×3,-13×4,14×5,….【精彩点拨】先观察各项的特点,注意前后项间的关系,分子与分母的关系,项与序号的关系,每一项符号的变化规律,然后归纳出通项公式.【自主解答】(1)数列的项,有的是分数,有的是整数,可将各项都统一成分数再观察:12,42,92,162,252,…,所以,它的一个通项公式为a n=n22(n∈N*).(2)各项加1后,变为10,100,1 000,10 000,…此数列的通项公式为10n,可得原数列的通项公式为a n=10n-1(n∈N*).(3)数列中每一项由三部分组成,分母是从1开始的奇数列,可用2n-1表示;分子的前一部分是从2开始的自然数的平方,可用(n+1)2表示,分子的后一部分是减去一个自然数,可用n表示,综上,原数列的通项公式为a n=(n+1)2-n2n-1(n∈N*).(4)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n=(-1)n 1n(n+1)(n∈N*).1.据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等,并对此进行归纳、联想.2.观察、分析数列中各项的特点是最重要的,观察出项与序号之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决,对于正负符号变化,可用(-1)n或(-1)n+1来调整.[再练一题]2.写出下列数列的一个通项公式:(1)0,3,8,15,24,…;(2)1,-3,5,-7,9,…;(3)112,223,334,445,…;(4)1,11,111,1 111,….【解】(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…,所以它的一个通项公式是a n =n 2-1(n ∈N *).(2)数列各项的绝对值为1,3,5,7,9,…,是连续的正奇数,并且数列的奇数项为正,偶数项为负,所以它的一个通项公式为a n =(-1)n +1(2n -1)(n ∈N *).(3)此数列的整数部分1,2,3,4,…恰好是序号n ,分数部分与序号n 的关系为n n +1,故所求的数列的一个通项公式为a n =n +nn +1=n 2+2n n +1(n ∈N *). (4)原数列的各项可变为19×9,19×99,19×999,19×9 999,…,易知数列9,99,999,9 999,…的一个通项公式为a n =10n -1,所以原数列的一个通项公式为a n =19(10n -1)(n ∈N *).[探究共研型]数列的通项公式的意义探究1 数列12,34,78,1516,3132,…的通项公式是什么?该数列的第7项是什么?255256是否为该数列中的一项?为什么?【提示】 由数列各项的特点可归纳出其通项公式为a n =2n -12n ,当n =7时,a 7=27-127=127128,若255256为该数列中的一项,则2n -12n =255256,解得n =8,所以255256是该数列中的第8项.探究2 已知数列{a n }的通项公式为a n =-n 2+2n +1,该数列的图象有何特点?试利用图象说明该数列的单调性及所有的正数项.【提示】 由数列与函数的关系可知,数列{a n }的图象是分布在二次函数y =-x 2+2x +1图象上的离散的点,如图所示,从图象上可以看出该数列是一个递减数列,且前两项为正数项,从第3项往后各项为负数项.已知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9n 2-9n +29n 2-1. (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内.【精彩点拨】 (1)将n =10代入数列的通项公式即可.(2)由9n 2-9n +29n 2-1=98101求得n (n ∈N *)是否有正整数解即可.(3)求函数a n =9n 2-9n +29n 2-1的值域即可.【自主解答】 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1.(1)令n =10,得第10项a 10=f (10)=2831. (2)令3n -23n +1=98101,得9n =300.此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3n -23n +1=3n +1-33n +1=1-33n +1, 又n ∈N *,∴0<33n +1<1,∴0<a n <1.即数列中的各项都在区间(0,1)内.1.由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.2.判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.3.在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.[再练一题]3.已知数列的通项公式为a n =n 2+2n -5. (1)写出数列的前三项; (2)判断数列{a n }的单调性.【解】 (1)数列的前三项:a 1=12+2×1-5=-2; a 2=22+2×2-5=3; a 3=32+2×3-5=10. (2)∵a n =n 2+2n -5,∴a n +1-a n =(n +1)2+2(n +1)-5-(n 2+2n -5) =n 2+2n +1+2n +2-5-n 2-2n +5 =2n +3. ∵n ∈N *,∴2n +3>0,∴a n +1>a n . ∴数列{a n }是递增数列.1.下列说法正确的是( )A .数列1,3,5,7,…,2n -1可以表示为1,3,5,7,…B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n +1n 的第k 项为1+1kD .数列0,2,4,6,8,…可记为{2n }【解析】 A 错,数列1,3,5,7,…,2n -1为有穷数列,而数列1,3,5,7,…为无穷数列;B 错,数的顺序不同就是两个不同的数列;C 正确,a k =1+kk =1+1k ;D 错,a n =2n -2(n ∈N *).【答案】 C2.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14【解析】 观察数列可知,从第3项起后一项是前两项的和,故x =5+8=13.【答案】 C3.数列1,2, 7,10,13,…中的第26项为________. 【解析】 ∵a 1=1=1,a 2=2=4, a 3=7,a 4=10,a 5=13, ∴a n =3n -2,∴a 26=3×26-2=76=219. 【答案】 2194.已知数列{a n }的通项公式为a n =2n 2+n ,那么110是它的第________项.【解析】 令2n 2+n =110,解得n =4或n =-5(舍去),所以110是该数列的第4项.【答案】 45.已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出数列的第4项和第6项;(2)-49和68是该数列的项吗?若是,是第几项?若不是,请说明理由. 【解】 (1)∵a n =3n 2-28n , ∴a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)令3n 2-28n =-49,即3n 2-28n +49=0,∴n =7或n =73(舍), ∴-49是该数列的第7项,即a 7=-49. 令3n 2-28n =68,即3n 2-28n -68=0, ∴n =-2或n =343. ∵-2∉N *,343∉N *, ∴68不是该数列的项.。

相关文档
最新文档