【高考数学】2018-2019学年数学高考(理)二轮复习专题集训:专题三三角函数与平面向量3.2-含解析
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题三 三角函数、解三角形与平面向量 第
1 234
3.(2016·天津改编)已知△ABC 是边长为 1 的等边三角形,点 D,E 分别是 边 AB,BC 的中点,连结 DE 并延长到点 F,使得 DE=2EF,则A→F·B→C的
1 值为____8____.
解析
答案
1 234
4.(2016·浙江)已知向量 a,b,|a|=1,|b|=2.若对任意单位向量 e,均有|a·e| 1
例1
(1)设 1
0<θ<π2,向量
a=(sin
2θ,cos
θ),b=(cos
θ,1),若
a∥b,则
tan θ=___2_____.
解析 因为a∥b,所以sin 2θ=cos2θ,即2sin θcos θ=cos2θ.
因为 0<θ<π2,所以 cos θ>0, 得 2sin θ=cos θ,tan θ=12.
=(13)2+0-1=-89.
押题依据
解析答案
Байду номын сангаас 23 4
3.在△ABC 中,A→B=(cos 32°,cos 58°),B→C=(sin 60°sin 118°, 3
sin 120°sin 208°),则△ABC 的面积为_____8___.
押题依据 平面向量作为数学解题工具,通过向量的运算给出 条件解决三角函数问题已成为近几年高考的热点.
思维升华
解析
答案
跟踪演练 2 (1)已知点 A,B,C,D 在边长为 1 的方格点图的位置如图 所示,则向量A→D在A→B方向上的投影为__-___55___.
解析
答案
(2)如图,在△ABC 中,AB=AC=3,cos∠BAC=13,D→C=2B→D,则A→D·B→C 的值为__-__2____.
2019版高考数学二轮复习 专题三 三角 2.3.3 三角大题课件 文
B,c=2Rsin C.其中 R 是△ABC 外接圆的半径.
(2)余弦定理 a2=b2+c2-2bccos A 的变形为 cos A=������2+2������������2������-������2.当
b2+c2-a2>0(=0,<0)时,角 A 为锐角(直角,钝角).
3.三个等价关系:在△ABC 中,a>b⇔sin A>sin B⇔A>B.
21
-22-
考向一 考向二 考向三 考向四
解: (1)在△ABC 中,由正弦定理si���n��������� = si���n���������,可得 bsin A=asin B.又由
bsin A=acos
������-
π 6
,得 asin B=acos
������-
π 6
,即 sin B=cos
(1)若 sin∠BAC=14,求 sin∠BCA; (2)若 AD=3AC,求 AC.
15
-16-
考向一 考向二 考向三 考向四
解:
(1)由正弦定理得,sin���∠���������������������������
=
sin���∠���������������������������,即
3
所以 cos∠ADB=
1-
2 25
=
523.
(2)由题设及(1)知,cos∠BDC=sin∠ADB= 52. 在△BCD 中,由余弦定理得 BC2=BD2+DC2-2·BD·DC·cos∠
BDC=25+8-2×5×2 2 × 52=25.
所以 BC=5.
11
考向一 考向二 考向三 考向四
2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习
3.2三角变换与解三角形【课时作业】A 级1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =()A .42B .30 C.29D .25解析: ∵cos C 2=55,∴cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,∴AB =32=4 2. 故选A. 答案: A2.(2018·山东菏泽2月联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=()A.427B .±225C .±427D .225解析: ∵α∈⎝⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,由同角三角函数的商数关系知tan α=sin αcos α=-2 2.∴tan(π+2α)=tan2α=2tan α1-tan2α=-421--22=427,故选A. 答案: A3.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于() A.32B .34C.36D .38解析: 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案: B 4.若α∈⎝ ⎛⎭⎪⎫π4,π,且3cos2α=4sin ⎝⎛⎭⎪⎫π4-α,则sin2α的值为()A.79B .-79 C .-19D .19解析: 3(cos 2α-sin 2α)=22(cos α-sin α),因为α∈⎝ ⎛⎭⎪⎫π4,π,所以cos α-sin α≠0,所以3(cos α+sin α)=22,即cos α+sin α=223,两边平方可得1+sin2α=89⇒sin2α=-19.答案: C5.(2018·南昌市第一次模拟测试卷)已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =() A .60B .80 C .100D .125解析: 如图,台风中心为B,2.5小时后到达点C ,则在△ABC中,AB sin α=AC sin β,即sin α=43sin β,又cos α=34cos β.∴sin 2α+cos 2α=169sin 2β+916cos 2β=1=sin 2β+cos 2β,∴sin β=34cos β, ∴sin β=35,cos β=45,∴sin α=45,cos α=35,∴cos(α+β)=cos αcos β-sin αsin β=35×45-45×35=0,∴α+β=π2,∴BC 2=AB 2+AC 2,∴(2.5v )2=1502+2002,解得v =100,故选 C. 答案: C 6.化简:π-α+sin 2αcos2α2=________.解析:π-α+sin 2αcos2α2=2sin α+2sin α·cos α12+cos α=2sin α+cos α12+cos α=4sinα.答案: 4sin α7.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.解析:sin 2A sin C =2sin Acos A sin C =2a c ·b2+c2-a22bc =2×46·25+36-162×5×6=1. 答案: 18.(2018·开封市高三定位考试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为23,则b +c 的值为________.解析: 由正弦定理及b tan B +b tan A =2c tan B ,得sin B ·sin B cos B +sin B ·sin A cos A =2sin C ·sin Bcos B ,即cos A sin B +sin A cos B =2sin C cos A ,亦即sin(A +B )=2sin C cos A ,故sin C =2sin C cos A .因为sin C ≠0,所以cos A =12,所以A =π3.由面积公式,知S △ABC =12bc sin A =23,所以bc =8.由余弦定理,知a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,代入可得b +c =7.答案: 79.(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解析: (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解析: (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos2B =437. 由正弦定理得sin A =asin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.B 级1.(2018·河南濮阳一模)已知△ABC 中,sin A ,sin B ,sin C 成等比数列,则sin 2Bsin B +cos B 的取值范围是() A.⎝ ⎛⎦⎥⎤-∞,22B .⎝ ⎛⎦⎥⎤0,22C .(-1,2)D .⎝⎛⎦⎥⎤0,3-32解析: 由sin A ,sin B ,sin C 成等比数列,知a ,b ,c ,成等比数列,即b 2=ac ,∴cos B =a2+c2-b22ac =a2+c2-ac 2ac =⎝ ⎛⎭⎪⎫a2c +c 2a -12≥2a 2c ·c 2a -12=12,当且仅当a =c 时等号成立,可知B ∈⎝⎛⎦⎥⎤0,π3,设y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B,设sin B +cos B =t ,则2sin B cos B =t 2-1.由于t =sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π4,B ∈⎝ ⎛⎦⎥⎤0,π3,所以t ∈(1,2],故y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B =t2-1t =t -1t ,t ∈(1,2],因为y =t -1t 在t ∈(1,2]上是增函数,所以y ∈⎝⎛⎦⎥⎤0,22.故选B. 答案: B2.(2018·石家庄质量检测(一))如图,平面四边形ABCD 的对角线的交点位于四边形的内部,AB =1,BC =2,AC =CD ,AC ⊥CD ,当∠ABC 变化时,对角线BD 的最大值为________.解析: 设∠ABC =θ,θ∈(0,π),则由余弦定理得AC 2=3-22cos θ,由正弦定理得1sin∠ACB =AC sin θ,得sin ∠ACB =sin θAC .在△DCB 中,由余弦定理可得,BD 2=CD 2+2-22CD cos ⎝ ⎛⎭⎪⎫π2+∠ACB =AC 2+2+22AC sin ∠ACB =3-22cos θ+2+22AC ×sin θAC =5+22(sin θ-cos θ)=5+4sin ⎝ ⎛⎭⎪⎫θ-π4,当θ=3π4时,⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫θ-π4max =1,∴BD 2m ax =9,∴BD max =3.答案: 33.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b . (1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC 面积的最大值.解析: (1)易得a =(-sin x ,cos x ), 则f (x )=a ·b =sin 2x +3sin x cos x =12-12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z )时,f (x )取最大值是32.(2)因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12⇒A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c 时等号成立),所以S =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值是3 3.4.如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声检测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻B 收到发自静止目标P 的一个声波信号,8秒后A 、B 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求出x 的值; (2)求P 到海防警戒线AC 的距离.解析: (1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12. 在△PAB 中,AB =20,cos ∠PAB =PA2+AB2-PB22PA·AB =x2+202--2x·20=3x +325x,同理,在△PAC 中,AC =50,cos ∠PAC =PA2+AC2-PC22PA·AC =x2+502-x22x·50=25x .∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于点D ,在△ADP 中, 由cos ∠PAD =2531,得sin ∠PAD =1-cos2∠PAD=42131,∴PD =PA sin ∠PAD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米.。
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题三 三角函数、解三角形与平面向量 第
押题依据
解析答案
返回
专题三 三角函数、解三角形与平面向量
第1讲 三角函数的图象与性质
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 234
1.(2016·四川改编)为了得到函数 y=sin2x-π3的图象,只需把函数 y=sin 2x π
的图象上所有的点向___右___平行移动____6____个单位长度.
由 2x+π4=kπ+π2(k∈Z),得 x=k2π+π8(k∈Z), 故 y=f(x)的对称轴方程为 x=k2π+π8(k∈Z).
解析答案
返回
高考押题精练
1 23
1.已知函数
f(x)=sinωx+
π5(x∈R,ω>0)图象的相邻两条对称轴之间的距
离为π2.为了得到函数 g(x)=cos ωx 的图象,只要将 y=f(x)的图象向
y=tan x 的递增区间是(kπ-π2,kπ+π2)(k∈Z).
2.y=Asin(ωx+φ),当φ=kπ(k∈Z)时为奇函数;
当 φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由 ωx+φ=kπ+π2(k∈Z)求得. y=Acos(ωx+φ),当 φ=kπ+π2(k∈Z)时为奇函数; 当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得. y=Atan(ωx+φ),当φ=kπ(k∈Z)时为奇函数.
解析 由题意可知,y=sin2x-π3=sin2x-π6, 则只需把 y=sin 2x 的图象向右平移π6个单位.
解析答案
1 234
2.(2016·课标全国甲改编)若将函数 y=2sin 2x 的图象向左平移1π2个单位长 度,则平移后图象的对称轴为_x_=__k2_π_+__π6_(k_∈__Z_)_. 解析 由题意将函数 y=2sin 2x 的图象向左平移1π2个单位长度后得到函 数的解析式为 y=2sin2x+π6, 由 2x+π6=kπ+π2,k∈Z,得函数的对称轴为 x=k2π+π6(k∈Z).
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题三 三角函数、解三角形与平面向量 第
1 234
4.(2016·江 苏 ) 在 锐 角 三 角 形 ABC 中 , 若 sin A = 2sin Bsin C , 则tan Atan Btan C的最小值是____8____.
解析
答案
考情考向分析
正弦定理和余弦定理以及解三角形问题是高考的必考内容,主要考查: 1.边和角的计算; 2.三角形形状的判断; 3.面积的计算; 4.有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行 命题将是今后高考的一个关注点,不可轻视.
解析
答案
(则2)若θ=f_(x_-)_=_π3__3_s_in. (x+θ)-cos(x+θ)(-π2≤θ≤π2)是定义在 R 上的偶函数, 解析 f(x)=2sin(x+θ-π6), 由题意得 θ-π6=π2+kπ(k∈Z), 因为-π2≤θ≤π2,所以 k=-1,θ=-π3.
解析答案
热点二 正弦定理、余弦定理
专题三 三角函数、解三角形与平面向量
第2讲 三角变换与解三角形
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 234
64 1.(2016·课标全国丙改编)若 tan α=34,则 cos2α+2sin 2α=___2_5____.
解析 tan α=34, 则 cos2α+2sin 2α=cocos2sα2α++2ssiinn22αα=11++4tatann2αα=6245.
解析答案
(2)求sin A+sin C的取值范围. 解 由(1)知,C=π-(A+B) =π-(2A+π2)=π2-2A>0,∴A∈(0,π4), 于是 sin A+sin C=sin A+sin(π2-2A) =sin A+cos 2A=-2sin2A+sin A+1 =-2(sin A-14)2+98, ∵0<A<π4,∴0<sin A< 22, 因此 22<-2(sin A-14)2+98≤98,
高考数学二轮复习专题检测(三)不等式理解析版
专题检测(三) 不等式一、选择题1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式 x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2),所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ym B .x -m ≥y -n C.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.已知a ∈R ,不等式x -3x +a≥1的解集为p ,且-2∉p ,则a 的取值范围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:选D ∵-2 ∉ p ,∴-2-3-2+a<1或-2+a =0,解得a ≥2或a <-3. 4.(2018·成都一诊)若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A .(0,+∞)B .[-1,+∞)C .[-1,1]D .[0,+∞)解析:选B 法一:当x =0时,不等式为1≥0恒成立;当x >0时,x 2+2ax +1≥0⇒2ax ≥-(x 2+1)⇒2a ≥-⎝⎛⎭⎪⎫x +1x ,又-⎝ ⎛⎭⎪⎫x +1x ≤-2,当且仅当x =1时取等号,所以2a ≥-2⇒a ≥-1,所以实数a 的取值范围为[-1,+∞).法二:设f (x )=x 2+2ax +1,函数图象的对称轴为直线x =-a .当-a ≤0,即a ≥0时,f (0)=1>0,所以当x ∈[0,+∞)时,f (x )≥0恒成立;当-a >0,即a <0时,要使f (x )≥0在[0,+∞)上恒成立,需f (-a )=a 2-2a 2+1= -a 2+1≥0,得-1≤a <0.综上,实数a 的取值范围为[-1,+∞).5.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax ,x >0,2x-1,x ≤0,若不等式f (x )+1≥0在R 上恒成立,则实数a的取值范围为( )A .(-∞,0)B .[-2,2]C .(-∞,2]D .[0,2]解析:选C 由f (x )≥-1在R 上恒成立,可得当x ≤0时,2x-1≥-1,即2x≥0,显然成立;又x >0时,x 2-ax ≥-1,即为a ≤x 2+1x =x +1x ,由x +1x≥2x ·1x=2,当且仅当x =1时,取得最小值2,可得a ≤2,综上可得实数a 的取值范围为(-∞,2].6.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式的序号是( )A .①④B .②③C .①③D .②④解析:选C 法一:因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误,综上所述,可排除A 、B 、D ,故选C.法二:由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <1ab,故①正确; ②中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.7.(2018·长春质检)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B 由4x +y =xy ,得4y +1x=1,则x +y =(x +y )⎝ ⎛⎭⎪⎫ 4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.8.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0, x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k 的值为( )A .1B .2C .3D .4解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示. 则A (1,2),B (1,-1),C (3,0), 因为目标函数z =kx -y 的最小值为0,所以目标函数z =kx -y 的最小值可能在A 或B 处取得,所以若在A 处取得,则k -2=0,得k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立;若在B 处取得,则k +1=0,得k =-1,此时,z =-x -y , 在B 点取得最大值,故不成立,故选B.9.(2019届高三·湖北五校联考)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .15万元B .16万元C .17万元D .18万元解析:选D 设生产甲产品x 吨,乙产品y 吨,获利润z 万元,由题意可知⎩⎪⎨⎪⎧ 3x +2y ≤12,x +2y ≤8,x ≥0, y ≥0,z =3x +4y ,作出不等式组所表示的可行域如图中阴影部分所示,直线z =3x +4y 过点M 时取得最大值,由⎩⎪⎨⎪⎧3x +2y =12,x +2y =8,得⎩⎪⎨⎪⎧x =2,y =3,∴M (2,3),故z =3x +4y 的最大值为18,故选D.10.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,若y ≥kx -3恒成立,则实数k的取值范围是( )A.⎣⎢⎡⎦⎥⎤-115,0 B.⎣⎢⎡⎦⎥⎤0,113C .(-∞,0]∪⎣⎢⎡⎭⎪⎫115,+∞D.⎝⎛⎦⎥⎤-∞,-115∪[0,+∞)解析:选A 由约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,作出可行域如图中阴影分部所示,则A ⎝ ⎛⎭⎪⎫-52,52,B (3,-3),C (3,8),由题意得⎩⎪⎨⎪⎧-3≥3k -3, 52≥- 52k -3,解得-115≤k ≤0.所以实数k 的取值范围是⎣⎢⎡⎦⎥⎤-115,0. 11.若两个正实数x ,y 满足13x +3y =1,且不等式x +y 4-n 2-13n12<0有解,则实数n 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2512,1B.⎝ ⎛⎭⎪⎫-∞,-2512∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,-2512 解析:选B 因为不等式x +y 4-n 2-13n12<0有解,所以⎝ ⎛⎭⎪⎫x +y 4min <n 2+13n 12,因为x >0,y >0,且13x +3y=1,所以x +y 4=⎝⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫13x +3y =1312+3x y +y 12x ≥1312+23xy ·y 12x =2512, 当且仅当3x y =y 12x ,即x =56,y =5时取等号,所以⎝ ⎛⎭⎪⎫x +y 4min =2512,故n 2+13n 12-2512>0,解得n <-2512或n >1,所以实数n 的取值范围是⎝⎛⎭⎪⎫-∞,-2512∪(1,+∞).12.(2019届高三·福州四校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,其中a>0,若x -yx +y的最大值为2,则a 的值为( ) A.12 B.14C.38D.59解析:选C 设z =x -y x +y ,则y =1-z 1+z x ,当z =2时,y =-13x ,作出x ,y 满足的约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,所表示的平面区域如图中阴影部分所示,作出直线y =-13x ,易知此直线与区域的边界线2x -2y -1=0的交点为⎝ ⎛⎭⎪⎫38,-18,当直线x =a 过点⎝ ⎛⎭⎪⎫38,-18时,a =38,又此时直线y =1-z 1+z x 的斜率1-z 1+z 的最小值为-13,即-1+2z +1的最小值为-13,即z 的最大值为2,符合题意,所以a 的值为38,故选C.二、填空题13.(2018·岳阳模拟)不等式3x -12-x ≥1的解集为________.解析:不等式3x -12-x ≥1可转化成3x -12-x -1≥0,即4x -32-x ≥0,等价于⎩⎪⎨⎪⎧4x -3x -2≤0,2-x ≠0,解得34≤x <2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <214.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点A (5,4),∴z max =5+4=9.答案:915.已知关于x 的不等式ax 2+bx +c <0的解集为xx <-1或x >12,则关于x 的不等式c (lg x )2+lg x b +a <0的解集为________.解析:由题意知-1,12是方程ax 2+bx +c =0的两根,所以⎩⎪⎨⎪⎧ -12=-b a ,-12=ca ,且a <0,所以⎩⎪⎨⎪⎧b =12a ,c =-12a .所以不等式c (lg x )2+lg x b+a <0化为 -12a (lg x )2+b lg x +a <0, 即-12a (lg x )2+12a lg x +a <0.所以(lg x )2-lg x -2<0,所以-1<lg x <2,所以110<x <100.答案:⎩⎨⎧⎭⎬⎫x|110<x <10016.设x >0,y >0,且⎝ ⎛⎭⎪⎫x -1y 2=16y x ,则当x +1y 取最小值时,x 2+1y2=________.解析:∵x >0,y >0,∴当x +1y取最小值时,⎝ ⎛⎭⎪⎫x +1y 2取得最小值,∵⎝⎛⎭⎪⎫x +1y 2=x 2+1y2+2x y,⎝ ⎛⎭⎪⎫x -1y 2=16y x, ∴x 2+1y 2=2x y +16y x,⎝ ⎛⎭⎪⎫x +1y 2=4x y +16y x≥24x y ·16yx=16,∴x +1y ≥4,当且仅当4x y =16yx,即x =2y 时取等号,∴当x +1y 取最小值时,x =2y ,x 2+1y 2+2x y =16,即x 2+1y 2+2×2y y=16,∴x 2+1y2=16-4=12.答案:12。
2018年高考数学(理)二轮专题复习课件:第二部分 专题三 三角2
.
2.二倍角公式 sin 2α=2sin αcos α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
tan 2α=
2tan ������
1-ta n 2 ������
.
1-cos2 ������ 2 sin2 ������ 2
3.降幂公式
cos2α=
1+cos2 ������ 2
二、填空题
2.(2017广西名校联考,理9)已知△ABC的面积为S,且 ������������ ·������������ =S,则 tan 2A的值为( D )ຫໍສະໝຸດ A. C.12 3 4
B.2 D.4 3
解析: 设△ABC的角A,B,C所对应的边分别为a,b,c.
∵������������ ·������������ =S, 1 ∴bc cos A=2bcsin A, ∴tan A=2, 2tan ������ 2×2 4 ∴tan 2A=1-ta n 2 ������ = 1-22=-3,故选 D.
3.2 三角变换与解三角形专项练
1.两角和与差的正弦、余弦、正切公式 sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β;
tan(α± β)=
tan ������ ±tan ������ 1∓tan������ tan ������
co s 2 ������ +4sin ������ cos ������ co s 2 ������ +si n 2 ������
=
1+4× 1+
=
4
25 16
=
4 64 25
2018-2019年高考数学试题分类汇编三角函数附答案详解
2018-2019年高考数学试题分类汇编三角函数一、选择题.1、(2018年高考全国卷1文科8)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4【解答】解:函数f(x)=2cos2x﹣sin2x+2,=2cos2x﹣sin2x+2sin2x+2cos2x,=4cos2x+sin2x,=3cos2x+1,=,=,故函数的最小正周期为π,函数的最大值为,故选:B.2、(2018年高考全国卷1文科11)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,∴cos2α=2cos2α﹣1=,解得cos2α=,∴|cosα|=,∴|sinα|==,|tanα|=||=|a﹣b|===.故选:B.3、(2018年高考全国卷3理科4)若sinα=,则cos2α=()A.B.C.﹣ D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.4、(2018年高考全国卷3理科9文科11)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,∴S△ABC==,∴sinC==cosC,∵0<C<π,∴C=.故选:C.5、(2018年高考全国卷2理科6文科7)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.6、(2018年高考全国卷2理科10)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.7、(2018年高考全国卷2文科)10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C. D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=﹣sin(x﹣),由﹣+2kπ≤x﹣≤+2kπ,k∈Z,得﹣+2kπ≤x≤+2kπ,k∈Z,取k=0,得f(x)的一个减区间为[﹣,],由f(x)在[0,a]是减函数,得a≤.则a的最大值是.故选:C8、(2018年高考全国卷3文科4)若sinα=,则cos2α=()A.B.C.﹣ D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.9、(2018年高考全国卷3文科6)函数f(x)=的最小正周期为()A.B.C.πD.2π【解答】解:函数f(x)===sin2x的最小正周期为=π,故选:C.10、(2018年高考北京卷理科7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.4【解答】解:由题意d==,tanα=﹣,∴当sin(θ+α)=﹣1时,d max=1+≤3.∴d的最大值为3.故选:C.11、(2018年高考北京卷文科7)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.12、(2018年高考天津卷文理科6)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x ≤,k ∈Z , 减区间满足:≤2x ≤,k ∈Z ,∴增区间为[﹣+kπ,+kπ],k ∈Z , 减区间为[+kπ,+kπ],k ∈Z ,∴将函数y=sin (2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A .13、(2019年高考全国I 卷文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 14、(2019年高考全国I 卷理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析
高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题
3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。
2018届高考数学理新课标二轮专题复习课件:3-1三角函数 精品
【回顾】 三角恒等变换是核心,要灵活运用同角三角函数 间的基本关系,两角和与差的正、余弦公式、二倍角公式等.
1.(2016·唐山期末)在△ABC 中,AB=2AC=2,AD 是 BC 边上的中线,记∠CAD=α,∠BAD=β.
(1)求 sinα∶sinβ; (2)若 tanα=sin∠BAC,求 BC.
最小正周期 T= 2 =π.(6 分)
(2)列表:
ππ 2x+ 6 6
π 2
π
3π 2
2π 13π 6
x
0 π 5π 2π 11π π
6 12 3 12
f(x) 1 2 0 -2 0
1 (9 分)
画图如下:
(12 分)
【回顾】 (1)列表.(2)描点连线. 要注意:列表时对于所给区间与周期的关系要明确;画图时, 要用平滑的曲线结合三角函数图像的走势来描点连线.力争使图 像给人以美观、舒服的感觉,而不是生硬的味道.
kπ π 3π 令 2 +θ+12= 4 ,k∈Z,
kπ 2π 解得 θ=- 2 + 3 ,k∈Z.(11 分)
π 由 θ>0 可知,当 k=1 时,θ取得最小值 6 .(12 分)
【回顾】 (1)求角时要注意角与值(函数值)之间是一对一, 还是二对一.
(2)图像变换规律: 伸缩:横坐标变为原来的ω倍,则 x→ωx.纵坐标亦如此. 平移:正减负加.向 x 轴正方向平移 2 个单位,x→x-2; 向 y 轴正方向平移 2 个单位,y→y-2.向 x 轴负方向平移 2 个单 位,x→x+2,向 y 轴负方向平移 2 个单位,y→y+2.
【审题】 先“化一”(即化成一个角的三角函数),根据 f(α) =2,求 α;根据图像变换规律进行变换;图像关于直线对称,即 函数在该处取得最值.
2019年高考数学大二轮复习专题三三角函数及解三角形第2讲三角恒等变换与解三角形课件理
因为 c>0,所以 c=3,
故△ABC
的面积为
S=12bcsin
A=3
2
3 .
●规律方法 解三角形问题一般要利用正、余弦定理和三角形内 角和定理.正弦定理可以将角转化成边,也可以将边 转化成角,当涉及边的平方关系时,一般利用余弦定 理,要根据题目特点和正、余弦定理的结构形式,灵 活选用.
命题点2 利用正、余弦定理解决实际问题
asin x+bcos x=
a2+b2sin(x+φ)其中tan
φ
=ba.
3.三角函数恒等变换“四大策略”
(1)常值代换:特别是“1”的代换,1=sin2θ +cos2θ =
tan 45°等.
(2)项的分拆与角的配凑:如 sin2α +2cos2α =(sin2α
+cos2α )+cos2α ,α =(α-β)+β 等.
(2)由角 α 的终边过点 P-35,-45得 cos α=-35,
由 sin(α+β)=153得 cos(α+β)=±1123. 由 β=(α+β)-α 得
cos β=cos(α+β)cos α+sin(α+β)sin α, 所以 cos β=-5665或 cos β=1665.
热点二 正、余弦定理的应用(多维贯通)
2+3 2.
●规律方法 以向量的运算为载体考查三角函数、三角变换、解 三角形及不等式.这类综合问题的解法思路是:通过 向量的运算把向量问题转化为三角函数问题或解三角 形问题,再利用三角变换或正(余)弦定理综合解决.
[突破练 2]
(2018·衡水调研)在△ABC 中,A→C·A→B=|A→C-A→B
-θ,由三角形内角和定理可得∠DCB=180°-(45°-θ)
-45°=90°+θ,根据正弦定理可得sin5300°=sinD1B5°,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由cosβ=- ,β∈(0,π),得sinβ= ,β∈ .
所以sin(2α-β)=sin 2αcosβ-cos 2αsinβ= × - × =- .
又2α-β∈ ,所以2α-β=- .
10.(2017·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为 .
A. B.
C. D.
解析:sinAcosB+ sinAsinB=sinC+sinB可化为sinAcosB+ sinAsinB=sinAcosB+cosAsinB+sinB,即sin = ,∴A= ,又sinAcosB+cosAsinB=2sinB,则tanB= ,B= ,则C= ,c= = ,故选D.
解析:分析题意可知,设CD=h,则AD= ,BD= h,在△ADB中,∠ADB=180°-20°-40°=120°,∴由余弦定理得AB2=BD2+AD2-2BD·AD·cos 120°,可得1302=3h2+ -2· h· · ,解得h=10 ,故塔的高度为10 m.
答案:10
8.在△ABC中,三内角A,B,C对应的三边分别为a,b,c,若( a-c)· · +c· · =0,则cosB的值为________.
A级
1.(2016·全国卷甲)若cos = ,则sin 2α=()
A. B.
C.- D.-
解析:因为cos = ,
所以sin 2α=cos =cos 2 =2cos2 -1=2× -1=- .
Hale Waihona Puke 答案:D2.已知△ABC中,内角A,B,C所对边长分别为a,b,c,若A= ,b=2acosB,c=1,则△ABC的面积等于()
A.锐角三角形B.直角三角形
C.钝角三角形D.不确定
解析:因为bcosC+ccosB
=b· +c·
=
= =a=asinA,所以sinA=1.
因为A∈(0,π),所以A= ,即△ABC是直角三角形.
答案:B
5.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,若S△ABC=2 ,a+b=6, =2cosC,则c=()
解析:因为sin =cos ,所以 cosα- sinα= cosα- sinα,即 sinα=- cosα,所以tanα= =-1,所以cos 2α=cos2α-sin2α= = =0.
答案:D
4.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()
解析:已知可化为( a-c)·cacosB+c·abcos(π-C)=0,即( a-c)cosB-bcosC=0, acosB=ccosB+bcosC,由正弦定理得, sinAcosB=sinCcosB+sinBcosC,即 sinAcosB=sin(B+C)=sinA,∵sinA≠0,∴cosB= .
A.2 B.2
C.4D.3
解析:因为 = = =1,所以2cosC=1,所以C= .又S△ABC=2 ,则 absinC=2 ,所以ab=8.因为a+b=6,所以c2=a2+b2-2abcosC=(a+b)2-2ab-ab=(a+b)2-3ab=62-3×8=12,所以c=2 .
答案:B
6.(2017·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=________.
∴条件等式变为2bcosB=b,∴cosB= .
又0<B<π,∴B= .
答案:
7.如图,为了估测某塔的高度,在同一水平面的A,B两点处进行测量,在点A处测得塔顶C在西偏北20°的方向上,仰角为60°;在点B处测得塔顶C在东偏北40°的方向上,仰角为30°.若A,B两点相距130 m,则塔的高度CD=________m.
答案:D
2.(2017·咸阳模拟)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且 + =2c2,sinA(1-cosC)=sinBsinC,b=6,AB边上的点M满足 =2 ,过点M的直线与射线CA,CB分别交于P,Q两点,则MP2+MQ2的最小值是()
A.36B.37
C.38D.39
答案:
9.已知α,β∈(0,π),且tanα=2,cosβ=- .
(1)求cos 2α的值;
(2)求2α-β的值.
解析:(1)因为tanα=2,所以 =2,即sinα=2cosα.
又sin2α+cos2α=1,解得sin2α= ,cos2α= .
所以cos 2α=cos2α-sin2α=- .
(2)因为α∈(0,π),且tanα=2,所以α∈ .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
解析:(1)由题设得 acsinB= ,
即 csinB= .
由正弦定理得 sinCsinB= .
故sinBsinC= .
(2)由题设及(1)得cosBcosC-sinBsinC=- ,
即cos(B+C)=- .所以B+C= ,故A= .
由题设得 bcsinA= ,a=3,所以bc=8.
由余弦定理得b2+c2-bc=9,
即(b+c)2-3bc=9.由bc=8,得b+c= .
故△ABC的周长为3+ .
B级
1.已知△ABC中,三内角A,B,C对应的三边分别为a,b,c,若a=2,sinC=2sinB且sinAcosB+ sinAsinB=sinC+sinB,则c的值为()
解析:法一:由2bcosB=acosC+ccosA及正弦定理,
得2sinBcosB=sinAcosC+sinCcosA.
∴2sinBcosB=sin(A+C).
又A+B+C=π,∴A+C=π-B.
∴2sinBcosB=sin(π-B)=sin B.
又sinB≠0,∴cosB= .∴B= .
法二:∵在△ABC中,acosC+ccosA=b,
A. B.
C. D.
解析:由正弦定理得sinB=2sinAcosB,
故tanB=2sinA=2sin = ,又B∈(0,π),所以B= ,
又A= =B,则△ABC是正三角形,
所以S△ABC= bcsinA= ×1×1× = .
答案:B
3.已知sin =cos ,则cos 2α=()
A.1B.-1
C. D.0