2.2.2椭圆的简单几何性质(二)
高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1
§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
2.2.2椭圆的简单几何性质2(第二定义)
复习练习:
1.椭圆的长短轴之和为18,焦距为6,则椭圆 的标准方程为( C ) 2 2 2 2 x y x y A. 1. B. 1. 9 16 25 16 2 2 2 2 2 2 x y x y x y C. 1或 1. D. 1 25 16 16 25 16 25
M
F (c,0) 0
F (c,0)
a xቤተ መጻሕፍቲ ባይዱ c
2
a2 x c
x y 对于椭圆 2 2 1(a b 0) a b 相应于焦点 F (c,0) 的准线 x a2 方程是 x c
由椭圆的对称性,相应于焦点
a2 F (c,0) 的准线方程是 x c
三.知识迁移,深化认识
a2 x c
这是椭圆的标准方程,所以P点的轨迹是长轴长为2a, 短轴长为 2b 的椭圆.
二.问题探究,构建新知
概念分析
由此可知,当点M与一个定点的距离和它到一条定直 c F -c ,, 0 ) 2 线的距离的比是一个常数 时 这个点的 e (0 M e 1 ) ( 能不能说 到 a a 的距离与到直线 x 轨迹是椭圆,这就是椭圆的第二定义,定点是椭圆的 c 的距离比也是离 焦点,定直线叫做椭圆的准线 心率,, e常数 呢? e是椭圆的离心率. y 2 2
二.课题引入 已知动点P到定点(4,0)的距离与到定直线
4 25 的距离之比等于 ,求动点P的轨迹. x 5 4
问1:椭圆的焦点坐标和离心率分别是什么? 问2:将上述问题一般化,你能得出什么猜想? 若动点P(x,y)和定点F(c,0)的距离与它 c a2 到定直线l:x 的距离的比是常数 e a c (0<c<a),则动点P的轨迹是椭圆.
20-21版:2.2.2 椭圆的简单几何性质(二)(创新设计)
2.2.2 椭圆的简单几何性质(二)内容要求 1.巩固椭圆的简单几何性质.2.能利用弦长公式解决相关问题.知识点1 点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1. 【预习评价】已知点P (m ,1)在椭圆x 24+y 23=1的外部,则实数m 的取值范围是________. 解析 由题意可知m 24+13>1, 解得m >263或m <-263.答案 ⎝ ⎛⎭⎪⎫-∞,-263∪⎝ ⎛⎭⎪⎫263,+∞ 知识点2 弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2= 1+1k 2(y 1-y 2)2 =1+1k 2(y 1+y 2)2-4y 1y 2.其中x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得. 【预习评价】若直线y =x +1和椭圆x 24+y 2=1交于A ,B 两点,则线段AB 的长为________. 解析 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +1得5x 2+8x +2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=25,x 1+x 2=-85,所以|AB |=1+12·(-85)2-4×25=45 3. 答案 45 3题型一 直线与椭圆的相交问题【例1】 (2019·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0), 直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2, 与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k 4+5k 2, 代入y =kx +2得y P =8-10k 24+5k 2,进而直线OP 的斜率为y P x P =4-5k 2-10k .在y =kx +2中,令y =0,得x M =-2k .由题意得N (0,-1),所以直线MN 的斜率为-k2. 由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245, 从而k =±2305(满足Δ=(20k )2-4(4+5k 2)>0). 所以直线PB 的斜率为2305或-2305.规律方法 解决直线与椭圆的相交问题,关键是找到图形的几何特征(例如中点、垂直、等腰等),再将几何特征用代数运算的方式加以利用,进行代数运算时要注意消元,达到减少量化简运算式的目的,这两方面是解析几何的本质特征. 【训练1】 (2019·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解 由题意,得b 2=1,c =1,所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1.令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪⎪⎪2t 2-21+2k 2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2. 解得t =0,所以直线l 经过定点(0,0). 题型二 中点弦问题【例2】 在椭圆x 2+4y 2=16中,求通过点M (2,1)且被这一点平分的弦所在的直线方程.解 方法一 如果弦所在的直线的斜率不存在,即直线垂直于x 轴, 则点M (2,1)显然不可能为这条弦的中点.故可设弦所在的直线方程为y =k (x -2)+1, 代入椭圆方程得x 2+4[k (x -2)+1]2=16, 即得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -12=0, ∵直线与椭圆有两个交点,故Δ=16(12k 2+4k +3)>0, 又x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12,满足Δ>0. ∴直线方程为x +2y -4=0.方法二 设弦的两个端点分别为P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4,y 1+y 2=2, ∵P (x 1,y 1),Q (x 2,y 2)在椭圆上,故有x 21+4y 21=16,x 22+4y 22=16,两式相减得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∵点M (2,1)是PQ 的中点,故x 1≠x 2,两边同除以(x 1-x 2)得(x 1+x 2)+4(y 1+y 2)y 1-y 2x 1-x 2=0,即4+8k =0,∴k =-12.∴弦所在的直线方程为y -1=-12(x -2), 即x +2y -4=0.规律方法 研究直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程,利用根与系数的关系或中点坐标公式解决.涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 【训练2】 已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,求直线l 的方程.解 由题意可设直线l 的方程为y -2=k (x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0.所以x 1+x 2=8k (4k -2)4k 2+1=8,所以k =-12(满足方程中的Δ>0). 所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0.题型三 椭圆中的综合性问题【例3】 已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:2|FP →|=|F A →|+|FB→|.证明 (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m . 由题设得0<m <32,故k <-12. (2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34, 从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB→|=4-12(x 1+x 2)=3. 故2|FP →|=|F A →|+|FB→|. 规律方法 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.【训练3】 如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP→=9, ∴|AB →||AP →|cos 45°=2|AP →|2cos 45°=9, ∴|AP→|=3. (1)∵P (0,1),∴|OP →|=1,|OA →|=2,即b =2,且B (3,1). ∵B 在椭圆上,∴9a 2+14=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得 9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t .∵a 2>b 2>0,∴3(3-t )23-2t >(3-t )2>0.∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是⎝ ⎛⎭⎪⎫0,32.课堂达标1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13B.33C.22D.12解析 将方程化为标准方程x 2m 2+y 2m 3=1,因为m >0,所以a 2=m 2,b 2=m3, 所以c 2=a 2-b 2=m 2-m 3=m6, 所以e =ca =m 6m 2=13=33.答案 B2.已知椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( ) A.53B.103C.203D.53解析 易知△ABF 2的内切圆的半径r =12,根据椭圆的性质结合△ABF 2的特点,可得△ABF 2的面积S =12lr =12×2c ×|y 1-y 2|,其中l 为△ABF 2的周长,且l =4a ,代入数据解得|y 1-y 2|=53. 答案 A3.已知椭圆x 2+4y 2=36的弦被A (4,2)平分,则此弦所在的直线方程为( ) A.x -2y =0B.x +2y -4=0C.2x +3y -14=0D.x +2y -8=0解析 设以A (4,2)为中点的椭圆的弦与椭圆交于E (x 1,y 1),F (x 2,y 2), ∵A (4,2)为EF 中点, ∴x 1+x 2=8,y 1+y 2=4,把E (x 1,y 1),F (x 2,y 2)分别代入椭圆x 2+4y 2=36中,得⎩⎨⎧x 21+4y 21=36, ①x 22+4y 22=36, ②则①-②得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴8(x 1-x 2)+16(y 1-y 2)=0, ∴k =y 1-y 2x 1-x 2=-12,∴以A (4,2)为中点的椭圆的弦所在的直线的方程为y -2=-12(x -4), 整理得x +2y -8=0. 答案 D4.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________. 解析 设M (x ,y ),∵MF 1→·MF 2→=0,∴点M 的轨迹方程是x 2+y 2=c 2,点M 的轨迹是以原点为圆心的圆,其中F 1F 2为圆的直径.由题意知椭圆上的点P 总在圆外,所以|OP |>c 恒成立, 由椭圆性质知|OP |≥b , ∴b >c ,∴a 2>2c 2, ∴⎝ ⎛⎭⎪⎫c a 2<12,∴0<e <22. 答案 ⎝⎛⎭⎪⎫0,225.(2019·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析 不妨设F 1,F 2分别为椭圆C 的左、右焦点,分析可知M 在以F 1为圆心、焦距为半径长的圆上,即在圆(x +4)2+y 2=64上. 因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y220=1,解得⎩⎨⎧x =3,y =±15. 又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案 (3,15)课堂小结解决直线与椭圆的综合问题,经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.。
2.2.2椭圆的几何性质
故椭圆的离心率 e=13,故选 A.
三、题型一:求离心率的值
分析:
四、题型二:求离心率的范围
能否得到a,b,c 的齐次不等关 系?
几何法一:临界化原则
几何法二:特殊化原则
代数方法——横坐标的取值
设P(x0, y0 ), 则F1(c,0), F (c,0)
PF1 PF2 0 x02 y02 c2 0
=
32������-������ 2������
=
12,解
得������
������
=
34,故离心率
e=34.
三、题型一:求离心率的值
【答案】 A 由题意,不妨设直线 l 的方程为 y=k(x+a),k>0,分别令
x=-c 与 x=0,得|FM|=k(a-c),|OE|=ka.
设 OE 的中点为 G,
由△OBG∽△FBM,得12|���|���������������������|| = ||������������������������||,
即 ������������
2������(������-������)
=
������+������ ������,整理,得������������
=
13,
从代数方法转化为横坐标的范围.
五、课堂练习
C C
六、课堂小结
七、作业
完成学案课后作业
|F1F2|=2c e=ac∈(0,1) c2=a2-b2
e越大,椭圆越扁
二、学习自测
二、学习自测
二、学习自测
【答案】 C 设直线 x=32������与 x 轴交于点 M,则∠PF2M=60°,在
Rt△PF2M
2.2.2椭圆的简单几何性质2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角 、 1 形,则其离心率为 2 。 3、若椭圆的 的两个焦点把长轴分成三等分,则其 、 的两个焦点把长轴分成三等分, 1 离心率为 3 。
4、若某个椭圆的长轴、短轴、焦距依次成等差数列, 、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3 则其离心率e=__________ 则其离心率 5
如图,我国发射的第一颗人造地球卫星的运行轨道 我国发射的第一颗人造地球卫星的运行轨道,是以地 例1 如图 我国发射的第一颗人造地球卫星的运行轨道 是以地 地球的中心)F 已知它的近地点A(离 心(地球的中心 2为一个焦点的椭圆 已知它的近地点 离 地球的中心 为一个焦点的椭圆,已知它的近地点 地面最近的点)距地面 距地面439km,远地点 距地面 远地点B距地面 地面最近的点 距地面 远地点 距地面2384km.并且 并且 F2、A、B在同一直线上,地球半径约为 在同一直线上, 、 在同一直线上 地球半径约为6371km,求卫星运 求卫星运 行的轨道方程(精确到1km). 行的轨道方程(精确到
( x − c)2 + y2 a2 −x c
c = . a
将上式两边平方,并化 ,得 将上式两边平方, 简
a ( 2 − c2 )x2 + a2 y2 = a2(a2 − c2 ). a 设 2 − c2 = b2 ,则方程可化成 x2 y2 + 2 = 1(a > b > 0). 2 a b
这是椭圆的标准方程, 所以点 的轨迹是长轴、短轴长 M 的轨迹是长轴、 这是椭圆的标准方程,
x y + 2 =1 2 a b
(a > b > 0),
F1 B D
Y
2.2.2 椭圆的简单几何性质 2
2
20 ,离心率是
3 5
,
a 10 3 5 c
2
c a
2
c 6 10
2
a
6
2
8
2
2 2
b 8
当焦点在 x 轴时,椭圆的标准方程是
x
y
1
当焦点在 y 轴时,椭圆的标准方程是
100 2 y
64 2 x
1
100
64
焦点坐标
半轴长 离心率
a, b, c 的关系
( c , 0 )、( c , 0 )
长半轴长为 短半轴长为
e c a
( 0 , c )、( 0 , c )
同左 同左 同左
a, b, (a b 0)
( 0 e 1)
a2=b2+c2
练习6.已知椭圆方程为 6 x y 6 则
y b
2 2
1( a b 0 )
从图形上看,椭圆关于x轴、y轴、原点对称。 如何从方程来分析这些对称性呢? (1)把y换成-y方程不变,椭圆关于x轴对称; (2)把x换成-x方程不变,椭圆关于y轴对称;
(3)把x换成-x,同时把y换成-y方程不变, 椭圆 关于原点成中心对称。
P 2 ( x, y)
*顶点:椭圆与它的对称轴的 四个交点,叫做椭圆的顶点。 这四个顶点的坐标是什么?
A1 ( a , 0 )、A B 1 ( 0 , b )、B
2 2
y
B2
A1
b
a
A2
( a ,0 ) (0, b )
o
B1
c
x
*长轴、短轴:线段A1A2、
§2.2.2 椭圆的简单几何性质(2)
>0 =0 <0
解:联立方程组 x ⋅ x = − 1 1 1 2 5 y = x − 消去 消去y 2 2 5x − 4x −1 = 0 ----- (1) x2+4y2=2 有两个根, 因为 ∆=36>0,所以方程(1)有两个根, ,所以方程( 则原方程组有两组解. 所以该直线与椭圆相交. 则原方程组有两组解 所以该直线与椭圆相交
42 + 52 尝试遇到困难怎么办? 尝试遇到困难怎么办?
及椭圆, 作出直线 l 及椭圆, 观察图形,数形结合思考 观察图形,数形结合思考.
d=
4 x0 − 5 y0 + 40
=
4 x0 − 5 y0 + 40 41
且
x0 2 25
+
y0 2 9
=1
几何画板显示图形 几何画板显示图形
x2 y2 3.已知椭圆 例 3.已知椭圆 + = 1 ,直线 l: 4 x − 5 y + 40 = 0 ,椭圆 : 25 9 上是否存在一点, 的距离最小?最小距离是多少? 上是否存在一点,到直线 l 的距离最小?最小距离是多少? 解:设直线 m 平行于直线 l,则 m l 直线 m 的方程可写成 4 x − 5 y + k = 0
1 已知直线y=x- 与椭圆 2+4y2=2,判断它们4 与椭圆x 例2.已知直线 已知直线 , x1 + x2 = 2 5 由韦达定理 的位置关系。 的位置关系。
1 1 7 变式1:交点坐标是什么? 变式 :交点坐标是什么? A(1, ), B(− , − ) 2 5 10 6 变式2:相交所得的弦的弦长是多少? 变式 :相交所得的弦的弦长是多少? | AB |= 5 5
2.2.2椭圆的简单几何性质课件人教新课标2
即2x+3y-12=0,选B.
(2)①设椭圆C的长半轴长为a(a>0),短半轴长为b(b>0),
则2b=4,由 a2 b2 3,
a
2
解得a=4,b=2.
因为椭圆C的对称轴为坐标轴,
所以椭圆C的方程为 x2 y2 1 或 y2 x2 1.
16 4
16 4
②设直线l的方程为y=x+m,A(x1,y1),B(x2,y2),
3
3
从而y中=x中+1= 2 1 1,
33
所以中点坐标为 ( 2 , 1).
33
【补偿训练】椭圆x2+4y2=16被直线 y 1 x 1 截得的弦长为
2
____________.
x2 4y2 16,
【解析】由
y
1 x 1, 2
消去y并化简得x2+2x-6=0.
设直线与椭圆的交点为M(x1,y1),N(x2,y2),
1.
12
4
(2)设M(x1,y1),N(x2,y2).
所以|AM|=|AN|,所以A在线段MN的垂直平分线上,
把M(x1,y1),N(x2,y2)分别代入椭圆C:1x22
y2 4
1
得:
x12 y12 1,
①
12 4
x22
y
2 2
1,
②
12 4
用①减去②得:x1 x2 x1 x2 y1 y2 y1 y2 ,
类型二 弦长及中点弦问题
【典例2】
(1)椭圆4x2+9y2=144内一点P(3,2),过点P的弦恰好以P为中
点,那么这弦所在的直线方程为( )
A.3x+2y-12=0
2.2.2椭圆的简单几何性质(1~5)
求截口BAC所在椭圆的方程. y
B
A
F1
o
F2
x
C
〈例题5〉求离心率 e.
(1).若椭圆 k 8 + 9 =1的离心率为
x
2
y
2
5 或4 4 0.5,则:k=_____
(2).若某个椭圆的长轴、短轴、焦距依次成等差数列,
3 5 则其离心率e=__________
第二课时
例6 已知点M与点F(4,0)的距离和它 4 25 x 到直线l: 的距离之比等于 , 5 4 y l 求点M的轨迹方程.
通法
新课引人
直 线 与 椭 圆 的 位 置 关 系
种类:
相离(没有交点) 相切(一个交点) 相交(二个交点)
几何 法!
直线与椭圆的位置关系的判定
代数方法
Ax By C 0 2 由方程组 x y2 2 2 1 b a
当直线平行于 mx 2 nx p 0(m 0)
a2 a2 】 5.准线:x 【或y c c
人教版A 数学 选修2-1
高二【16、22】专用
第二章 圆锥曲线与方程
吴川一中
陈智敏
椭圆中的基本元素
1.基本量: a、b、c、e 几何意义:a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: 2
c a b
2
2
c e a
x2 y2 轴上,所以,椭圆的标准方程为 1 c 3 9 4 . e 2 (2)由已知, a 20 , a 5
c ∴ a 10 , 6 ,∴ b2 102 62 64
2 2
,
y 2 x2 x y 1 1 或 所以椭圆的标准方程为 100 64 100 64
椭圆的简单几何性质(第二课时)
知识回顾 上节课我们研究椭圆的几个基本量 a,b,c,e及顶点、焦点、对称中心及 其相互之间的关系,
需要注意的是:
1.掌握数与形的联系; 2.求解椭圆方程的基本方法;
3.函数与方程思想和分类讨论思想.
课前热身
▲▲
你知道吗?
y
1. 长度为a的线段有 6 条.
C OC,OD . 2. 长度为b的线段有 3. OF1=OF2= c . A F1 O 4. AF1=BF2= a-c .
l
H
x
2. 哪些方法能求解未 知曲线类型的方程? 3. 计算离心率e的值, 有何发现吗?
F
范例分析
简单回顾求△F1AB的周长的方法.
y
A
x
F1 F2
B
范例分析 2 2 x y 1上的一点, 例题2.点P是椭圆 4 3 F1,F2是焦点,若△PF1F2的内切圆 半径为1/2,求点P的纵坐标.
2. 作业本P19 1--11.
P
6. |OP|的最小值是 b ;最大值是 a .
5. AF2=BF1=
7. |PF1|的最小值是 a-c ;最大值是 a+c .
范例分析 例题1.点M(x,y)与定点F(4,0)的距离和它到 直线l:x=25/4的距离之比是常数4/5, 求点M的轨迹.
y M
1. 你知道曲线类型吗?
y
P
x
F1
F2
温故知新
回顾 判断直线与圆的位置关系的方法.
d-r法 d=r 相切 d<r 相交 d>r 相离
△法 △=0 相切 △<0 相离 △>0 相交 .
今非昔比
探究 判断直线与椭圆的位置关系的方法.
人教课标版高中数学选修2-1《椭圆的简单几何性质(第2课时)》教学设计
2.2.2 椭圆的简单几何性质(第二课时)一、教学目标(一)学习目标1.理解直线与椭圆的位置关系;2.会进行位置关系的判断,计算弦长.(二)学习重点理解直线与椭圆的位置关系,会判定及应用(三)学习难点应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线的位置关系.二.教学设计(一)预习任务设计1.预习任务写一写:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- 若0∆=,则直线和椭圆有唯一公共点,直线和椭圆 相切 ;若0∆>,则直线和椭圆有两个公共点,直线和椭圆 相交 ;若0∆<,则,直线和椭圆没有公共点,直线和椭圆 相离 .2.预习自测(1)直线1y kx k =-+与椭圆22123x y +=的位置关系是( ) A.相交 B.相切 C.相离 D.不确定【知识点】直线与椭圆位置关系.【解题过程】直线(1)1y k x =-+恒过定点(1,1).由11123+<可知:点(1,1)在椭圆内部,故直线与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】A(2)判断(正确的打“√”,错误的打“×”) ①已知椭圆22221x y a b+=(0)a b >>与点(,0)P b ,过点P 可作出该椭圆的一条切线.( )②直线()y k x a =-与椭圆22221x y a b+=的位置关系是相交.( ) 【知识点】直线与椭圆位置关系.【解题过程】点(,0)P b 在椭圆22221x y a b+=内部,故过P 不能作出椭圆的切线;直线()y k x a =-恒过点(,0)a ,而(,0)a 为椭圆22221x y a b+=的有顶点,过直线()y k x a =-一定与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】①×;②√.(3)直线1y mx =+与椭圆2241x y +=有且只有一个交点,则2m =( ) A.21 B.32 C.43 D.54 【知识点】直线与椭圆的位置关系.【解题过程】联立方程22141y mx x y =+⎧⎨+=⎩得:22(14)830m x mx +++=. 由条件知:226412(14)0m m ∆=-+=,解得:234m =. 【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】C(4)椭圆13422=+y x 长轴端点为M 、N ,不同于M 、N 的点P 在此椭圆上,那么PM 、PN 的斜率之积为( )A.34-B.43-C.43D.34 【知识点】直线与椭圆.【解题过程】设00(,)P x y ,则,则2200334x y =-,故00003224PM PN y y k k x x ⋅=⋅=-+- 【思路点拨】按照题意直接代入求解即可.【答案】A(二)课堂设计1. 知识回顾(1)椭圆的简单几何性质;(2)直线与圆的位置关系.2. 新知讲解探究一:探究直线与椭圆的位置关系●活动① 复习回顾,类比学习我们学习过直线与圆的位置关系及判定,请你回忆相关知识.(1)直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点).(2)判定方法有两种:代数法、几何法.那么直线与椭圆又有什么样的位置关系呢?又该如何来判定直线与椭圆的位置关系呢?【设计意图】由已有的知识类比迁移到新知识.●活动② 思考交流,结论形成通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义.学生交流,自由发言,教师适时引导,得出结论.直线与椭圆没有公共点⇔直线与椭圆相离;直线与椭圆有一个公共点⇔直线和椭圆相切;直线与椭圆有两个公共点⇔直线与椭圆相交.通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢?例 1.判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2214x y +=的位置关系.【知识点】直线与椭圆的位置关系.课堂活动:学生完成练习,根据学生的解题情况引入代数方法.在巡视过程中,大部分学生采用的是代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论.【解题过程】将直线与椭圆方程联立,根据判别式∆判断,123,,l l l 分别与椭圆的关系为:相交、相离和相切.【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】123,,l l l 分别与椭圆的关系为:相交、相离和相切请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与椭圆的位置关系的判定方法:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- (1)0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;(2)0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;(3)0∆<,方程没有实数根⇔没有公共点⇔相离.【设计意图】以旧带新,学生易于理解.同类训练 已知椭圆2241x y +=及直线y x m =+,当m 为何值时,直线与椭圆相切?【知识点】直线与椭圆的位置关系【解题过程】解方程组2241x y y x m⎧+=⎨=+⎩,消去y ,整理得225210x mx m ++-=, 222420(1)2016m m m ∆=--=-,由0∆=得220160m -=,解得m =【思路点拨】用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法.探究二:计算椭圆的弦长●活动① 互动交流,形成结论例2. 已知斜率为2的直线经过椭圆22154x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长.【提出问题】本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?【知识点】直线与椭圆相交【解题过程】由条件知2(1,0)F ,故直线AB 方程为:22y x =-.设1122(,),(,)A x y B x y . 联立方程组2222154y x x y =-⎧⎪⎨+=⎪⎩,消去y 可得:2350x x -=. 法一:由2350x x -=得:1250,3x x ==,从而54(0,2),(,)33A B -. ||AB ∴== 法二:由2350x x -=得:12125,03x x x x +==. 2||=AB x ∴==-. 【思路点拨】初学者常想到求直线和椭圆的交点,然后利用两点间距离公式求弦长,此种方法仅当直线方程和椭圆方程简单时,易得交点坐标,一般情况不采用此法.弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .【设计意图】由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路.同类训练 已知椭圆2241x y +=及直线y x m =+,求直线被椭圆截得最长弦所在直线方程.【知识点】直线与椭圆相交弦长公式.【解题过程】由题意2241x y y x m⎧+=⎨=+⎩得225210x mx m ++-=, 由韦达定理得122122515m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, ∴弦长l === 当0m =时,l, 此时直线方程为y x =. 【思维点拨】当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用弦长公式求得弦长.●活动② 强化提升,灵活应用例3. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点轨迹方程;(2)过(2,1)A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;【知识点】直线与椭圆相交,曲线的方程.【解题过程】解:(1)设斜率为2的直线方程为2y x b =+.由22212y x b x y =+⎧⎪⎨+=⎪⎩得2298220x bx b ++-=, 由22(8)36(22)0b b ∆=-->,得33b -<<.设该弦的端点坐标为1122(,),(,)A x y B x y ,则12429x x b +=-,444393b -<-<. 设弦的中点坐标为(,)M x y ,则1249,294x x b x b x +==-=-, 代入2y x b =+,得4440()33x y x +=-<<为所求轨迹方程. (2)设l 与椭圆的交点为1122(,),(,)x y x y ,弦的中点为(,)x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减并整理得12121212()()2()()0x x x x y y y y -++-+=.又12122,2x x x y y y +=+=121212122()4()=0,()20()x x x y y y y y x y x x ∴-+--+⋅=-① 由题意知1212()1()2y y y x x x --=--,代入①得1202y x y x -+⋅=-. 化简得222220x y x y +--=.∴所求轨迹方程为222220x y x y +--=(夹在椭圆内的部分).【思路点拨】例3(2)解题方法叫做“点差法”,点差法充分体现了“设而不求”的数学思想.【答案】222220x y x y +--=.同类训练 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点,若线段AB 中点的横坐标是12-,求直线AB 的方程. 【知识点】直线与椭圆的位置关系.【解题过程】依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x ,消去y 整理得2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,, 则4222122364(31)(35)0 (1) 6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-, 得2122312312x x k k +=-=-+,解得k =,适合(1). 所以直线AB 的方程为10x +=,或10x ++=.【思维点拨】解决直线和圆锥曲线的相关问题时,韦达定理得应用十分广泛,此题干中涉及中点问题,自然联想到12x x +韦达定理结构.【答案】10x -+=,或10x +=.3.课堂总结知识梳理(1)直线与椭圆的位置关系0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;0∆<,方程没有实数根⇔没有公共点⇔相离.(2)弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .重难点归纳(1)用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法;(2)涉及弦中点的问题,常用点差法处理.(三)课后作业基础型 自主突破1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A.(-233,233)B.(233,+∞)∪(-∞,-233)C.(43,+∞)D.(-∞,-43)【知识点】椭圆的几何性质.【解题过程】因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.【思路点拨】根据点与椭圆的位置关系建立不等式求解.【答案】B 2.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P 点的坐标为( )A.(±152,1)B.(152,±1)C.(152,1)D.(±152,±1)【知识点】椭圆的几何性质.【解题过程】设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴12PF F S ∆=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D.【思路点拨】焦点三角形面积计算以12||F F 为底边.【答案】D3.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13【知识点】椭圆的几何性质.【解题过程】把x =-c 代入椭圆方程可得y c =±b 2a , ∴|PF 1|=b 2a ,∴|PF 2|=2b 2a ,故|PF 1|+|PF 2|=3b 2a =2a ,即3b 2=2a 2. 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33.【思路点拨】利用椭圆定义和几何关系解题.【答案】B4.如图F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1【知识点】椭圆的几何性质.【解题过程】连接AF 1,由圆的性质知,∠F 1AF 2=90°,又∵△F 2AB 是等边三角形,∴∠AF 2F 1=30°,∴AF 1=c ,AF 2=3c ,∴e =c a =2c 2a =2c c +3c=3-1.故选D.【思路点拨】利用圆的几何性质和椭圆离心率的定义. 【答案】D5.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_____________.【知识点】椭圆的几何性质.【解题过程】设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12, ∴所求直线方程为y -1=-12(x -2),即x +2y -4=0. 【思路点拨】中点弦问题灵活利用点差法. 【答案】x +2y -4=0.6.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________.【知识点】椭圆的几何性质.【解题过程】由|AF 1|+|AF 2|=2a =4得a =2. ∴原方程化为:x 24+y 2b 2=1, 将A (1,32)代入方程得b 2=3.∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 【思路点拨】把握椭圆的定义解题. 【答案】x 24+y 23=1;(±1,0). 能力型 师生共研7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c=0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2上 B.必在圆x 2+y 2=2外 C.必在圆x 2+y 2=2内 D.以上三种情形都有可能 【知识点】椭圆的几何性质. 【解题过程】e =12⇒c a =12⇒c =a2, a 2-b 2a 2=14⇒b 2a 2=34 ⇒b a =32⇒b =32a .∴ax 2+bx -c =0⇒ax 2+32ax -a2=0⇒x 2+32x -12=0,x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2. ∴在圆x 2+y 2=2内,故选C.【思路点拨】简化,,a b c 关系将方程具体化. 【答案】C8.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.【知识点】椭圆的几何性质.【解题过程】设椭圆方程为x 2a 2+y 2b 2=1,则有A (-a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得()1b b a c -=-,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e>0,∴e =5-12.【思路点拨】利用椭圆几何性质解题. 【答案】e =5-12.探究型 多维突破9.已知过点A (-1,1)的直线l 与椭圆x 28+y 24=1交于点B ,C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程. 【知识点】椭圆的几何性质.【解题过程】设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2),弦BC 的中点M (x ,y ),则⎩⎪⎨⎪⎧x 218+y 214=1,①x 228+y 224=1,②①-②,得(x 218-x 228)+(y 214-y 224)=0,∴(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0.③当x 1≠x 2时,③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0.∵x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1,∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0.当x 1=x 2时,∵点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.综上所述,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 【思路点拨】弦中点问题灵活利用点差法解题. 【答案】x 2+2y 2+x -2y =0.10.已知椭圆方程22123x y +=,试确定m 的范围,使椭圆上存在两个不同点关于直线4y x m =+对称.【知识点】椭圆的几何性质.【解题过程】设点1122(,),(,)A x y B x y 为椭圆上点,且关于直线4y x m =+对称,另设AB 中点坐标为00(,)M x y则22112222123123x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得1212121211023y y y y x x x x -++⋅=-+ 01212121203322AB y y y y y k x x x x x -+⇒⋅=-⇒⋅=--+ ① 1122(,),(,)A x y B x y 关于直线4y x m =+对称,14AB k ∴=-,代入①式得006y x = ②易知点00(,)M x y 必在直线4y x m =+上,004y x m ∴=+ ③ 联立②③解得(,3)2mM m AB 为椭圆的弦,∴中点M 必在椭圆内, 22()(3)2123m m ∴+<,m <<【思路点拨】注意利用弦的中点在椭圆内部建立不等关系解题.【答案】m <<自助餐1.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为( )A.12B.33C.22D.32【知识点】椭圆的几何性质.【解题过程】由已知得⎩⎨⎧2n =m +m +n ,n 2=m 2n .解得⎩⎨⎧m =2,n =4.∴e =n -m n =22,故选C.【思路点拨】利用离心率的定义. 【答案】C2.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A.b 2B.bcC.abD.ac 【知识点】椭圆的几何性质.【解题过程】S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc .【思路点拨】椭圆几何性质把握图形中的几何关系. 【答案】B3.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318 【知识点】椭圆的几何性质.【解题过程】设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x , 由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴e =c a =2c 2a =x 83x =38.【思路点拨】注意转化为椭圆的定义. 【答案】C4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8 【知识点】椭圆的几何性质.【解题过程】由题意可知O (0,0),F (-1,0),设点P 为(x ,y ),则OP →=(x ,y ), FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+x +y 2=x 2+x +3-34x 2 =14x 2+x +3=14(x +2)2+2. ∵x ∈[-2,2],∴当x =2时,OP →·FP →取最大值.(OP →·FP →)max=14(2+2)2+2=6,故选C. 【思路点拨】数量积问题坐标化处理. 【答案】C5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【知识点】椭圆的几何性质.【解题过程】(1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4, 又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得22(3)12525x x -+=,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65).【思路点拨】直线与椭圆相交注意利用韦达定理解题. 【答案】见上6.设12F F 、是椭圆:E 2221(01)y x b b+=<<的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且22||,||,||AF AB BF 成等差数列. (1)求||AB ;(2)若直线l 的斜率为1,求b 得值. 【知识点】椭圆的几何性质.【解题过程】(1)由椭圆定义知:22||||||4AF AB BF ++=, 又222||||||AB AF BF =+,得4||3AB =. (2)l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则2221y x c y x b =+⎧⎪⎨+=⎪⎩化简得222(1)2120b x cx b +++-=,则2121222212,11c b x x x x b b--+==++ 因为直线AB 的斜率为1,所以21|||AB x x =-,即214||3x x -.则224212122222284(1)4(12)8()49(1)(1)(1)b b b x x x x b b b --=+-=-=+++,解得b =【思路点拨】将弦长||AB 从两个不同角度考虑,建立等式解题. 【答案】见上。
学案6:2.2.2 椭圆的简单几何性质
2.2.2 椭圆的简单几何性质【课标点击】1.掌握椭圆的中心、顶点、长短轴、离心率的概念2.理解椭圆的范围和对称性【预习导学】►基础梳理1.椭圆的两个标准方程的几何性质与特征比较.2.椭圆的离心率e.(1)因为a>c>0,所以0<e<1.(2)e越小,椭圆越圆;e越大,椭圆越扁.(3)当e=0时,即c=0,a=b时,两焦点重合,椭圆方程变成x2+y2=a2,成为一个圆.(4)当e=1时,即a=c,b=0时,椭圆压扁成一条线段.(5)离心率e刻画的是椭圆的扁平程度,与焦点所在轴无关.3.直线与椭圆.设直线方程y=kx+m,若直线与椭圆方程联立,消去y得关于x的一元二次方程:ax2+bx+c=0(a≠0).(1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点;(3)Δ<0,直线与椭圆无公共点.►自测自评1.椭圆x 26+y 2=1的长轴端点的坐标为( )A .(-1,0),(1,0)B .(-6,0),(6,0)C .(0,-6),(0,6)D .(-6,0)(6,0)2.离心率为32,焦点在x 轴上,且过点(2,0)的椭圆标准方程为( )A.x 24+y 2=1 B.x 24+y 2=1或x 2+y 24=1 C .x 2+4y 2=1D.x 24+y 2=1或x 24+y 216=13.椭圆x 216+y 28=12►随堂巩固1.椭圆25x 2+9y 2=225的长轴长,短轴长,离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.已知椭圆的焦点在x 轴上,离心率为12,且长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 3.在一椭圆中以焦点F 1,F 2为直径两端点的圆,恰好过短轴的两顶点,则此椭圆的离心率e 等于________.4.设椭圆C :x 2a 2+y 2b 2=1(a >b >c )过点(0,4),离心率为35.(1)求C 得方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.5.如图所示F 1,F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.►课时训练1.椭圆x 225+y 29=1与x 29-k +y 225-k=1(0<k <9)的关系为( )A .有相等的长轴B .有相等的短轴C .有相同的焦点D .有相等的焦距2.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.123.若椭圆x 216+y 2m =1的离心率为13,则m 的值为( )A.1289B.1289或18 C .18 D.1283或64.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是( )A.x 2144+y 2128=1B.x 236+y 220=1 C.x 232+y 236=1 D.x 236+y 232=1 5.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.已知点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上一点,且PF 1→·PF 2→=0,tan∠PF 1F 2=12,则该椭圆的离心率等于( )A.13B.12C.23D.537.已知椭圆上一点P 到两个焦点的距离的和为4,其中一个焦点的坐标为(3,0),则椭圆的离心率为________.8.椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________________________________________________________________________.9.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.10.已知椭圆的对称轴为坐标轴,离心率e =23,短轴长为85,求椭圆的方程.11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,且椭圆经过点N (2,-3).(1)求椭圆C 的方程;(2)求椭圆以M (-1,2)为中点的弦所在直线的方程.12.已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M 、N ,当|AM |=|AN |时,求m 的取值范围.►体验高考1.若椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2离心率为33,过F 2的直线l交C 与A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1C.x212+y28=1 D.x 212+y 24=1 2.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点,|AF 1|=3|BF 1|.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.4.设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .答 案►自测自评 1.【答案】D 2.【答案】A3.【答案】解:∵x 216+y 28=1中,a 2=16,b 2=8,∴c 2=a 2-b 2=8.∴e =c a =224=22.►随堂巩固 1.【答案】B 2.【答案】A【解析】圆:x 2+y 2-2x -15=0的半径r =4⇒a =2,又因为e =c a =12,c =1,所以a2=4,b 2=3,故选A.3.【解析】由题可知b =c ,∴a 2=b 2+c 2=2c 2,a =2c .∴e =c a =22.【答案】224.【答案】解:(1)将(0,4)代入C 的方程得16b2=1,∴b =4.又e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x225+(x -3)225=1,即x 2-3x -8=0,解得x 1=3-412,x 2=3+412,∴AB 的中点坐标x 0=x 1+x 22=32,y 0=y 1+y 22=25(x 1+x 2-6)=-65,即中点坐标为⎝ ⎛⎭⎪⎫32,-65.5.【答案】解:设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c .则焦点为F 1(-c ,0),F 2(c ,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形.∴|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 3=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,∴e =53.►课时训练1.【答案】D 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】A【解析】将x 2a 2+y 2b 2=k (k >0)化为x 2a 2k +y 2b 2k=1.则c 2=(a 2-b 2)k ,∴e 2=(a 2-b 2)k a 2k =c 2a2.6.【答案】D7.【答案】328.【答案】x 24+y 2=1或y 24+x 2=1.9.【解析】若点P 在第二象限,则由题意可得P ⎝⎛⎭⎪⎫-c ,b 2a ,又∠F 1PF 2=60°,所以2cb 2a=tan 60°=3,化简得3c 2+2ac -3a 2=0,即3e 2+2e -3=0,e ∈(0,1),解得e =33,故填33. 【答案】3310.【答案】解:∵2b =85,∴b =4 5. 又c a =23,由a 2-c 2=b 2, 得a 2=144,b 2=80. ∴x 2144+y 280=1或y 2144+x 280=1. 11.【答案】解:(1)由椭圆经过点N (2,-3), 得22a 2+(-3)2b2=1 又e =c a =12,解得a 2=16,b 2=12.∴椭圆C 的方程为x 216+y 212=1.(2)显然M 在椭圆内,设A (x 1,y 1),B (x 2,y 2)是以M 为中点的弦的两个端点, 则x 2116+y 2112=1,x 2216+y 2212=1. 相减得(x 2-x 1)(x 2+x 1)16+(y 2-y 1)(y 2+y 1)12=0.整理得k AB =-12·(x 1+x 2)16·(y 1+y 2)=38,则所求直线的方程为y -2=38(x +1),即3x -8y +19=012.【答案】解:(1)依题意可设椭圆方程为x 2a2+y 2=1,则右焦点F 的坐标为(a 2-1,0),由题意得|a 2-1+22|2=3,解得a 2=3.故所求椭圆的标准的方程为x 23+y 2=1.(2)设P (x P ,y p )、M (x M ,y M )、N (x N ,y N ),其中P 为弦MN 的中点, 由⎩⎪⎨⎪⎧y =kx +mx 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0. ∵Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0, 即m 2<3k 2+1 ①,x M +x N =-6mk 3k 2+1,∴x P =x M +x N 2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1.∴k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,∴AP ⊥MN ,因而-m +3k 2+13mk =-1k,即2m =3k 2+1 ②,把②式代入①式得m 2<2m ,解得0<m <2,由②式得k 2=2m -13>0,解得m >12,综上所述,求得m 的取值范围为12<m <2.►体验高考 1.【答案】A A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 【解析】∵△AF 1B 的周长为43,∴4a =43,∴a =3,∵e =c a =33,∴c =1,b =2,∴椭圆C 的方程为x 23+y 22=1.2.【解析】由题意,F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.不妨设点B 在第一象限,由AB ⊥x 轴,∴B ⎝ ⎛⎭⎪⎫c ,b 2a ,A ⎝⎛⎭⎪⎫c ,-b 2a . 由于AB //y 轴,|F 1O |=|OF 2|,∴点D 为线段BF 1的中点,则D ⎝ ⎛⎭⎪⎫0,b 22a ,由于AD ⊥F 1B ,知F 1B →·DA →=0,则⎝⎛⎭⎪⎫2c ,b 2a ·⎝ ⎛⎭⎪⎫c ,-3b 22a =2c 2-3b 42a 2=0,即2ac =3b 2,∴2ac =3(a 2-c 2), 又e =c a,且e ∈(0,1), ∴3e 2+2e -3=0,解得e =33(e =-3舍去). 【答案】333.【答案】解:(1)由|AF 1|=3|F 1B |,|AB |=4, 得|AF 1|=3,|F 1B |=1. ∵△ABF 2的周长为16.∴4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k , 由椭圆定义可得|AF 2|=2a -3k ,|BF 2|=2a -k , 在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|·cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )·(2a -k ),化简可得(a +k )·(a -3k )=0,而a +k >0,故a =3k . 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得AF 1⊥AF 2.∴△AF 1F 2为等腰直角三角形,∴c =22a ,e =22.4.【解析】解:(1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a由k MN =34,得b 22ac =34,则2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2//y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4.于是b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1. 解得a =7,b 2=4a =28,即b =27.∴a =7,b =27.。
2.2.2椭圆的简单几何性质2——离心率问题
练习:
x2 y 2 (3)设 F1F2 是椭圆 E : 2 2 1(a b 0) 的左、右焦点 , a b
ABF2 为等边三角 过F 1 作轴的垂线与椭圆交于 A,B 两点 ,
形 ,则 E 的离心率为 __________.
x2 y 2 (4)[2013 辽 宁 ] 已 知 椭 圆 C : 2 2 1(a b 0) 的 左 焦 点 为 a b
变式2:已知椭圆
x2 y2 + = 1(a > b > 0) 的左、右焦点分别为F 、F , 1 2 a 2 b2
o F PF = 60 若椭圆上存在一点P,使得 , 则椭圆离心率e的范围 1 2 o F PF = 120 1 2 是 .
总结:
1.椭圆离心率的问题,通常有两类:一是求椭圆的离 心率;二是求椭圆离心率的取值范围。 2.求椭圆的离心率:只需要由条件得到一个关于基本 量 a,b,c,e 的一个方程,就可以从中求出离心率. 3.求椭圆的离心率的取值范围:通常可以从两个方面 来研究:一是考虑几何的大小,例如线段的长度、 角的大小等;二是通过设椭圆点的坐标,利用椭圆 本身的范围,列出不等式.
椭圆的焦点三角形问题 2 2 x y 例 3.椭圆 点 P 为椭圆上的点, 1的焦点为 F1、F2 , 25 9 (1) 满足F1PF2 为直角的点 P 的个数; (2)当 F1 PF2 为钝角时,求点 P 的横坐标的取值范围;
(3)若 F1PF2 的内切圆半径为 1 ,求 PF 的值. 1 PF2
2
x2 y 2 (1)(12 新课标 )设 F1F2 是椭圆 E : 2 2 1(a b 0) a b
3a 的左、右焦点 , P 为直线 x 上一点 , F2 PF 1 是底角 2
2.2.2椭圆的简单几何性质
(b,0)、(0,a)
(0<e<1)
离心率
例题精析 例1求椭圆16x2+25y2=400的长轴和短轴的长、 离心率、焦点和顶点坐标并画出简图.
解:把已知方程化成标准方程 这里, 5 , b 4 , c a 离心率 e
c a 3 5 0 .6
x 5
2 2
y 4
2 2
B1(0,-b)
③焦点必在长轴上;
小试身手:
2
2.说出 9 1 6 1 下列椭圆的范围,长轴 长,短轴长,焦点坐标,顶点坐标:
x
y
2
3 x 3, 4 y 4
2a 8, 2b 6
(0,
7)
(0, 4), (3, 0)
椭圆的焦距与长轴长的比e
∵a>c>0, ∴0 < e <1.
当e b c a a
2
椭圆的简单几何性质 4.离心率: c
a
叫做椭圆的离心率.
1, c a , c
2
0 , 椭圆 扁
当e b
c a a
2
0, c 0, c
2
a , 椭圆 圆
离心率越大,椭圆越扁 当且仅当a=b时,c=0,这时两个 焦点重合,图形变为圆. 离心率越小,椭圆越圆
y a
2 2
x
x b
2 2
1( a b 0 )
焦点为 F1(-c,0)、F2(c,0)
焦点为 F1(0 ,-c)、F2(0,c)
椭圆的简单几何性质
1.范围
x a
2 2
x a
2 2
y b
§2.2.2椭圆的几何性质(第2课时)
6.如果 x2 ky 2 2 表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是
7.已知椭圆
x2 y 2 10 =1 的离心率 e ,则 m 的值为__ 5 m 5
_.
第3页
错误!链接无效。 §2.2.2 椭圆的几何性质(第 2 课时)
8. 已知 m, n, m n 成等差数列 , m, n, mn 成等比数列 , 求椭圆 的离心率.
编号:X2-1003 学习 目标 一.课前复习 1.完成下列表格
§2.2.2 椭圆的几何性质(第 2 课时)
(1) 掌握椭圆的简单的几何性质 (2)感受运用方程研究曲线方程几何性质的思想方法; (3)运用椭圆的方程和几何性质处理简单的实际问题. 二次总结栏
图形
方程 焦点 顶点 轴长 对称性 范围 离心率 2.求椭圆 9 x 2 y 2 81的长轴长、短轴长和顶点坐标.
二.今日练习 3. P 点在椭圆 的坐标是
x2 y2 1 上, F1 、 F2 是椭圆的焦点,若 PF1 PF2 ,则 P 点 45 20 .
4.椭圆以坐标轴为对称轴,长、短半轴之和为 10,焦距为 4 5 ,则椭圆方 程为 .
5. 椭 圆 以 两 条 坐 标 轴 为 对 称 轴 , 一 个 顶 点 是 (0,13) , 另 一 个 顶 点 是 ( 10,0) ,则焦点坐标是 .
二次总结栏
1 3
(2)焦点【练习 2】已知椭圆 mx2 5 y 2 5m 的离心率为 e
10 ,求 m . 5
【例 2】 已知 F1 为椭圆的左焦点,A、 B 分别为椭圆的右顶点和上顶点, P 为 椭圆上的点 , 当 PF1 F1 A, PO AB(O 为椭圆的中心 ) 时 , 求椭圆的离心 率.
高中数学_椭圆的简单几何性质(2)教学设计学情分析教材分析课后反思
(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。
二、教材分析《椭圆的几何性质》是人教版2-1的内容。
本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。
这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。
本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。
三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。
2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。
3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。
能力目标1.培养学生观察、分析、抽象、概括的能力。
2.渗透数形结合、类比等数学思想。
3.强化学生的参与意识,培养学生的合作精神。
情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。
2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。
3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。
四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。
难点:利用椭圆的标准方程探究椭圆的几何性质。
五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。
(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。
2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。
教学设计4:2.2.2 椭圆的简单几何性质
2.2.2 椭圆的简单几何性质x 2≤a 2且y 2≤b 2,则有|x |≤a,|y |≤b, 所以-a ≤x ≤a,-b ≤y ≤b 。
2.对称性的发现与证明师:椭圆的图形给人们以视觉上的美感(课件展示椭圆),如果我们沿焦点所在的直线上下对折,沿两焦点连线的垂直平分线左右对折,大家猜想椭圆可能有什么性质?(学生动手折纸,课前教师要求学生把上节学习椭圆定义时画的椭圆拿来。
) 学生们基本上能发现椭圆的轴对称性。
师:除了轴对称性外,还可能有什么对称性呢?稍作提示容易发现中心对称性。
师:这仅仅是由观察、猜想得到的结果,怎样用方程证明它的对称性?师生讨论后,需要建立坐标系,确定椭圆的标准方程。
不妨建立焦点在x 轴上的椭圆的标准坐标系,它的方程就是22a x +22by =1。
师:这节课就以焦点在x 轴上的椭圆的标准方程为例来研究椭圆的性质。
这样建立的坐标系对称轴恰好重合于坐标轴,我们先证椭圆关于y 轴对称。
为了证明对称性,先作如下铺垫:(一起回顾)师:在第一册学过,曲线关于y 轴对称是指什么呢?生:曲线上的每一点关于y 轴的对称点仍在曲线上。
师:要证曲线上每一点关于y 轴的对称点仍在曲线上,只要证明-----生:曲线上任意一点关于y 轴的对称点仍在曲线上。
在学生尝试进行问题解决的过程中,当他们难以把握问题解决的思维方向,难以建立起新旧知识的联系时,这就需要教师适时进行启发点拨。
师:同学们阅读教材中椭圆对称性的证明过程,仔细体会并思考“为什么把x 换成-x 时,方程不变,则椭圆关于y 轴对称”。
请一位学生讲解椭圆对称性的证明过程,以此来训练学生表述的逻辑性、完整性和推理的严谨性。
教师对学生的证明进行评价。
师:用类似的方法可以证明椭圆关于x 轴对称,关于原点对称。
课件展示对称性并总结:方程22a x +22by =1表示的椭圆,坐标轴是其对称轴,原点是其对称中心.从而椭圆有两条互相垂直的对称轴,有一个对称中心(简称中心).教师引导学生对这一环节进行反思,即通过建立坐标系,用椭圆的方程研究椭圆的性质,这种方法我们今后经常用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称性 顶点坐标
(a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0) 长半轴长为a,短 半轴长为b. a>b
焦点坐标
半轴长 离心率 a、b、c的关 系
c e a
a2=b2+c2
同前
课前练习
求适合下列条件的椭圆的标准方程:
1.经过点P(-3,0) 、Q(0,-2);
3 2.长轴的长等于20,离心率等于 5
2.2.2椭圆的简单
几何性质(二)
标准方程 范围
x2 y 2 2 1(a b 0) 2 a b
x2 y 2 2 1(a b 0) 2 b a
复习
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称; 关于原点成中心对称
|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 同前 同前
F
将上式两边平方,并化简,得9 x 2 25 y 2 225,
x2 y 2 即 1 25 9
所以,点M的轨迹是长轴、短轴长分别为10、6的椭圆。
变式、点M(x,y)与定点F (c,0)的距离和它到定直线 l:x=a2/c 的距离的比是常数c/a(a>c>0),求点M 的轨迹。 解:设 d是M到直线l 的距离,根 据题意,所求轨迹就是集合 I’
点,F1(c,0), F2(c,0)分别是椭圆的左焦点、右焦点, 我们把线段PF1,PF2的长分别叫做椭圆的左焦 半径、右焦半径.
| PF1 | e 2 a x0 ( ) c a2 | PF1 | e( x0 ) ex0 a c | PF1 | e | PM |
| PF2 | 2a | PF1 | 2a (ex0 a) a ex0
例6 点M ( x, y )与定点F (4,0)的距离和它到直线 25 4 l : x 的距离的比是常数 ,求点M的轨迹。 4 5
y l M o d H x
25 解:设d是点M到直线l : x 的距离,根据题意, 4 MF 4 点M的轨迹就是集合P M , d 5 ( x 4) y 2 4 由此得 . 25 5 x 4
B
2 ( A) 11 11
11 (B ) 2
2 (C ) 11
7 (D ) 11
例7.
解:
变式: 1.已知点M到定点F的距离与M到定直线l的 距离的比为0.8,则动点M的轨迹是( B ) A.圆 B.椭圆 C.直线 D.无法确定 2.设中心在原点,焦点在x轴上的椭圆的长轴长 3 是短轴长的4倍,且椭圆过点 P(2, ) ,求P点 2 到左焦点和右准线的距离之比。
这是椭圆的标准方程,所以点M的轨迹是长轴、 短轴分别为2a,2b 的椭圆
I’
y
l
F’
o
F
x
由变式可知,当点M与一个定点的距离和它到一条定直 c 线的距离 的比是常数 e 0 e 1 时,这个点的轨 a 迹 就是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常 数e是椭圆的离心率。 此为椭圆的第二定义.
该公式的记忆方法为‘‘左加右减”,即在a与ex0之 间, 如果是左焦半径则用加号“+’’连接,如果是右焦半径用 “-”号连接.
焦半径公式 ①焦点在x轴上时: │PF1│=a+exo,│PF2│=a-exo; ②焦点在y轴上时: │PF1│=a+eyo,│PF2│=a-eyo。 课堂练习
x2 y2 1 上一点到准线 x 11 与到焦 1、椭圆 11 7 2 点(-2,0)的距离的比是 ( )
B A F1 C o F2 x y
由椭圆的性质知,1B F2 B 2a, 所以 F
1 1 a ( F1 B F2 B ) (2.8 2.82 4.52 ) 4.1 2 2
b a c 4.1 2.25 3.4
2 2 2 2
x2 y2 所以,所求的椭圆方程为 2 2 1 4.1 3.4
小结
1. 椭圆的第二定义 2.焦半径: ①焦点在x轴上时: │PF1│=a+ex0,│PF2│=a-ex0; ②焦点在y轴上时: │PF1│=a+ey0,│PF2│=a-ey0。
已知BC F1 F2 , F1 B 2.8cm, F1 F2 4.5cm, 求截口BAC所在椭圆的方程。
解:建立如图所示的直角坐标系, x2 y 2 设所求椭圆方程为 2 1. 2 a b 2 2 在RtBF1 F2中,2 B F1 B F1 F2 2.82 4.52 F
x2 y2 (1) 1 9 4 x2 y2 (2) 1 100 64
例5 如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕 其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一 个焦点F2上,由椭圆一个焦点F1出发的光线,经过旋转椭圆面反 射后集中到另一个焦点F2.
y M l
MF c P={M| d a
由此得
}
y2 c a
F’
o
F
x
x c 2
a2 x c
将上式两边平方,并化简,得 设 a2-c2=b2,就可化成
a
2
c x a y a a c
2 2 2 2 2 2
2
x2 y2 2 1(a b 0) 2 a b
x2 y2 2 1,相应于焦点F(c,0) 对于椭圆 2 a b 2 a 准线方程是 x , 根据椭圆的对称性,相应于
焦点F‘(-c.0) 准线方程是
所以椭圆有两条准线。
c
a2 , x c
由椭圆的第二定义可得到椭圆的几何性质如下:
x2 y2 设P(x0,y0)是椭圆 a 2 b2 1(a b 0) 上的一