2018年安徽省淮北市高考数学一模试卷(理科)含答案
2018年安徽省淮北市高考一模数学试卷(理科)【解析版】
A.4
B.8
C.
D.
12. (5 分)若存在实数 x 使得关于 x 的不等式(ex﹣a)2+x2﹣2ax+a2≤ 成立, 则实数 a 的取值范围是( A.{ } B.{ } ) C.[ ,+∞) D.[ ,+∞)
二、填空题:本大题共 4 小题,每小题 5 分 13. (5 分)已知等差数列{an}前 15 项的和 S15=30,则 a2+a9+a13= 14. (5 分)若 .
的二项展开式中的所有二项式系数之和等于 256,则该 .
展开式中常数项的值为
15. (5 分)已知函数 f(x)的定义域为 R,其导函数 f′(x)的图象如图所示, 则对于任意 x1,x2∈R(x1≠x2) ,下列结论正确的序号是
第 3 页(共 23 页)
①f(x)<0 恒成立; ②(x1﹣x2)[f(x1)﹣f(x2)]<0; ③(x1﹣x2)[f(x1)﹣f(x2)]>0; ④f( ⑤f( )> )<
B.c>a>b
10. (5 分) 已知函数 f (x) =asinx﹣2
cosx 的一条对称轴为 x=﹣ ) D.
•f(x2)=﹣16,则|x1+x2|的最小值为( A. B. C.
11. (5 分)对于向量 a,b,定义 a×b 为向量 a,b 的向量积,其运算结果为一 个向量,且规定 a×b 的模|a×b|=|a||b|sinθ(其中 θ 为向量 a 与 b 的夹角) ,a ×b 的方向与向量 a, b 的方向都垂直, 且使得 a, b, a×b 依次构成右手系. 如 图,在平行六面体 ABCD﹣EFGH 中,∠EAB=∠EAD=∠BAD=60°,AB =AD=AE=2,则 =( )
安徽省淮北市2018届高考第二次模拟考试数学试题(理)含答案
D.
5 1 , U ,1 12 3 12
图象交于不同的两点 A, B , )
9.若直线 x ky 0 k 0 与函数 f x
2
x
11 2 sin 2 x 2x 1
且点 C 9,3 ,若点 D m, n 满足 DA DB CD ,则 m n ( A. k B.2 C.4 D.6
11 f x, xa 12 函数 f x 的图象,已知函数 g x ,则当函数 g x 有 4 个零点 3 x 2 2 x 1, a x 13 12
时 a 的取值集合为( A. )
5 1 , U 12 3
15.已知 a
2 2
a cos xdx ,则二项式 x 展开式中的常数项是 x
6
.
2 16.设数列 an 的各项均为正数,前 n 项和为 S n ,对于任意的 n N , an , S n , an 成等差数列,
设数列 bn 的前 n 项和为 Tn , 且 bn
3.命题 p :若向量 a b 0 ,则 a 与 b 的夹角为钝角;命题 q :若 cos cos 1 ,则
r r
r
r
sin 0 .下列命题为真命题的是(
A. p B. q C. p q
) D. p q
4.已知等比数列 an 中, a5 2 , a6 a8 8 ,则 A.2 B.4 C.6 D.8
6 2 x ,集合 B x y lg 8 x ,则 A I B (
B. x x 2
)
2018年高考试题安徽卷理科数学及答案 精品
2018年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π ,其中R 表示球的半径C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2018年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题 17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a2018年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22-(C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n -≥++++222323222121log log log log2018年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>, 所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.30304||,||,.555AN BN AN BN ==⋅=- 2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即1,2,0,.2n n n n q q T S T S =-=-==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+-22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++=,则121222323222log log log log k k p p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p +满足112321k p p p p +++++=,令1232k x p p p p =++++11p q x =,22p q x=,……,22k kp q x = 则1232,,,,k q q q q 为正数,且12321k q q q q ++++=,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()log x k x x ≥-+ ①同理,由1212221k k k p p p x ++++++=-,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立2017年普通高等学校招生全国统一考试(安徽卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2018年安徽省高考数学模拟试卷及参考答案01
2018年安徽省高考数学模拟试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={x|3x<16,x∈N},B={x|x2﹣5x+4<0},A∩(∁R B)的真子集的个数为()A.1 B.3 C.4 D.72.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i3.若(+2x)6展开式的常数项为()A.120 B.160 C.200 D.2404.若a=()10,b=(),c=log10,则a,b.c大小关系为()A.a>b>c B.a>c>b C.c>b>a D.b>a>c5.如图,网格上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的表面积为()A.93+12B.97+12C.105+12D.109+126.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图的程序框图的算法思路就是来源于“欧几里得算法”.执行改程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,则输出的a=()A.0 B.25 C.50 D.757.将函数f(x)=2cos2x﹣2sinxcosx﹣的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为()A. B.C.D.8.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,﹣1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为()A.(x﹣1)2+(y+1)2=1 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2= D.(x﹣1)2+(y+1)2=9.已知x,y满足约束条件,目标函数z=2x﹣3y的最大值是2,则实数a=()A.B.1 C.D.410.已知正三棱锥A﹣BCD的外接球半径R=,P,Q分别是AB,BC上的点,且满足==5,DP⊥PQ,则该正三棱锥的高为()A.B.C.D.211.已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:﹣=1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是()A.2 B.C.D.112.已知函数f(x)是定义在R上的可导函数,其导函数为f′(x),则命题P:“∀x1,x2∈R,且x1≠x2,||<2017”是命题Q:“∀x∈R,|f′(x)|<2017”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量=(﹣1,m),=(0,1),若向量与的夹角为,则实数m 的值为.14.已知sin(﹣α)=(0<α<),则sin(+α)=.15.在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为.16.已知在平面四边形ABCD中,AB=,BC=2,AC⊥CD,AC=CD,则四边形ABCD 面积的最大值为.三、解答题(本大题共5小题,共70分)17.(12分)已知各项均不相等的等差数列{a n}满足a1=1,且a1,a2,a5成等比数列.(1)求{a n}的通项公式;(2)若b n=(﹣1)n(n∈N*),求数列{b n}的前n项和S n.18.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).(Ⅰ)求图中a的值;(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?晋级成功晋级失败合计男16女50合计(参考公式:K2=,其中n=a+b+c+d)P(K2≥k)0.400.250.150.100.050.025 k0.780 1.323 2.072 2.706 3.841 5.024(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).19.(12分)如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A﹣BCD,其中AB⊥CD.(Ⅰ)证明:平面ACD⊥平面BAD;(Ⅱ)若F为CD中点,求二面角C﹣AB﹣F的余弦值.20.(12分)设点M到坐标原点的距离和它到直线l:x=﹣m(m>0)的距离之比是一个常数.(Ⅰ)求点M的轨迹;(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(﹣2,0)的直线l1与曲线E交于不同的两点A(x1,y1),B(x2,y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设=α,=β,α、β∈R,求α+β的取值范围.21.(12分)设函数f(x)=xln(x﹣1)﹣a(x﹣2).(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.选修4-4:坐标系与参数方程22.(10分)已知直线l的参数方程是(t是参数),圆C的极坐标方程为ρ=4cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.选修4-5:不等式选讲23.(10分)已知函数f(x)=|2x﹣a|+a.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.2018年安徽省高考数学模拟试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A={x|3x<16,x∈N},B={x|x2﹣5x+4<0},A∩(∁R B)的真子集的个数为()A.1 B.3 C.4 D.7【考点】交、并、补集的混合运算.【分析】化简集合A、B,根据补集与交集的定义计算A∩(∁R B),写出它的真子集.【解答】解:集合A={x|3x<16,x∈N}={0,1,2},B={x|x2﹣5x+4<0}={x|1<x<4},∴∁R B={x|x≤1或x≥4},∴A∩(∁R B)={0,1},∴它的真子集是{0},{1},{0,1},共3个.故选:B.【点评】本题考查了集合的化简与运算问题,是基础题.2.设i是虚数单位,是复数z的共轭复数,若z=2(+i),则z=()A.﹣1﹣i B.1+i C.﹣1+i D.1﹣i【考点】复数代数形式的乘除运算.【分析】设出复数z=a+bi(a,b∈R),代入z•=2(+i)后整理,利用复数相等的条件列关于a,b的方程组求解a,b,则复数z可求.【解答】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.3.若(+2x)6展开式的常数项为()A.120 B.160 C.200 D.240【考点】二项式系数的性质.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.=C6r2r x2r﹣6.【解答】解(+2x)6的展开式的通项公式为T r+1令2r﹣6=0,解得r=3,∴(+2x)6展开式的常数项为C6323=160,故选:B【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.4.若a=()10,b=(),c=log10,则a,b.c大小关系为()A.a>b>c B.a>c>b C.c>b>a D.b>a>c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=()10=2﹣10∈(0,1),b=()=,c=log10<0,∴b>a>c.故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.如图,网格上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的表面积为()A.93+12B.97+12C.105+12D.109+12【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为上下两部分,上面是一个三棱柱,下面是一个正方体,利用所给数据,即可得出结论.【解答】解:由三视图可知:该几何体为上下两部分,上面是一个三棱柱,下面是一个正方体.∴该几何体的表面积=5×4×4+1×4+3×4+2×+4×=109+12.故选:D.【点评】本题考查了三视图的有关计算、三棱柱与长方体的表面积计算公式,考查了推理能力与计算能力,属于基础题.6.“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图的程序框图的算法思路就是来源于“欧几里得算法”.执行改程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为675,125,则输出的a=()A.0 B.25 C.50 D.75【考点】程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:输入a=675,b=125,c=50,a=125,b=50,c=25,a=50,b=25,c=0,输出a=50,故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,是基础题.7.将函数f(x)=2cos2x﹣2sinxcosx﹣的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为()A. B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】利用三角恒等变换化简函数的解析式,再利用y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,求得t的最小值.【解答】解:将函数f(x)=2cos2x﹣2sinxcosx﹣=cos2x﹣sin2x=2cos(2x+)的图象向左平移t(t>0)个单位,可得y=2cos(2x+2t+)的图象.由于所得图象对应的函数为奇函数,则2t+=kπ+,k∈Z,则t的最小为,故选:D.【点评】本题主要考查三角恒等变换,y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.8.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,﹣1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为()A.(x﹣1)2+(y+1)2=1 B.(x﹣1)2+(y+1)2=2C.(x﹣1)2+(y+1)2= D.(x﹣1)2+(y+1)2=【考点】直线与圆的位置关系;系统抽样方法;圆的标准方程.【分析】根据分层抽样的定义进行求解a,b,利用点到直线的距离公式,求出A (1,﹣1)到直线的距离,可得半径,即可得出结论.【解答】解:由题意,,∴a=40,b=24,∴直线ax+by+8=0,即5x+3y+1=0,A(1,﹣1)到直线的距离为=,∵直线ax+by+8=0与以A(1,﹣1)为圆心的圆交于B,C两点,且∠BAC=120°,∴r=,∴圆C的方程为(x﹣1)2+(y+1)2=,故选C.【点评】本题考查分层抽样,考查圆的方程,考查直线与圆的位置关系,属于中档题.9.已知x,y满足约束条件,目标函数z=2x﹣3y的最大值是2,则实数a=()A.B.1 C.D.4【考点】简单线性规划.【分析】先作出不等式组的可行域,利用目标函数z=2x﹣3y的最大值为2,求出交点坐标,代入ax+y﹣4=0求解即可.【解答】解:先作出约束条件的可行域如图,∵目标函数z=2x﹣3y的最大值是2,由图象知z=2x﹣3y经过平面区域的A时目标函数取得最大值2.由,解得A(4,2),同时A(4,2)也在直线ax+y﹣4=0上,∴4a=2,则a=,故选:A.【点评】本题主要考查线性规划的应用,利用数形结合以及目标函数的意义是解决本题的关键.10.已知正三棱锥A﹣BCD的外接球半径R=,P,Q分别是AB,BC上的点,且满足==5,DP⊥PQ,则该正三棱锥的高为()A.B.C.D.2【考点】棱锥的结构特征.【分析】将正三棱锥A﹣BCD补成一个正方体,则正方体的体对角线就是其外接直径,由正方体的性质知正方体的体对角线的三分之一即为该正三棱锥的高,由此能求出该正三棱锥的高.【解答】解:∵正三棱锥中对棱互相垂直,∴AC⊥BD,∵P,Q分别是AB,BC上的点,且满足==5,∴PQ∥AC,∵DP⊥PQ,∴DP⊥AC,∴AC⊥平面ABD,又∵该三棱锥是正三棱锥,∴正三棱锥A﹣BCD的三条侧棱相等且互相垂直,将正三棱锥A﹣BCD补成一个正方体,则正方体的体对角线就是其外接直径,故2R=,由正方体的性质知正方体的体对角线的三分之一即为该正三棱锥的高,该正三棱锥的高为.故选:A.【点评】本题考查正三棱锥的高的求法,是中档题,解题时要认真审题,注意构造法的合理运用.11.已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:﹣=1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是()A.2 B.C.D.1【考点】抛物线的简单性质.【分析】利用弦长,求出抛物线中的a,可得双曲线中的c,再利用点到直线的距离公式,即可得出结论.【解答】解:由题意,设直线方程为y=x﹣2a,代入y2=8ax,整理可得x2﹣12ax+4a2=0,∵直线l被抛物线C1截得的线段长是16,∴=16,∵a>0,∴a=1.∴抛物线C1的准线为x=﹣2,∵双曲线C2:﹣=1的一个焦点在抛物线C1的准线上,∴c=2,b=直线l与y轴的交点P(0,﹣2)到渐近线bx﹣ay=0的距离d==1,故选D.【点评】本题考查抛物线、双曲线的方程与性质,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.12.已知函数f(x)是定义在R上的可导函数,其导函数为f′(x),则命题P:“∀x1,x2∈R,且x1≠x2,||<2017”是命题Q:“∀x∈R,|f′(x)|<2017”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由Q⇒P,反之不成立.即可判断出结论.【解答】解:命题Q:“∀x∈R,|f′(x)|<2017”⇒∀x1,x2∈R,且x1≠x2,| |<2017;反之不一定成立,由∀x1,x2∈R,且x1≠x2,||<2017可能得到:∀x∈R,|f′(x)|≤2017.∴命题P是Q的必要不充分条件.故选:B.【点评】本题考查了导数的性质及其几何意义、割线的斜率,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量=(﹣1,m),=(0,1),若向量与的夹角为,则实数m 的值为.【考点】平面向量数量积的运算.【分析】分别用坐标和定义计算cos<>,列方程得出m即可.【解答】解:=m,||=,||=1,∴cos<>==.∵向量与的夹角为,∴=,解得m=,故答案为.【点评】本题考查了平面向量的坐标运算,数量积运算,属于基础题.14.已知sin(﹣α)=(0<α<),则sin(+α)=.【考点】三角函数的化简求值.【分析】根据题意,利用诱导公式与同角的三角函数关系,即可求出sin(+α)的值.【解答】解:∵sin(﹣α)=,∴cos(+α)=cos[﹣(﹣α)]=sin(﹣α);又0<α<,∴<+α<,∴sin(+α)===.故答案为:.【点评】本题考查了诱导公式与同角三角函数关系的应用问题,是基础题.15.在区间[0,1]上随机地取两个数x、y,则事件“y≤x5”发生的概率为.【考点】几何概型.【分析】确定区域的面积,即可求出事件“y≤x5”发生的概率.【解答】解:在区间[0,1]上随机地取两个数x、y,构成区域的面积为1;事件“y≤x5”发生,区域的面积为==,∴事件“y≤x5”发生的概率为.故答案为.【点评】本题考查概率的计算,考查学生的计算能力,确定区域的面积是关键.16.已知在平面四边形ABCD中,AB=,BC=2,AC⊥CD,AC=CD,则四边形ABCD 面积的最大值为3+.【考点】余弦定理.【分析】设∠ABC=θ,θ∈(0,π),由余弦定理求出AC2,再求四边形ABCD的面积表达式,利用三角恒等变换求出它的最大值.【解答】解:如图所示,设∠ABC=θ,θ∈(0,π),则在△ABC中,由余弦定理得,AC2=AB2+BC2﹣2AB•BC•cosθ=6﹣4cosθ;∴四边形ABCD的面积为S=S△ABC+S△ACD=(AB•BC•sinθ+AC•CD),化简得S=(2sinθ+6﹣4cosθ)=3+(sinθ﹣2cosθ)=3+sin(θ﹣φ),其中tanφ=2,当sin(θ﹣φ)=1时,S取得最大值为3+.故答案为:3+.【点评】本题考查了解三角形和三角恒等变换的应用问题,是综合题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•池州模拟)已知各项均不相等的等差数列{a n}满足a1=1,且a1,a2,a5成等比数列.(1)求{a n}的通项公式;(2)若b n=(﹣1)n(n∈N*),求数列{b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(1)设各项均不相等的等差数列{a n}的公差为d,由等差数列的通项公式和等比数列中项的性质,解方程可得d=2,进而得到所求通项公式;(2)求得b n=(﹣1)n•=(﹣1)n•(+),再分n为偶数和奇数,运用裂项相消求和,化简整理即可得到所求和.【解答】解:(1)设各项均不相等的等差数列{a n}的公差为d,满足a1=1,且a1,a2,a5成等比数列,可得a22=a1a5,即(1+d)2=1+4d,解得d=2(0舍去),则a n=1+2(n﹣1)=2n﹣1(n∈N*);(2)b n=(﹣1)n=(﹣1)n•=(﹣1)n•(+),当n为偶数时,前n项和S n=(﹣1﹣)+(﹣)+(﹣﹣)+…+(+)=﹣1+=﹣;当n为奇数时,n﹣1为偶数,前n项和S n=S n﹣1+(﹣﹣)=﹣+(﹣﹣)=﹣.则S n=.【点评】本题考查等差数列的通项公式的运用,等比数列中项的性质,考查数列的求和,注意运用分类讨论和裂项相消求和,考查化简整理的运算能力,属于中档题.18.(12分)(2017•池州模拟)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).(Ⅰ)求图中a的值;(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?晋级成功晋级失败合计男16女50合计(参考公式:K2=,其中n=a+b+c+d)P(K2≥k)0.400.250.150.100.050.025k0.780 1.323 2.072 2.706 3.841 5.024(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).【考点】离散型随机变量的期望与方差;独立性检验的应用;离散型随机变量及其分布列.【分析】(Ⅰ)根据频率和为1,列方程求出a的值;(Ⅱ)由频率分布直方图计算晋级成功的频率,填写列联表,计算观测值K2,对照临界值得出能有85%的把握认为“晋级成功”与性别有关;(Ⅲ)由晋级失败的频率估计概率,得X~B(4,),计算对应的概率,写出X的分布列,计算数学期望值.【解答】解:(Ⅰ)根据频率和为1,列方程得:(2a+0.020+0.030+0.040)×10=1,解得a=0.005;(Ⅱ)由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25;填写列联表如下,晋级成功晋级失败合计男1634 50女9 4150合计2575100计算观测值K2==≈2.613>2.072,对照临界值得,能有85%的把握认为“晋级成功”与性别有关;(Ⅲ)由频率分布直方图知晋级失败的频率视为1﹣0.25=0.75,故晋级失败的概率为0.75;从本次考试的所有人员中随机抽取4人,记这4人中晋级失败的人数为X,则X~B(4,),且P(X=k)=••(k=0,1,2,3,4);∴P(X=0)=••=,P(X=1)=••=,P(X=2)=••=,P(X=3)=••=,P(X=4)=••=;∴X的分布列为X012 3 4PX的数学期望为E(X)=4×=3.【点评】本题考查了频率分布直方图与独立性检验的问题,也考查了离散型随机变量的分布列与数学期望的计算问题,是综合题.19.(12分)(2017•池州模拟)如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A﹣BCD,其中AB⊥CD.(Ⅰ)证明:平面ACD⊥平面BAD;(Ⅱ)若F为CD中点,求二面角C﹣AB﹣F的余弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(Ⅰ)地出AB⊥AD,AB⊥CD,且AD,由此能证明AB⊥平面ACD,从而得到平面ACD⊥平面BAD.(Ⅱ)以E为原点,EC为x轴,ED为y轴,过E作平面BDC的垂直为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AB﹣F的余弦值.【解答】证明:(Ⅰ)∵AE⊥BD,且BE=DE,∴△ABD是等腰直角三角形,∴AB⊥AD,又AB⊥CD,且AD,CD⊂平面ACD,AD∩CD=D,∴AB⊥平面ACD,又AB⊂平面BAD,∴平面ACD⊥平面BAD.解:(Ⅱ)以E为原点,EC为x轴,ED为y轴,过E作平面BDC的垂直为z轴,建立空间直角坐标系,过A作平面BCD的垂线,垂足为G,根据对称性,G点在x轴上,设AG=h,由题设知:E(0,0,0),C(2,0,0),B(0,﹣1,0),D(0,1,0),A(,0,h),F(1,,0),=(,1,h),=(2,﹣1,0),∵AB⊥CD,∴=2﹣1=0,解得h=,∴A().∵=(),=(1,,0),设平面ABF的法向量=(a,b,c),则,令a=9,得=(9,﹣6,),∵AD⊥AB,AD⊥AC,∴2=(1,﹣2,)是平面ABC的一个法向量,∴cos<,2>===,∵二面角C﹣AB﹣F是锐角,∴二面角C﹣AB﹣F的余弦值为.【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.(12分)(2017•池州模拟)设点M到坐标原点的距离和它到直线l:x=﹣m(m>0)的距离之比是一个常数.(Ⅰ)求点M的轨迹;(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(﹣2,0)的直线l1与曲线E交于不同的两点A(x1,y1),B(x2,y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设=α,=β,α、β∈R,求α+β的取值范围.【考点】直线与椭圆的位置关系;轨迹方程.【分析】(Ⅰ)利用两点之间的距离公式,求得=丨x+m丨,整理即可求得点M的轨迹;(Ⅱ)当m=1时,求得E的方程,根据向量的坐标运算,求得α=3﹣2x,β=3﹣2x2,设直线l1的方程为y=k(x+2)代入椭圆方程,由△>0,求得k的取值范围,则α+β=3﹣2x1+3﹣2x1=6﹣2(x1+x2),由韦达定理即可求得α+β的取值范围.【解答】解:(Ⅰ)过M作MH⊥l,H为垂足,设M的坐标为(x,y),则丨OM丨=,丨MH丨=丨x+m丨,由丨OM丨=丨MH丨,则=丨x+m丨,整理得:x2+y2﹣mx﹣m2=0,∴,显然点M的轨迹为焦点在x轴上的椭圆;(Ⅱ)当m=1时,则曲线C的方程是:,故曲线E的方程是,设A(x1,y1),B(x2,y2),D(x3,y3),=(1﹣x1,﹣y1),=(x3﹣1,y3),=α,则﹣y1=αy3,则α=,当AD与x轴不垂直时,直线AD的方程为y=(x﹣1),即x=,代入曲线E方程,,整理得:(3﹣2x1)y2+2y1(x1﹣1)y﹣y12=0,y1y3=﹣,﹣=3﹣2x1,则α=3﹣2x,当AD与x轴垂直时,A点的横坐标x1=1,α=1,显然α=3﹣2x1也成立,同理可得:β=3﹣2x2,设直线l1的方程为y=k(x+2),代入,整理得:(2k2+1)x2+8k2x+8k2﹣2=0,由k≠0,则△=(8k2)2﹣4(2k2+1)(8k2﹣2)>0,解得:0<k2<,由x1+x2=﹣,则α+β=3﹣2x1+3﹣2x1=6﹣2(x1+x2)=14﹣,∵α+β∈(6,10),∴α+β的取值范围(6,10).【点评】本题考查轨迹方程的求法,直线与椭圆的位置关系,考查韦达定理,向量的坐标运算,考查计算能力,属于中档题.21.(12分)(2017•池州模拟)设函数f(x)=xln(x﹣1)﹣a(x﹣2).(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(2),f′(2),求出切线方程即可;(Ⅱ)设函数g(x)=ln(x﹣1)﹣,(x≥2),于是问题转化为g(x)≥0对任意的x≥2恒成立,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)a=2017时,f(x)=xln(x﹣1)﹣2017(x﹣2),则f′(x)=ln(x﹣1)+﹣2017,故f′(2)=﹣2015,又f(2)=0,故切线方程是:y﹣0=﹣2015(x﹣2),即2015x+y﹣4030=0;(Ⅱ)由f(x)≥0得xln(x﹣1)﹣a(x﹣2)≥0,而x≥2,故ln(x﹣1)﹣≥0,设函数g(x)=ln(x﹣1)﹣,(x≥2),于是问题转化为g(x)≥0对任意的x≥2恒成立,注意到g(2)=0,故若g′(x)≥0,则g(x)递增,从而g(x)≥g(2)=0,而g′(x)=,∴g′(x)≥0等价于x2﹣2a(x﹣1)≥0,分离参数得a≤= [(x﹣1)++2],由均值不等式得 [(x﹣1)++2]≥2,当且仅当x=2时取“=”成立,于是a≤2,当a>2时,设h(x)=x2﹣2a(x﹣1),∵h(2)=4﹣2a=2(2﹣a)>0,又抛物线h(x)=x2﹣2a(x﹣1)开口向上,故h(x)=x2﹣2a(x﹣1)有2个零点,设两个零点为x1,x2,则x1<2<x2,于是x∈(2,x2)时,h(x)<0,故g′(x)<0,g(x)递减,故g(x)<g(2)=0,与题设矛盾,不合题意,综上,a的范围是(﹣∞,2].【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.选修4-4:坐标系与参数方程22.(10分)(2017•池州模拟)已知直线l的参数方程是(t是参数),圆C的极坐标方程为ρ=4cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)求出圆C的直角坐标方程,从而能求出圆心的直角坐标.(Ⅱ)直线l上的向圆C引切线,则切线长为,由此利用配方法能求出切线长的最小值.【解答】解:(Ⅰ)∵=2﹣2,∴,∴圆C的直角坐标方程为,即(x﹣)2+(y+)2=4,∴圆心的直角坐标为(,﹣).(Ⅱ)直线l上的向圆C引切线,则切线长为:==,∴由直线l上的点向圆C引切线,切线长的最小值为4.【点评】本题考查圆心的直角坐标的求法,考查切线长的最小值的求法,是中档题,解题时要认真审题,注意极坐标、直角坐标互化公式的合理运用.选修4-5:不等式选讲23.(10分)(2017•池州模拟)已知函数f(x)=|2x﹣a|+a.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.【考点】绝对值不等式的解法;函数最值的应用.【分析】(Ⅰ)不等式f(x)≤6,即,求得a﹣3≤x≤3.再根据不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,从而求得实数a的值.(Ⅱ)在(Ⅰ)的条件下,f(n)=|2n﹣1|+1,即f(n)+f(﹣n)≤m,即|2n ﹣1|+|2n+1|+2≤m.求得|2n﹣1|+|2n+1|的最小值为2,可得m的范围.【解答】解:(Ⅰ)∵函数f(x)=|2x﹣a|+a,故不等式f(x)≤6,即,求得a﹣3≤x≤3.再根据不等式的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,∴实数a=1.(Ⅱ)在(Ⅰ)的条件下,f(x)=|2x﹣1|+1,∴f(n)=|2n﹣1|+1,存在实数n使f(n)≤m﹣f(﹣n)成立,即f(n)+f(﹣n)≤m,即|2n﹣1|+|2n+1|+2≤m.由于|2n﹣1|+|2n+1|≥|(2n﹣1)﹣(2n+1)|=2,∴|2n﹣1|+|2n+1|的最小值为2,∴m≥4,故实数m的取值范围是[4,+∞).【点评】本题主要考查分式不等式的解法,绝对值三角不等式的应用,体现了等价转化的数学思想,属于基础题.。
安徽省淮北市、宿州市2018-2019学年高三上学期一模数学(理)试题
安徽省淮北市、宿州市2018-2019学年高三上学期一模数学(理)试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 已知集合,,则()A.B.C.D.2. 已知复数,为虚数单位,复数,则()D.2A.1 B.C.3. 函数y=xcos x+sin x的图象大致为 ( ).A.B.C.D.4. 已知,,,则a,b,c的大小关系为()A.B.C.D.5. 若实数x,y满足条件,则z=2x-3y的最小值为()A.-8 B.-7 C.-6 D.16. 已知等差数列的前n项和为,则“的最大值是”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7. 已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中,则函数g(x)=cos(2x-φ)的图象()A.关于点对称B.关于轴对称C.可由函数f(x)的图象向右平移个单位得到D.可由函数f(x)的图象向左平移个单位得到8. 定义在实数集上的奇函数满足,当时,若,则的值是()A.B.C.D.9. 已知A,B是圆上的两个动点,,,若M是线段的中点,则的值为()A.B.C.2 D.310. 函数,则满足的实数k的取值范围是()A.B.C.D.11. 椭圆的左、右焦点分别是、,斜率为的直线l过左焦点且交于,两点,且的内切圆的周长是,若椭圆的离心率为,则线段的长度的取值范围是()A.B.C.D.12. 已知函数,,(为自然对数的底数),若关于的不等式有解,则的值为()A.B.C.D.二、填空题13. 已知向量夹角为,且,则__________.14. 若,则_________.15. 已知圆,定点,过点M的直线l与圆O交于P、Q两点,P、Q两点均在x轴的上方,如图,若平分,则直线l的方程为________.16. 如图,正方形的边长为1,面,,且,M为线段上的动点,有以下结论:①该几何体外接球的体积为;②;③若面,则M为的中点;④的最小值为3.其中正确的是________.(填写所有正确结论的编号)三、解答题17. 已知数列的前项和为,且,.(1)求数列的通项公式;(2)记,求数列的前项的和.18. 的内角A,B,C的对边分别为a,b,c,向量,,且满足.(1)求角C的大小;(2)若,,求的面积.19. 某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率.(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?20. 如图,在梯形中,//,,,四边形为正方形,平面平面.(1)求证:平面平面;(2)点在线段上运动,是否存在点使平面与平面所成二面角的平面角的余弦值为,若存在,求线段的长,若不存在,说明理由.21. 已知椭圆的焦距是,且椭圆过点. (1)求椭圆的标准方程;(2),是抛物线上的两点,且在点,处的切线相互垂直,直线与椭圆相交于,两点,为坐标原点,求的面积的最大值.22. 已知函数,,曲线与曲线在处的切线互相垂直,记.(1)求实数k的值;(2)讨论函数的单调性;(3)若,试比较与1的大小关系.。
安徽省淮北市2018届高考第二次模拟考试数学试题(理)含答案
B . xx 2
C . xx 3
D . xx 3
2
2.复数
3i
的共轭复数是
a
bi a,b
R , i 是虚数单位,则
ab 的值是(
i
A. 6 B . 5 C . -1 D .-6
rr
rr
3.命题 p :若向量 a b 0 ,则 a 与 b 的夹角为钝角;命题 q :若 cos cos
)
1 ,则
sin
A. p
淮北市 2018 届高三第二次模拟考试 数学理科 试题卷 第Ⅰ卷(共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
1.设集合 A x y 6 2x ,集合 B x y lg 8 x ,则 A I B ( )
A. x x 2
)
)
m 91 , n 56 ,
A. 0 B . 3 C . 7 D .14
6.设不等式组
x y 22 x y 2 2 所表示的区域为 M ,函数 y y0
4 x2 的图象与 x轴所围成
的区域为 N ,向 M 内随机投一个点,则该点落在 N 内的概率为(
)
A.
4
B.
C.
8
16
D
.2
7.某几何体的三视图如图所示,则该几何体的体积是(
A, B ,
A. k
B .2 C .4 D .6
10.在平面四边形 ABCD 中, AD AB 2 , CD CB 6 ,且 AD AB ,现将 ABD
沿着对角线 BD 翻折成 A BD ,则在 A BD 折起至转到平面 BCD 内的过程中, 直线 A C 与
打包下载(共30份)2018年全国各地高考数学 模拟试题附答案 汇总 (2)
(30套)2018年全国各地高考数学模拟试题附答案汇总(761页)2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3] B.[﹣3,2] C.[2,3] D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,] B.(﹣∞,3] C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=,∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.(5分)已知等比数列{an}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.25【解答】解:根据题意,等比数列{an}中,a5=3,a4a7=45,则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C.D.【解答】解:f(x)=asinx﹣2cosx=sin(x+θ),由于函数f(x)的对称轴为:x=﹣,所以f(﹣)=﹣a﹣3,则|﹣a﹣3|=,解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)•f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣,k∈Z;所以:|x1+x2|的最小值为.故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a×b的方向与向量a,b 的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C. D.【解答】解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.12.(5分)若存在实数x使得关于x的不等式(ex﹣a)2+x2﹣2ax+a2≤成立,则实数a 的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)【解答】解:不等式(ex﹣a)2+x2﹣2ax+a2≤成立,即为(ex﹣a)2+(x﹣a)2≤,表示点(x,ex)与(a,a)的距离的平方不超过,即最大值为.由(a,a)在直线l:y=x上,设与直线l平行且与y=ex相切的直线的切点为(m,n),可得切线的斜率为em=1,解得m=0,n=1,切点为(0,1),由切点到直线l的距离为直线l上的点与曲线y=ex的距离的最小值,可得(0﹣a)2+(1+a)2=,解得a=,则a的取值集合为{}.故选:A.二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{an}前15项的和S15=30,则a2+a9+a13=6.【解答】解:∵设等差数列的等差为d,{an}前15项的和S15=30,∴=30,即a1+7d=2,则a2+a9+a13=(a1+d)+(a1+8d)+(a1+12d)=3(a1+7d)=6.故答案为:6.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为1120.【解答】解:由题意可知,2n=256,解得n=8.∴=,其展开式的通项=,令8﹣2r=0,得r=4.∴该展开式中常数项的值为.故答案为:1120.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是②⑤①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()【解答】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示:f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故答案为:②⑤.16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为2.【解答】解:∵D、E是AB、AC的中点,∴M到BC的距离等于点A到BC的距离的一半,∴S△ABC=2S△MBC,而△ABC的面积2,则△MBC的面积S△MBC=1,S△MBC=丨MB丨•丨MC丨sin∠BMC=1,∴丨MB丨•丨MC丨=.∴•=丨MB丨•丨MC丨cos∠BMC=.由余弦定理,丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨•丨CM丨cos∠BMC,显然,BM、CM都是正数,∴丨BM丨2+丨CM丨2≥2丨BM丨•丨CM丨,∴丨BC丨2=丨BM丨2+丨CM丨2﹣2丨BM丨×丨CM丨cos∠BMC=2×﹣2×.∴•+2≥+2×﹣2×=2•,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值为2;方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,则•+2的最小值为2;故答案为:2.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.【解答】(本题满分为12分)解:(1)因为acosB=(3c﹣b)cosA,由正弦定理得:sinAcosB=(3sinC﹣sinB)cosA,即sinAcosB+sinBcosA=3sinCcosA,可得:sinC=3sinCcosA,在△ABC中,sinC≠0,所以.…(5分)(2)∵=2,两边平方得:=4,由b=3,||=3,,可得:,解得:c=7或c=﹣9(舍),所以△ABC的面积.…(12分)18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)将90~95分数段内的6名毕业生随机的分配往A、B、C三所学校,每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有:=18不同的分配方法.(Ⅲ)ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,所以随机变量ξ数学期望为E(ξ)==.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.【解答】解:(Ⅰ)过F1直线l:x+my+=0,令y=0,解得x=﹣,∴c=,∵e==,∴a=2,∴b2=a2﹣c2=4﹣3=1,∴椭圆C的方程为+y2=1;(Ⅱ)设A(x1,y1),B(x2,y2),M(x3,y3),由2=+,得:x3=x1+x2,y3=y1+y2代入椭圆方程可得:(x1+x2)2+(y1+y2)2﹣1=0,∴(x12+y12)+(x22+y22)+(x1x2+4y1y2)=1,∴x1x2+4y1y2=0联立方程消x可得(m2+4)y2+2my﹣1=0,∴y1+y2=,y1y2=,∴x1x2+4y1y2=(my1+)(my2+)+4y1y2=(m2+4)4y1y2+m(y1+y2)+3=0,即m2=2,解得m=±所求直线l的方程:x±y+=0.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.【解答】解:(1)函数f(x)=x2﹣alnx,导数为f′(x)=x﹣,函数f(x)在[,+∞)上单调递增,可得f′(x)=x﹣≥0在[,+∞)恒成立,即为a≤x2的最小值,由x2在[,+∞)的最小值为,可得a≤;(2)证明:由f(x)=x2﹣alnx,a>0,可得f′(x)=x﹣,f″(x)=1+>0,即有f(x)为凹函数,由m1+m2=1,可得对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)由f(x)=x2﹣2lnx,可得导数为f′(x)=x﹣,f″(x)=1+>0,则f(x)为凹函数,有f()≤[f(x1)+f(x2)+f(x3)],即为f(x1)+f(x2)+f(x3)≥3f()=3f(1)=3×=,则f(x1)+f(x2)+f(x3)的最小值为.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.【解答】(本小题满分10分)解:(Ⅰ)∵圆C的极坐标方程为:ρ=2sin(θ﹣)=2(sinθcos﹣cosθsin)=2sinθ﹣2cosθ,∴ρ2=2ρsinθ﹣2ρcosθ,∴圆C的直角坐标方程x2+y2=2y﹣2x,即(x+1)2+(y﹣1)2=2.(Ⅱ)直线l的参数方程为,t为参数,直线l的参数方程可化为,t′为参数,代入(x+1)2+(y﹣1)2=2,得(﹣+1)2+()2=2,化简得:t'2﹣﹣1=0,∴=﹣1,∴|MA|•|MB|=||=1.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(Ⅰ)∵函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).即|x﹣m|﹣3≥0的解集为(﹣∞,﹣2]∪[4,+∞).∴m+3=4,m﹣3=﹣2,解得m=1.(Ⅱ)∵∃x∈R,使得f(x)≥t+|2﹣x|成立,即|x﹣1|﹣3≥t+|2﹣x|,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3,令g(t)=|x﹣1|﹣|x﹣2|=,∴∃x∈R,|x﹣1|﹣|2﹣x|≥t+3成立,∴t+3≤g(x)max=1,∴t≤﹣2.2018年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=.S11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=2.S【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,=a,且S可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.2018年安徽省淮北市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.22.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.75.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.258.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.12.(5分)若存在实数x使得关于x的不等式(e x﹣a)2+x2﹣2ax+a2≤成立,则实数a的取值范围是()A.{} B.{} C.[,+∞)D.[,+∞)二、填空题:本大题共4小题,每小题5分13.(5分)已知等差数列{a n}前15项的和S15=30,则a2+a9+a13=.14.(5分)若的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为.15.(5分)已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的序号是①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④f()>f()⑤f()<f()16.(5分)在△ABC中,D、E分别是AB、AC的中点,M是直线DE上的动点.若△ABC的面积为2,则•+2的最小值为.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=(3c ﹣b)cosA.(1)求cosA的值;(2)若b=3,点M在线段BC上,=2,||=3,求△ABC的面积.18.(12分)在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.19.(12分)如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n 名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.20.(12分)已知椭圆C:+=1(a>b>0),其左右焦点为F1,F2,过F1直线l:x+my+=0与椭圆C交于A,B两点,且椭圆离心率e=;(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l的方程.21.(12分)设函数f(x)=x2﹣alnx,其中a∈R.(1)若函数f(x)在[,+∞)上单调递增,求实数a的取值范围;(2)设正实数m1,m2满足m1+m2=1,当a>0时,求证:对任意的两个正实数x1,x2,总有f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立;(3)当a=2时,若正实数x1,x2,x3满足x1+x2+x3=3,求f(x1)+f(x2)+f(x3)的最小值.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为t为参数,直线l和圆C交于A,B两点.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设l上一定点M(0,1),求|MA|•|MB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣3,且f(x)≥0的解集为(﹣∞,﹣2]∪[4,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得f(x)≥t+|2﹣x|成立,求实数t的取值范围.2018年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1.(5分)设复数Z满足(1+i)Z=i,则|Z|=()A.B.C.D.2【解答】解:由(1+i)Z=i,得Z=,∴|Z|=.故选:A.2.(5分)已知A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则A∩B=()A.[﹣1,3]B.[﹣3,2]C.[2,3]D.[1,3]【解答】解:A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},B={y|y=x2+1}={y|y≥1},则A∩B={x|1≤x≤3}=[1,3],故选:D3.(5分)函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.4.(5分)《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框图,若输入的a、b分别为96、42,则输出的i为()A.4 B.5 C.6 D.7【解答】解:由程序框图可知:当a=96,b=42时,满足a>b,则a=96﹣42=54,i=1由a>b,则a=54﹣42=12,i=2由a<b,则b=42﹣12=30,i=3由a<b,则b=30﹣12=18,i=4由a<b,则b=18﹣12=6,i=5由a>b,则a=12﹣6=6,i=6由a=b=6,输出i=6.故选:C.5.(5分)如果实数x,y满足关系,又≥λ恒成立,则λ的取值范围为()A.(﹣∞,]B.(﹣∞,3]C.[,+∞)D.(3,+∞)【解答】解:设z==2+,z的几何意义是区域内的点到D(3,1)的斜率加2,作出实数x,y满足关系对应的平面区域如图:由图形,可得C(,),由图象可知,直线CD的斜率最小值为=,∴z的最小值为,∴λ的取值范围是(﹣∞,].故选:A.6.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.(5分)已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.3 B.5 C.9 D.25【解答】解:根据题意,等比数列{a n}中,a5=3,a4a7=45,则有a6==15,则q==5,则==q2=25;故选:D.8.(5分)已知F是双曲线﹣=1(a>0,b>0)的右焦点,若点F关于双曲线的一条渐近线对称的点恰好落在双曲线的左支上,则双曲线的离心率为()A.B.C.D.【解答】解:设F(c,0),渐近线方程为y=x,对称点为F'(m,n),即有=﹣,且•n=•,解得m=,n=﹣,将F'(,﹣),即(,﹣),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.9.(5分)函数f(x)在定义域R内可导,若f(1+x)=f(3﹣x),且当x∈(﹣∞,2)时,(x﹣2)f(x)<0,设a=f(0),b=f(),c=f(3),则a,b,c的大小关系是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【解答】解:∵f(1+x)=f(3﹣x),∴函数f(x)的图象关于直线x=2对称,∴f(3)=f(1).当x∈(﹣∞,2)时,(x﹣2)f′(x)<0,∴f′(x)>0,即f(x)单调递增,∵0<<1,∴f(0)<f()<f(2),即a<b<c,故选:D.10.(5分)已知函数f(x)=asinx﹣2cosx的一条对称轴为x=﹣,且f(x1)•f(x2)=﹣16,则|x1+x2|的最小值为()A.B.C. D.【解答】解:f(x)=asinx﹣2cosx=sin(x+θ),由于函数f(x)的对称轴为:x=﹣,所以f(﹣)=﹣a﹣3,则|﹣a﹣3|=,解得:a=2;所以:f(x)=4sin(x﹣),由于:f(x1)•f(x2)=﹣16,所以函数f(x)必须取得最大值和最小值,所以:x1=2kπ+或x2=2kπ﹣,k∈Z;所以:|x1+x2|的最小值为.故选:C.11.(5分)对于向量a,b,定义a×b为向量a,b的向量积,其运算结果为一个向量,且规定a×b的模|a×b|=|a||b|sinθ(其中θ为向量a与b的夹角),a ×b的方向与向量a,b的方向都垂直,且使得a,b,a×b依次构成右手系.如图,在平行六面体ABCD﹣EFGH中,∠EAB=∠EAD=∠BAD=60°,AB=AD=AE=2,则=()A.4 B.8 C.D.【解答】解:据向量积定义知,向量垂直平面ABCD,且方向向上,设与所成角为θ.∵∠EAB=∠EAD=∠BAD=60°,∴点E在底面ABCD上的射影在直线AC上.作EI⊥AC于I,则EI⊥面ABCD,∴θ+∠EAI=.过I作IJ⊥AD于J,连EJ,由三垂线逆定理可得EJ⊥AD.∵AE=2,∠EAD=60°,∴AJ=1,EJ=.又∵∠CAD=30°,IJ⊥AD,∴AI=.∵AE=2,EI⊥AC,∴cos∠EAI==.∴sinθ==cos∠EAI=,cosθ=.故=||||sin∠BAD||cosθ=8××=,故选D.。
(全优试卷)安徽省淮北市高三第二次(4月)模拟考试数学(理)试题Word版含答案
淮北市2018届高三第二次模拟考试数学理科 试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1)A2) A .6 B .5 C .-1 D .-63下列命题为真命题的是( )A4)A .2B .4C .6D .85)A.0 B.3 C.7 D.146.)A7.某几何体的三视图如图所示,则该几何体的体积是()A.11 B.9 C.7 D.58sin4y xπ⎛=-2倍(纵坐标不变)得到4个零)AC9)A.2 C.4 D.610.)A11)AC12)A.-1009 B.0 C.1009 D.2018第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)1314的均值是.15展开式中的常数项是.16的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.18.19.大豆,古称菽,原产中国,在中国已有五千年栽培历史。
皖北多平原地带,黄河故道土地肥沃,适宜种植大豆。
2018年春,为响应中国大豆参与世界贸易的竞争,某市农科院积极研究,加大优良品种的培育工作。
其中一项基础工作就是研究昼夜温差大小与大豆发芽率之间的关系。
为此科研人员分别记录了5天中每天100粒大豆的发芽数,得如下数据表格:科研人员确定研究方案是:从5组数据中选3组数据求线性回归方程,再用求得的回归方程对剩下的2组数据进行检验。
(Ⅰ)求剩下的2组数据恰是不相邻的2天数据的概率;(Ⅱ)若选取的是4月5日、6日、7日三天数据,(Ⅲ)若由线性回归方程得到的估计数据与实际数据的误差绝对值均不超过1粒,则认为得到的线性回归方程是可靠的,请检验(Ⅱ)中同归方程是否可靠?20.21.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程,为参数)23.选修4-5:不等式选讲淮北市2018届高三第二次模拟考试数学(理科)参考答案一、选择题1-5:CADAC 6-10:ADBCD 11、12:CB二、填空题13.3 14.240 16.2 三、解答题17.解:(1(218.19.解:(Ⅰ)恰好是不相邻的2. 20.解:(Ⅱ)当直线AB斜率不存在时,3倍得到).21.解:∴.22.解:,23.解:。
2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析
2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣116.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF 的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣1【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n=a2n﹣1﹣a2n==﹣22n﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边a ,b ,c 分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O ﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=,σ≈,∴P(<Z<)=P(﹣<Z<+)=,∴Z落在(,)内的概率是.②根据题意得X~B(4,),;;;;.∴X的分布列为X01234P∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f (1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n ≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。
2018年高考数学(理科)模拟试卷一含答案解析.doc
2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是() A.6 B.5C.4D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B.2 C.3D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2=3.故选C.图D1884.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A. B. C. D.4.C解析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为.进入循环体,a=-,否,k=1,a=-2,否,k=2,a=1,ππππ6342π4 5.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是() A.3B.4C.5D.65.B解析:因为[x]表示不超过x的最大整数.由[t]=1,得1≤t<2,由[t2]=2,得2≤t2<3.由[t3]=3,得3≤t3<4.由[t4]=4,得4≤t4<5.所以2≤t2<5.所以6≤t5<45.由[t5]=5,得5≤t5<6,与6≤t5<45矛盾,故正整数n的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a值为1,则输出的k值为()图M1-2A.1B.2C.3D.46.B解析:输入a=1,则k=0,b=1;12此时a=b=1,输出k,则k=2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()7.C解析:由题意,得=88,n=9.所以m+n=12.⎪⎩x≥0,图M1-3A.10B.11C.12D.1378+88+84+86+92+90+m+957故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()项目A/吨B/吨甲31乙22原料限额128A.12万元B.16万元C.17万元D.18万元8.D解析:设该企业每天生产甲、乙两种产品分别为x吨、y吨,则利润z=3x+4y.⎧⎪3x+2y≤12,由题意可得⎨x+2y≤8,y≥0.其表示如图D189阴影部分区域:图D189当直线3x+4y-z=0过点A(2,3)时,z取得最大值,所以zmax=3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个9.C解析:由题意,必有a1=0,a8=1,则具体的排法列表如下:10.(2016 年 天 津 )已知函数f(x)=sin 2ω x + sin ωx - (ω>0),x ∈ ⎛ 1⎤ ⎛ 1⎤ ⎡5 ⎫ A. 0, ⎥ B. 0, ⎥∪⎢ ,1⎪ ⎛5⎤ ⎛ 1⎤ ⎡1 5⎤ C. 0, ⎥ D. 0, ⎥∪⎢ , ⎥ 1-cos ω x sin ω x 1 2 ⎛ ⎛π ⎫ 10.D 解析:f(x)= + - = sin ω x - ⎪,f(x)=0⇒sin ω x - ⎪ k π +⎛1 1⎫ ⎛5 5⎫ ⎛9 9⎫ ⎛1 1⎫ ⎛5 ⎫ ⎛ 1⎤ ⎡1 5⎤因此 ω , ⎪∪ , ⎪∪ , ⎪∪…= , ⎪∪ ,+∞⎪⇒ω∈ 0, ⎥∪⎢ , ⎥.故选4 ⎭ A .3 B. C .23 D. ∥PA ,所以 OE ⊥底面 ABCD ,则 O 到四棱锥的所有顶点的距离相等,即 O 为球心, PC =1 1 4 ⎛1 ⎫ 243π 7 PA2+AC2= PA2+8,所以由球的体积可得 π PA2+8⎪3= ,解得 PA = .故选1 12 2 2R.若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()⎝ 8⎦ ⎝ 4⎦ ⎣8 ⎭⎝ 8⎦ ⎝ 8⎦ ⎣4 8⎦2 2 2 2 ⎝ ⎝ 4 ⎭ =0,π4所以 x = (π,2π),(k ∈Z).ω⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 ⎭ ⎝ 8⎦ ⎣4 8⎦D.11.四棱锥P-ABCD 的底面ABCD 为正方形,PA底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为⊥243π 16的同一球面上,则P A =()729211.B 解析:如图 D190,连接 AC ,BD 交于点 E ,取 PC 的中点 O ,连接 OE ,则 OE122 23 ⎝2 ⎭ 16 2B.12.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若 OA ·OBA .4 B. C. D. 10OA · OB =6,所以 x 1· x 2+y 1· y 2=6,从而(y 1· y 2)2+y 1· y 2-6=0,因为点 A ,B 位于 x 轴的两侧, 所以 y 1· y 2=-3,故 m =3,不妨令点 A 在 x 轴上方,则 y 1>0,又 F ,0⎪,所以 △S ABO +△S ⎝4⎭8 2 y1 2 8×3×(y 1-y 2)+ × y 1= y 1+,即 y 1= 时取等号,故其最小值为 .故选 B.|c|·|a| |c|·|b| 5a2 -y214.设F 是双曲线C :x2b图D190→→=6(O 为坐标原点△),则 ABO 与△AOF 面积之和的最小值为()3 1317 2 2412.B 解析:设直线 AB 的方程为 x =ty +m ,点 A(x 1,y 1),B(x 2,y 2),直线 AB 与 x轴的交点为 M (m,0),将直线方程与抛物线方程联立,可得 y 2-ty -m =0,根据韦达定理有 y 1· y 2=-m ,因为 →→⎛1 ⎫AFO 1 1 1 13 9 =2 2 4 8 2y1 ≥213 9 1 313 13y1 ·y1· · = ,当且仅当 =9 6 13 3 132y1 13 2第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生必须作答.第22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则 c =m a +b =(m +4,2m +2),|a |= 5,|b |=2 5,c·a c·b 5m +8a · c =5m +8,· c =8m +20.∵c 与 a 的夹角等于 c 与b 的夹角,∴ = .∴8m +20 = .解得 m =2.2 5b2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤ ”发生的概率为________.⎛π ⎫ ⎛5π ⎫ 6⎝ 6 ⎭ 1-0 + π - ⎪ ⎪17.解:(1)设{a n }的公比为 q ,{b n }的公差为 d ,由题意知 q >0.由已知,有⎨c,2b )在双曲线上,有 - =1,则 e 2=5,e = 5. 11⎡ ⎤0,16.解析:由正弦函数的图象与性质知,当 x ∈⎢∪⎢ ,π ⎥时,sin x ≤ .⎥π 36 ⎦ ⎣ 6 ⎩14. 5 解析:根据双曲线的对称性,不妨设 F(c,0),虚轴端点为(0,b ),从而可知点(-c2 4b2a2 b215.(2016 年北京)在(1-2x)6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式 T r +1=C r6·(-2)r x r 可知,x 2 的系数为 C 26(-2)2=60,故填 60.123⎣ ⎦ 2⎭ ⎝ 所以所求概率为 = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分 )已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5 -3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.⎧⎪2q2-3d =2, ⎪q4-3d =10. 消去 d ,得 q 4-2q 2-8=0.解得 q =2,d =2.所以{a n }的通项公式为 a n =2n -1,n ∈N *, {b n }的通项公式为 b n =2n -1,n ∈N *.(2)由(1)有 c n =(2n -1)2n -1,设{c n }的前 n 项和为 S n , 则 S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以 S n =(2n -3)·2n +3,n ∈N *.18.( 本 小 题 满 分 12 分 )(2014 年 大纲 )设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人 是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记 A 1 表示事件:同一工作日乙、丙中恰有 i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少 3 人需使用设备.(1)因为 P(B)=0.6,P(C)=0.4,P(A i )=C i2×0.52,i =0,1,2,∠P AB=90°,BC=CD=AD,E为边AD的中点,异面直线P A与CD所成的角为90°.所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A·C+B·A·C+B·A1·C)=P(B)P(A)P(C)+P(B)P(A)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=12(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)方法一,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.所以AH=.在△Rt P AH中,PH=PA2+AH2=,所以sin∠APH==.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图D192所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)PEEC→则sinα==|n|·|AP|2×22+-+123所以直线PA与平面PCE所成角的正弦值为.设BC=1,则在Rt△P AD中,P A=AD=2.如图D191,过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在△Rt AEH中,∠AEH=45°,AE=1,22322AH1PH3图D191图D192方法二,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在△Rt P AD中,P A=AD=2.→→所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),→→→设平面PCE的法向量为n=(x,y,z),⎧⎪n·→=0,由⎨⎪⎩n·→=0,⎧⎪x-2z=0,得⎨⎪⎩x+y=0.设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,|n·AP|2→1=.1320.(本小题满分12分)(2016年新课标Ⅲ)设函数f(x)=ln x-x+1.(2)证明当x ∈(1,+∞)时,1< <x ;20.解:(1)由题设,f(x)的定义域为(0,+∞),f ′(x)= -1,令 f ′(x)=0,解得 x =1.故当 x ∈(1,+∞)时,ln x <x -1,ln < -1,即 1< <x.ln c 令 g ′(x)=0,解得 x 0= .21.解:(1)设椭圆 C 的方程为 + =1(a >b >0),因为点 B(2, 2)在椭圆 C 上,所以 + =1.②所以椭圆 C 的方程为 + =1.因为直线 y =kx(k ≠0)与椭圆 + =1 交于两点 E ,F ,(1)讨论f(x)的单调性;x -1ln x(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .1x当 0<x <1 时,f ′(x)>0,f(x)单调递增; 当 x >1 时,f ′(x)<0,f(x)单调递减.(2)由(1)知,f(x)在 x =1 处取得最大值,最大值为 f(1)=0. 所以当 x ≠1 时,ln x <x -1.1 1 x -1x x ln x(3)由题设 c >1,设 g (x)=1+(c -1)x -c x , 则 g ′(x)=c -1-c x ln c.c -1 lnln c当 x <x 0 时,g ′(x)>0,g (x)单调递增; 当 x >x 0 时,g ′(x)<0,g (x)单调递减.c -1由(2)知,1<ln c <c ,故 0<x 0<1.又 g (0)=g (1)=0,故当 0<x <1 时,g (x)>0. 所以 x ∈(0,1)时,1+(c -1)x >c x .21.( 本 小 题 满 分 12 分 )(2016 年 广 东 广 州 综 合 测 试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B(2, 2 )在椭圆C 上,直线y =kx(k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理 由.x2 y2a2 b2因为椭圆的左焦点为 F 1(-2,0),所以 a 2-b 2=4.①4 2a2 b2由①②,解得 a =22,b =2. x2 y28 4(2)因为椭圆 C 的左顶点为 A ,则点 A 的坐标为(-2 2,0).x2 y28 4设点 E(x 0,y 0)(不妨设 x 0>0),则点 F(-x 0,-y 0).⎪⎩ 84 .所以 x 0= 2,则 y 0= .- ⎝ 2⎫2⎫2⎪ ,即 x 2+y 2+ y =4.⎛ 4π ⎫(2,π)、B 2, ⎪.⎛4π 4π ⎫ 22.解:(1)将 A 、B 化为直角坐标为 A(2cos π,2sin π),B 2cos ,2sin ⎪,即 A ,⎪⎨ d = =⎧⎪y =kx ,联立方程组⎨x2 y2+ =1消去 y ,得 x 2=81+2k22 1+2k2 2 2k 1+2k2k所以直线 AE 的方程为 y = (x +2 2).1+ 1+2k2因为直线 AE ,AF 分别与 y 轴交于点 M ,N ,2 2k ⎛ 2 2k ⎫令 x =0 得 y = ,即点 M 0, ⎪.1+ 1+2k2 ⎝ 1+ 1+2k2⎭ ⎛ 2 2k ⎫同理可得点 N 0, ⎪.⎝ 1- 1+2k2⎭⎪ 2 2k 2 2k ⎪ 2 所以|MN |=⎪ ⎪=⎪1+ 1+2k2 1- 1+2k2⎪⎛ 设 MN 的中点为 P ,则点 P 的坐标为 P 0,- ⎝+|k|2⎫⎪.k ⎭.⎛ ⎛ 则以 MN 为直径的圆的方程为 x 2+ y + ⎪ =k ⎭ ⎝+ |k| 2 2⎭ k令 y =0,得 x 2=4,即 x =2 或 x =-2.故以 MN 为直径的圆经过两定点 P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分 10 分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎧x =2cos θ , ⎪⎩y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A⎝ 3 ⎭(1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.⎝ 3 3 ⎭ B 的直角坐标分别为 A(-2,0),B(-1,- 3),k AB = - 3-0 -1+2=- 3,∴直线 AB 的方程为 y -0=- 3(x +2), 即直线 AB 的方程为 3x +y +2 3=0.(2)设 M (2cos θ,sin θ),它到直线 AB 的距离|2 3cos θ +sin θ +2 3| | 13 2θ +φ2+2 3|,2 ⎧⎪x≤ , ⎩ 解得 1<x ≤ ,或 <x < . ⎧⎪ ⎪ 5 所以原不等式的解集为⎨x ⎪1<x< ⎪⎩ ⎪∴d max =13+2 3 .23.(本小题满分 10 分)选修4-5:不等式选讲已知函数f(x)=|x -2|-|2x -a|,a ∈R .(1)当a =3时,解不等式f(x)>0;(2)当x ∈(-∞,2)时,f(x)<0恒成立,求a 的取值范围. 23.解:(1)当 a =3 时,f(x)>0,即|x -2|-|2x -3|>0, 3 等价于⎨ 2 ⎪⎩x -1>0, ⎧⎪3<x<2, 或⎨2 ⎪⎩-3x +5>0,⎧⎪x≥2, 或⎨ ⎪-x +1>0. 3 3 5 2 2 33 ⎫⎪ ⎬. ⎪⎭ (2)f(x)=2-x -|2x -a|,所以 f(x)<0 可化为|2x -a|>2-x , ①即 2x -a >2-x ,或 2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a , ∵x ∈(-∞,2),∴a ≥4.。
安徽省淮北市2018届高考第二次模拟考试数学试题(理)含答案
7 13 ,1 U ,
12 3 12
12 12
51
7 13
B.
, U ,1 U ,
12 3 12
12 12
C.
5 1 7 13 ,U ,
12 3 12 12
51
D
.
, U ,1
12 3 12
9.若直线 x ky 0 k 0 与函数 f x
2x 1 1 2sin 2 x
2x 1
图象交于不同的两点
uuur uuur uuur 且点 C 9,3 ,若点 D m, n 满足 DA DB CD ,则 m n ( )
0 . 下列命题为真命题的是(
B . q C .p q
) D .p q
4.已知等比数列 an 中, a5 2 , a6a8 8 ,则 a2018 a2016 ( a2014 a2012
A. 2 B . 4 C . 6 D .8
5.如图所示的程序框图所描述的算法称为欧几里得辗转相除法,若输入
则输出 m 的值为(
)
)
m 91 , n 56 ,
A. 0 B . 3 C . 7 D .14
6.设不等式组
x y 22 x y 2 2 所表示的区域为 M ,函数 y y0
4 x2 的图象与 x轴所围成
的区域为 N ,向 M 内随机投一个点,则该点落在 N 内的概率为(
)
A.
4
B.
C.
8
16
D
.2
7.某几何体的三视图如图所示,则该几何体的体积是(
到的线性回归方程是可靠的,请检验(Ⅱ)中同归方程是否可靠?
注: b?
n
xi x
i1 n
xi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅲ)若 90~95 分数段内的这 n 名毕业生中恰有两女生,设随机变量ξ表示 n 名毕业生中分 配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.
(12 分) 已知椭圆 C: 20.
+
(a>b>0) , 其左右焦点为 F1, 过 F1 直线 l: =1 F2 , x+my+
=0
与椭圆 C 交于 A,B 两点,且椭圆离心率 e= (Ⅰ)求椭圆 C 的方程; (Ⅱ) 若椭圆存在点 M,使得 2 = +
A.4
B.5
C.6
D.7 ,又 C.[ ,+∞) ≥λ恒成立,则λ的取值范围为( D. (3,+∞) ) )
5.如果实数 x,y 满足关系 A. (﹣∞, ] B. (﹣∞,3]
6.某空间几何体的三视图如图所示,则该几何体的体积为(
A.
B.
C.
D.
7.已知等比数列{an}中,a5=3,a4a7=45,则 A.3 B.5 C.9 ﹣ D.25
(12 分)如图为 2017 届淮北师范大学数学与应用数学专业 N 名毕业生的综合测评成绩 19. (百分制)分布直方图,已知 80~90 分数段的学员数为 21 人. (Ⅰ)求该专业毕业总人数 N 和 90~95 分数段内的人数 n; (Ⅱ)现欲将 90~95 分数段内的 n 名毕业生随机的分配往 A、B、C 三所学校,若每所学校 至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?
A.
B.
C.
Байду номын сангаасD.
《九章算术》是我国古代第一部数字专著,是《算经十书》中最重要的一种,成于公元一 4. 世纪左右,它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,“更相减损 术”便是《九章算术》中记录的一种求最大公约数的算法,按其算理流程有如图所示程序框 图 , 若 输 入 的 a 、 b 分 别 为 96 、 42 , 则 输 出 的 i 为 ( )
2
的最小值为
.
(12 分)在如图所示的圆台中,AB ,CD 分别是下底面圆 O,上底面圆 O′的直径,满 18. 足 AB⊥CD,又 DE 为圆台的一条母线,且与底面 ABE 成角 (Ⅰ)若面 BCD 与面 ABE 的交线为 l,证明:l∥面 CDE; (Ⅱ)若 AB=2CD,求平面 BCD 的与平面 ABE 所成锐二面角的余弦值. .
2018 年安徽省淮北市高考数学一模试卷(理科)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分 1.设复数 Z 满足(1+i)Z=i,则|Z|=( ) A. B. C. ) D.2
2.已知 A={x|x2﹣2x﹣3≤0},B={y|y=x2+1},则 A∩B=( A.[﹣1,3] B.[﹣3,2] C.[2,3] 3.函数 f(x)= +ln|x|的图象大致为( D.[1,3] )
的值为(
)
8.已知 F 是双曲线
=1(a>0,b>0)的右焦点,若点 F 关于双曲线的一条渐近线 )
对称的点恰好落在双曲线的左支上,则双曲线的离心率为( A. B. C. D.
,且当 x∈(﹣∞,2)时, (x﹣2) 9.函数 f(x)在定义域 R 内可导,若 f(1+x)=f(3﹣x) f(x)<0,设 a=f(0) ,b=f( ) ,c=f(3) ,则 a,b,c 的大小关系是( A.a>b>c B.c>a>b C.c>b>a D.b>c>a ,且 f(x1)•f(x2)=﹣16, D. )
②(x1﹣x2)[f(x1)﹣f(x2)]<0;
16.在△ABC 中,D、E 分别是 AB、AC 的中点,M 是直线 DE 上 的动点.若△ABC 的面积为 2,则 三、解答题 (12 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,且 acosB=(3c﹣b)cosA. 17. (1)求 cosA 的值; (2)若 b=3,点 M 在线段 BC 上, =2 ,| |=3 ,求△ABC 的面积. • +
10.已知函数 f(x)=asinx﹣2 则|x1+x2|的最小值为(
cosx 的一条对称轴为 x=﹣ B. C.
)A.
11.对于向量 a,b,定义 a×b 为向量 a,b 的向量积,其运算结果为一个向量,且规定 a ×b 的模|a×b|=|a||b|sinθ(其中θ为向量 a 与 b 的夹角) ,a×b 的方向与向量 a,b 的方向 都垂直,且使得 a,b,a×b 依次构成右手系.如图,在平行六面体 ABCD﹣EFGH 中,∠EAB= ∠EAD=∠BAD=60°,AB=AD=AE=2,则 =( )
A.4
B.8
C.
D.
12.若存在实数 x 使得关于 x 的不等式(ex﹣a)2+x2﹣2ax+a2≤ 成立,则实数 a 的取值范 围是( )A.{ } B.{ } C.[ ,+∞) D.[ ,+∞)
二、填空题:本大题共 4 小题,每小题 5 分 13.已知等差数列{an}前 15 项的和 S15=30,则 a2+a9+a13= .
14.若 值为 .
的二项展开式中的所有二项式系数之和等于 256,则该展开式中常数项的
15.已知函数 f(x)的定义域为 R,其导函数 f′(x)的图象如图所示,则对于任意 x1,x2 ∈R(x1≠x2) ,下列结论正确的序号是 ①f(x)<0 恒成立; ③(x1﹣x2)[f(x1)﹣f(x2)]>0; ④f( ⑤f( )>f( )<f( ) )
;
,求直线 l 的方程.
21. (12 分)设函数 f(x)= x2﹣alnx,其中 a∈R.
(1)若函数 f(x)在[ ,+∞)上单调递增,求实数 a 的取值范围; (2)设正实数 m1,m2 满足 m1+m2=1,当 a>0 时,求证:对任意的两个正实数 x1,x2,总 有 f(m1x1+m2x2)≤m1f(x1)+m2f(x2)成立; (3)当 a=2 时,若正实数 x1,x2,x3 满足 x1+x2+x3=3,求 f(x1)+f(x2)+f(x3)的最小值. [选修 4-4:坐标系与参数方程选讲] (10 分)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系, 22. 圆 C 的极坐标方程为ρ=2 ) ,直线 l 的参数方程为 (Ⅰ)求圆 C 的直角坐标方程; (Ⅱ)设 l 上一定点 M(0,1) ,求|MA|•|MB|的值. [选修 4-5:不等式选讲] . 23.已知函数 f(x)=|x﹣m|﹣3,且 f(x)≥0 的解集为(﹣∞,﹣2]∪[4,+∞) (Ⅰ)求 m 的值; (Ⅱ)若∃x∈R,使得 f(x)≥t+|2﹣x|成立,求实数 t 的取值范围. sin(θ﹣ t 为参数,直线 l 和圆 C 交于 A,B 两点.