《实数》第一课时教学设计2

合集下载

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。

”他认为宇宙间的一切事物都归为整数或整数的比。

问:整数的比是什么数?答:分数。

问:整数和分数统称为什么数?答:有理数。

〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。

通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。

同时,实数的分类和性质也需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。

2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。

3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。

四. 教学重难点1.实数的概念和分类。

2.实数的性质。

五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。

通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。

六. 教学准备3.练习题。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。

呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。

2.引导学生通过观察和思考,总结实数的性质。

操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。

2.每组选一名代表进行汇报,其他组进行评价和补充。

巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。

2.教师选取部分学生的作业进行点评,指出错误并进行讲解。

拓展(10分钟)1.让学生思考:实数和数轴之间的关系。

2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。

小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。

2.学生分享学习收获和感受。

家庭作业(5分钟)1.完成课后练习题。

鲁教版七年级数学上册《实数》教案教学设计(2)

鲁教版七年级数学上册《实数》教案教学设计(2)

《实数》教案一、教材分析1、教材的地位与作用本节课在学生学习了平方根以后,通过学生合作探究,揭示出中像 、π等无限不循环小数的存在,从而引入了无理数的概念,使学生把数的概念从有理数扩展到实数,对今后的数学学习有着非常重要的意义,并且是同学们进一步学习方程、函数等知识的基础。

另外,无理数的引入,数集的扩充的教学中充满着对立与统一的辨证关系,实数和数轴上的点一一对应蕴含着数形结合的思想,通过这节课的学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯。

2、教学目标依据本节教材的特点,并结合学生的年龄特点和认知水平,确定本节课的教学目标: 知识目标——让学生了解无理数,实数的概念,了解实数与数轴上的点一一对应,初步学会实数的大小比较,能对实数的分类进行初步的辩认。

能力目标——了解实数的分类,培养学生初步分类意识;用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的数学思想方法。

情感目标——通过合作探究,让学生经历无理数的产生过程;并向学生渗透“数形结合”及分类的数学思想,感受人类(特别是我国古代)在数的发展研究中的伟大成就,从中得到启发和教育。

3、教学重点和难点本节教学的重点是无理数、实数的概念以及实数与数轴上的点一一对应。

无理数的概念比较抽象,如 等无理数在数轴上的表示,需要比较复杂的几何作图,是本节教学中的难点。

二、教学方法和手段本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生学习积极性,从而较好地完成实数概念的建构,达到教学目标。

并结合计算器、多媒体、实物投影仪等现代教学手段实施教学,体现直观性。

22三、学法指导学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。

恰如其分的问题设计,真正的让学生进行探究,突出学生教学主体的地位。

《实数》(第一课时)教学设计

《实数》(第一课时)教学设计

实数(第一课时)教学设计
一、教材分析
实数是“数与代数”领域的重要内容。

,本章是在有理数的基础上认识实数,对于实数的学习,除本章外,还要在“二次根式”一章中通过研究二次根式的运算,进一步认识实数的运算。

本节是是实数的第一节课,主要通过折纸活动,让学生感受无理数产生的实际背景和引入的必要性,进而将数的范围从有理数扩充到实数.并类比有理数的有关性质得出实数的有关性质.
二、学情分析也使学生感受到无理数
学生在前面已学习了平房根、立方根的知识,已经具有发现无理数的的能力,本节课通过教师创设的折纸的问题情境,让学生体会无理数是从现实世界中抽象出来的,是一种不同于有理数的数.
三、教学目标
1.通过实际问题,让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.2.能对实数按要求进行分类,会用所学定义正确判断所给数的属性.
3.理解在实数范围内,相反数、倒数、绝对值的意义.
4.通过对有关无理数的数学史的了解,进一步增强学生对数学的兴趣.
四、重点、难点
重点:1.让学生经历无理数发现的过程,使学生认识到数的扩充的必要性.
2.无理数概念的探索过程及无理数概念的建立
3. 能对实数进行分类,并判断所给数的属性.
难点:1.无理数概念的探索过程. 2.用所学定义正确判断所给数的属性.
五、教学设计
0.81,
8
2、在数轴上的表示:。

七年级数学上册《实数》教案、教学设计

七年级数学上册《实数》教案、教学设计
2.讲解无理数的定义,以及如何判断一个数是否为无理数。通过具体例子,让学生理解无理数的性质和特点。
3.介绍实数的四则运算,特别是乘除运算的化简方法。通过讲解和举例,让学生掌握实数运算的规则。
4.引导学生探究实数在数轴上的表示方法,让学生通过实际操作,体验实数与数轴的关系,培养数形结合的思维方式。
(三)学生小组讨论
8.课后辅导和拓展,针对学生在课堂上遗留的问题,进行个别辅导;同时,提供丰富的拓展资源,满足学有余力学生的需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个正方形和一条对角线,提出问题:“同学们,你们知道这个正方形的对角线有多长吗?”引导学生回顾勾股定理,计算出对角线的长度为$\sqrt{2}$。
1.将学生分成小组,讨论以下问题:
a.举例说明无理数在实际生活中的应用。
b.如何判断一个数是否为无理数?
c.实数在数轴上如何表示?
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。题目包括:
a.判断以下数是否为无理数:$\sqrt{5}$、$\pi$、$\frac{22}{7}$。
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生全面掌握实数的知识与技能,形成良好的学习方法和情感态度,为今后的数学学习打下坚实的基础。
二、学情分析
七年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。在数学学习方面,他们已经掌握了有理数的概念和运算,具备了一定的数学基础。然而,对于实数的认识尚处于模糊阶段,特别是对无理数的理解和运用存在一定难度。因此,在教学过程中,应关注以下几点:
2.提问:“$\sqrt{2}$是一个什么类型的数?”让学生回顾有理数的概念,进而引出无理数的概念,为新课的学习做好铺垫。

苏科版数学八年级上册4.3《实数》教学设计2

苏科版数学八年级上册4.3《实数》教学设计2

苏科版数学八年级上册4.3《实数》教学设计2一. 教材分析《实数》是苏科版数学八年级上册4.3节的内容,主要包括实数的定义、分类和性质。

本节内容是学生学习实数系统的基础,对于学生理解和掌握实数的概念、性质和运算具有重要意义。

教材通过具体的例子和练习,引导学生理解和掌握实数的概念,培养学生的逻辑思维能力。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。

但学生对于实数的定义和性质可能还比较陌生,需要通过具体的例子和练习来理解和掌握。

同时,学生可能对于实数的分类和运算规则有一定的困惑,需要教师进行详细的讲解和引导。

三. 教学目标1.理解实数的概念和性质,能够正确地表示和运用实数。

2.掌握实数的分类和运算规则,能够解决与实数相关的实际问题。

3.培养学生的逻辑思维能力和数学思维习惯。

四. 教学重难点1.实数的定义和性质。

2.实数的分类和运算规则。

五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和练习,引导学生理解和掌握实数的概念和性质。

同时,运用归纳法和演绎法,让学生通过自主学习和合作学习,掌握实数的分类和运算规则。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和测试题,用于巩固和评估学生的学习效果。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考实数的定义和性质。

例如,问学生:“你们认为实数是什么?实数有哪些性质?”让学生发表自己的观点和看法。

2.呈现(15分钟)教师通过PPT和讲解,向学生介绍实数的概念和性质。

可以通过具体的例子和图示,让学生直观地理解实数的概念。

例如,通过数轴和坐标系,向学生展示实数的线性结构和性质。

3.操练(15分钟)学生通过自主学习和合作学习,进行实数的运算练习。

教师可以提供一些练习题,让学生进行实数的加减乘除等运算。

同时,教师可以引导学生思考实数的运算规则,并进行讲解和引导。

4.巩固(10分钟)学生通过做一些相关的练习题,巩固对实数的理解和掌握。

最新北师大版八年级数学上册《实数》1教学设计

最新北师大版八年级数学上册《实数》1教学设计

第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

依据新课标制定教学难点:利用数轴上的点表示无理数。

二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。

3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。

三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。

通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。

第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。

《实数》教学设计(第一课时)

《实数》教学设计(第一课时)

《实数》教学设计(第一课时)一、教学目标【知识与技能目标】1、了解无理数和实数的概念,会将实数按一定的标准进行分类。

2、理解实数与数轴上的点一一对应关系,会根据实数在数轴上的位置比较大小。

【过程与方法目标】1、通过对实数分类的研究、增强学生的分类意识。

2.通过学习“实数与数轴上的点的一一对应关系”,让学生进一步体会数形结合的思想。

【情感态度目标】1、通过对实数的分类练习、让学生体会分类的思想方法。

2、在探究数轴上表示点的过程,培养学生团结合作的精神。

【教学重点】1、理解实数,能对实数进行分类。

2、理解数轴上点与实数是一一对应的关系。

【教学难点】对“实数与数轴上的点一一对应关系”的理解。

二、教学过程(一)创设情境,导入新课活动一 学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类。

活动二 大家知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?、 、 、 、学生以小组为单位,用笔和计算器去计算,得出结果总结规律。

教师进一步引导学生思考,整数是否可以看成小数的形式?例如:3教师归纳总结:任何一个有理数都可以写成有限小数或无限循环小数的形式,如等。

引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?2553 427911119小结:任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数。

(二)思考探究,获取新知活动三 让学生计算下面几个数的平方根和立方根,发现结果有什么特点。

,,,学生发现,这些运算的结果是无限小数并且还不循环,这种数属于哪一类?引出无理数的概念。

(1)试着写出几个无理数。

(2)判断下列各数中,哪些是有理数?哪些是无理数?由学生小组合作完成上述问题后,要求学生思考:1、用根号形式表示的数一定是无理数吗?2、如何把实数分类?教师归纳总结:注意带根号的数,判断它是不是无理数的方法。

初中阶段还有一个特殊数,它也是无理数。

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2

北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。

教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。

但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。

此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够进行实数的大小比较、加减乘除运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数的运算规则。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。

2.运用实例解析法,让学生通过实际问题理解实数的运算规则。

3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。

六. 教学准备1.准备相关实数的教学案例和实例。

2.制作PPT,展示实数的定义、性质和运算规则。

3.分组安排,便于学生进行小组合作学习。

七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。

2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。

3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。

4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。

5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

数学七年级下人教新课标6.3《实数》(1)教学设计

数学七年级下人教新课标6.3《实数》(1)教学设计

1.教学环境:多媒体录播教室。

2.资源准备:教学所用的PPT 课件,课本。

六、教学媒体选择分析表知识点 学习 目标 媒体 类型媒体内容要点 教学 作用 使用 方式所得结论占用 时间媒体 来源 知识回 顾 感知 图片文字 提出问题,学生回答B B 有理数的分类方法 2分钟自制探究新知 了解图片 将给出的数写成小数的形式 I C 感知无理数与有理数的区别 3分钟 自制学以致用 掌握PPT课件出示问题GF理解概念,掌握方法 3分钟自制再探新知 知道 PPT 课件 在数轴上表示π, A F 无理数也可以在数轴上表示 8分钟 下载应用新知 应用 PPT 课件 出示问题,学生独立完成。

H I 通过练习,进一步理解并握掌所学知识。

6分钟 自制归纳总结了解 PPT 归纳本节课所学数学知识与思想方法。

H J 知识梳理,进一步落实相关概念。

2分钟自制①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。

②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括;I. 讨论_交流_总结;J 其他七、教学过程一、知识回顾请你把下列各数进行分类:二、探究新知问题1: 把下列有理数写成小数的形式,你有什么发现? (可以使用计算器) 3 , 35-,478 ,911 ,119 ,5923300.11655--7,,, ,,,,27119104911-,,,.22-和0.81,111.29=,50.59=体会有理数都可以写成有限小数或无限循环小数的形式。

任何一个有理数都可以写成有限小数或无限循环小数的形式。

八年级数学上册 实数(第一课时)教案 北师大版

八年级数学上册 实数(第一课时)教案 北师大版

实数教学设计第(一)课时教学设计思想本节内容需三课时讲授;本课时是对这段时间以来学过的数作一归纳性的总结,这个总结过程可由学生自己通过对具体的数比较的基础上引入,分清带根号的数不一定是无理数,对提出实数的概念(有理数和无理数的总称)表示接受和理解。

通过议一议,掌握数的分类要遵循的规则,领会分类的思想;在此过程中,通过对上述数的特点的分析,指出实数的绝对值和相反数的意义与在有理数范围内的意义是一样的,设计有针对性的例题和习题巩固对这些概念的认识,会求一个数的绝对值、相反数及倒数。

同时让学生思考,数的绝对值与相反数往往与数轴有密切的联系,进而让学生议一议“有理数能填满整个数轴吗?”,引出实数与数轴的关系,“每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

”,掌握如何在数轴上画出如:,等数,真切感受实数在数轴上的存在和实际大小,掌握实数大小比较的方法。

教学目标(一)知识与技能1.能对实数按要求进行分类.2.知道在实数范围内、相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.明白实数和数轴上的点是一一对应的并能根据它们在数轴上的位置来比较大小.(二)过程与方法1.通过对实数进行分类,培养学生的分类意识.2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.(三)情感、态度与价值观通过对实数进行分类的练习,让学生进一步领会分类的思想.鼓励学生要从不同角度入手,寻求解决问题的多种途径.训练学生的多角度思维,为他们以后更好地工作作准备.教学重点1.实数概念的建立.2.实数的分类.3.在实数范围内,求相反数、倒数、绝对值.教学难点1.实数概念的建立.2.实数的分类.教学方法指导法.教具准备投影片.教学安排3课时.教学过程Ⅰ.导入新课在前面我们学了有理数和无理数,有理数是有限小数或无限循环小数,无理数是无限不循环小数,如π.在学了平方根和立方根之后,我们知道、这样的数也不是有理数,因为没有哪一个整数或分数的平方为2,立方为3.而且用估算的方法还知道、是无限不循环小数,因此这些数也是无理数.那是不是说带有根号的数就是无理数呢?也不全是.如=2,2是有理数,一般来说开方开不尽的数就是无理数,如等.在小学学了非负数,上初一引入了负数,数的范围扩充到有理数范围,那么引入无理数之后数的范围扩充到什么范围呢?本节课就来研究此问题以及与之有关的问题.Ⅱ.讲授新课1.实数的概念把下列各数分别填入相应的集合内:…有理数和无理数统称为实数(real number),即实数可以分为有理数和无理数.2.实数的分类[师]在有理数的分类中可以按正数、负数、零进行分类,也可按整数和分数进行分类,那么在实数范围内是不是也能这样分类呢?下面我们把上面各数填入下面相应的集合内.填完之后大家发现了什么?[生]无理数也有正负之分,0既不能填入正数集合,也不能填入负数集合.[师]因此,从正、负方面来考虑,实数可以分为正实数、零、负实数.即实数另外从定义也可以进行分类.实数这就是实数的两种分法.3.在实数范围内的几个概念.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a与-a互为相反数,0的相反数是0.(2)倒数:若a≠0,则a与互为倒数.(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即|a|=想一想[师]请大家思考并回答:(1)的相反数是_________,绝对值是_________;(2)与是_________;(3)-π的相反数是_________,它们的和是_________;(4)a是一个实数,它的相反数为_________,绝对值为_________.(5)若a≠0,则它的倒数为_________.[生](1)-,;(2)互为倒数;(3)π,0;(4)-a,|a|;(5)4.实数与数轴上的点之间的关系.[师]请大家认真观察图,然后再回答.(1)如图,OA=OB,数轴上A点对应的数是什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?[生]因为根据勾股定理得OB2=1+1=2,所以OB=,OA=OB,故OA=,A点对应的数是无理数,它介于整数1和2之间.[生]如果把所有有理数都标到数轴上,那么数轴填不满.因为有理数不包括A点.[师]每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.在数轴上,右边的点表示的数比左边的点表示的数大.Ⅲ.课堂练习1.判断下列说法是否正确.(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数;(4)无理数都是实数;(5)实数都是无理数.解:(1)错.如1.333…是无限小数但是有理数;(2)是正确的;(3)错误的. 如-、都是带根号的数,但它们不是无理数;(4)正确;(5)错.如,0,-3等都是实数,但不是无理数.2.求下列各数的相反数、倒数和绝对值.(1);(2);(3).解:(1)的相反数为-,倒数为,绝对值为;(2)=-2的相反数为2,倒数为-,绝对值为2;(3)=7,7的相反数为-7,倒数为;绝对值为7.3.在数轴上作出对应的点.解:如图,点A所表示的点即为对应的点.比较下列各组数的大小:(1);(2)-π与-;(3)2与3;(4)5+2与6+2. 解:(1)∵(7)2=56.25,而56.25>50∴,即7>;(2)-=-3.1428…,-π=-3.1415…∴-π>-;(3)采用平方法∵(2)2=60,(3)2=54而60>54 ∴2>3;(4)∵6+2=5+(1+2)以下采用平方法比较2与1+2的大小.(2)2=24,(1+2)2=1+4+20=21+4,又24=21+3,而3<4∴5+2<6+2.说明:被开方数较大的算术平方根较大.Ⅳ.课时小结本节课学了如下内容:1.实数的概念.2.实数的两种分类.(1)按大小分为:正实数,0,负实数.(2)按定义分为:有理数和无理数.3.在实数范围内,相反数,倒数,绝对值的意义仍然和在有理数范围内的意义相同.4.实数和数轴上的点是一一对应的.5.根据实数在数轴上的位置比较实数的大小.Ⅴ.课后作业习题2.8Ⅵ.活动与探究1.写出适合下列条件的数.(1)大于-小于的所有整数;(2)小于的所有自然数;(3)大于-的所有负整数;(4)绝对值小于的所有整数.分析:首先找到满足条件的最大数和最小数,然后再将它们之间的所有满足条件的数都写出来.解:(1)∵-<-<∴大于-且小于的所有整数是:-3,-2,-1,0,1,2.(2)∵∴小于的所有自然数是:4,3,2,1,0.(3)∵-∴大于-的所有负整数是:-3,-2,-1.(4)∵绝对值小于的数x,满足-<x<,而-<-<∴绝对值小于的所有整数是:-2,-1,0,1,2.说明:两个负数比较大小,绝对值大的反而小.2.求满足下列各式的x的值.(1)|x|=(2)|x2-5|=4分析:根据绝对值的概念,正实数的绝对值是它本身,负实数的绝对值是它的相反数.所以(1)中的x既可以是正实数,也可以是负实数.(2)把(x2-5)视作一个整体,类似于(1).解:(1)∵|x|=∴x=±(2)∵|x2-5|=4∴x2-5=±4当x2-5=4时x2=9∴x=±3当x2-5=-4时x2=1∴x=±1∴满足等式的x的值为-3,-1,1,3说明:互为相反数的二数的绝对值相等,即|a|=|-a|.3.已知x是实数,化简|3x-1|-|2x+1|.分析:设法脱掉绝对值符号,但x的范围没有具体给定,所以应讨论,具体方法是:(1)找零点:令3x-1=,x=,令2x+1=0,x=-;(2)描零点:在数轴上找出零点;(3)分区间:两个零点把实数轴所表示的数分成三个区间:x≤-,-<x≤,x>;(4)作化简:在各个区间上分别去绝对值符号,进行化简.解:(1)当x≤-时,3x-1<0,2x+1≤0原式=(1-3x)+(2x+1)=2-x.(2)当-<x≤时,3x-1≤0,2x+1>0原式=(1-3x)-(2x+1)=-5x.(3)当x>时,3x-1>0,2x+1>0原式=(3x-1)-(2x+1)=x-2.说明:在实数范围内的运算中,去绝对值符号时根据字母的取值范围确定绝对值符号内数的正、负、零,进行变形.否则就要分类讨论,借助于数轴把实数分为若干个区间,在每个区间内根据数的范围分别去掉绝对号,再进行合并同类项即可,这样形象、直观、简明,且可保证不重不漏.板书设计§2.6.1实数(一)一、实数的定义二、实数的分类三、在实数范围内的几个概念.四、实数与数轴上的点之间的关系.五、课堂练习六、课时小结七、作业。

冀教版数学八年级上册14.3《实数》教学设计2

冀教版数学八年级上册14.3《实数》教学设计2

冀教版数学八年级上册14.3《实数》教学设计2一. 教材分析冀教版数学八年级上册14.3《实数》是学生在掌握了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的内容包括实数的定义、实数的分类、实数的性质等。

通过本节课的学习,使学生能够理解实数的意义,掌握实数的分类和性质,为后续的数学学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数和无理数的相关知识,对数的运算也有一定的了解。

但学生在理解实数的本质和实数的分类上可能会存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,用生动形象的例子和生活中的实际问题,帮助学生理解和掌握实数的概念。

三. 教学目标1.理解实数的定义,掌握实数的分类。

2.理解实数的性质,能够运用实数的性质解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和分类。

2.实数的性质及其运用。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。

2.用生活中的实际问题,帮助学生理解实数的意义。

3.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.准备相关的生活实例和数学实例,用于解释实数的概念和性质。

2.准备PPT,用于展示实数的定义、分类和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。

例如:“同学们,你们能举例说明有理数和无理数吗?”呈现(10分钟)教师通过PPT展示实数的定义、分类和性质,同时结合生活实例和数学实例,帮助学生理解实数的概念。

例如:用尺子测量物体长度,涉及到整数、分数和小数;用π表示圆周率,涉及到无理数。

操练(15分钟)教师提出练习题,让学生分组讨论、解答。

例如:判断以下数是有理数还是无理数?并说明理由。

巩固(10分钟)教师引导学生总结实数的性质,并通过实例说明实数的性质在实际问题中的应用。

实数(第一课时)教学设计

实数(第一课时)教学设计

实数(第一课时)教学设计教学设计学科:数学教师:XXX课题名称:实数(第一课时)学情分析:在本节之前,学生已经研究了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数的认识进一步深入。

教材分析:本节是义务教育课程标准鲁教版七年级上册第四章《实数》的第六节。

这节内容教材安排了2个课时,本节课为第一课时。

主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。

教学目标:知识与技能目标:1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

3.了解实数和数轴上的点一一对应。

过程与方法目标:1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。

情感与态度目标:1.通过对实数进行分类的练,进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。

教学重难点:重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

难点:建立实数概念及分类,用数轴上的点来表示无理数。

教学策略:多媒体课件、投影仪、电脑,自主探究—交流—发现。

教学过程与方法:教学形式:新授教学环节:导入教师活动:引入问题:1.什么是有理数?有理数怎样分类?2.什么是无理数?带根号的数都是无理数吗?学生活动设计意图:回顾以前研究过的内容,为进一步研究引入无理数后数的范围的扩充作准备。

通过将以上各数填入有理数集合和无理数集合,建立实数概念。

在实数概念形成的基础上对实数进行不同的分类。

上面的数中有,不能放入上面的任何一个集合中,学生容易遗漏,强调也是实数,但它既不是正数也不是负数,应单独作一类。

北师大版数学八年级上册6《实数》教学设计2

北师大版数学八年级上册6《实数》教学设计2

北师大版数学八年级上册6《实数》教学设计2一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步研究实数的性质和运算。

本节课的内容主要包括实数的分类、实数与数轴的关系、实数的运算等。

通过本节课的学习,学生能够更深入地理解实数的意义,熟练掌握实数的运算方法,为后续的学习打下基础。

二. 学情分析学生在七年级时已经学习了有理数和无理数,对数的初步概念有了了解。

但他们对实数的认识还停留在表面,对实数的分类和实数与数轴的关系理解不深。

此外,学生在运算方面也存在一些问题,如对实数运算的规则理解不透,运算速度慢等。

三. 教学目标1.知识与技能:理解实数的分类,掌握实数与数轴的关系,熟练进行实数的运算。

2.过程与方法:通过数轴的帮助,培养学生数形结合的思维方式。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.重点:实数的分类,实数与数轴的关系,实数的运算。

2.难点:实数的运算规则,实数与数轴的对应关系。

五. 教学方法采用问题驱动法、数形结合法、小组合作法等,引导学生主动探究,培养学生的动手操作能力和逻辑思维能力。

六. 教学准备1.教师准备:教材、PPT、数轴教具、实数运算练习题。

2.学生准备:笔记本、笔、实数运算练习题。

七. 教学过程导入(5分钟)教师通过数轴教具,引导学生回顾有理数和无理数的概念,提问:有没有比无理数更大的数?引出实数的概念。

呈现(10分钟)教师通过PPT展示实数的分类,讲解实数与数轴的关系,让学生在数轴上表示实数,加深对实数概念的理解。

操练(10分钟)教师给出实数运算的例子,让学生分组讨论并计算,如实数的加减乘除、乘方等。

教师巡回指导,解答学生的疑问。

巩固(10分钟)教师挑选几组实数运算题目,让学生独立完成,然后集体讲解答案,分析运算过程中可能出现的错误。

拓展(10分钟)教师引导学生思考实数在实际生活中的应用,如购物时找零、测量长度等,让学生认识到实数的重要性。

华东师大版八年级上册数学教学设计《实数》

华东师大版八年级上册数学教学设计《实数》

华东师大版八年级上册数学教学设计《实数》一. 教材分析华东师大版八年级上册数学的《实数》章节,是学生在掌握了有理数知识的基础上,进一步学习实数的理论。

本章主要包括实数的定义、实数的分类、实数的运算以及实数与数轴的关系等内容。

通过本章的学习,使学生能够更深入地理解数的概念,掌握实数的运算方法,以及实数与几何图形之间的联系。

二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数的概念和运算规则有了初步的了解。

但学生在学习实数时,可能会对实数的抽象概念和实数与数轴的关系产生困惑。

因此,在教学过程中,需要引导学生通过实例来理解实数的定义,并通过数轴来直观地理解实数与数轴的关系。

三. 教学目标1.知识与技能:使学生理解实数的定义,掌握实数的分类,以及实数的运算方法;能够利用数轴表示实数,并理解实数与数轴的关系。

2.过程与方法:通过实例分析,培养学生的抽象思维能力;通过数轴的直观表示,培养学生的几何直观能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力,使学生体验到数学的严谨性和美感。

四. 教学重难点1.重点:实数的定义,实数的分类,实数的运算,实数与数轴的关系。

2.难点:实数的抽象概念,实数与数轴的关系。

五. 教学方法采用问题驱动法、实例教学法和数形结合法。

通过问题引导,激发学生的思考;通过实例分析,使学生理解实数的定义和运算;通过数形结合,使学生直观地理解实数与数轴的关系。

六. 教学准备1.教学PPT:制作涵盖实数的定义、分类、运算和数轴关系的PPT。

2.教学实例:准备一些与生活实际相关的实例,用于解释实数的概念。

3.数轴教具:准备数轴教具,用于直观地展示实数与数轴的关系。

七. 教学过程1.导入(5分钟)通过一个实际问题引出实数的概念,例如:“某商店进行打折活动,原价为200元,打8折后的价格是多少?”让学生思考并回答,从而引出实数的概念。

2.呈现(10分钟)讲解实数的定义,以及实数的分类,包括有理数和无理数。

《实数》教学设计

《实数》教学设计
教学设计方案
课题名称 科 目 数 学 教学时间 学习者分析 《实数》 (第一课时) 年 级 八年级 1 课时 普通班学生的成分参差不齐,认知能力有限。实数的概念比较抽象,学生 真正理解这个概念有一定的困难。 一、情感态度与价值观 1. 通过了解数系扩充体会数系扩充对人类发展的作用。 2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。 3. 养成主动参与意识与观察分析的能力 二、过程与方法 1. 注重主动参与与探索, 2. 教学目标 同时注重有理数与实数的对比. 三、知识与技能 1.了解无理数和实数的概念,知道实数和整轴上的点一一对应,能估算无 理数的大小; 2.了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实 数的运算. 教学重点、 难点 教学资源 1.实数的意义和实数的分类;实数的运算法则及运算律. 2.体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算. 数学教师教学用书(八年级) 教学过程 1.导入新课 问题(1)利用计算器,把下列有理数 3、成小数的形式,它们有什么特征? (2)我们所学过的数是否都具有问题(1)中数的特征? 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形 式,即 教学活动 1
教学活动 2
观察思考 从图中可以看出, OO′的长是这个圆的周长π , 所以 O′的 坐标是π . 这样,无理数π 可以用数轴上的点表示出来. 又如,以单位长度为边长画一个正方形(如图 10—3—2 所示) ,以原 点为圆心,正方形对角线为半径画弧,与正半轴的交点就表示 2 ,与负半 轴的交点表示- 2 . (为什么?)
3 本题的易错点是将 8 ,1.414 当成无理数,解题关键是透彻理解无理数的 定义.
教学活动 3
22 解:{正有理数: 8 , 7 ,1.414} 7 - {负有理数:-3.141, 8 ,-0.202 020…} π {正无理数: 3 , 3 ,0.101 001 000 7 }

人教版七年级数学下册《实数》(第一课时)教学设计

人教版七年级数学下册《实数》(第一课时)教学设计

6.3 实数(第一课时)教学重点:重点:①理解无理数是无限不循环小数。

②掌握实数的概念及分类。

难点:①会辨别一个数是否是无限不循环小数。

教学准备:多媒体设备,课件教学过程:一、复习旧知,做好铺垫1、同学们,你们什么时候开始接触“数学”了?2、我们上个学期学到了什么数?(有理数)3、请你想一想,到目前为止,你认识了哪些数?4、我们先把学过的有理数整理一下:(复习有理数的概念及分类)二、探究新知我们知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?3,我们发现上面的分数都可以写成有限小数或者无限循环小数的形式,即3=3.0任何有限小数或无限循环小数都是有理数。

人类对于数的认识,就像我们每一个人一样,经历了一个逐步扩展的过程。

先有自然数,接着出现了分数和小数,引入负数之后,数的范围扩展到了有理数。

通过前两节课的学习,我们知道很多数的平方根和立方根都是无限不循环小数,那么无限不循环小数叫做无理数,例如:(=3.14159265…)无理数的定义:无限不循环的小数叫做无理数.(板书)无理数也有正负之分,例如:无理数的判断方法:①定义是判断一个数是不是无理数的重要依据。

②我们知道,整数和分数统称为有理数,整数可以看作是分母为1的分数,从这个意义来说,有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商)。

特别提示:①无理数都是无限小数,但无限小数不一定是无理数。

②某些数的平方根或立方根是无理数,但带根号的数却并不都是无理数,如:,,-无理数的特征:①开方开不尽的方根,如:-…②圆周率π 以及一些含有π的数,如:π ,,π -3…③具有特定结构的数,如:0.1010010001…(每两个1之间依次多一个0)。

你还能举出一些无理数吗?尝试体验:下列各数正确吗?请说明理由.①无理数是无限不循环小数;()②小数都是有理数;()③ 3.14是无理数;()④无理数都是开方开不尽的数;()⑤无限小数都是有理数;()⑥带根号的数都是无理数;()实数的概念:有理数和无理数统称为实数。

李夫前《实数》教学设计

李夫前《实数》教学设计

《实数》教学设计肥西小庙中学李夫前一.教学目标1.从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。

2.让学生体验用有理数估计一个无理数的大致范围的过程,掌握“逐次逼近法”这种对数进行分析、猜测、探索的方法3.培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点二.教材分析“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。

由、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。

重点:无理数、实数的意义,在数轴上表示实数。

难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。

三.学生分析学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。

但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。

对的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。

四.设计理念让学生主动参与合作交流,探索、发现,注重知识形成的过程五.教学方法启发式、探索式教学六.教学过程设计2、学生归纳总结:事实上,任何一个有理数都可以写成有限小数或无限循环小数;反过来,任何有限小数或无限循环小数也都是有理数.5、幻灯演示学生的计算结果,引导学生对比有理数的形式,总结归纳上面数字的特点。

这些数都是无限不循环小数。

(幻灯演示)4、归纳上面数字的特点:这些数都是无限不循环小数。

5、齐读“无理数”的概念。

2、演示学生的答案3、我们经历上面的学习,实其又一次经历了数的扩充过程,我们把上面这些数统称为实数。

有理数和无理数统称实数(幻灯演示)3、一名或几名学生把答案说出,其它同学评判对错。

4、齐声朗诵“实数”的概念。

2、演示学生分类,并且引导学生,对实数的分类要按同一标准分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数》第一课时教学设计
教学目标
1.知识与技能
了解无理数和实数的概念,知道实数和整轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算.
2.过程与方法
注重主动参与与探索,同时注重有理数与实数的对比.
3.情感、态度与价值观
养成主动参与意识与观察分析的能力.
教学重点难点
重点:实数的意义和实数的分类;实数的运算法则及运算律.
难点:体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算. 课时安排
2课时
教与学互动设计
第1课时
(一)创设情境,导入新课
问题1 用什么方法求2?其结果如何? 用计算器可求得2=1.414 213 562.
问题2 你能利用平方关系验算所得的结果吗?
用计算器计算1.412 135 62的平方,结果是1.999 999 99.
问题3 验证的结果并不是2,而是接近于2,这说明了什么问题? 说明所求得的2的值只是一个近似值.
问题4 那么2到底是怎样的数呢?
(二)合作交流,解读探究
探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3,53-,847,119,911,95.
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
3=3.0,53- =-0.6,847=5.875,119=18
.0 ,911=2.1 ,9 =5.0 . 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.
观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数,π=3.141 592 65…也是无理数.
结论 有理数和无理数统称为实数.
试一试 把实数试着来分类.
⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧无限不循环小数无理数数有限小数或无限循环小分数整数有理数实数
像有理数一样,无理数也有正负之分.例如2,33,π是正无理数,2-,
33-,-π是负无理数.由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨
⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数0
我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?
探究 如图10—3—1所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?
观察思考 从图中可以看出,OO ′的长是这个圆的周长π,所以O ′的坐标是π.
这样,无理数π可以用数轴上的点表示出来.
又如,以单位长度为边长画一个正方形(如图10—3—2所示),以原点为圆心,正方形对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点表示-2.(为什么?)
总结 1.事实上,每一个无理数都可以用数轴上的一个点表示出来.这就是说,数轴上的点有些表示有理数,有些表示无理数.
当数从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
2.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.
讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
思考 1.3的相反数是________.
2.-π的相反数是______.
3.0的相反数是______.
4.2=____,|-π|=______,|0|=________
总结 数a 的相反数是-a ,这里a 表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
(三)应用迁移,巩固提高
例1 把下列各数分别填入相应的集合里:
38,3,-3,141,3 ,722,87-,32-,0.101 001 000 1...,1.414,-0.020 202 (7)
{正有理数: }
{负有理数: }
{正无理数: }
{负无理数: }
【评析】 本题考查无理数的定义,解题思路是按无理数的定义判断,本题的易错点是将38,1.414当成无理数,解题关键是透彻理解无理数的定义.
解:{正有理数:38,722
,1.414}
{负有理数:-3.141,87-,-0.202 020…}
{正无理数:3,3π
,0.101 001 000 1…}
{负无理数:32-,7-}
例2 试估计3+2与π的大小关系,在此基础上比较-(3+2)与-π的大小,并化简|3+2-π|的值.
【评析】 正实数的大小比较和运算,通常可取它们的近似值来进行,在比较两个负数大小时,可根据它们的绝对值的大小来比较
解:用计算器求得:3+2≈3.146 264 37
而π≈3.141 592 654 这样可判断:3+2>π 同样有:-(3+2)<-π |3+2-π|=3+2-π
【备选例题】 (学案点击中考)(2005年·上海)下列实数中是无理数的为(C )
A .0
B .-3.5
C .2
D .9
【评析】 这是一道基本概念题,关键在于对无理数的理解是无限不循环小数,而不是指带有根号的数,如9=3;应是2.
(四)总结反思,拓展升华
小结 1.什么叫做无理数?
2.什么叫做有理数?
3.有理数和数轴上的点一一对应吗?
4.无理数和数轴上的点一一对应吗?
5.实数与数轴上的点一一对应吗?
拓展 已知m 是30的整数部分,n 是30的小数部分,试计算m -n 的值.
【点拨】 (1)认定25<30<36故m =5
(2)30是由其整数部分和小数部分组成的,即30=m +n
所以n =30-5.
【答案】 m -n =6-13
(五)课堂跟踪反馈
夯实基础
1.下列各数中,是无理数的是(C )
A .-1.732
B .1.414
C .3
D .3.14
2.已知四个命题,正确的有(A )
(1)有理数与无理数之和是无理数 (2)有理数与无理数之积是无理数
(3)无理数与无理数之和是无理数 (4)无理数与无理数之积是无理数
A .1个
B .2个
C .3个
D .4个
3.若实数a 满足a a |
|=-1,则(B )
A .a >0
B .a <0
C .a ≥0
D .a ≤0 4.下列说法正确的有(A )
(1)不存在绝对值最小的无理数
(2)不存在绝对值最小的实数
(3)不存在与本身的算术平方根相等的数
(4)比正实数小的数都是负实数
(5)非负实数中最小的数是0
A .2个
B .3个
C .4个
D .5个
5.若|a |=4,2b =3,且|a +b |=-a -b ,则a -b 的值是(B )
A .1或7
B .-1或-7
C .-1或7
D .1或-7
6.(1)3-2的相反数是32-,绝对值是32-;
(2)|-|1310=1013-
(3)2π4π3)-(|+-|=1;
(4)若x 2=(-3)2,则x =3 .
提升能力
7.x x 2442-+-是实数,则x =2.
8.已知实数a 、b 、c 在数轴上的位置如图所示,
化简:|2c -a |+|c -b |-|a +b |-|a -c -b |
【答案】 a -b -4c
开放探究 9.已知a 、b 均为有理数,并且满足等式5-2a =2b +232-a ,求a 、b
的值.
解:∵ 5-2a =2b +232-a
∴ (5+a -2b )+(-a -32)2=0
又∵ a 、b 均为有理数
∴ 5+a -2b ,-a -32
都是有理数
∴ ⎪⎩⎪⎨⎧,=--,=-+032025a b a 解得⎪⎪⎩⎪⎪⎨⎧1.=,=-6332b a。

相关文档
最新文档