单片机的抗干扰性能

合集下载

如何提高MCU抗干扰能力?

如何提高MCU抗干扰能力?

1 前言随着单片机的发展,单片机在家用电器、工业自动化、生产过程控制、智能仪器仪表等领域的应用越来越广泛。

然而处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备。

这对我们单片机系统的可靠性与安全性构成了极大的威胁。

单片机测控系统必须长期稳定、可靠运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大损失。

因此单片机的抗干扰问题已经成为不容忽视的问题。

2 干扰对单片机应用系统的影响2.1 测量数据误差加大干扰侵入单片机系统测量单元模拟信号的输入通道,叠加在测量信号上,会使数据采集误差加大。

特别是检测一些微弱信号,干扰信号甚至淹没测量信号。

2.2 控制系统失灵单片机输出的控制信号通常依赖于某些条件的状态输入信号和对这些信号的逻辑处理结果。

若这些输入的状态信号受到干扰,引入虚假状态信息,将导致输出控制误差加大,甚至控制失灵。

2.3 影响单片机RAM存储器和E2PROM等在单片机系统中,程序及表格、数据存在程序存储器EPROM或FLASH中,避免了这些数据受干扰破坏。

但是,对于片内RAM、外扩RAM、E2PROM 中的数据都有可能受到外界干扰而变化。

2.4 程序运行失常外界的干扰有时导致机器频繁复位而影响程序的正常运行。

若外界干扰导致单片机程序计数器PC值的改变,则破坏了程序的正常运行。

由于受干扰后的PC 值是随机的,程序将执行一系列毫无意义的指令,最后进入“死循环”,这将使输出严重混乱或死机。

3 如何提高设备的抗干扰能力3.1 解决来自电源端的干扰单片机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电源上的各种干扰便会引入系统。

除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。

电源干扰主要有以下几类:电源线中的高频干扰(传导骚扰):供电电力线相当于一个接收天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰;解决这种干扰,一般通过接口防护;在接口增加滤波器、或者使用隔离电源模块解决。

单片机系统抗干扰技术

单片机系统抗干扰技术

关键 词 :电磁 兼容 ; 片机 系 统 ; 干 扰 单 抗
中 圈 分 类 号 :T 3 2. P0 7
s s e e I r du ed. y t m ar nto c
Abst act I hi ap an iI t f r o e n qu f r : n t s p er t t。n ere en e t ch i es o Ha d r war nd e a So t r n Si gl i fwa e i n e Ch p Koy or w ds:El cto a e i e r m gn t Compa l l y Si gl hi c mpu er s s em; t-n ere e e c t l ; n ec p o bl t t y t An i t f nc i r
维普资讯
认 证 与 电 磁 兼 容 卷
Ce r ii tf caton & EM C i … ・ ●●●●●
Chi Com put p er Sys em t
(华 学 动1学 .left j。n d1I 1宰  ̄1科 0 Ce Ao eenygg。 自 0 与 ogou 。tc日a Gnr, 54 化6 anfc E eg Ir STh n h m3 。 t i o y i en
Ch n h u 4 3 o e z o 2 o o

: 叭o n og l
hl n
i 1

要 : 文 介 绍 了单 片 机 系统 中硬件 抗 干 扰技 术 和 软 件抗 干 扰 技术 本 文 献标 识 码 :A 文 |c 号 :1 0 - 1 7( 0 6 0 — 0 7 0 . 编 03 0 0 2 0 )4 0 6 — 2
范 标 准 等 , 既 针 对 电 路 、 又 针 对 单 题 , 因 此 应 该 采 取 屏 蔽 与 匹 配 措 硬 软 件 结 合 法 米 进 行 电 磁 兼 窬 性 设

单片机系统抗干扰技术措施

单片机系统抗干扰技术措施

单片机系统抗干扰技术措施徐本升(七煤(集团)公司社保局,黑龙江七台河154600)廛屉科夔[}商要]单片机系统主要由信号检测部分、信号处理及控制部分、控制信号驱动部分、拳统零毒部分、显示部分组成。

干扰的种类主要来自系统内部元器件在系统中的状态和系统外部其它电气设备产生的干抚。

硬件抗干扰措施是电潺的抗干扰设计,屏蔽抗干技技术,双绞线及光纤的使用,去耦电路。

软件抗干就措-旌旋出错处理程序,建立软件陷阱,使用空操作指令。

‘‘、联蠢建i司]单片机;系统;抗干扰技术‘,单片机应用系统的硬件电路构成比较复杂、所用元件品种繁多,有的工作场所环境比较差,由于这些原因,为了保证单片机应用系统能够在各种环境下能正常运行,系统的抗干扰性就是一个非常重要的指标。

抗干扰就是针对干扰产生的性质、传播途径、侵入的位置和侵入的形式,采取相应的方法消除干扰源,抑制干扰传播途径,减弱电路或元件对噪声干扰的敏感性,使单片机系统能在线正常、稳定地运行。

1单片机系统的组成一个单片机应用系统的硬件电路是由如下几个部分构成的:1)信号检测部分:2)信号处理及控制部分:3)控制信号驱动部分;4)系统交互部分;5)显示部分。

由此可见一个单片机应用系统的成分是相当复杂的,从各种类型的传感器到名目繁多的各种继电器接触器、电磁阀,从类型繁多的集成电路到各种各样的耦合器件、执行部件、显示器件等。

2干扰的种类干扰就是叠加在有用信号上的不需要的信号。

是影响路正常工作的另一种噪声。

干扰以某种电信号的形式,通过一的渠道。

混入有用信号中侵人单片机系统,造成系统工作不稳定在各种实际环境中,干扰总是存在的,这些干扰能降低电子系统准确性甚至破坏其可靠性。

干扰有两种:一是来自系统内部元器件在工作时产生的干扰通过地址、电源线、信号线,分布电容和电感等传输,影响系统工状态。

二是来自系统外部其它电气设备产生的干扰。

通过传导辐射等途径影Ⅱ向单片机系统的正常工作。

干扰对单片机应用系统的作用有3个部位:1)输入系统。

什么是单片机单片机有何特点

什么是单片机单片机有何特点

什么是单片机单片机有何特点单片机(Microcontroller,简称MCU)是一种集成电路,具有微型计算机的功能。

它集成了处理器、存储器、输入输出接口等必要的组成部分,用于控制和管理各种设备或系统。

单片机在各种电子设备中广泛应用,包括家电、汽车、通信、医疗仪器等领域。

本文将介绍单片机的特点及其应用。

一、单片机的特点1. 高度集成:单片机将处理器、存储器、输入输出接口等功能集成在一颗芯片中,体积小、重量轻,适合于嵌入式系统应用。

2. 低功耗:单片机通过优化电路设计和制造工艺,具有低功耗的特点。

它可在电池供电情况下运行较长时间,降低了设备的能耗。

3. 高性能:尽管单片机的规模小,但它仍然具备高性能的特点。

单片机采用高速时钟,能够快速处理各种任务,实现高效的数据处理和控制功能。

4. 稳定可靠:单片机经过严格的测试和验证,具备稳定可靠的性能。

它具备抗干扰能力,在复杂环境下仍能正常运行。

5. 灵活性强:单片机具备可编程性和可扩展性。

通过编程,可以改变单片机的功能和行为,适应不同的应用需求。

同时,单片机的外部接口丰富,可以与各种外设连接,实现灵活的系统组建。

二、单片机的应用领域1. 家电控制:单片机广泛应用于家电控制领域,如空调、洗衣机、电视等。

通过单片机的控制,可以实现多种功能和模式的切换,提高家电的智能化水平。

2. 汽车电子:单片机在汽车电子系统中扮演着重要的角色。

它可以控制车辆的发动机、车载娱乐系统、安全气囊等,提高汽车的安全性和便利性。

3. 工业自动化:单片机在工业自动化领域有广泛应用。

通过单片机的控制,可以实现生产线的智能化管理,提高生产效率和产品质量。

4. 通信设备:单片机被广泛应用于通信设备中,如手机、无线网络设备等。

它可以实现通信设备的信号处理、数据传输等功能。

5. 医疗仪器:单片机在医疗仪器中发挥着重要作用。

它可以控制医疗设备的运行状态,监测患者的生理参数,为医疗人员提供准确的数据支持。

单片机测控系统抗干扰能力分析

单片机测控系统抗干扰能力分析

单片机测控系统的抗干扰能力分析摘要:由于工作环境的多样性,单片机测控系统在工作过程中所受干扰比较大。

为了减少这种影响,提出了抗干扰技术,它是一项系统性的工程,该系统开发的整个过程与环节都要进行抗干扰能力的设计。

本文分析了干扰的来源与形成以及其对单片机测控系统产生的不良影响,从硬件、软件两方面来讨论单片机的抗干扰能力,尽可能的提高整个单片机测控系统的稳定性与可靠性。

关键词:单片机;测控系统;抗干扰能力中图分类号:tp274 文献标识码:a文章编号:1007-9599 (2013) 05-0000-02随着单片微型计算机的应用越来越广泛,主要用于智能化仪表中,尤其是测量控制系统的微型计算机,它是一种新型的微电子设备,具有完善的智能化特性,因而在工业系统中高达90%采用的是单片机测控系统。

由于工业环境中到处都是强弱电设备,不仅有数字电路还有不同模拟电路形成一个强电与弱电数字与模拟共存的局面,同时工作环境电磁干扰强、环境恶劣,其工作性与可靠性都会收到极大的影响。

因此,有必要对单片机测控系统的抗干扰能力进行研究,提高其在电磁环境中的适应能力以及稳定性。

1干扰的来源及形成1.1干扰的来源。

(1)较恶劣的供电环境。

属于重工型企业的铝厂,设备多数是大功率、大感性负载,启动或停止它们都会造成电网电压的大幅度变化,出现欠压、过压的现象,甚至有时候是额定电压的10%,出现这种情况可能持续几分钟或更久。

另外,大功率开关的通断也会造成电网产生尖脉冲,当尖脉冲跟电网的正弦波两者相叠加的时候,其通过交流电源进入到计算机内,对计算机造成了极大的危害,通常情况下,使得计算机发生“飞程序”,出现鼠标乱跳、打印机误动作等故障,使得计算机系统半瘫痪。

(2)严重的噪声环境。

为了实现数据采集或实时控制,模拟量、开关量的输入/输出信号线和控制线长达十几米至几百米,从而对计算机系统的干扰无从避免。

在高压系统调试后,发现在足够大的干扰下,极大的影响了线路分布电容的参数,同时,它对微型计算机引入了够强的干扰,轻微情况只是程序发生错误,影响其正常工作,严重情况下可能导致程序被冲或微机芯片直接被损坏掉【1】。

单片机系统及其抗干扰性分析

单片机系统及其抗干扰性分析
路 ,减 小可 控硅 产生 的噪 声 ( 个噪 声 这
布 电容的存在而产生的耦合 。
( 4)电 磁感 应 耦 合
又称 磁 场 耦 合 ,是 由于 分 布 电磁 感 应
照噪 声产 生的 原 因 、传 导方 式 、波 形特 性 等等 进行 不 同的分 类 。 按 产 生 的 原 因分 : 可 分 为 放 电 噪 声 、高 频 振 荡 噪 声 、浪 涌噪 声 。 按 传导 方 式分 :可分 为共 模噪 声和 串模噪声 。 按 波形 分 :可 分为 持续 正 弦波 、脉
愿 能 对 相 关 人 员有 一 定 益 处 。
要考虑 ,使干扰源和被干扰对象 间没有公 共阻抗。 ( ) 电容 耦 合 3 又称 电场耦 合或静 电耦 合 ,是 由于分

干 扰 的种 类 成 因及 途 径
干 扰的 分类 有好 多种 ,通 常可 以按
( 6)可控 硅 两端 并 接 R C 抑制 电
严 重时 可能 会 把 可控硅 击 穿 的 ) 。
2 切断干 扰传播路径 切断干扰 传播路径的常 用措 施如下 :
( 1)干扰 源 。指 产生 干 扰 的元 件 、
由于 单鳟机 应 用 系统 的硬 件 电路 构成 复 杂 、
所用 元件品 种繁 多及工 作扬 所环境较 恶劣 等
原 因 , 努 了保 证 单 片机 应 廊 系统 能 够 在 各 种
靠安全运行的主要因素主要来 自系统内部
和 外部 的各 种 电气 干扰 ,并 受 系统结 构 设 计 、元 器件选 择 、安 装 、制 造 工艺影 响 。 这 些 都 构 成 单 片 机 系 统 的 干 扰 因 素 ,常 会导 致单 片机 系统 运行 失常 ,轻 则影 响 产 品质量 和产 量 ,重 则会导 致 事 故 ,造 成 重大 经济 损 失 。 针 对形 成 干扰 的 三个 主要 因素 ,我

PIC和AVR的自身抗干扰性能

PIC和AVR的自身抗干扰性能

PIC和AVR的自身抗干扰性能
在我一次产品中有AVR和PIC两种芯片同时存在,当用AVR推动继电器--再推动接触器。

用PIC来显示。

发现PIC居然有点小小的干扰,不得不在外
围电路上加措施才解决问题。

都说PIC的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。

首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。

1。

电源用变压器变压12V,7805稳压,输入输出均接电解电容和104电容。

2。

单片机最小系统,用3个I/O,按钮,指示灯,驱动三极管(继电器--再推动接触器)不用的管脚不管。

3。

干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104电容。

4。

软件,最小最简单,不加任何处理只推动作用。

5。

元件选择,PIC的用
PIC16C54,PIC16F54,PIC16F877A,PIC16F716。

AVR的选用
M8。

AT28,AT13。

接下来做测试了:
PIC16C54:
先是接触器放在芯片旁边。

无论怎么按动按钮,接触器的干扰对它一点反映
也没有,真是稳如泰山。

再用接触器线圈引线缠绕芯片。

在6圈以下还是稳如
泰山。

上了7圈就有干扰了。

看来PIC16C54真是强悍啊。

佩服。

接下去就试PIC16F54了。

单片机系统的抗干扰设计

单片机系统的抗干扰设计

单片机系统的抗干扰设计随着单片机系统越来越广泛地应用于消费电子、低压电器、医疗设备、以及智能化仪器与仪表等领域,单片机在简化电路设计和提高产品性能的同时,单片机系统本身的电磁干扰问题也成为影响这类设备可靠性的主要因素。

单片机系统是一个含有多种电子元器件和电子部品(乃至子设备和子系统)的复杂电子系统,外来的电磁辐射和传导干扰,以及内部元器件之间、部件之间、以及子系统之间、各传送通道之间的相互干扰对单片机及其数据信息所产生的干扰与破坏,严重地影响了单片机系统的工作稳定性、可靠性和安全性。

因此分析和消除单片机系统的不稳定因数,提高它的电磁兼容性已愈来愈成为人们所关注的课题,而这问题的本身则具有很高的实用价值。

1 单片机系统的可靠性分析一个单片机系统的可靠性是自身软件、硬件与其所处工作环境共同作用的结果,所以系统的可靠性也应从这两方面来进行分析与设计。

对系统本身而言,要在保证系统各项功能实现的同时,对其运行过程中出现的各种干扰信号,以及来自于系统外部的干扰信号进行有效的抑制,这是决定系统可靠性的关键。

而对一个有缺陷的系统来说,设计人员往往只是从逻辑上去保证系统功能的实现,而对系统运行过程中可能出现的问题考虑欠周,采取的措施不足,在干扰面前系统就可能陷入困境。

任何系统的可靠性都是相对的,在一种环境下能够可靠工作的系统,到了另外一种环境就可能就不稳定了,这充分说明环境对系统可靠运行的重要性。

所以在针对系统运行环境去设计系统的同时,应当尽量采取措施来改善系统的运行环境,综合性地解决系统运行的可靠性。

2 单片机系统的电磁干扰问题2.1 单片机系统里电磁干扰的由来单片机的干扰是以脉冲形式进入单片机系统的,其主要渠道有三条,即空间、供电系统及信号通道。

空间干扰多发生在高电压、大电流、高频电磁场附近,通过静电感应、电磁感应等方式侵入系统内部。

供电系统的干扰通过同一电网里用电设备工作时产生的噪声干扰和瞬变干扰来影响单片机系统的工作。

PIC单片机的抗干扰能力强还是AVR单片机的强

PIC单片机的抗干扰能力强还是AVR单片机的强

PIC单片机的抗干扰能力强还是AVR单片机的强单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,micr ochip系列,TI的msp430系列,AVR系列,51系列,欧洲意法半导体的ST 系列。

这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;日本的标准歉咂德龀辶??⒊觯?龀蹇矶却?0ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲标准。

一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准是1200V),有些可以达到3000V,于是很多人为此很得意。

单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。

很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。

我一般就看单片机在干扰下是否复位,复位了我就认为不行了。

不复位并且程序正常运行当然比复位来说要好了。

好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗干扰并不一定就很好。

这里我不能不说一下日本的标准,高频脉冲连续发出的形式。

别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会很伤心,因为大多数单片机过不了!日本的标准是1600V。

上面我提到的十几家单片机:意法的也就是ST的≥1800三菱的≥1800富士通和日立的≥1600Vnec的≥1500东芝的≥1300V摩托罗拉的≥1300三星的≥1300现代的≥800microchip的≥700国半的cop8≥500avr和51系列≥500这里没有给出数据的我没有测试过,但是知道EMC的一款28pin的设计上有缺陷(EMC自己人讲的);合泰的据说欧洲标准可以过3000V。

单片机系统的抗干扰技术

单片机系统的抗干扰技术

双向晶闸管的结构符号见图8-6(b)。三个电极分别是 T1、T2、G。其特点是,当G极和T2极相对于T1的电压均为 正时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1 的电压均为负时,T1变成阳极,T2为阴极。 (4)光电隔离固态继电器(SSR)
图8—7 SSR的内部结构框图
图8—8 SSR基本单元电路
(2)浪涌、下陷、半周降出:当1s>Δt> 10ms时产生 的干扰,可使用快速响应的交流电源调压器克服。
(3)尖峰电压:当Δt为μs量级时产生的干扰, 解决办法是使用具有噪声抑制能力的交流电源
调节器、参数稳压器或超隔离变压器。
(4)射频干扰:当Δt为ns量级时产生的干扰,可加2~3节低 通滤波器消除干扰。
(a)二极管—稳压管抑制电路 (b)电阻—二极管抑制电路(c) R-C阻容抑制电路 (d)(e)开关触头两端的反电势抑制电路 图8—12 反电势抑制电路
☆8.3 印制电路板及电路的抗干扰设计
在单片机系统中,印制电路板的设计好坏对抗干扰能 力影响很大。印制电路板是用来支撑电路元件,并提供电 路元件和器件之间电气连接的重要组件。为了减少干扰, 在印制电路板设计过程中必须遵循以下三大原则:
图8—13 去耦电容的安装位置图
3.选择时钟频率低的单片机及外部时钟部件。 4.元件的选择尽量采用低速器件。 5.对进入电路板的信号源及从高噪声区来的信号要加滤 波,继电器线圈处要加续流二极管。 6.尽量不使用IC插座,而把IC直接焊在印制板上,这样 可减少IC插座间较大的分布电容。 7.电源插接件与信号插接件要尽量远离,主要信号的插 接件外面最好带有屏蔽。
输入、输出通道是必不可少的。这些通道不可避免地会 使各种干扰直接进入单片机系统。同时,在这些输入输 出通道中的控制线及信号线彼此之间会通过电磁感应而 产生干扰,从而使单片机应用系统的程序错误,甚至会 使整个系统无法正常运行。

单片机多级通信系统的信号传输及抗干扰技术探究

单片机多级通信系统的信号传输及抗干扰技术探究

单片机多级通信系统的信号传输及抗干扰技术探究在现代科技发展的背景下,单片机多级通信系统已经成为了各行业中必不可少的一部分。

在这个系统中,信号传输的稳定性和可靠性显得尤为重要,同时,由于外部干扰的存在,抗干扰技术也必不可少。

本文将探讨单片机多级通信系统的信号传输及抗干扰技术。

首先,我们来探讨信号传输的技术。

单片机多级通信系统中,信号传输主要通过通信总线进行。

通信总线是一种通信传输介质,可以实现多个设备之间的数据传输。

常用的通信总线包括I2C总线、SPI总线和RS485总线等。

其中,I2C总线常用于短距离通信,具有速度快、线路简单的特点;SPI总线适用于短距离高速通信,可实现设备之间的全双工通信;RS485总线则适用于远距离通信,能够实现设备之间的半双工通信。

在信号传输过程中,电路布线和信号传输速率对信号传输质量具有重要影响。

对于电路布线来说,应尽量避免走线过长、走线交叉和走线与电源线、高功率线等交叉。

此外,应尽量采用屏蔽线缆,减少受到外界电磁干扰。

而对于信号传输速率来说,一般来说,传输速率越高,信号传输精度要求越高,往往需要更好的信号处理电路和调整时序等。

另外,抗干扰技术在单片机多级通信系统中起着重要的作用。

外部干扰源包括电磁场干扰、电源干扰、传导干扰等。

为了提高系统的抗干扰能力,我们可以采取以下措施:首先,我们可以采用屏蔽措施来避免电磁干扰。

例如,在电路布线时使用屏蔽线缆,以减少外界电磁场对信号传输的影响。

此外,还可以在电路中加入电磁屏蔽罩或地线来隔离电磁干扰。

其次,我们可以采取正常工作状态下的电源滤波措施,以减少电源干扰对系统的影响。

这包括使用电源滤波器、电源隔离器等。

同时,还可以通过增加电源电容和电感,降低电源的噪声水平。

此外,对于传导干扰,可以考虑使用屏蔽电缆、屏蔽电源线以及距离保持的措施来减少传导干扰的影响。

除了上述的抗干扰措施,还可以采取软件算法方面的措施来提高系统的抗干扰能力。

例如,在信号传输过程中,可以使用差分信号传输以提高抗干扰能力。

单片机抗干扰措施

单片机抗干扰措施

单片机抗干扰措施概述在单片机应用中,抗干扰是一个非常重要的问题。

由于电磁干扰的存在,单片机可能会受到干扰信号的影响,导致系统的性能下降甚至功能失效。

因此,为了确保单片机系统的稳定运行,需要采取一些抗干扰措施。

本文将介绍单片机常见的抗干扰措施,包括软件抗干扰措施和硬件抗干扰措施。

软件抗干扰措施1. 外部中断和定时中断技术外部中断是单片机接收外部信号的一种方式,通过设置中断触发条件,当接收到特定信号时触发中断处理程序。

通过使用外部中断技术,可以及时响应干扰信号的触发,进行干扰处理。

定时中断也是一种常见的抗干扰措施。

通过设置定时器,定时生成中断信号,进行对干扰信号的定时处理。

2. 硬件监控和重启单片机系统中,可以通过硬件监控电压、温度、电流等参数,并根据监控结果采取相应措施。

例如,如果电压过高或过低,可以通过监控电源电压的方式,自动重启系统,以恢复正常运行。

3. 硬件看门狗硬件看门狗是一种常见的抗干扰措施。

通过设置看门狗定时器,在预设时间内必须向看门狗喂狗,否则看门狗将复位单片机。

看门狗能够有效监控单片机运行,并在系统崩溃或运行异常时进行自动重启。

硬件抗干扰措施1. 接口屏蔽和过滤对于单片机与外部设备接口,可以通过屏蔽和过滤的方式降低干扰信号的影响。

接口屏蔽是通过在接口线上添加屏蔽层,减少干扰信号对于单片机的干扰。

常见的屏蔽层材料包括金属层、导电胶和导电纤维等。

接口过滤是通过添加滤波器或滤波电路,降低接口信号中的干扰成分。

常见的滤波器包括低通滤波器和带阻滤波器等。

2. 地线设计在单片机系统中,地线设计也是一个重要的抗干扰措施。

合理地划分地线,避免地线回路产生环形,可以有效减少共模干扰。

3. 电源干扰削弱技术电源干扰是单片机系统中常见的干扰源之一。

为了降低电源干扰,可以采取以下措施:•过滤电源线,加装滤波电容和滤波电阻,降低电源中的高频干扰成分。

•使用稳压器或电源滤波器,确保电源稳定,并降低电源线上的干扰噪声。

单片机抗干扰技术开关量输入输出通道隔离

单片机抗干扰技术开关量输入输出通道隔离
空间电磁辐射干扰
周围空间中的电磁场对信号线 的电磁感应干扰。
接地系统干扰
由于接地不良或地线配置不当 导致的地线噪声干扰。
信号传输线干扰
信号传输线上的外部干扰信号 通过电感和电容耦合引入。
开关量输入通道隔离技术
01
光耦隔离
利用光耦器件将输入和输出电路隔 离,以减小干扰信号的影响。
变压器隔离
利用变压器原理实现输入和输出电 路的隔离,降低共模干扰。
单片机在工作过程中,其电路板 和元件会受到周围空间电磁辐射 的影响,导致信号失真和噪声干 扰。
接地系统干扰
接地系统不良或不合理,会导致 信号接地电位不均,产生电位差, 从而引入干扰信号。
开关量输出通道隔离技术
光耦隔离
光耦隔离是利用光耦合器的工作原理,将单片机开关量输出信号通过光耦隔离器进行隔离,以减小外界干扰对输出信 号的影响。
03
02
继电器隔离
通过继电器触点实现输入信号的电 气隔离,提高抗干扰能力。
运算放大器隔离
通过运算放大器将输入信号进行放 大和隔离,提高信号质量。
04
开关量输入通道隔离的实现方法
选择合适的隔离器件
根据应用需求选择适合的光耦、继电器、变 压器或运算放大器等器件。
正确连接隔离器件
按照隔离器件的连接方式,正确接入输入和 输出电路。
单片机抗干扰技术开关量输入输出 通道隔离
contents
目录
• 单片机抗干扰技术概述 • 单片机开关量输入通道隔离 • 单片机开关量输出通道隔离 • 单片机抗干扰技术的实际应用
01 单片机抗干扰技术概述

干扰的定义与影响
定义
干扰是指对系统正常信号的扰动 或破坏,导致信号失真、畸变或 阻塞。

单片机的硬件抗干扰技术

单片机的硬件抗干扰技术
维普资讯

芹 ,唐 功友
2 6 7 2 威海职业 学院 机 电工程 系.威 海 601 2 40 620
1 中国海洋大学 信息 , 学与工狂学院 .青 岛
Ha d r n i a r wa ea t jmmi gtc n lg f C se - n h oo yo U s tm e M y
道 防 线 必 不 n少 . 一 成功 的抗 十 扰 系统 是 由硬 件 个
( 1扰 源 . 产 生 干扰 的元 件 、设 备或 信号 , ¨ 指 用 数 学 语 ’ 述 如 r:d/t i t 描 ud.d/ 大的 地 方 就 是 于 d
扰源. 如:雷 电 、继 电 器 、呵控 硅 、 电机 、高 频 时钟
的传 导 和空 间 的辐 射 .
( 敏 感器件 . 容 易被 干 扰 的 对 象. : / 3) 指 如 AD、
I 干扰对 单片机 应用 系统 的影响
收稿 日期:2 0 — I 7 051 0
D/ A转 换 器 , 啦片 机 , 数字 r C。弱 信号 放大 器等 .
作者 简介:王芹 ( 9 9 j. 女, I . 1师.础究 疗向:汁算机 控制援术 I6 』. 井
WAN n l T NG Go g y u G Qi _ A n —o .
( I t, ai n S i n e a d En i e rngCo l e I n ̄r to c e c n g n e i m l eg

Oca li r l f h a Qi量 a 6 0 3 C ia 2 D p r n o enL v s yo C i n d o26 0 . hn : . e at t f n ei n me
h r w r ni a mi g te n /g MCU o p ia o y tm.T ru h a t p l a in a d a ea tj m n e oo 5 c - h p l f n sse c h o g cu a p i t al c o

单片机系统中的抗干扰分析及措施

单片机系统中的抗干扰分析及措施

单片机系统中的抗干扰分析及措施单片机系统中的抗干扰分析及措施引言:随着科技的发展,单片机系统在各个领域得到广泛应用,例如汽车电子、家电控制、工业自动化等。

然而,由于外界环境的复杂性,单片机系统常常会受到各种干扰,例如电磁干扰、温度变化、电源噪声等。

这些干扰会严重影响单片机系统的稳定性和可靠性。

因此,对单片机系统中的抗干扰问题进行深入分析,并采取相应的措施来解决这些问题,具有重要的意义。

一、抗电磁干扰分析及措施1.分析电磁干扰是单片机系统中最常见的干扰之一。

在实际应用中,电磁场通常由电源线、开关电源、电机等设备产生,会通过空气传播和电磁波辐射的方式对单片机系统产生干扰。

电磁干扰会导致单片机系统执行指令错误、数据异常等问题。

2.措施a. 优化电路布局:合理布局电路,减少导线的长度和面积,提高电路的抗干扰能力。

b. 打开电源滤波器:在单片机系统的电源输入端接入合适的电源滤波器,以消除电源中的高频噪声。

c. 加装电磁屏蔽:对于特别敏感的单片机系统,可以在其周围部署电磁屏蔽罩,以减少或消除外界电磁场对系统的干扰。

二、抗温度变化分析及措施1.分析温度变化是单片机系统中常见的环境因素之一。

随着环境温度的变化,单片机系统的元器件参数、晶体管的工作温度会发生变化,进而影响系统的性能和稳定性。

2.措施a. 选择温度稳定性较好的元器件:在设计单片机系统时,可以选择具有较好温度稳定性的元器件,以减少温度变化对系统的影响。

b. 控制系统温升:合理的散热设计可以有效控制单片机系统的温度变化,减少温度对系统的影响。

c. 采用温度补偿技术:通过在系统中添加温度感知器,实时监测温度变化,并根据变化情况对系统进行相应的补偿,以提高系统的稳定性。

三、抗电源噪声分析及措施1.分析电源噪声是单片机系统中常见的噪声源。

电源噪声来自于电源线的交变电压以及其他电器设备的电源,会对单片机系统产生不稳定的供电环境,进而影响系统的性能和稳定性。

2.措施a. 加装电源滤波器:在电源输入端接入适当的滤波器,以消除电源中的高频噪声,保证供电的稳定性。

单片机抗干扰措施

单片机抗干扰措施

单片机抗干扰措施单片机在实际应用中,由于周围环境的电磁干扰和电源干扰等原因,很容易受到各种干扰信号的影响,从而导致系统不稳定、运行异常甚至崩溃。

为了保证单片机正常工作和提高系统稳定性,需要采取一系列的抗干扰措施。

本文将从硬件和软件两方面,重点讨论单片机的抗干扰措施。

1.电源滤波器:在单片机外围电路中添加电源滤波器,用于滤除电源中的高频和低频噪声。

常见的电源滤波器有电容滤波器和电感滤波器等。

其中,电容滤波器可以滤除高频噪声,而电感滤波器可以滤除低频噪声。

2.地线设计:合理布局地线,减小地线回路的面积。

在单片机电路中,地线是一个重要的参考信号,合理设计地线可以减小电磁干扰。

同时,还可以采用单点接地的方式,将各个模块的地线连接在一起,减少地线回路的面积。

3.信号线布线:将信号线与电源线和高功率线分开布线,避免相互干扰。

信号线间的距离尽量保持一定的间隔,可以有效减小电磁干扰。

4.屏蔽:对于特别敏感的模拟信号线,可以采用屏蔽措施,如采用屏蔽线、屏蔽罩等。

屏蔽可以防止外界电磁干扰对信号线的影响。

5.滤波电容:在单片机电路中,可以在需要进行滤波的信号线两端串联一个滤波电容,用于滤除高频噪声。

常见的滤波电容有电容器和电容二极管等。

6.增加抗干扰电路:可以在单片机电路中添加抗干扰电路,如抗干扰电容、抗干扰电感等。

这些电路可以有效地抑制外界干扰信号。

7.使用稳压器:在单片机电路中,可以使用稳压器来提供稳定的电压,防止电源干扰引起的系统不稳定。

1.软件滤波:在单片机程序中,可以通过软件滤波的方式来滤除干扰信号。

例如,在读取模拟传感器信号时,可以进行多次采样并求平均值,以减小采样误差和滤除干扰。

2.软件延时:在一些对实时性要求不高的任务中,可以通过软件增加适当的延时,以减小干扰对系统的影响。

例如,在控制器输入信号采样之前,可以先进行一段延时。

3.软件重发:对于容易受到干扰的信号,可以通过软件重发的方式来提高信号的可靠性。

单片机硬件抗干扰技术

单片机硬件抗干扰技术

(_ ; 竺塑]_ . 塑兰_ - 塑] 1一塑 _ _ j _ 三 苎 ]
图 1 干 扰的构成
在 单片 机系统 和 电子设备 中 , 一个 电路 抗干扰 的程
度 可 以用 =

来 表示…
况, 比如 测试 系统 、控 制系 统失控 , 轻者 会 影 响正常 工
作, 重者 可 能会 酿成事 故。 因此如何 提高单 片机 的抗干
p t s m nb po e ru h hs a . ot th ait o ig — i m coo p t s m cn e u y u r yt c e m rvdt o g iw y S a te t ly fs l c p i cm ue s t ! es e a i h t h s bi neh r ry e a b f l
1 引 言
随着 微 电子技术 的发展 , 片机 以其较 高 的信 价 单 比在工 业控 制 、智能仪器 、通讯设备 等领域得 到了广 泛 的应 用 。但 是在使用 过程 中 , 由于单 片机工作 的环境 复
2 1 干扰 的构 成 .
构成 干扰必 须具备 三个 主要 因素 : 扰源 、耦 合或 干
Te h c lCor m u i a i s c ni a n n c ton
22 干扰的来源 。
对 单 片机系统 的干扰 一般有 两种 : 一种 是来 自系统
2 对 单片机硬件造成干扰 的基本 因素
收稿 日期: 0 —0 —0 2 9 0 9 9
降低干 扰耦 合 因素或 切 断干扰 路径 , 或者 , 取措 施提 采
高 电路 的抗干 扰 能力 。
《 动 术 应 21年 9 第2 自 化技 与 用》00 第2 卷 期

单片机系统抗干扰研究

单片机系统抗干扰研究
1 述 概 众所周知 ,在电场 中电场强度与距离 的平 字节以上的 N P O 指令 。 这样即使程序“ 乱飞 ” 落 单 片 机 已 经 在 工 业 生 产 、 研 、 学 等 领 方存 在 着 一 个 反 比 的关 系 ,因此 如 果 我 们 拉 开 到操作 数上 , 科 教 由于存在空 操作指 令 N P 就可 O, 域都得到 了广泛应用 , 然而 , 多领域对单片机 控制 系统与电磁辐射源的距离,那么电磁辐射 以使程序 自动纳入正轨 。 很

科技论 坛 I J I
单片机 系统抗 干扰研 究
沈 碉
( 绍兴 县职 业教 育 中心 , 江 绍 兴 32 0 ) 浙 10 0
摘 要: 单片机在很 多领域得到非常广泛的应用, 但是 对其 可靠性也提 出了较高的要 求, 在单 片机 系统受到干扰 时, 就会导致程序 失控 , 本文
从 几个方面对单片机 系统的干扰进行探 讨, 分别从硬件和软件提 出抗干扰的措施 。 关键词 : 单片机; 干扰; 硬件; 软件
的可靠性要求越来越高。一个在实验室调试正 的强 度 就 会 明显 减 小 ,相应 的 电磁 辐 射 的 干 扰 3. . 2软件陷阱的设计 2 常的智能仪器系统 。一旦 到了实际的工作环境 也会明显的减小 。防止电磁辐射干扰的最有效 软件陷阱就是用一条引导指令 ,该指令强 中, 往往出现频繁死 机、 系统运行混乱 的现象 , 方法之一就是使小信号和数字信号离干扰源尽 行将捕获的程序引向错误处理程序或复位地址 其原 因主要在于各 可能的远 , 并且要将控制器屏蔽起来 , 即我们要 0 0 H 0 0 。就是当单 片机在执 行程序过程中受 到 种各样的干扰 ,因此对 于单片机系统的可靠性 将控制器装入一个屏蔽的金属盒子中。然后再 干扰使 C U离开原有 的“ P 轨道 ” 飞进入非程 乱 冗余指令就失去了作用 。 时可通过软件 此 设计 、 抗干扰技术的研究显得尤为重要 。 将金属盒的外壳与大地相连接 ,这样 电磁辐射 序 区, 2 片机系统的干扰来源及其后果 单 不会再影 响到控制器件的正常工作 了。 陷阱迫使程序强制跳转到错误处理程序,使程 单片机应用环境 中, 干扰是以脉冲的形式 31 .3电路板的抗干扰设计 . 序重新纳入正轨 , 提高单 片机的可靠性 。 进入单片机 系统 , 主要有三条渠道 ,有电源干 在 电路板设计时,为降低系统各连线之间 但是在单片机系统中不能随意设置软件陷 扰、 过程通道干扰和电磁波干扰等 , 中最广泛 的分布参数 ,单片机采用的电路板最好选用 4 阱 , 其 否则会打断程序的正常流程 , 造成程序执行 也是最严重的干扰是电源干扰。 层 以上 , 采用分层处理 的布线设计 , 中间两层为 紊乱 ,一般放 置在 空白的 E R M区域和一些 PO 单 片机是高速运行 的数字运 算和处理器 电源及地 ; 注意将强 、 电路分开 , 弱 不要把 它们 跳转指令等断点( 如在 R T指令之后) E 。 件, 如果在运行过程中电源不稳或受到前向通 设计在一块电路板上 ,特别是系统 中采样信号 323看门狗技术 .- 道 、后向通道以及与单片机系统相连的其 它器 取 自 2 0 交流电,更应注意防止交流干扰及 2V 在系统运行时启动看门狗计数器 ,看门狗 件和设备的干扰 , 易使 C U的程序处 理产生 高压放电 ;电源线的走向尽量与数据传递方 向 就开始 自动计数,到 了规定 时间如果没有够计 极 P 错乱 。另外 , 单片机工作频率较高 , 围产生 致 。将正 负载流的导线分别布在电路板 的两 数器重新置初 值,看门狗计数器就会溢出从而 向周 的电磁辐射也会影响 自 身工作 ; 同时 , 的电 面 , 外部 并设法使两个载流导体平行 ; 将模拟地与信 引起看门狗 中断 , 使系统复位 。 磁信号 , 特别是感性负载通断时产生 的电磁干 号地分离, 接地线应尽量加粗 , 在印制 电路板 的 3 . 机 自检 .4开 2 扰, 都会影响单片机控制系统的工作 。 各个 关 键 部 位 配置 去 耦 电容 器 ,如 C U 、 P 开 机 自检 程 序 通 常 包 括 对 R AM、 O 和 RM 单 片机受到干扰 , 其后果主要 表现在两个 R AM、 O R M等 主芯 片 ,以及 VC C和 G D之问 I N / O口状 态的检 测 。在 编制程序 时将 R M 或 A 方面 : 一是数据采集误差变大。 干扰侵入单片机 接电解 电容及瓷片电容 ,去掉 高、低频干扰信 R M 中的内容分区存放 , O 在程序运行初始或 中 系统的前 向通道叠加在信号上,数据采集误差 号 。 间过程经常对这些数据进行 比较检查 ,若发现 增 大,特别是前 向通道的传感器接 I为小电压 : 1 31 .. 4接地设计 数据 出错 , 则重写这些数据。 信号输入时 , 误差会更加明显 ; 二是程序运行失 单 片机 系统 中接地是 一个非 常重 要的 问 3 .延 时抖动技术 .5 2 常。 主要表现有 : 控制状态失灵 、 死机、 系统被控 题 , 有利于系统稳定工作 。 在单片机系统中主要 单片机系统可能会遇到强干扰 ,如浪涌电 对象误操作 、 被控对象状态不稳定、 定时不准和 有模 拟地和数字地两种地线。 由于模拟地 与电 压 、 电源过压 、 欠压以及尖峰干扰等 , 在软件设 数据发生变化等。 网直接相连 , 火地 ”故会串人电网中的各种 计中可 以采取措施加 以避 开 ,当干扰到来时 。 为“ , 3 单片机系统抗干扰分析 干扰 ,而数字地富含各种高次谐波并具有较强 使 C U暂停工作 ,待干扰 过后 再恢复 C U工 P P 31 .单片机硬件抗干扰 辐射作用。常见的接地方法由 : 首先 , 一点接地 作 。 硬件抗干扰设计主要 针对开关 电源干扰、 和多点接地。 在接地设计时 , 当系统工作频率小 结束语 电磁辐射干扰、 信号传输通道干扰这三个方面, 于 I MHz , 蔽 线 应 采 用 一 点 接 地 ; 系 统 工 时 屏 当 抗干扰技术是单片机系统设计过程 中的重 我们可 以从以下几个方面来进行单片机的防干 作频率在 I z 1 MH 时 , MH ~ 0 z 屏蔽线应采用 多点 要 环节 , 合理的使用软件 、 硬件抗干扰技术 , 可 扰设 计 : 接地 ; 其次 , 机箱 的外壳与屏蔽层直接接地 , 使 系统最大限度地避免干扰的产生 ,使系统恢 将 31 .. 1开关电源设计 以起到防漏电的效果 ; 最后 , 数字地和模 拟地应 复正常 , 保证 系统长期稳定可靠 的工作。 在以往 解决开关 电源干扰 的有 效方法是 减少干 该分开接地 , 最后在一点接于电源端地线 。 的单片机系统抗干扰设计中 。本文介绍的几种 扰源的噪声能量 , 的措施如下 : 相应 32单 片 机 软 件抗 干 扰 . 抗干扰方 法在实际应用当中具有一定的参考价 首先 , 减少环路 面积 , 要求 开关 电源在一 随着单片机实用 系统越来越复杂 ,工作环 值 , 由于干扰源的性质不同, 在仪器中通 常并用 次整流回路 中二极管与变压器彼此靠近 ,在二 境的干扰也越来越严重 。要保证新型微控制器 这些抗干扰方法 , 取长补短相互完善 , 以达到最 次整流回路中 , 二极管 、 变压器和输 出电容彼此 的 可靠 性 、 全性 , 必 须 在提 高硬 件 可 靠 性 的 佳的抗干扰效果 , 安 就 保证 系统 长期稳定 、 可靠 、 安 靠近。 基础上 , 在程序设计 中采取措施 , 通过软件技术 全 的运 行 。 其次 ,在电源输入端连接低通滤波器 , 滤 增强系统的稳定运行能力。 参 考 文献 波高次谐波以改善电源波形 ,这样既可以抑制 321 ..指令冗余设计 I】 立民. 1何 单片机 高级教 程『 . M1 北京: 北京航 空 开关电源产生并 向电网反馈 的干扰 ,也 可以抑 在 C U受到干扰后 , P 会将 一些操作数作 为 航 天 大学 出版 社.0 0 20. 制来 自电网的噪声对电源本身 的侵害 ;在开关 指令码来执行 , 从而导致程序紊乱。 指令冗余是 【】 2 吴黎 明. 片机 原理及应 用技术[ . 单 MI 北京: 科 电源次级加低通滤波器可吸收变压器产 生的浪 指 在 程 序 的关 键 地 方 插 入 一 些 单 字 节 指 令 , 或 学 出版 社 .35 2(. ( 3 涌 电压。最 后 , 采用变压器 双隔离( 、 初 次级屏 将有效单字节指令重写 。N P O 指令的插入是指 蔽) 措施减少分布电容, 高系统抗共模干扰能 令 冗 余 设 计 的 一 种 主 要 方 式 , S 5 提 MC 一 1系 列 的 力。 所有指令都不超过 3字节 ,且大部分单宁节指 31 .2电磁辐射防干扰的设计 . 令 ,因 此 在 双 字 节 指 令 和 3字 节 指 令 后 插 人 2

单片机系统抗干扰技术研究

单片机系统抗干扰技术研究

单片机别称微控制器,是把一整套的计算机系统集成到一块芯片上,具有质量轻、体积小、成本低、易开发与应用等优点。

因此,单片机在我们日常生活中的应用十分广泛,已经渗透到通信设施、导航系统、电器以及程控玩具等多个领域。

但是当下的生活环境,单片机的运行必然受到各种干扰,这些干扰会使单片机在运行中出现失误甚至系统失灵,造成极大损失,因此,单片机系统的抗干扰能力和技术一直是受关注的重要课题。

一、单片机系统主要干扰源及其危害 1、单片机系统主要干扰源单片机易受干扰与其结构组成有很大关系。

单片机一般由信号检测、信号处理与控制、信号驱动、系统交互以及显示五大部分组成,不仅包含了各种传感器、继电器、接触器、电磁阀,而且还有各种集成电路和多种耦合器件、执行器件、显示器件等。

这种复杂的结构导致单片机极易受到内外干扰源的干扰。

单片机系统自身运行产生的放电、高频振动等噪声和电磁波以及外部环境中的各种电磁波、信号等都会对单片机系统产生干扰。

干扰源产生的干扰主要通过耦合通道对单片机系统产生作用。

主要的耦合方式有:(1)直接耦合。

直接耦合是单片机干扰最普遍的方式。

这种方式主要是干扰信号通过导线直接传到被干扰线路中而对单片机的电路产生干扰。

(2)公共阻抗耦合。

这种耦合方式发生的条件是一个电源电路对几个电路供电时,当电源不是理性的内阻抗为零的电压时,则起内阻抗就成为几个电路的公共阻抗。

只要其中某一电路发生变化,便会使其他供电电压发生变化。

(3)电容耦合。

又称静电耦合或是电场耦合。

主要是电位变化在干扰源和干扰对象之间产生的静电感应。

(4)电磁感应耦合。

磁场存在于任何载流导体周围,若是交变磁场,则会对周围的闭合电路产生感应电势。

在设备圈内部如果线圈或变压器漏磁则会产生很大干扰,在设备圈外,当三根导线在长区间架设时也会产生干扰。

(5)辐射耦合。

电流流经导体会在导体周围产生电力线和磁力线,并发生高频变化,从而形成在空间传播的电磁波。

电磁干扰是种无规则的干扰方式,很容是通过电源线传到单片机系统中。

单片机的特性主要有哪些

单片机的特性主要有哪些

引言:单片机作为现代电子系统中重要的组成部分,具有一系列独特的特性。

本文将结合现实应用和理论知识,从五个方面对单片机的特性进行详细介绍。

概述:单片机是一种集成电路芯片,具备处理器、存储器和各种输入输出接口等功能。

它在电子产品中广泛应用,使得许多电子设备更加智能化和功能丰富化。

单片机的特性主要包括高性能和多功能、低功耗和节能、易于编程和开发、稳定可靠、成本低廉等。

正文:一、高性能和多功能1.1强大的计算能力:单片机采用高性能处理器,能够进行复杂的运算和逻辑处理。

1.2丰富的外设接口:单片机具备多种输入输出接口,可以连接各种传感器和执行器,实现多种功能。

1.3多种编程语言支持:单片机可以用多种编程语言进行开发,如C语言、汇编语言等,以满足不同开发需求。

二、低功耗和节能2.1低功耗设计:单片机采用先进的低功耗技术,能够在保持高性能的同时,降低功耗,延长电池使用寿命。

2.2节能管理:单片机具备智能的电源管理功能,可以根据实际需求进行动态调整,实现能源的有效利用。

三、易于编程和开发3.1开发工具丰富:市场上有许多成熟的开发工具,如IDE(开发集成环境)、编译器等,方便程序员进行开发和调试。

3.2丰富的开发资源:单片机的应用广泛,有许多开源的库和实例代码可供使用,加速开发过程。

3.3简化的编程接口:单片机的编程接口通常采用标准化的接口,对初学者来说更加友好。

四、稳定可靠4.1抗干扰能力强:单片机具备抗电磁干扰和抗温度波动的能力,能够稳定运行在各种环境条件下。

4.2自动故障检测和调试:单片机内置了故障检测和排错功能,可以自动检测并处理系统错误,提高系统的可靠性。

4.3高可靠性的存储器:单片机内置的存储器具有高可靠性,能够稳定地存储和读取数据。

五、成本低廉5.1生产规模大:单片机的市场需求量大,大量生产使得成本降低。

5.2集成度高:单片机内部集成了处理器、存储器和输入输出接口等功能,减少了外围器件的使用,进一步降低了成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机的抗干扰性能
搞过产品的朋友都有体会,一个设计看似简单,硬件设计和代码编写很快就搞定,但在调试过程中却或多或少的意外,这些都是抗干扰能力不够的体现。

下面讨论一下如何让你的设计避免走弯路:
抗干扰体现在2个方面,一是硬件设计上,二是软件编写上。

这里重点提醒:在MCU设计中主要抗干扰设计是在硬件上,软件为辅。

因为MCU的计算能力有限,所以要在硬件上花大工夫。

看看干扰的途径:
1:干扰信号干扰MCU的主要路径是通过I/O口,一是影响了MCU的数据采集,二是影响内部其它寄存器。

解决方法:后面讨论。

2:电源干扰:MCU虽然适应电压较宽(3-5。

5V),但对于电源的波动却很敏感,比如说MCU可以在3V电压下稳定工作,但却不能在电压在3V-5。

5V波动的情况下稳定工作。

解决方法:用电源稳压块,做好电源的滤波等工作,提示:一定要在电源旁路并上0。

1UF的瓷片电容来滤除高频干扰,因为电解电容对超过几十KHZ的高频干扰不起作用。

3:上下电干扰:但每个MCU系统在上电时候都要经过这样一个过程,所以要尤其注意。

MCU虽然可以在3V电压下稳定工作,但并不是说它不能在3V以下的电压下工作,当然在如此低的电压下MCU是超不稳定状态的。

在系统加电时候,系统电源电压是从0V上升到额定电压的,比如当电压到2V时候,MCU开始工作了,但这时是超不稳定的工作,极容易跑飞。

解决方法:1让MCU在电源稳定后才开始工作。

PIC在片内集成了POR(内部上电延时复位),这功能一定要在配置位中打开。

外部上电延时复位电路。

有多种形式,低成本的就是在复位脚接个阻容电路。

高成本的是用专用芯片。

这方面的资料特多,到处都可以查找。

最难排除的就是上面第一种干扰,并且干扰信号随时可以发生,干扰信号的强度也不尽相同。

但它们也有相同点:干扰信号也遵循欧姆定律,干扰信号偶合路径无非是电磁干扰,一是电火花,二是磁场。

其中干扰最厉害的是电火花干扰,其次是磁场干扰。

电火花干扰表现场合主要是附近有大功率开关、继电器、接触器、有刷电机等。

磁场干扰表现场合主要是附近有大功率的交流电机、变压器等。

解决方法:第一点:也是最经典的,就是在PCB步线和元件位置安排上下工夫,这中间学问很多,说几天都说不完^^。

二:综合考虑各I/O口的输入阻抗,采集速率等因素设计I/O口的外围电路。

一般决定一个I/O口的输入阻抗有3种情况:
A:I/O口有上拉电阻,上拉电阻值就是I/O口的输入阻抗。

一般大家都用4K-20K电阻做上拉,(PIC的B口内部上拉电阻约20K)。

由于干扰信号也遵循欧姆定律,所以在越存在干扰的场合,选择上拉电阻就要越小,因为干扰信号在电阻上产生的电压就越小。

由于上拉电阻越小就越耗电,所以在家用设计上,上拉电阻一般都是10-20K,而在强干扰场合上拉电阻甚至可以低到1K。

(如果在强干扰场合要抛弃B口上拉功能,一定要用外部上拉。

)
B:I/O口与其它数字电路输出脚相连,此时I/O口输入阻抗就是数字电路输出口的阻抗,
一般是几十到几百欧。

可以看出用数字电路做中介可以把阻抗减低到最理想,在许多工业控制板上可以看见大量的数字电路就是为了保证性能和保护MCU的。

C:I/O口并联了小电容。

由于电容是通交流阻直流的,并且干扰信号是瞬间产生,瞬间熄灭的,所以电容可以把干扰信号滤除。

但不好的是造成I/O口收集信号的速率下降,比如在串口上并电容是绝不可取的,因为电容会把数字信号当干扰信号滤掉。

对于一些检测开关、干簧管、霍尔元件之类的是可以并电容的,因为这些开关量的变化是不可能有很高的速率的,并一个小电容对信号的采集是没任何影响的。

相关文档
最新文档