最新_新定义运算计算技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新定义运算解题技巧

我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。除此之外,还会有什么别的运算吗?现在我们就来研究这个问题。这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。

一、定义

1、定义新运算是指运用某种特殊的符号表示的一种特定运算形式。

注意:(1)解决此类问题,关键是要正确理解新定义的算式含义,严格按照新定义的计算顺序,将数值代入算式中,再把它转化为一般的四则运算,然后进行计算。

(2)我们还要知道,这是一种人为的运算形式。它是使用特殊的运算符号,如:*、▲、★、◎、 、Δ、

◆、■等来表示的一种运算。

(3)新定义的算式中,有括号的,要先算括号里面的。

2、一般的解题步骤是:

一是认真审题,深刻理解新定义的内容;

二是排除干扰,按新定义关系去掉新运算符号;

三是化新为旧,转化成已有知识做旧运算。

二、初步例题诠释

例1、对于任意数a,b,定义运算“*”:a*b=a×b-a-b。求12*4的值。

分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。12*4=12×4-12-4=48-12-4=32

例2、假设a ★ b = ( a + b )÷ b 。求 8 ★ 5 。

分析与解:该题的新运算被定义为: a ★ b等于两数之和除以后一个数的商。这里要先算括号里面的和,再算后面的商。这里a代表数字8,b代表数字5。

8 ★ 5 = (8 + 5)÷ 5 = 2.6

例3、如果a◎b=a×b-(a+b)。求6◎(9◎2)。

分析与解:根据定义,要先算括号里面的。这里的符号“◎”就是一种新的运算符号。

6◎(9◎2)=6◎[9×2-(9+2)]=6◎7=6×7-(6+7)=42-13=29

例4、如果1Δ3=1+11+111;2Δ5=2+22+222+2222+22222;8Δ2=8+88。求6Δ5。

分析与解:仔细观察发现“Δ”前面的数字是加数每个数位上的数字,而加数分别是一位数,二位数,三位数,……

“Δ”后面的数字是几,就有几个加数。因此可以按照这个规律进行解答。

6Δ5=6+66+666+6666+66666=74070

例5、如果规定⊗2=1×2×3,⊗3=2×3×4,⊗4=3×4×5,……计算(

21⊗-31⊗)×3

2⊗⊗。 分析与解:该题看上去比较复杂,但仔细观察,我们可以发现,该题被定义为⊗X=(X-1)×X ×(X+1)。由于把数代入算式中计算比较麻烦,我们可以先化简算式后,再计算。

21⊗-31⊗)×32⊗⊗ = 21⊗×32⊗⊗-31⊗×32⊗⊗ =31⊗-31⊗×32⊗⊗ =31⊗(1-3

2⊗⊗) = 4321⨯⨯×(1-432321⨯⨯⨯⨯) =4321⨯⨯×(1-41) =4321⨯⨯×43 =32

1 例6、规定a ▲b=5a+21ab-3b 。求(8▲5)▲X=264中的未知数。 分析与解:根据新定义,应该先计算括号里面的,再计算括号外面的,然后解方程即可。

(8▲5)▲X=264

(5×8 + 2

1×8×5-3×5)▲X=264 45▲X=264 5×45+2

1×45×X-3X=264 225+245X-2

6X =264 225+2

39X=264 2

39X=39 X=2

三、边学边试

【例1】A ,B 表示两个数,定义A △B 表示(A+B)÷2,

求(1)(3△17) △29; (2)[(1△9) △9] △6。

【分析与解】定义新运算符号“△”表示A △B=(A+B)÷2,即两个数做“△”运算就是求这两个数的平均值.如:3△17=(3+17)

÷2=10,再用10与29做运算,10△29=(10+29)÷2=19.5

(1)原式=[(3+17)÷2] △29 (2)原式={[(1+9)÷2] △9}△6

=[20÷2] △29 =[5△9] △6

=10△29 =[(5+9)÷2] △6

=(10+29)÷2 =7△6

=39÷2 =(7+6)÷2

=19.5 =6.5

【试一试】

1、A ,B 表示两个数,定义A*B=2×A-B.试求:

(1)(8.5×6.9)*5 (2)(119.8-29.8)*(13.65+12.35)

2、设a ▽b=a ×b+a-2b ,按此规定计算:

(1)8▽1.25 (2)(4▽2.5) ▽7

【例2】已知2*3=2+22+222=246,3*4=3+33+333+3333=3702.

求:(1)3*3;(2)4*5;(3)若1*x=123,求x.

【分析与解】观察两个已知等式可以发现,“*”定义的是连加运算,第一个加数是“*”前边的数,且后一个加数都比前一个加数多一位,但数字相同,而“*”后边的数恰好是加数的个数。

(1)3*3=3+33+333=369

(2)4*5=4+44+444+4444+44444=49380

(3)提示:因为1* x=1+11+111+…=123

所以倒着算:123-1=122 122-11=111 111-111=0

即:1+11+111=1*3=123

从而可知x=3

【试一试】

已知5△3=5×6×7,3△6=3×4×5×6×7×8,按此规定计算:

(1)(4△3)+(6△2)(2)(3△2)×(4△3)

【例3】设A⊕B=2×(A+B)-2×(A÷B),

计算:(1)(12⊕4)⊕13;(2)70⊕(18⊕4)。

【分析与解】观察已知等式可知:“⊕”定义表示的是两个数和的2倍与商的2倍的差。如:12⊕4=2×(12+4)-2×(12÷4)=26

(1)原式=[2×(12+4)-2×(12÷4)] ⊕13

=[2×16-2×3] ⊕13

=26⊕13

=2×(26+13)-2×(26÷13)

=2×39-2×2

=78-4

=74

(2)原式=70⊕[2×(18+4)-2×(18÷4)]

=70⊕[2×22-2×4.5]

=70⊕35

=2×(70+35)-2×(70÷35)

=206

【试一试】

相关文档
最新文档