四年级数学定义新运算

合集下载

四年级下册数学试题-奥数专题讲练:4 定义新运算 竞赛篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:4 定义新运算 竞赛篇(解析版)全国通用

第四讲 定义新运算卷Ⅰ这一讲我们主要学习定义新运算的三大计算类型:1、理解并熟练掌握根据新的定义运算方式进行加减乘除运算;2、理解并熟练掌握根据计算机编程语言计算输出结果;3、了解其它类型的定义运算.分析:因为狼△狼=狼,所以原式=羊△(狼☆羊)☆羊△狼无论前面结果如何,最后一步羊△狼或者狼△狼总等于狼,所以原式=狼同学们,我们已经学习了加、减、乘、除四种运算,我们知道“+”这个符号表示求两数之和,“-”表示两个数的差,“×”表示两个数的积,“÷”表示两个数的商.但是在很多情况下,特别是当代计算机程序编辑过程中,仅仅应用这四种运算是不够的,我们还需要运用到很多其他的运算方式.这些运算是由一些新定义的运算符号而导出的一种运算,如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的,这类运算就是我们常见的定义新运算问题.定义新运算都是以一种新的面孔出现,其中的符号没有确定的运算意义,都是根据实际的需要而人为地规定.这种题型大多数都是根据题目规定的运算方式直接计算,但是还有一些与方程以及其他方面的综合.这主要考察学生的实际应用能力,我们不能死读书,要灵活运用题干信息,把定义的新运算转化成我们所熟悉的四则运算,这样才是解决这类题目的关键.专题精讲教学目标羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼, 这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了. 对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)想 挑 战 吗 ?(一) 直接运算型【例1】 定义运算※为a ※b =a ×b -(a +b ), (1) 求5※7,7※5; (2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.[巩固]定义新的运算a b a b a b ⊕=⨯++,求: (1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23; 1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]如果a 、b 、c 是三个整数,则他们满足加法交换律和结合律,即a +b =b +a ,(a +b )+c =a +(b +c ).现在规定一种运算“*”,它对于整数a 、b 、c 、d 满足:(a ,b )*(c ,d )=(a ×c +b ×d ,a ×c -b ×d ).例如:(4,3)*(7,5)=(4×7+3×5,4×7-3×5)=(43,13).请你举例说明:“*”运算是否满足交换律和结合律.分析:(7,5)*(4,3)=(4×7+3×5,4×7-3×5)=(43,13),所以“*”运算满足加法交换律, (2,1)*(3,2)*(3,4)=(2×3+1×2,2×3-1×2)*(3,4)=(8,4)*(3,4)=(3×8+4×4,3×8-4×4)=(40,8) ;(2,1)*[(3,2)*(3,4)]=(2,1)*[3×3+2×4,3×3-2×4]=(2,1)*[17,1]=(2×17+1×1,2×17-1×1)=(35,33).所以,(2,1)*(3,2)*(3,4)≠ (2,1)*[(3,2)*(3,4)],因此 “*”不满足结合律.【例2】 定义新运算“\”表示求两个自然数相除所得商的运算,例如:9\2=4,10\3=3.(1) 求27\8,2007\81,2002\66;(2) 试用符号“\”和已经学过的运算符号来表示求两个自然数相除所得的余数的运算.分析:(1)27\8=3;2007\81=24; 2002\66=30;(2)由于被除数÷除数=商……余数, ∴余数=被除数-除数×商,∴a 除以b 的余数为a -b ×(a\b ). [前铺]两个整数a 和b ,a 除以b 的余数记为a b.例如,135=3.根据这样定义的运算,计算:(1)(269)4等于多少?(2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0 (2)因为:2008÷19=105……13,108÷13=8……2,所以 108(200819)=10813=4【例3】 如果 3*2=3+33=36 2*3=2+22+222=246 1*4=1+11+111+1111=1234 那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234. 求7*5.分析:7*5=7+77+777+7777+77777=86415【例4】 定义两种运算“⊕”“⊗”,对于任意两个整数a 、b ,a ⊕b=a+b-1,a ⊗b=a ×b-1,计算:4[]⊗⊕⊕⊕(68)(35)分析:⊕68=6+8-1=13,⊕35=3+5-1=7,137⊕=13+7-1=19,4⊗19=4×19-1=754[]⊗⊕⊕⊕(68)(35)=75[巩固]规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25【例5】定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b =a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891 [前铺]定义运算“⊙”如下:2a ba b +⊕=. (1) 计算2007⊕2009,2006⊕2008 (2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(教师先告诉学生2a b+表示(a+b )÷2) (1)2007⊕2009=200720092+=2008;2006⊕2008=200620082+=2007(2)1⊕5⊕9=152+⊕9=3⊕9=392+=6 1⊕(5⊕9)=1⊕592+=1⊕7=172+=4;[巩固]定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002); (2)1 998☆(2 000☆2 002)☆2 004.分析: (教师先告诉学生2a b+表示(a+b )÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数,所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001【例6】 对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1);[(1)(1)][(1)1]m m m n m nn n n m m m CP P =÷=⨯-⨯⨯-+÷⨯-⨯⨯L L .求:123456666666,,,,,C C C C C C分析:16C=(16P)÷(11P)=6÷1=6;26C=(6×5)÷(2×1)=15;36C=(6×5×4)÷(3×2×1)=20;46C=(6×5×4×3)÷(4×3×2×1)=15;56C=(6×5×4×3×2)÷(5×4×3×2×1)=6;66C=(66P)÷(66P)=1[前铺]对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.卷Ⅱ(二) 反求未知数【例7】 规定:a △b=a +(a +1)+(a +2)+…+(a +b-1),其中a 、b 表示自然数。

四年级数学 --- 定义新运算 练习题

四年级数学 --- 定义新运算 练习题
定义新运算
【例1】(★★)(数学解题能力展示试题) 规定n※b=3×n-b÷2。例如:1※2=3×1-2÷2=2。 根据以上的规定,10※6=( )
【例3】b=3a-2b,例如, 当a=6,b=5时,6※5 =3×6-2×5=8。 计算:(8※7)※9;
【例4】⑵(★★★) 定义运算※为a※ b a b (a b) , ①求12※(3※4),(12※3)※4; ②这个运算“※”有结合律吗? ③如果3※(5※x)=3,求x。 1
【例5】(★★★) 定义新运算:已知:※满足4※1=15,5※1=24, 4※5=11,8※16=48,那么:10※9=( )
【例2】(★★) 两个不相等的非零自然数a、b ,较大的数除以较小的数商为a△b, 余数记为a◇b,如3△11=3、3◇11=2,那么6◇(2△7)=( )。
【例3】⑵(★★★) 规定ab= 3a 2b ,例如 45 3 4 2 5 2, 那么当 x5比5 x大5时,x等于几?
【例4】⑴(★★) 规定 a b a 3 b 2 ,其中a、b都是自然数。 ① 6 8 的值 ② 8 6的值。
2
【例6】(★★★★)(中环杯试题) 已知 A* B AB A B , 则 1*9 *9 *9* *9 *9 _______。
共10次运算
【例7】(★★★★★) (祖冲之杯数学邀请赛) 小明来到红毛族探险,看到下面几个红毛族的算式: 8 8 8, 9 9 9 5 。 9 3 3, (93 8) 7 837。 老师告诉他,红毛族算术中所用的符号:“+、-、×、÷、 ( )、=”与我们算术中的意义相同,进位也是十进制,只 是每个数字虽然与我们写法相同,但代表的数却不同。 请你按红毛族的算术规则,完成下面算式: 89×57 =_____。

第十讲、定义新运算拓展题型(学案)- 2023-2024学年数学四年级上册人教版

第十讲、定义新运算拓展题型(学案)- 2023-2024学年数学四年级上册人教版

第十讲、定义新运算拓展题型(学案)- 2023-2024学年数学四年级上册人教版教学内容:本讲主要围绕数学四年级上册人教版中定义新运算拓展题型进行教学。

教学内容包括理解新运算的概念,掌握新运算的规则,并能运用新运算解决实际问题。

通过本讲的学习,学生能够提高数学思维能力,增强解决问题的能力。

教学目标:1. 理解并掌握定义新运算的概念和规则;2. 能够运用新运算解决实际问题;3. 培养学生的数学思维能力和解决问题的能力;4. 培养学生的合作意识和创新思维。

教学难点:1. 理解新运算的概念和规则;2. 运用新运算解决实际问题;3. 培养学生的数学思维能力和解决问题的能力。

教具学具准备:1. 教师准备PPT课件,包含定义新运算的概念、规则和例题;2. 学生准备练习本、笔和计算器。

教学过程:1. 引入新运算的概念:教师通过PPT课件介绍定义新运算的概念,让学生了解新运算的背景和意义。

2. 讲解新运算的规则:教师通过PPT课件讲解新运算的规则,让学生掌握新运算的运算方法和运算规则。

3. 演示例题:教师通过PPT课件演示一些例题,让学生理解如何运用新运算解决实际问题。

4. 练习:学生分组进行练习,互相讨论并解决实际问题。

教师巡视指导,及时解答学生的问题。

5. 小结:教师通过PPT课件对本讲内容进行小结,强调新运算的概念和规则,并总结解题方法。

6. 作业布置:教师布置一些练习题,让学生巩固所学知识。

板书设计:1. 第十讲、定义新运算拓展题型(学案)- 2023-2024学年数学四年级上册人教版2. 教学内容:定义新运算的概念、规则和例题3. 教学目标:理解新运算的概念和规则,运用新运算解决实际问题,培养学生的数学思维能力和解决问题的能力4. 教学难点:理解新运算的概念和规则,运用新运算解决实际问题5. 教具学具准备:PPT课件、练习本、笔和计算器6. 教学过程:引入新运算的概念、讲解新运算的规则、演示例题、练习、小结、作业布置作业设计:1. 基础练习:布置一些基础练习题,让学生巩固新运算的概念和规则;2. 综合练习:布置一些综合练习题,让学生运用新运算解决实际问题;3. 挑战练习:布置一些挑战练习题,培养学生的创新思维和解决问题的能力。

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难

小学数学竞赛:定义新运算.教师版解题技巧 培优 易错 难
.
【考点】定义新运算之直接运算【难度】3星【题型】计算
【解析】原式
【答案】
【巩固】 表示
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】走美杯,3年级,初赛
【解析】原式
【答案】
【巩固】规定运算“☆”为:若a>b,则a☆b=a+b;若a=b,则a☆b=a-b+1;若a<b,则a☆b=a×b。那么,(2☆3)+(4☆4)+(7☆5)=。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【关键词】希望杯,四年级,二试
【解析】19
【答案】
【例 2】“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。
【考点】定义新运算之直接运算【难度】2星【题型】计算
【答案】
【巩固】设 △ ,那么,5△ ______,(5△2)△ _____.
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
,
【答案】
【巩固】 、 表示数, 表示 ,求3 (6 8)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】
【答案】
【巩固】已知a,b是任意自然数,我们规定:a⊕b=a+b-1, ,那么
可知:5*7=(5+3×7)×(5+7)=(5+21)×12=26×12=312
【答案】
【巩固】定义新运算为a△b=(a+1)÷b,求的值。6△(3△4)
【考点】定义新运算之直接运算【难度】2星【题型】计算
【解析】所求算式是两重运算,先计算括号,所得结果再计算。由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7

四下数学第一讲 定义新运算

四下数学第一讲 定义新运算

四年级(下)兴趣班第一讲定义新运算班级姓名得分一、讲解例题例1、“☉”表示一种新的运算,它是这样定义的:a☉b=a×b-(a+b)。

求:(1)3☉5;(2)(3☉4)☉5。

例2、如果m、n分别表示两个数,定义m△n=(m+n)÷5,那么5△(10△15)等于多少呢?例3、若a◇b表示当a大于b时是用2a减去b,当a小于b时是用2b减去a。

求(6◇9)◇(10◇5)。

二、思考与练习1.设a*b=4×a-5×b,求:(1)7*5;(2)(5*3)*22.如果a*b表示a×b-a+b,计算2*(4*6)*8的值。

3.定义新运算,x□y为:x和y加起来再除以4,求:(1)19□17的值;(2)2□(3□5)的值。

4.对于数x、y定义运算☉及△如下:x☉y=3×x+2×y,x△y=3×x×y,求(2☉3)△4。

5.假设5※2=5×4,7※4=7×6×5×4,求10※5的值。

6.两个整数a和b,a除以b的余数记为a⊕b。

例如,13⊕5=3。

根据这样定义的运算,(26⊕9)⊕4等于几?7.规定:符号“△”为选择两数中较大的数的运算,“”为选择两数中较小的数的运算,例如,3△5=5,3 5=3。

请计算下式:[(70 3)△5]×[5 (3△7)]。

8.有A、B、C、D四种装置,将一个数输入一种装置后会输出另一个数。

装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘3。

这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3。

输入9,经过A·B·C·D,输出几?。

四年级下册数学扩展专题练习-第一讲 定义新运算 无答案 -全国通用

四年级下册数学扩展专题练习-第一讲 定义新运算 无答案 -全国通用

第一讲定义新运算【一】有a、b两个数,规定a◎b=a+(b-2)。

那么5◎2=?练习1、有a、b两个数,规定a※b=a+2-b。

那么2※3=?2、有a、b两个数,规定a#b=a+2-b+9。

那么6#8=?【二】如果规定a◎b=a-b×2,那么a=8、b=3时,求8◎3=?练习1、如果规定a△b=a×3+b,那么a=3、b=10时,求3△10=?2、如果规定a△b=(a+b)÷4,那么a=1、b=7时,求1△7=?【三】设a、b都表示数,规定a△b表示a的3倍减去b的2倍。

试计算:①4△5,②6△7。

练习1、设a、b都表示数,规定a○b=6×a-2×b。

试计算3○4。

2、设a、b都表示数,规定a﹡b=3×a+2×b。

试计算:①(5﹡6)﹡7;②5﹡(6﹡7)。

【四】对于两个数a与b,规定a※b=a×b+a+b。

试计算:6※2。

练习1、对于两个数a与b,规定a※b= a×b-(a+b)。

试计算:3※5。

2、对于两个数A与B,规定A※B=A×B÷2.试计算:6※4。

【五】如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算:3△5。

练习1、如果5◎2=5×6,2◎3=2×3×4,按此规律计算:3◎4=?2、如果2◎4=24÷(2+4),3◎6=36÷(3+6),按此规律计算:8◎4=?【六】有一个数学运算符号“◎”,使下列算式成立:2◎4=8,5◎3=13,3◎5=11,9◎7=25。

按此规律计算:7◎3。

练习1、有一个数学运算符号“◎”,使下列算式成立:6◎2=12,4◎3=13,3◎4=15,5◎1=8。

按此规律计算:8◎4。

2、有一个数学运算符号※,使下列算式成立:2※3=9,7※2=15,3※5=25。

按此规律计算:16※4。

【七】对于两个数a与b,规定a□b=a+(a+1)+(a+2)+……+(a+b-1)。

博识秋季四年级奥数

博识秋季四年级奥数

2012 秋小学四年级拔尖数学目录1、简单的定义新运算2、等差数列3、盈亏问题(1)4、盈亏问题(2)5、和、倍、差应用题复习、巩固6、数字与数位的奥秘7、一般的行程问题8、火车过桥问题9、用矩形图解应用题10、乘除法算式谜11、鸡兔同笼12、应用题综合练习13、计算练习第一讲简单的定义新运算专题解析:1.定义新运算通常是用某些特殊符号表示特定的运算意义,它的符号不同于课本上明确定义或已经约定的符号,如:“+、-、×、÷”。

例如a※b=3a -3b,新运算使用的符号是※而等号右边表示新运算意义的则是四则运算符号。

2.解题关键:要抓住定义的本质,根据规定的新运算与我们学过的四则运算的关系式,将新运算转化我们熟知的四则运算,再进行四则运算就能得出运算的结果。

开心进入:按要求做游戏,并把游戏结果告诉大家1、老师左右两边分别拍手。

2、将左手拍的个数乘2再加上右手拍的个数。

开心探究:例1、规定a△b=3a+2b,计算3△2,2△3的值。

练一练1.规定a△b=3×a-2×b,求3△4,4△3的值。

例2 、规定x*y=x-y÷2,计算10*4,7*(10*4),(7*10)*4的值。

练一练2.定义一种运算▽:a▽b=a×b+a-b,求17▽(6▽2)的值。

例3 、规定a↓b=a×b+a-b,a↑b=a×b-a+b,求5↑(8↓4),(4↑5)-(5↓4)的值。

练一练3.规定()2↑↓(2)↓=+⨯,(1)求(24)3↑=+÷()2a b a ba b a b↑↓2(43)例4 、如果2□3=2+3+4,5□4=5+6+7+8,求10□11,9□9的值。

练一练4.A、B是两个自然数,我们规定2*3=2+3+4,5*4=5+6+7+8,求6*6,2*3*4的值。

例5、一个运算符号“@”使下列算式成立:2 @ 3=7,5 @ 3=13,4 @ 5=13,9 @ 7=25,求995 @ 9=?课后练习体验成功:1.规定a○b=5×a-3×b,求3○4,4○3的值。

定义新运算

定义新运算

第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。

2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。

3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。

2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。

三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。

2、我做指挥官(用手势代替语言指挥)。

3、在下面的括号内填入适当的运算符号,使得等式成立。

5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。

一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。

小学思维数学:定义新运算-带答案解析

小学思维数学:定义新运算-带答案解析

定义新运算定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二 定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

【考点】定义新运算之直接运算 【难度】2星 【题型】计算【解析】 A *B 是这样结果这样计算出来:先计算A +3B 的结果,再计算A +B 的结果,最后两个结果求乘积。

由 A *B =(A +3B )×(A +B )可知: 5*7=(5+3×7)×(5+7) =(5+21)×12 = 26×12 = 312【答案】312【巩固】 定义新运算为a △b =(a +1)÷b ,求的值。

部编版数学四年级上册第1讲.定义新运算初步.优秀A版

部编版数学四年级上册第1讲.定义新运算初步.优秀A版

例4
我们规定 a◎b=(a+b)-(a-b),计算(2◎1)+(3◎2)+(4◎3)+ … +(10◎9) = 【分析】根据已知条件 a◎b=(a+b)-(a-b)=2b,原式=2×(1+2+3+… +9)=2×45=90.
【想想练练】 我们规定 a○b=(a-b)-(b-a),计算(2○1)+(3○2)+(4○3)+ … +(10○9) =
6 第 7 级下 优秀 A 版 教师版
第1讲
如图 2,一只甲虫从画有方格的木板上的 A 点出发,沿着一段一段的横线、竖线爬行到 B, 图 1 中的路线对应下面的算式:1 2 1 2 2 1 2 1 6 .请在图 2 中用粗线画出对应 于算式: 2 1 2 2 2 1 1 1 的路线.
Hale Waihona Puke 图1图2【答案】 如图 3 所示,通过图 1 分析知道向上前进一格要加上 1,向下前进一格要减去
模块一:选择型定义新运算(例 1、例 2) 模块二:公式型定义新运算(例 3、例 4) 模块三:规律型定义新运算(例 5)
例1
一般我们都认为手枪指向谁,谁就是有危险的,那么
规定:警察 小偷警察,警察 小偷 小偷.
则:(猎人 小兔) (山羊 白菜)

(对应学案 1)
【分析】谁握着枪就留下谁,结果应该是白菜.
例2
我们规定:符号○表示选择两数中较大数的运算,例如:5○3=3○5=5;符号△ 表示选择两数中较小数 的运算,例如:5△3=3△ 5=3. 计算:(1)(10△ 8-6△ 5)×(11○13-10○8)的值.(2)4○6+(6○10)△5 的值.

四年级下册(春季)奥数讲义1-15讲

四年级下册(春季)奥数讲义1-15讲

第一讲、定义新运算知识要点:1、定义新运算:是在题目里特意规定一种有别与我们常用的新的运算规则,要求按照新定的运算法则进行计算推理或证明。

2、解题关键:要抓住定义的本质,根据规定的新运算与我们学过的四则运算的关系式,将新运算转化为我们熟知的四则运算,再进行四则运算就能得出运算的结果.例1、规定a*b=2a+3b,计算(2)、3*2(1)、7△(10△4)(2)、(7△10)△4的值例3 、规定X⊙Y=3X+Y÷2,如果已知7⊙Y=25,求例4、规定A▽B=A÷5+B÷2,求(5▽8)×3-(15▽6)÷2的值。

8×9,按此运算规则计算(4*6)÷(3*5)X*Y=X×Y+(X+Y) ×K,并且1*1=5,求1998*1999的值是1、如果规定A△B=A+B+2,计算(1)、9△20 =()(2)、20△9=()2、若规定X*Y=(X+Y)÷5,那么8*(3*7)的结果等于()3、X△Y=(X+Y)÷2,如果X△6=10,那么X=()4、规定X△Y=X×5-Y×2,那么(1△2)×(2△1)等于多少?3⊙4=3×4×5×6,求4⊙5的值4◇3)○5等于多少?7、规定A△B=A×B×2-(A-B),计算(3△2)+(48、如果4*2=4+44=48,2*3=2+22+222=246,1*4=1+11+111+1111=1234,那么3*4等于多少?9、“⊙”表示一种新的运算符号,已知 2⊙3=2+3+4 3⊙5=3+4+5+6+7 7⊙2=7+8 ……2○5等于多少?11、小明做了一些口算题,他2分钟做30道,照这样计算,小明5分钟做多少道口算题?老师布置60道口算题,他几分钟可以完成?12、某工厂6个工人5天可做300个零件,照这样计算,10个工人8天可做多少个零件?6天要做120020天挖完,实际上每天多挖了45立方米,这样可提前几天14 、一段地下管道预计15个工人每天工作4小时,18天可以完成。

四年级数学思维训练 定义新运算

四年级数学思维训练 定义新运算

让我们一起为了孩子的进步而努力!纳思书院Nice Education四年级数学思维训练定义新运算对于“加、减、乘、除”四则运算我们已经相当熟悉了。

为了扩展对运算的认识,在四则运算的基础上,还可以按需要规定新的运算。

例1设a、b都表示数,规定a△b=3×a-2×b。

(1)求4△3,3△4。

(2)这种运算有“交换律”吗?(3)求(17△6)△2,17△(6△2)。

(4)这种运算有“结合律”吗?(5)如果已知5△b=1,求b。

例2如果a#b=2×a+3×b,a*b=(a+b)÷2,那么(3*5)#7=?例3规定:a&b=a+(a+1)+(a+2)+…+(a+b-1),其中a、b表示自然数。

(1)求1&100的值;(2)已知x&10=75,求x。

让我们一起为了孩子的进步而努力!纳思书院Nice Education 例4羊和狼在一起时,狼要吃掉羊,所以关于羊和狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。

以上运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是狼和羊在一起就只剩下狼了。

小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号★表示:羊★羊=羊;羊★狼=羊;狼★羊=羊;狼★狼=狼。

这个运算的意思是:羊和羊在一起还是羊;狼和狼在一起还是狼;但是由于羊能战胜狼,当狼和羊在一起时,它便被羊赶走,而只剩下羊了。

对羊或狼,可以用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算。

运算的结果或者是羊,或者是狼。

那么求下式的结果:羊△(狼★羊)★羊△(狼★狼)。

巩固练习1.设a、b都表示数,规定:a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b。

试计算:(1)5△6;6△5。

2.a、b是自然数,规定a*b=a×5+b÷3,求8*9。

3.设a▼b=8×a-18÷b,求7▼9=?让我们一起为了孩子的进步而努力!纳思书院Nice Education4.规定a☆b=(a+3)×(b-5),求5☆(6☆7)的值。

奥数《定义新运算》微课(教案)人教版数学四年级上册

奥数《定义新运算》微课(教案)人教版数学四年级上册

奥数《定义新运算》微课(教案)人教版数学四年级上册一、教学目标1. 让学生掌握定义新运算的方法和步骤。

2. 培养学生运用新运算解决问题的能力。

3. 培养学生的逻辑思维能力和创新意识。

二、教学内容1. 定义新运算的概念。

2. 定义新运算的方法和步骤。

3. 运用新运算解决问题。

三、教学重点与难点1. 教学重点:定义新运算的方法和步骤。

2. 教学难点:运用新运算解决问题。

四、教学过程1. 导入新课通过一个有趣的故事引入新课,激发学生的学习兴趣。

2. 讲解定义新运算的概念解释定义新运算的含义,让学生明白定义新运算的意义。

3. 讲解定义新运算的方法和步骤通过具体的例子,讲解定义新运算的方法和步骤,让学生掌握定义新运算的技巧。

4. 操练定义新运算给出一些题目,让学生进行练习,巩固所学知识。

5. 讲解运用新运算解决问题通过具体的例子,讲解如何运用新运算解决问题,让学生学会运用新运算。

6. 操练运用新运算解决问题给出一些实际问题,让学生运用新运算进行解决,提高学生解决问题的能力。

7. 总结与反思对本节课的内容进行总结,让学生明白定义新运算的重要性,并引导学生进行反思。

五、课后作业1. 完成课后练习题。

2. 思考如何将新运算运用到实际生活中。

六、教学评价1. 通过课后练习题的完成情况,评价学生对定义新运算的掌握程度。

2. 通过学生的课堂表现,评价学生的逻辑思维能力和创新意识。

七、教学资源1. 教材:人教版数学四年级上册。

2. 教学课件:包含故事、例子、练习题等。

八、教学建议1. 在教学过程中,注重学生的参与,引导学生积极思考。

2. 在讲解定义新运算的方法和步骤时,要详细讲解,确保学生能够理解。

3. 在讲解运用新运算解决问题时,要注重实际例子的选择,让学生能够更好地理解。

4. 在课后作业的布置上,要注重练习题的质量,确保学生能够巩固所学知识。

需要重点关注的细节是“讲解定义新运算的方法和步骤”。

这个部分是教学的核心,学生能否理解和掌握定义新运算的方法和步骤,直接影响到他们能否在实际问题中灵活运用新运算。

四年级(下册)数学竞赛试卷四升五暑假奥数培优训练定义新运算 北师大版

四年级(下册)数学竞赛试卷四升五暑假奥数培优训练定义新运算 北师大版

定义新运算一、知识要点用新运算符号定义一些别的运算,就是定义新运算。

如用◎表示一种新的运算,它是这样定义的:a◎b=a×b-(a+b).这种新运算的意义就是:a◎b是两个数的积减去两个数的和所得到的差。

这就是定义新运算问题。

解决这类问题的关键是理解新运算符号所表示的意义,严格按照规定的计算法则带入计算,已知的数代入,转化为加减乘除的运算,把定义新符号运算转化为熟悉的四则运算。

二、例题精讲【例1】规定a★b=5a-3b,其中a,b是自然数。

(1)求5★2的值(2)求(3★2)★4的值(3)求(3★2)★(4★3)的值练习1:设a,b都表示数,规定a△b=3×a-2×b.(1)求3△2,2△3 (2)这个运算“△”有交换律吗?(3)求(17△6)△2,17△(6△2)。

(4)这个运算“△”有结合律吗?【例2】如果任意两个整数a、b,定义两种运算“△”“▽”:a△b=a+b-1, a▽b=a×b-1,计算4▽(6△8)练习2:如果任意两个整数A、B,定义两种运算“☆”、“★”:A☆B=2A+B-2, A★B=A×3B-A÷B,计算8☆(9★3)【例3】如果2﹡3=2×3×4,1﹡5=1×2×3×4×5,计算4﹡(1﹡3)。

思路点拨:先观察,找出规律,然后再计算。

练习3:如果2﹡3=2+3+4,3﹡6=3+4+5+6+7+8,计算19﹡5。

【例4】规定□的运算法则如下,对于任何整数a、b,有:①当a+b≥10时,a□b=2×a +b-1;②当a+b<10时,a□b=2×a×b;求(1□2)+(2□3)+(3+4)+(4+5)+(5+6)+(6+7)的值?练习4:规定符号“↑(a,b)”表示两个数的和除以两个数的差,例如↑(4,2)=(4+2)÷(4-2)=3;规定符号“↓(a,b)”表示两个数的和乘以两个数的差,例如↓(4,2)=(4+2)×(4-2)=12;那么[↑(12,6)+↓(12,6)]结果是多少?【例5】规定a△b=a+(a+1)+(a+2)+(a+3)+…+(a+b-1),其中a,b表示自然数。

四年级数学思维训练-定义新运算

四年级数学思维训练-定义新运算

定义新运算思维目标:知道△、◎、□、* 等符号,表示一种特定的运算过程或运输顺序,并会根据规定进行计算。

数学知识:会用运算定律、运算性质进行简便运算。

知识梳理思维:掌握特定符号所表示的运算顺序,能正确计算。

数学:正确运用运算定律和性质进行简便运算,不能简便的要运算顺序运算。

精讲精练例1 a△b=(a+b)÷3计算:(1)4△5 (2)12△3△10金钥匙:a △ b表示a与b的和去除以3.(1) 4△5 (2) 12△3△10=(4+5)÷3 =[(12+3)÷3]△10=9÷3 =5△10=3 =(5+10)÷3=5点金术:注意书写格式。

试金石:a△b=a×2+b×3计算:(1)3△5 (2)(5△4)÷(4△1)例2: x◎y=x-y÷2计算:(1) 17◎6 (2)(6◎8)×(3◎4)金钥匙:x◎y表示x减去y的一半。

(1)17◎6 (2)(6◎8)×(3◎4)= 17-6÷2 =(6-8÷2)×(3-4÷2)= 17-3 = 2×1= 14 = 1点金术:△、◎、□、* 等符号,表示一种特定的运算过程或运输顺序。

试金石:1、x*y=3×x×y 求:10*32、a▲b = (a + 3) ×(b-5) 求:5▲(6▲7)例3 规定 a□b = a+(a+1)+(a+2)+……+(a+b-1)求:2□7(a、b为自然数,b>a)金钥匙:a□b表示从a开始连续的自然数相加,一直加到a+b-1为止。

2□7= 2+3+4+5+6+7+8=35点金术:可以用等差数列求和的方法计算结果。

试金石:2↑4 = 2+3+4+5=14 6↑3 = 6+7+8=21计算:(1) 5↑4 (2)如果 10↑x = 60,求x堂后测试1、m*n = m×m-n×3,计算:(1) 5*6 (2) 8*(3*1)2.a*b = (a+b)÷2, a◎b=a÷3-b÷5,计算:(1) 2*6 (2) 14*16◎53、规定:4#3 = 5,5#2 = 8,8#6=10,求:7#5.4、规定:x@y = x – y÷2,计算:(7@6)+(9@4)。

四年级数学人教版秋季奥数:第一讲 定义新运算

四年级数学人教版秋季奥数:第一讲 定义新运算

第一讲定义新运算知识点讲解定义新运算指用一个符号和已知运算表达式表示一种新的运算。

例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

5☆3=3X5 - 3X3解题技巧要确切理解新运算的意义,严格按照规定的法则进行运算。

注意事项定义新运算一般是不满足四则运算中的运算律和运算性质,所以不能盲目地运用定律和运算性质解题。

例题讲解例1:设a、b都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6和6△5。

解析:5△6=5×4-6×3=20-18=26△5=6×4-5×3=24-15=9注意:例1定义的△没有交换律,计算中不得将△前后的数交换。

例2:对于两个数a、b,规定如果a▲b=a×b-(a+b),求6▲(9▲2)。

解析:括号里的部分已经构成了新运算,其运算结果又与括号外的部分构成新运算。

本题要运用新运算的关系,计算两次。

6▲(9▲2)= 6▲[ 9×2 - (9+2) ] = 6▲7 = 6×7-(6+7)= 42-13 = 29注意:有小括号,先算小括号里面的。

例3:已知a☆b=a+(a+1)+(a+2)+•••+(a+b-1),例如:4☆5=4+5+6+7+8,按此规定,2001☆5=?解析:通过观察可以发现,"☆"这个特殊的符号在这道题中所规定的定义是求几个连续的自然数的和。

2001☆5=2001+2002+2003+2004+2005=2003×5=10015注意:定义新运算有省略号的注意尾项。

自我挑战1、现定义一种新运算:★,对于任意整数a和b,规定有:a★b =a+b-1,则4★[(6★8)★(3★5)]的值为( )?2、如果规定:1※2=1+11,2※3=2+22+222,3※4=3+33+333+333+3333。

四年级奥数第五讲---定义新运算

四年级奥数第五讲---定义新运算

第五讲 定义新运算小朋友们,我们学过的常用运算有:+、-、×、÷等。

如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同。

可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+",“-",“×",“÷”运算不相同.定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。

一、定义新运算概念:定义一种新的运算符号,这个新的运算符号包含有多种基本运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

二、定义新运算分类模块一、直接运算型【例 1】 若*A B 表示()()3A B A B +⨯+,求5*7的值。

练习:1、定义新运算为a △b =(a +1)÷b ,求的值.6△(3△4)2、设a △2b a a b =⨯-⨯,那么,5△6=______,(5△2) △3=_____。

3、已知a ,b 是任意自然数,我们规定: a ⊕b = a +b —1,2a b ab ⊗=-,那么[]4(68)(35)⊗⊕⊕⊗= .4、M N *表示()2,(20082010)2009M N +÷**____=5、规定运算“☆”为:若a >b ,则a ☆b =a +b ;若a =b ,则a ☆b =a -b +1;若a〈b ,则a ☆b =a ×b .那么,(2☆3)+(4☆4)+(7☆5)= 。

四年级下册数学试题-思维训练专题:02概念与定义新运算(学生版+教师版)全国通用

四年级下册数学试题-思维训练专题:02概念与定义新运算(学生版+教师版)全国通用

60□64 ,要使商中间有2个0,而且没有余数,□可以填______或______。

12个△的31是______个△;8个☆是______个☆的72。

把一米长的绳子对折,再对折,每段是这根绳子的)()(,也就是)()(米;如果对折4次后,每一段是这根绳子的)()(米。

一块长方形的铁皮长3分米,宽6厘米,它的周长是_________,面积是_________. 2个31是______;______个71是76;53里面有______个51;9个91是______。

将下列各数按从大到小的顺序排列:350平方分米、50平方米、8平方米、360000平方厘米、1000平方分米。

___________ >___________ >___________ >___________ >___________.152m =___________2cm ;23000dm =___________2m .(单位:米)63左图所示的长方形中,阴影部分的面积为62m ,则空白部分的面积是_______2m 。

分子和分母都是一位数,分母是分子的3倍,这样的分数有______个。

正方形的边长扩大5倍,周长扩大______倍,面积扩大______倍。

41米要比51米短。

( ) 1千克的棉花比1千克的铁轻。

( ) 被除数的中间有几个零,商的中间也有几个零。

( )左图涂色部分表示整体的81。

( ) 小猴骑自行车去参加运动会,它8分钟骑了200米,它的骑车速度是25米。

( ) 把除数32看作30来试商,这时商可能变小。

( ) 把一个蛋糕分成5份,每份是这个蛋糕的51。

( ) 面积相等的2个长方形,周长不一定相等。

( )下面4道算式中,积与其他3道不相等的是( )。

A.7012⨯B.10743⨯⨯⨯C.100127⨯⨯D.10762⨯⨯⨯在除法算式中,△÷★710ΛΛ=,被除数△最小取( )。

A.67 B.78 C.87 D.76下图中阴影部分是整体的41的是( )。

【精选】小学四年级数学计算竞赛题一

【精选】小学四年级数学计算竞赛题一

【精选】小学四年级数学计算竞赛题一一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.3.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.4.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.5.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.6.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.7.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.8.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.9.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.10.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.11.甲、乙两个油桶中共有100千克油,将乙桶中的15千克油注入甲桶,此时甲桶中的油是乙桶中的油的4倍.那么,原来甲桶中油比乙桶中的油多千克.12.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.14.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.15.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本24个,其中3元的笔记本个.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.3.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.4.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.5.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.6.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.7.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.8.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.9.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).10.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.11.【分析】根据题意,把甲乙两个油桶的共存油看作5份,可以计算出每份是多少千克油,将乙桶中的15千克油注入甲桶后,甲桶占了其中的4份,乙桶占了其中的1份,1份即100÷5=20千克,可以计算出注入后各个油桶的千克,再用乙桶的油减去15千克,甲桶的油加上15千克,即是甲乙两桶原存油的数量,再用甲桶原存油的数量减去一桶原存油的数量,列式解答即可解:100÷(1+4)=20(千克)注入后的甲桶:4×20=80(千克)倒出后的乙桶:1×20=20(千克)原甲桶存油:80﹣15=65(千克)原乙桶存油:20+15=35(千克)甲桶中油比乙桶中的油多:65﹣35=30(千克)答:原来甲桶中油比乙桶中的油多30千克.故答案为:30.【点评】解答此题的关键是分清注入后甲乙两桶油的关系,即甲桶存油等于乙桶存油的4倍,然后可计算出注入后甲乙两桶油的存量,再计算出注入前两桶油的重量,二者相减即可.12.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.14.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.15.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,故答案为24,15.【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.。

(完整版)定义新运算

(完整版)定义新运算

第一讲定义新运算一、教学目标:1、知识与技能:理解新定义符号的含义,严格按新的规则操作。

2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。

3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.二、教学重难点:1、教学重点:理解新定义,按照新定义的式子代入数值。

2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。

三、教学方法:引导发现法四、教学过程:(一)导入:1、看图大比拼(准备几张生活中常见标志的图片)。

2、我做指挥官(用手势代替语言指挥)。

3、在下面的括号内填入适当的运算符号,使得等式成立。

5()2=7 6()3=3 100()2=50 13( )3=394、趣味引导:生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=5、已知符号“#”表示a#b=a+b,求:3#5、5#9、88#13的值?(体现对应思想和解题的三个步骤)加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72的值?小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。

一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算(二)例题引导:第一类:(直接运算型)例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15时,求a①b?例1:已知符号“△”表示:a△b=(a+b)×6,求:10△3, 6△9的值?练习:(1)对定义运算※为a※b=(a+b)×2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义新运算一、考点、热点回顾
我们学过常用的运算加、减、乘、除等,如6+2=8,6×2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对应任意两个数。

通过这个法则都有一个唯一确定的数与它们对应。

这一周,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

二、典型例题
例1:设a、b都表示数,规定:a△b表示a的3倍减去b的2倍,即:a△b = a ×3-b×2。

试计算:(1)5△6;(2)6△5。

例2:对于两个数a与b,规定a⊕b=a×b+a+b,试计算6⊕2。

例3:如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算3△5。

例4:对于两个数a与b,规定a□b=a(a+1)+(a+2)+…(a+b-1)。

已知x□6=27,求x。

例5: 2▽4=8,5▽3=13,3▽5=11,9▽7=25。

按此规律计算:。

三、课堂练习
1,设a、b都表示数,规定:a○b=6×a-2×b。

试计算3○4。

2,设a、b都表示数,规定:a*b=3×a+2×b。

试计算:
(1)(5*6)*7 (2)5*(6*7)
3,有两个整数是A、B,A▽B表示A与B的平均数。

已知A▽6=17,求A。

4,对于两个数a与b,规定:a⊕b=a×b-(a+b)。

计算3⊕5。

5,对于两个数A与B,规定:A☆B=A×B÷2。

试算6☆4。

6,对于两个数a与b,规定:a⊕b= a×b+a+b。

如果5⊕x=29,求x。

7,如果5▽2=5×6,2▽3=2×3×4,计算:4▽3。

8,如果2▽4=24÷(2+4),3▽6=36÷(3+6),计算8▽4。

9,如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。

四、课后作业
1,如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。

已知x□3=5973,求x。

2,对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。

3,如果1!=1,2!=1×2=2,3!=1×2×3=6,按此规律计算5!。

1,有一个数学运算符号“▽”,使下列算式成立:6▽2=12,4▽3=13,3▽4=15,5▽1=8。

按此规律计算:8▽4。

相关文档
最新文档