八年级下数学练习题(第1周)

合集下载

北师大八年级数学下册第1周周末练习题含答案

北师大八年级数学下册第1周周末练习题含答案

普宁培青中学八年级数学下册第1周周测试卷组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)题号 1 2 3 4 5 6 7 8 9 10 答案1.等腰三角形的顶角是50°,则这个三角形的一个底角的大小是(*)A.65°B.40°C.50°D.80°2.等腰三角形一边长是2,一边长是5,则此三角形的周长是(*)A.9B.12C.15D.9或123.如图,在△ABC中,AD是角平分线,且AD=AC,若∠BAC=60°,则∠B的度数是(*)(第3题图)(第4题图)(第5题图)A.45°B.50°C.52°D.58°4.如图,在△ABC中,AC=AD=BD,∠B=35°,则∠CAD的度数为(*)A.70°B.55°C.40°D.35°5.如图,△ABC是等边三角形,点D在AC边上,∠DBC=40°,则∠ADB的度数为(*)A.25°B.60°C.90°D.100°6.如图,在△ABC中,AB=AC,AD为BC边上的中线,∠B=25°,则∠CAD的度数为(*)(第6题图)(第7题图)A.55°B.65°C.75°D.85°7.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为(*)A.15°B.20°C.25°D.40°8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,则图中的等腰三角形共有(*)个.(第8题图)(第9题图)(第10题图)A.2B.3C.4D.59.如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是(*)A.30°B.36°C.45°D.20°10.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,则∠1的度数是(*)A.45°B.60°C.75°D.90°二.填空题(共7小题)11.如图,在△ABC中,AB=AC,∠A=80°,则∠B=.(第11题图)(第13题图)12.等腰三角形的一个内角是80°,则它顶角的度数是.13.如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BC=16cm,则BD=cm.14.如图,AC=AD,∠1=∠2,只添加一个条件使△ABC≌△AED,你添加的条件是.15.若(a﹣3)2+|b﹣7|=0,则以a、b为边长的等腰三角形的周长为.16.如图,在△ABC中,∠B=90°,∠C=30°,DE垂直平分AC,交BC于点E,CE=2,则BC=.17.如图,一个边长是1的等边三角形ABC,将它沿直线l作顺时针方向滚动,求滚动100次,B点所经过的路程(结果保留π).三.解答题18.如图,在△ABC中,AB=AD=DC,∠BAD=50°,求∠B和∠C的度数.19.已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.20.如图,四边形ABCD中,AB∥DC,DB平分∠ADC,∠A=60°.求证:△ABD是等边三角形.21.如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.22.如图,在△ABC中,AB=AC,D为AC延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.普宁培青中学八年级数学下册第1周周测试卷参考答案一. 选择题(每小题3分,共10小题)题号 1 2 3 4 5 6 7 8 9 10答案 A B A C D B C B B C二.填空题(每小题4分,共7小题)11. 50°12. 80°或20°13. 814. ∠C=∠D或∠B=∠E或AB=AE.15. 1716. 3 17. .三.解答题18.解:在△ABD中,AB=AD,∠BAD=50°,∴∠B=∠ADB=(180°﹣50°)65°,又∵AD=DC,∴∠C=∠CAD∠ADB65°=32.5°.故∠B=65°,∠C=32.5°.19.解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD∴AE=ED,∴△AED是等腰三角形.20.证明:∵AB∥DC,∠A=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB60°=∠A,∴△ADB是等边三角形.21.解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴DA=DB,∴∠ABD=∠A=50°,∴∠CBD=15°;(2)∵DE垂直平分AB,∴DA=DB,∴DB+DC=DA+DC=AC,又∵AB=AC=7,△CBD周长为12,∴BC=5.22.(1)证明:∵AB=AC,∴∠B=∠C,∵DE⊥BC,∴∠DEC=∠DEB=90°,∴∠B+∠BFE=90°,∠C+∠D=90°,∴∠D=∠BFE,∵∠BFE=∠AFD,∴∠D=∠AFD,∴AD=AF,∴△ADF是等腰三角形;(2)过点A作AG⊥DE,垂足为G,∵AB=AC,AC=10,∴AB=10,∵F为AB中点,∴AF=BF AB=5,在Rt△BFE中,BE=3,∴EF4,∵∠AGF=∠BEF=90°,∠AFG=∠BFE,∴△AFG≌△BFE(AAS),∴GF=EF=4,∵AD=AF,AG⊥DF,∴DF=2GF=8.。

初二下册数学第一章练习题

初二下册数学第一章练习题

初二下册数学第一章练习题本文旨在解答初二下册数学第一章的练习题,共分为四大部分:选择题、填空题、计算题和解答题。

通过仔细解答这些问题,你将能够更好地巩固所学的数学知识。

选择题1. 下列哪个数字是2.15的近似数?A. 1.9B. 2.05C. 2.2D. 2.252. 半径为5cm的圆的面积是多少?A. 25π cm²B. 10π cm²C. 5π cm²D. 2.5π cm²3. 假设一辆汽车以每小时60公里的速度行驶,那么在5小时内这辆汽车行驶的距离是多少?A. 200公里B. 250公里C. 300公里D. 350公里填空题1. 将√25写成带封闭包围的真分数。

2. 一个矩形的长度是12cm,宽度是4cm,它的周长是多少?3. 一个箱子的体积是1000立方厘米,它的长、宽、高分别是10cm、8cm和x cm。

求x的值。

计算题1. 计算:12 + 24 ÷ 6 - (5 - 2)²。

2. 一个长方形的面积是72平方厘米,宽度是6厘米,求其长度。

3. 某种商品原价为200元,打5折出售。

请计算折扣后的价格。

解答题1. 请列举并解释三种在计算中常用的数学符号。

2. 假设今天是星期三,再过100天是星期几?3. 请画出一个半径为3cm的圆。

计算并标记其周长和面积。

这里只是给出了初二下册数学第一章练习题的一部分,通过详细解答这些题目,你可以更好地理解和掌握数学知识。

希望你能够认真完成每一道题目,并与老师或同学一起交流讨论,以加深对数学的理解和应用能力。

祝你学业进步!。

北师大版八年级数学下册第一二章提高练习(有答案)

北师大版八年级数学下册第一二章提高练习(有答案)

第一二章提高练习解答题1.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)2.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.3.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.4.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5.解不等式﹣≥x﹣,并把它的解集在数轴上表示出来.6.解不等式组:并将解集在数轴上表示.7.已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.9.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.10.已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.13.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.15.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.16.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10cm,试求出△P AO的周长.(不用写过程,直接写出答案)(2)若AB=AC,∠BAC=110°,试求∠P AO的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC的条件,你能求出∠P AO的度数吗?若能,请求出来;若不能,请说明理由.17.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.18.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.19.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?20.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?参考答案1.解:①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;③连接BF,则直线BF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于H,G两点;⑥连接GH交BF延长线于点P,则P点即为所求.2.解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.同法点O′也满足条件.故答案为O或O′处.3.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.4.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.5.解:原不等式去分母得:2x﹣4﹣9x﹣15≥6x﹣4+2x,移项得:2x﹣9x﹣6x﹣2x≥﹣4+4+15,合并同类项的:﹣15x≥15,解得x≤﹣1.解集在数轴上表示为:6.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.7.(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.8.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴∠EAD=∠B,∠F AC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).9.解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.10.解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.11.解:,由①得:x>﹣,由②得:x<2a,则不等式组的解集为:﹣<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.12.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.13.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.16.解:(1)∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴△P AO的周长=AP+PO+AO=BO+PO+OC=BC,∵BC=1Ocm,∴△P AO的周长10cm;(2)∵AB=AC,∠BAC=110°,∴∠B=∠C=(180°﹣110°)=35°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=110°﹣35°﹣35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B,∠CAO=∠C,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=∠BAC﹣(∠B+∠C)=110°﹣70°=40°.17.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.18.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.19.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.22.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.解:(1)根据图象可得不等式2x﹣4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=﹣x+5;(3)把x=0代入y=﹣x+5得:y=5,所以点B(0,5),把y=0代入y=﹣x+5得:x=2,所以点A(5,0),把y=0代入y=2x﹣4得:x=2,所以点D(2,0),所以DA=3,所以四边形BODC的面积=.24.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.25.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.26.解:(1)△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒),∴CP=AB=×10=5cm;(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t =12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.。

初二数学下册练习题湘教版

初二数学下册练习题湘教版

初二数学下册练习题湘教版数学是一门需要不断练习的学科,通过练习题可以帮助我们巩固和提高数学知识。

下面是初二数学下册湘教版的一些练习题,希望能够帮助大家更好地掌握数学知识。

一、填空题1. 已知一条直角边长为3,求斜边的长度为______。

2. 一只青蛙在一个深度为20米的井里,白天它每次往上跳3米,夜晚会下滑2米,问它需要跳多少次才能跳出井口?3. 小明家的电费是每度0.5元,上个月共用电100度,应缴纳的电费为______元。

4. 甲、乙两个数的和为75,乙数是甲数的2倍减去10,求甲、乙两个数各是多少?5. 一个正方形的边长为4厘米,它的周长为______厘米。

二、选择题1. 已知点A(2,3),点B(x,5),若AB的距离等于5,则x的值为:A. -1B. 1C. 3D. 72. 一个数减去它的四分之一等于15,这个数是:A. 10B. 20C. 25D. 303. 一个数的一半加上它的四分之一等于15,这个数是:A. 10B. 15C. 20D. 304. 一个长方形的长是宽的2倍,它的周长是24,求长方形的长和宽分别是多少?A. 长:6,宽:12B. 长:4,宽:6C. 长:8,宽:4D. 长:12,宽:65. A、B两个数的和为100,若B大于A,则A、B两个数可能是:A. 20、80B. 30、70C. 40、60D. 50、50三、解答题1. 用竖式计算:(1)345 + 78 = ________(2)789 - 256 = ________(3)23 × 4 = ________(4)78 ÷ 6 = ________(5)136 ÷ 17 = ________(结果保留一位小数)2. 小明每天步行上学,来回共需用时1小时40分钟,若小明来回步行时间的比为5:8,那么小明步行去学校的时间是多少分钟?3. 一个线段长14米,将它分成3段,第一段、第二段和第三段的长度之比为2:3:4,求第一段的长度。

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

北师大版八年级数学下册第一章 三角形的证明练习(包含答案)

第一章三角形的证明一、单选题1.已知等腰三角形的一个角等于42°,则它的底角为:()A.42°B.69°C.69°或84°D.42°或69°2.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是()A.30cm B.33cm C.24cm或21cm D.30cm或33cm 3.如图所示,V ABC是等边三角形,且BD=CE,∠1=15︒,则∠2的度数为()A.15︒B.30°C.30°D.60︒4.下列各组线段能构成直角三角形的是()A.1,2,3B.7,12,13C.5,8,10D.15,20,255.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5B.4.2C.5.8D.76.如图,在V ABC中,∠A=90︒,∠C=30︒,PQ垂直平分BC,与AC交于点P,下列结论正确的是(). ∠ △°A . PC < 2P AB . PC > 2P AC . AB < 2P AD . AB > 2P A7.在联欢会上,有 A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在 ∆ABC 的()A .三边中垂线的交点C .三条角平分线的交点B .三边中线的交点D .三边上高的交点8 如图所示,Rt△ABC 中, C 90° △AB 的垂直平分线 DE 交 BC 于 D ,交 AB 于点 E .当∠B 30时,图中一定不相等的线段有()△A .AC △AE BEC .△CD DEB .AD △BDD .AC △BD9.如图,△ABC 中,AB =5,AC =4,以点 A 为圆心,任意长为半径作弧,分别交 A B 、AC于 D 和 E ,再分别以点 D 、E 为圆心,大于二分之一 DE 为半径作弧,两弧交于点 F ,连接AF 并延长交 BC 于点 G ,GH ⊥AC 于 H ,GH =2,则△ABG 的面积为( )A.4B.5C.9D.1010.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④二、填空题11.如图,已知在∆ABC中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是_____________________.(只需填上一个正确的条件)12.如图是一块菜地,已知AD=8米,CD=6米,∠D=90︒,AB=26米,BC=24米.则这块菜地的面积是_____.13.如图,在V ABC中,AC=BC,分别以点A和点C为圆心,大于1AC长为半径画2弧,两弧相交于点M、N,连接MN分别交BC、AC于点D、E,连接AD.若∠B=70︒,则∠BAD的度数是_____度.14.如图,∆ABC中,∠BAC=90︒,AD⊥BC,∠ABC的平分线BE交AD于点F,AG 平分∠DAC.给出下列结论:①∠BAD=∠C;②∠EBC=∠C;③AE=AF;④FG//AC;⑤EF=FG.其中正确的结论是______.三、解答题15.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=△45°,求证:ACD为等腰三角形;(△2)若ACD为直角三角形,求∠BAD的度数.16.如图,已知O是等边三角形ABC内一点,D是线段BO延长线上一点,且OD=OA,∠AOB=120︒,求∠BDC的度数.17.如图,一架2.5m长的梯子AB斜靠在一竖直墙AO上,这时AO为2.4m.(1)求OB的长度;(2)如果梯子底端B沿地面向外移动0.8m到达点C,那么梯子顶端A下移多少m?△18.如图,在ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.(1)求BC的长;(2)分别连接OA、OB、△OC,若OBC的周长为13cm,求OA的长.19.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.(1)求证:MN=BM+NC;(2)△求AMN的周长.答案1.D 2.D 3.D 4.D 5.D 6.C.△, ,△, △﹣ △, △﹣ ﹣ △,△, △,△, △﹣ ﹣ △﹣ ﹣ 7.A8.D9.B10.C11.AD ⊥BC12.96△△△13.3014.①③④15.(1) AB=AC B=30°B= C=30°BAC=180°30°﹣30°=120°, BAD=45°CAD= BAC BAD=120° 45°=75°△, ADC= B+ BAD=75° ADC= CADAC=CD△即 ACD 为等腰三角形;(2)有两种情况: △当 ADC=90°△时,B=30°BAD= ADC B=90° 30°=60°;△当 CAD=90°△时, BAD= BAC CAD=120° 90°=30°;△即 BAD 的度数是 60°或 30°.⎨∠BAO = ∠CAD16.∵∠AOB=120°,∴∠AOD=60°∵AO=OD ,∴△AOD 是等边三角形∴ ∠BAC = 60︒ , AB = AC∵△ABC 是等边三角形,∴∠BAC=60°,AB=AC∴∠BAC=∠OAD ,∴∠BAO+△OAC=△OAC+△CAD△∴∠BAO= CAD在△BAO 和△CAD 中⎧ AO = AD ⎪⎪ ⎩AB = AC∴ ∆ABO ≌ ∆ACD∴ ∠AOB = ∠ADC = 120︒△ ∠BDC = ∠ADC - ∠ADO = 60︒17.(1)解:在 Rt ∆AOB 中,由勾股定理OB 2 = AB 2 - AO 2= 2.52 - 2.4 2= 0.49∴ OB = 0.49 = 0.7(2)设梯子的 A 端下移到 D , OC = 0.7 + 0.8 = 1.5∴在Rt∆OCD中,由勾股定理∴OD2=CD2-DC2=2.52-1.52=4∴OD=4=2∴顶端A下移了:2.4=2=0.4m18.解:(1)∵DM是线段AB的垂直平分线,∴DA=DB,同理,EA=EC,∵△ADE的周长5,∴AD+DE+EA=5,∴BC=DB+DE+EC=AD+DE+EA=5(cm);(△2)∵OBC的周长为13,∴OB+OC+BC=13,∵BC=5,∴OB+OC=8,∵OM垂直平分AB,∴OA=OB,同理,OA=OC,∴OA=OB=OC=4(cm).19.解:(1)∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等边三角形,∴∠ABC=∠BCA=60°,∴∠DBA=∠DCA=90°,延长AB至F,使BF=CN,连接DF,由SAS△可证BDF≌△CDN,∴∠BDF=∠CDN,DF=DN,∵∠MDN=60°,∴∠FDM=∠BDM+∠CDN=60°,由SAS△可证DMN≌△DMF,∴MN=MF=MB+BF=MB+CN(2)由(1)知MN=MB+CN,∴△AMN的周长为AM+AN+MN=AM+MB+AN+CN=AB+AC=6。

八年级数学下册(北师版) 周周清 检测内容:1

八年级数学下册(北师版) 周周清 检测内容:1

检测内容:1.1-1.2得分________卷后分________评价________一、选择题(每小题5分,共35分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(B)A.25°B.65°C.70°D.75°第1题图第3题图2.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边.若(a-2)2+b-2+|c-22 |=0,则此三角形是(A)A.等腰直角三角形B.直角三角形C.等腰三角形D.钝角三角形3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个4.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植一草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要(B)A.300a元B.150a元C.450a元D.225a元5.等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是(C)A.70°B.110°C.70°或110°D.20°或160°6.如图,点A,B,C在同一条直线上,△ABD,△BCE均为等边三角形,连接AE 和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM, 则∠DMA的度数为(B)A.45°B.60°C.75°D.90°第6题图第7题图7.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有(D)A .1个B .2个C .3个D .3个以上二、填空题(每小题5分,共20分)8.命题“两条直线相交只有一个交点”的逆命题是__只有一个交点的两条直线一定相交__,它是__真__命题.9.如图,在△ABC 中,AB =AC ,AD ,CE 是三角形的高,垂足为D ,E ,若∠CAD =20°,则∠BCE =__20°__.第9题图第10题图10.如图,在Rt △ABC 中,∠C =90°,点D 在线段BC 上,且∠B =30°,∠ADC =60°,BC =3,则BD 的长度为__2__.11.在△ABC 中,AB =22 ,BC =1,∠ABC =45°,以AB 为边作等腰直角三角形ABD ,使∠ABD =90°,连接CD ,则线段CD 的长为.三、解答题(共45分)12.(8分)如图,AC ⊥BC ,BD ⊥AD ,AC ,BD 相交于点O ,AC =BD .(1)求证:BC =AD ;(2)求证:△OAB 是等腰三角形.证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠D =∠C =90°,在Rt △ADB 与Rt △BCA 中,⎩⎪⎨⎪⎧AB =BA ,AC =BD , ∴Rt △ABD ≌Rt △BAC (HL),∴BC =AD (2)由(1)得,∠DBA =∠CAB ,∴OA =OB ,即△OAB 是等腰三角形13.(12分)如图,△ABC 为等边三角形,∠1=∠2=∠3.(1)求∠BEC 的度数;(2)△DEF 是等边三角形吗?请说明理由.解:(1)∠BEC=∠ADE+∠DFE=∠ABD+∠2+∠CAF+∠1=∠ABC+∠BAC=60°+60°=120°(2)是等边三角形.理由:由(1)知∠DEF=180°-120°=60°.同理∠EDF=∠DFE=60°,∴△DEF是等边三角形14.(12分)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.解:(1)证明:由题意得B′F=BF,∠B′FE=∠BFE.又∵AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B′EF,∴B′F=B′E,∴B′E=BF(2)a,b,c的关系为a2+b2=c2,连接BE,则BE=B′E,由(1)知B′E=BF=c,∴BE=c.∵AE2+AB2=BE2,又∵AE=a,AB=b,∴a2+b2=c2(若写a+b>c也可以)15.(13分)(1)操作发现:如图①,D是等边三角形ABC边BA上一动点(点D与点B 不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)类比猜想:如图②,当动点D运动至等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:如图③,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方,下方分别作等边三角形DCF和等边三角形DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你探究的结论.解:(1)AF=BD,证明△ACF≌△BCD(SAS)(2)仍成立(3)AF+BF′=AB,证明:由(1)知,AF=BD,易证△ACD≌△BCF′(SAS),∴BF′=AD,∴AF+BF′=BD+AD=AB。

人教版八年级数学下册-第十九章 一次函数周周测1(19.1)

人教版八年级数学下册-第十九章 一次函数周周测1(19.1)

第十九章 一次函数周周测1一 选择题1.对圆的周长公式2c r π=的说法正确的是( )A. π.r 是变量,2是常量B.C.r 是变量,π.2是常量 C. r 是变量,2.π.C 是常量D. C 是变量,2.π.r 是常量2.当圆的半径发生变化时,圆的面积也发生变化,圆的面积S 与半径r 的关系为S =2rπ下列说法正确的是( ).A.S .π.r 都是变量B. 只有r 是变量C. S .r 是变量, π是常量D. S .π.r 都是常量 3.函数y =的自变量的取值范围是( )A .x ≥-2B .x < -2C .x >-2D .x ≤ -24.下列各点:①(0,0);②(1,-1);③(-1,-1);④(-1,1),其中在函数2xy x =+的图像上的点( ) A .1个 B .2个 C .3个 D .4个5.下列给出的四个点中,在函数y =3x +1的图像上的是( ) A .(1,4) B.(0,-1) C.(2,-7) D.(-1,2)6.一家校办工厂2013年的年产值是15万元,计划从2014年开始,每年增加2万元,则年产值(从2013年开始)y (万元)与年数x 的函数关系式是( ). A.215y x =- (0x ≥的整数) B. 215y x =+(0x ≥的整数) C.152y x =+ (0x ≥的整数) D.152y x =-(0x ≥的整数)7.下列四个图象中,表示某一函数图象的是( )8.下列图形中的曲线不表示y 是x 的函数的是( ).9.小明骑自行车上学,一开始以某一恒定的速度行驶,但行驶至途中自行车发生了故障,只好停下来修车,车修好后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四BACD幅图中最能反映小明这段行程的是( )OtsOtsOtsstOCDBA10.当圆的半径变化时,它的面积也相应的发生变化.圆面积S 与半径r 之间的关系式为S =πr 2,下列说法正确的是( )A.S .π.r 都是自变量B.S 是自变量,r 是因变量C.S 是因变量,r 是自变量D.以上都不对11.下列关系式:①x 2-3x =4;②S =3.5t ;③y =32x ;④y =5x -3;⑤C=2πR ;⑥S =v 0t+21at 2;(v 0和a 均为常数值)⑦2y +y 2=0,其中不是函数关系的是( ) A.①⑦ B.①②③④ C.④⑥ D.①②⑦ 12.下列各种图象中,y 不是x 的函数的是( )13.甲.乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( ) A.1个B.2个C.3个D.4个14.某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )x yO A xyO x yO x yO B C D15.三军受命,我解放军各部奋力抗战在救灾一线.现有甲.乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4二 填空题16.函数的三种表示方法是_________.___________. . 17.下列变量间的关系是函数关系的有___ __(填序号)①正方形的周长与边长; ②圆的面积与半径;③y x = ④商场中某种商品的单价为a 元,销售总额与销售数量18.某物体从上午7时至下午4时的温度M (℃)是时间t(h)的函数:35100m t t =-+ (其中t=0表示中午12时,t=-1表示上午11时,t=1表示13时),则上午10时此物体的温度为 ℃19..如图是甲.乙两个施工队修建某段高速公路的工程进展图,从图中可见 施工队的工作效率更高.h tO A .ht O B .h t Oht OD .h20.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小红离她家的距离,则小红从学校回家的平均速度为 _____ 千米/小时.三 解答题21.在等腰△ABC 中,底角x 为(单位:度),顶角y (单位:度) (1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.22.下面是小林画出函数1021+-=x y 的一部分图象,利用图象回答: (1)自变量x 的取值范围.(2)当x 取什么值时,y 的最小值.最大值各是多少? (3)在图中,当x 增大时,y 的值是怎样变化?x10y5O第十九章 一次函数周周测1试题答案1. B2. C3. A4. B5. A6. A7. A8. C9. C 10. C 11. A 12. B 13. B 14. D 15. D16.图像法,列表法,公式法 17. ①②④ 18. 102 19. 甲 20. 6 21.解(1)y=180-2x (2)0<x <9022.解(1)0<x <10(2)由图象得,当x=0时,y 最大,此时y=10; 当x=10时,y 最小,此时y=5. (3)当x 增大时,y 减小.第十九章 一次函数周周测6一 选择题 1.如图,函数和的图象相交于点,则不等式的解集为()A. B. C. D.2.一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是()A. x>2B. x>4C. x<2D. x<43.一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x …0 1 2 3 …y1… 2 32112…x …0 1 2 3 …y2…﹣3 ﹣1 1 3 …则关于x的不等式kx+b>mx+n的解集是()A. x>2B. x<2C. x>1D. x<14.观察函数y1和y2的图象,当x=0,两个函数值的大小为()A. y1>y2B. y1<y2C. y1=y2D. y1≥y25.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E 两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E 两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,154006.如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分钟,在原地休息了4分钟,然后以500米/分的速度匀速骑回出发地,设时间为x分钟,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个桶注水,注5分钟后停止,等4分钟后,再以2升/分的速度匀速倒空桶中的水,设时间为x分钟,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0,其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3 7..甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二填空题8.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(-32,-1),则不等式mx+2<kx+b<0的解集为_____.9.函数y=kx+b 的图象如图所示,则方程kx+b=0的解为________,不等式kx+b>0的解集为_________,不等式kx+b -3>0的解集为________.10.一次函数y=kx+b 的图象经过A(-1,1)和B(- ,0),则不等式组的解为________________.11.已知一次函数的图象过点()35,与()49--,,那么这个函数的解析式是__________,则该函数的图象与y 轴交点的坐标为__________________. 12.如图,直线y =kx +b 上有一点P (-1,3),回答下列问题:(1)关于x 的方程kx +b =3的解是_______. (2)关于x 的不等式kx +b >3的解是________. (3)关于x 的不等式kx +b -3<0的解是______. (4)求不等式-3x ≥kx +b 的解. (5)求不等式(k+3)x +b >0的解.三 解答题13.画出函数y =2x -4的图象,并回答下列问题: (1)当x 取何值时,y >0?(2)若函数值满足-6≤y ≤6,求相应的x 的取值范围.14.已知:直线与轴交于点,与轴交于点,坐标原点为. ()求点,点的坐标. ()求直线与轴、轴围成的三角形的面积. ()求原点到直线的距离.15.在平面直角坐标系xoy 中,已知一次函数()10y mx m =≠与()20y kx b k =+≠相交于点()12A ,,且()20y kx b k =+≠与y 轴交于点()03B ,. (1)求一次函数1y 和2y 的解析式; (2)当120y y >>时,求出x 的取值范围.16.已知直线y=kx+5交x 轴于A ,交y 轴于B 且A 坐标为(5,0),直线y=2x ﹣4与x 轴于D ,与直线AB 相交于点C . (1)求点C 的坐标;(2)根据图象,写出关于x 的不等式2x ﹣4>kx+5的解集; (3)求△ADC 的面积.17.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

北师大版八年级数学下册第一二章提高练习(有答案)

北师大版八年级数学下册第一二章提高练习(有答案)

第一二章提高练习解答题1.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)2.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹.3.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.4.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.5.解不等式﹣≥x﹣,并把它的解集在数轴上表示出来.6.解不等式组:并将解集在数轴上表示.7.已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点.求证:①BM=DM;②MN⊥BD.8.如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=10cm,求△DAF的周长.9.如图,已知直线y1=﹣x+1与x轴交于点A,与直线y2=﹣x交于点B.(1)求△AOB的面积;(2)求y1>y2时x的取值范围.10.已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.13.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.14.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.15.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.16.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10cm,试求出△P AO的周长.(不用写过程,直接写出答案)(2)若AB=AC,∠BAC=110°,试求∠P AO的度数.(不用写过程,直接写出答案)(3)在(2)中,若无AB=AC的条件,你能求出∠P AO的度数吗?若能,请求出来;若不能,请说明理由.17.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.18.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.19.某商店从厂家选购甲、乙两种商品,乙商品每件进价比甲商品每件进价少20元,若购进甲商品5件和乙商品4件共需要1000元;(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该商店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于870元,则甲种商品至少可购进多少件?20.某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?22.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.23.如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;(2)若点A的坐标为(5,0),求直线AB的解析式;(3)在(2)的条件下,求四边形BODC的面积.24.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.25.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的周长分成相等的两部分.(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;(3)当t为何值时,△BCP为等腰三角形?参考答案1.解:①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;③连接BF,则直线BF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于H,G两点;⑥连接GH交BF延长线于点P,则P点即为所求.2.解:①以A为圆心,以任意长为半径画圆,分别交铁路a和公路b于点B、C;②分别以B、C为圆心,以大于BC为半径画圆,两圆相交于点D,连接AD,则直线AD即为∠BAC的平分线③连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于E、F,连接EF,则直线EF即为线段MN的垂直平分线;④直线EF与直线AD相交于点O,则点O即为所求点.同法点O′也满足条件.故答案为O或O′处.3.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.4.解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.5.解:原不等式去分母得:2x﹣4﹣9x﹣15≥6x﹣4+2x,移项得:2x﹣9x﹣6x﹣2x≥﹣4+4+15,合并同类项的:﹣15x≥15,解得x≤﹣1.解集在数轴上表示为:6.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.7.(1)证明:如图,连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=DM=AC,∴BM=DM;(2)∵点N是BD的中点,BM=DM,∴MN⊥BD.8.解:(1)设∠B=x,∠C=y.∵∠BAC+∠B+∠C=180°,∴110°+∠B+∠C=180°,∴x+y=70°.∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴∠EAD=∠B,∠F AC=∠C.∴∠DAF=∠BAC﹣(x+y)=110°﹣70°=40°.(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,∴DA=BD,F A=FC,∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).9.解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.10.解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.11.解:,由①得:x>﹣,由②得:x<2a,则不等式组的解集为:﹣<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.12.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.13.解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.14.证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.15.(1)证明:∵CF⊥AB,垂足为F,M为BC的中点,∴MF=BM=CM=BC,∵ME=MF,∴ME=BM=CM=BC,∴BE⊥AC;(2)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM,∴∠BMF+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2×130°=100°,在△MEF中,∠FME=180°﹣100°=80°.16.解:(1)∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴△P AO的周长=AP+PO+AO=BO+PO+OC=BC,∵BC=1Ocm,∴△P AO的周长10cm;(2)∵AB=AC,∠BAC=110°,∴∠B=∠C=(180°﹣110°)=35°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B=35°,∠CAO=∠C=35°,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=110°﹣35°﹣35°=40°;(3)能.理由如下:∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵MP,NO分别垂直平分AB,AC,∴AP=BP,AO=CO,∴∠BAP=∠B,∠CAO=∠C,∴∠P AO=∠BAC﹣∠BAP﹣∠CAO=∠BAC﹣(∠B+∠C)=110°﹣70°=40°.17.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.18.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.19.解:(1)设甲种商品每件的进价是x元,乙两种商品每件的进y元.,解得:,答:甲种商品每件的进价是120元,乙两种商品每件的进100元;(2)设甲种商品可购进a件.(145﹣120)a+(120﹣100)(40﹣a)≥870解得:a≥14,答:甲种商品至少可购进14件.20.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.21.解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.22.解:(1)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤7.又∵x为整数,∴x的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x)≥380,解得:x≥5.又∵x为整数,且x≤7,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.23.解:(1)根据图象可得不等式2x﹣4>kx+b的解集为:x>3;(2)把点A(5,0),C(3,2)代入y=kx+b可得:,解得:,所以解析式为:y=﹣x+5;(3)把x=0代入y=﹣x+5得:y=5,所以点B(0,5),把y=0代入y=﹣x+5得:x=2,所以点A(5,0),把y=0代入y=2x﹣4得:x=2,所以点D(2,0),所以DA=3,所以四边形BODC的面积=.24.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.25.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.26.解:(1)△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴t=12÷2=6(秒);(2)当点P在AB中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴t=13÷2=6.5(秒),∴CP=AB=×10=5cm;(3)△BCP为等腰三角形时,分三种情况:①如果CP=CB,那么点P在AC上,CP=6cm,此时t=6÷2=3(秒);如果CP=CB,那么点P在AB上,CP=6cm,此时t=5.4(秒)(点P还可以在AB上,此时,作AB边上的高CD,利用等面积法求得CD=4.8,再利用勾股定理求得DP=3.6,所以BP=7.2,AP=2.8,所以t=(8+2.8)÷2=5.4(秒))②如果BC=BP,那么点P在AB上,BP=6cm,CA+AP=8+10﹣6=12(cm),此时t =12÷2=6(秒);③如果PB=PC,那么点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.。

浙教版数学八年级下册 第四章 平行四边形 4.1 多边形 同步练习试题

浙教版数学八年级下册  第四章 平行四边形 4.1 多边形 同步练习试题

浙教版八年级下册第四章平行四边形同步练习4.1 四边形的内角和第Ⅰ卷(选择题)一.选择题(共10小题,3*10=30)1.一个长方形木块,截去一个三角形后不可能得到的多边形是( ) A .三角形 B .四边形 C .五边形 D .六边形2.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( ) A .8 B .9 C .10 D .113.四边形四个内角度数的比为2∶3∶4∶3,则最大角的度数为( ) A .90° B .100° C .120° D .135°4.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30°C .∠ADE =12∠ADCD .∠ADE =13∠ADC5.在四边形ABCD 中,∠A+∠C=160°,∠B 比∠D 大60°,则∠B 为( ) A .70° B .80° C .120° D .130° 6.在四边形的内角中,直角最多可以有(d ) A .1个 B .2个 C .3个 D .4个7.在四边形ABCD 中,∠A+∠C=180°,∠B 比∠D 大60°,则与∠B 相邻的外角为( ) A. 60° B. 80° C. 120° D. 130°8.如图所示,一块钉板上水平方向和垂直方向相邻两钉的距离都是一个单位,•用橡皮筋构成如图的一个四边形,那么这个四边形的面积为( ) A .2.5 B .5 C .7.5 D .99. 如图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是()A. 这两个四边形面积和周长都不相同B. 这两个四边形面积和周长都相同C. 这两个四边形有相同的面积,但Ⅰ的周长大于Ⅱ的周长D. 这两个四边形有相同的面积,但Ⅰ的周长小于Ⅱ的周长10. 如图所示,在四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=43,AD=4,则四边形ABCD 的面积是()A. 16 2B. 16 3C. 16D. 24第Ⅱ卷(非选择题)二.填空题(共6小题,3*8=24)11. 如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数是________.12.在四边形ABCD中,∠A=90°,∠B=75°,∠D=108°,则∠C=_____°.13. 在四边形ABCD中,∠A与∠C互补,∠B=85°,则∠D=_____°.15. 如图,在四边形ABCD中,AO是∠BAO的平分线,BO是∠ABC的平分线,AO与BO•交于点O,若∠C+∠D=120°,则∠AOB的=_______.16.在四边形ABCD中,∠A+∠B=180°,∠C:∠D=3:2,则∠C的度数为_______.17.如图,四边形ABCD中,∠A=95°,∠D=100°,外角∠ABE=70°,则∠ABC=________°,∠C=________°.18.如图,在四边形ABCD中,AB、BC、CD、DA的长分别为2、2、23、2,且AB⊥BC,则∠BAD的度数等于________.三.解答题(共7小题,46分)19. (6分)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.20. (6分)四边形ABCD中,∠A:∠B:∠C:∠D=2:4:1:5.(1)求四边形ABCD的四个内角的度数.(2)四边形ABCD中是否有互相平行的边?若有,请找出来,并说明理由.21.(6分)如图①是四边形纸片ABCD,其中∠B=120°,∠D=50°.如果将其右下角向内折出△PCR,如图②所示,恰使CP∥AB,CR∥AD,求∠C的度数..22.(6分)在四边形ABCD中,∠A=∠B,∠C=∠ADC.(1)求证:AB∥CD.(2)若∠ADC-∠A=60°,过点D作DE∥BC交AB于点E. 请判断△ADE是哪种特殊三角形,并说明理由.23. (6分)(1)经过凸n边形(n>3)其中一个顶点的对角线有条;(2)一个凸边形共有20条对角线,它是几边形?(3)是否存在有18条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.24.(6分)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DBA=60°,∠B与∠D互补,求证:AB+AD=3AC.小敏反复探索,不得其解. 她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=3AC. (请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F. (请你补全证明).25. (8分)如图,∠MBC和∠NDC是四边形ABCD的外角,若∠BAD=α,∠BCD=β.(1)如图1,①若α=50°,β=100°,则∠MBC+∠NDC=______度;②若α+β=200°,则∠MBC+∠NDC=____度;(2)BE是∠MBC的平分线,DF是∠NDC的平分线.①如图2,若BE与DF交于点G,求∠EBC+∠CDF的度数(用含α,β的代数式表示);②如图3,若BE∥DF,请探求α与β之间的大小关系.参考答案:1-5 DCCDD 6-10 DACDC 11. 540° 12. 105 13. 9514. 36°,72°,108°,144° 15. 60° 16. 108° 17. 110,55 18. 135°19. 解一:连结AC.∵AB=BC ,∴∠BAC=∠BCA.又∵AD=CD ,∴∠DAC=∠DCA. ∴∠BAD=∠BCD.解二:连结BD.∵AB=BC ,AD=CD ,BD=BD ,∴△ABD ≌△CBD(SSS),∴∠BAD=∠BCD.20. 解:(1) ∵∠A:∠B:∠C:∠D=2:4:1:5,∴设∠C=x°,则∠A=2x°,∠B=4x°,∠D=5x°. ∵∠A+∠B+∠C+∠D=360°,∴2x+4x+x+5x=360,解得x=30. ∴∠A=60°,∠B=120°,∠C=30°,∠D=150°. (2)∵∠A+∠B =180,∴AD ∥BC.21. 解:记两条虚线的交点为E ,∵CR ∥AD ,∠D =50°,∴∠D =∠CRE ,∵CP ∥AB ,∠B =120°,∴∠B =∠CPE ,由折叠可知,∠CPR =∠RPE =60°,∠CRP =∠PRE =25°,∴∠C =95° 22. 解:(1)∵∠A=∠B ,∠C=∠ADC ,∴∠B+∠C=12 (∠A+∠B+∠C+∠ADC)=180°,∴AB ∥CD.(2)△ADE 是正三角形.∵AB ∥CD ,∴∠ADC+∠A=180°.又∵∠ADC-∠A=60°,∴解得∠A=60°. 23. 解:(1)(n -3)(2)由题意得n (n -3)2=20,解得n =8或n =-5(舍去),∴它是八边形(3)不存在,理由:由题意得n (n -3)2=18,解得n =3±3172,∵n 为正整数,∴不存在 24. 解:(1)∵∠A 与∠D 互补,且∠A=∠D ,∴∠B=∠D=90°.∵AC 平分∠DAB ,∠DAB=60°,∴∠DAC=∠BAC=30°.∴CB=CD=12AC ,AB=AD=32AC ,即AB+AD=3AC..(2)同(1)可证AF+AE=3AC.∵∠ABC+∠D=180°,∠ABC+∠CBE=180°,∴∠D=∠CBE. 又∵∠CFD=∠CEB=90°,CF=CE ,∴△CDF ≌△CBE(AAS).∴DF=BE ,∴AB+AD=3AC.. 25. 解:(2)①在图2中,连结BD ,由(1)有,∠MBC +∠NDC =α+β,∵BE ,DF 分别平分四边形的外角∠MBC 和∠NDC ,∴∠CBE =12∠MBC ,∠CDF =12∠NDC ,∴∠CBE +∠CDF =12∠MBC +12∠NDC =12(∠MBC +∠NDC)=12(α+β),②在图3中,延长BC 交DF 于H ,由(1)有,∠MBC +∠NDC =α+β,∵BE ,DF 分别平分四边形的外角∠MBC 和∠NDC ,∴∠CBE =12∠MBC ,∠CDH =12∠NDC ,∴∠CBE +∠CDH =12(∠MBC +∠NDC)=12(α+β),∵BE ∥DF ,∴∠DHC =∠EBC ,∵∠BCD =∠CDH +∠DHB ,∴β=12(α+β),∴12β=12α,∴α=β。

八年级数学第1周周清测试题(解析卷)

八年级数学第1周周清测试题(解析卷)

八年级数学周周清测试题参考答案与试题解析一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.2+1=o+1)C.(x+2)(x﹣2)=x2﹣4D.x2﹣4=(x+2)(x﹣2)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【解答】解:4a2﹣4a+1=4a(a﹣1)+1中等号右边不是积的形式,则A不符合题意;x2+1=x(x+1)中1不是整式,则B不符合题意;(x+2)(x﹣2)=x2﹣4是乘法运算,则C不符合题意;x2﹣4=(x+2)(x﹣2)符合因式分解的定义,则D符合题意;故选:D.2.多项式2x2﹣13x+b中,有一个因式为(x﹣5),则b的值为()A.﹣15B.﹣3C.15D.3【分析】设另一个因式为(2x+m),根据因式分解的意义计算(x﹣5)(2x+m)后即可求得答案.【解答】解:设另一个因式为(2x+m),则(x﹣5)(2x+m)=2x2﹣13x+b,整理得:2x2+(m﹣10)x﹣5m=2x2﹣13x+b,则m﹣10=﹣13,b=﹣5m,那么m=﹣3,b=15,故选:C.3.分解因式:x2﹣x=()A.x(x﹣1)B.(x+1)(x﹣1)C.2x D.x(x+1)【分析】用提公因式法分解因式即可.【解答】解:x2﹣x=x(x﹣1).故选:A.4.把多项式﹣7ab﹣14abx+49aby分解因式,提公因式﹣7ab后,另一个因式是()A.1+2x﹣7y B.1﹣2x﹣7y C.﹣1+2x+2y D.﹣1﹣2x+7y【分析】﹣7ab﹣14abx+49aby的公因式为﹣7ab,提取公因式后化简即可.【解答】解:﹣7ab﹣14abx+49aby=﹣7ab(1+2x﹣7y).故选:A.5.下列多项式中不能用公式法分解因式的是()A.2++14B.2ab+a2+b2C.﹣a2+25D.﹣4﹣b2【分析】根据完全平方公式和平方差公式逐项进行分析判断即可.【解答】解:A.2++14=(+12)2,能用完全平方公式进行因式分解,不符合题意;B.2ab+a2+b2=(a+b)2,能用完全平方公式进行因式分解,不符合题意;C.﹣a2+25=(5+a)(5﹣a),能用平方差公式进行因式分解,不符合题意;D.﹣4﹣b2=﹣(4+b2),不能用公式法分解,符合题意;故选:D.6.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3x和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,进而得出答案.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.7.小明做了如下四个因式分解题,你认为小明做得对但不完整的一题是()A.x2y﹣xy2=xy(x﹣y)B.m2﹣2mn+n2=(m﹣n)2C.a3﹣a=a(a2﹣1)D.﹣x2+y2=(y+x)(y﹣x)【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、x2y﹣xy2=xy(x﹣y),正确;B、m2﹣2mn+n2=(m﹣n)2,正确;C、a3﹣a=a(a2﹣1)=a(a+1)(a﹣1),错误;D、﹣x2+y2=(y+x)(y﹣x),正确,故选:C.8.若k为任意整数,则(2k+3)2﹣(2k﹣2)2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【分析】利用平方差公式分解因式后可得结论.【解答】解:(2k+3)2﹣(2k﹣2)2=[(2k+3)+(2k﹣2)][(2k+3)﹣(2k﹣2)]=(2k+3+2k﹣2)(2k+3﹣2k+2)=5(4k+1),∴(2k+3)2﹣(2k﹣2)2的值总能被5整除.故选:C.9.若a+b=3,a﹣b=7,则a2﹣b2的值为()A.﹣21B.21C.﹣10D.10【分析】利用平方差公式分解因式,进而将已知代入求出即可.【解答】解:∵a+b=3,a﹣b=7,∴a2﹣b2=(a+b)(a﹣b)=3×7=21.故选:B.10.已知m+n=8,则2+22+(1﹣m)(1﹣n)的值为()A.32B.25C.10D.64【分析】对所求的式子进行变形处理,得到含(m+n)的式子,再代入m+n=8即可.【解答】解:∵2+22+(1﹣m)(1﹣n)=2+22+1﹣(m+n)+mn,=2+2+2B2+1﹣(m+n)=(rp22+1﹣(m+n)∵m+n=8,所以原式=32+1﹣8=25.故选:B.二.填空题(共4小题)11.将多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab.【分析】公因式的确定,一看系数:若各项系数都是整数,应提取各项系数的最大公因数;二看字母:公因式的字母是各项相同的字母;三看字母的指数:各相同字母的指数取指数最低的.【解答】解:对多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab,故答案为:3ab.12.根据如图所示的拼图过程,写出一个多项式的因式分解:x2+2x+4x+8=(x+4)(x+2).【分析】利用两种方法表示出这个图形的面积,列出等式即可.【解答】解:四张长方形或正方形纸片拼成一个大长方形,面积可以表示为:x2+2x+4x+8=x2+6x+8=(x+4)(x+2).故答案为:x2+2x+4x+8=(x+4)(x+2).13.分解因式:ab2﹣a2=a(b2﹣a).【分析】先找出多项式的公因式是a,再分解因式即可.【解答】解:ab2﹣a2=a(b2﹣a).故答案为:a(b2﹣a).14.分解因式:29a2−43a+2=29(a﹣3)2.【分析】先提取公因式29,再对余下的多项式利用完全平方公式继续分解.【解答】解:29a2−43a+2=29(a2﹣6a+9)=29(a﹣3)2.故答案为:29(a﹣3)2.三.解答题15.把下面各式因式分解:(1)6ax﹣12ay+18az;(2)﹣15m3n2+20m2n﹣5mn;(3)3a(x﹣y)﹣3b(x﹣y);【解答】解:(1)6ax﹣12ay+18az=6a(x﹣2y+3z);(2)﹣15m3n2+20m2n﹣5mn=﹣5mn(3m2n﹣4m+1);(3)3a(x﹣y)﹣3b(x﹣y)=3(x﹣y)(a﹣b);16.把下面各式因式分解:(1)9x2﹣16.(3)x2(m﹣2)+y2(2﹣m).(3)x2(x﹣2)﹣16(x﹣2);【解答】解:(1)9x2﹣16=(3x+4)(3x﹣4).(2)x2(m﹣2)+y2(2﹣m)=(m﹣2)(x2﹣y2)=(m﹣2)(x+y)(x﹣y).(3)x2(x﹣2)﹣16(x﹣2)=(x﹣2)(x2﹣16)=(x﹣2)(x﹣4)(x+4);17.把下面各式因式分解:(1)3a2﹣6ab+3b2;(2)(m﹣n)2﹣6(n﹣m)+9.(3)9(2x﹣1)2﹣6(2x﹣1)+1.【解答】解:(1)3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2;(2)(m﹣n)2﹣6(n﹣m)+9=(m﹣n)2+6(m﹣n)+9=[(m﹣n)+3]2=(m﹣n+3)2.(3)9(2x﹣1)2﹣6(2x﹣1)+1=[3(2x﹣1)﹣1]2=(6x﹣4)2=4(3x﹣2)2.18.利用因式分解的方法简算(1)2022﹣542+256×352(2)89×18−25×0.125(3)1022+102×196+982【解答】解:(1)2022﹣542+256×352=(202+54)(202﹣54)+256×352=256×148+256×352=256×(148+352)=256×500=128000;(2)89×18−25×0.125=89×18−25×18=(89−25)×18=64×18=8;(3)1022+102×196+982=1022+2×102×98+982=(102+98)2=2002=40000.19.先分解因式,然后计算;(1)已知x﹣y=1,求12x2﹣xy+12y2;(2)﹣9x2+12xy﹣4y2,其中x=43,y=−12;(3)(r2)2−(K2)2,其中a=−18,b=2.【解答】解:(1)∵x﹣y=1,∴12x2﹣xy+12y2=12(x﹣y)2=12×12=12;(2)∵x=43,y=−12,∴﹣9x2+12xy﹣4y2=﹣(9x2﹣12xy+4y2)=﹣(3x﹣2y)2=﹣[3×43−2×(−12)]2=﹣25;(3)∵a=−18,b=2,∴(r2)2−(K2)2,=(r2+K2)(r2K2)=ab=−18×2=−14.。

八年级数学下第一章练习题

八年级数学下第一章练习题

⼋年级数学下第⼀章练习题⼋年级数学练习题学校:___________姓名:___________班级:___________考号:___________⼀、选择题(本⼤题共18⼩题,共54.0分)1.如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.DE=DCB.AD=DBC.AD=BCD.BC=AE2.如图,在R t△ABC中,∠C=90°,BD是⾓平分线,若CD=m,AB=2n,则△ABD 的⾯积是()A.mnB.5mnC.7mnD.6mn3.直⾓三⾓形两锐⾓的平分线相交得到的钝⾓为()A.150oB.135oC.120oD.120o或135o4.如果⼀个等腰三⾓形的⼀个⾓为30°,则这个三⾓形的顶⾓为()A.120°B.30°C.90°D.120°或30°5.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21B.18C.13D.156.已知⼀个等腰三⾓形有两内⾓的度数之⽐为1:4,则这个等腰三⾓形顶⾓的度数为() A.20° B.120° C.20°或120° D.36°7.如图,△ABC中,∠A=2∠B,CD⊥AB于点D,已知AB=10,AD=2,则AC的长为() A.5 B.6 C.7 D.88.O是等边△ABC内的⼀点,OB=1,OA=2,∠AOB=150°,则OC的长为()A. B. C. D.39.在△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6B.8C.10D.1210.如图,在△ABC中,AB边上的中垂线DE分别交AB、BC于点E、D,连接AD,若△ADC的周长为7cm,AC=2cm,则BC的长为()cm.A.4B.5C.3D.以上答案都不对11.如图,PM=PN,MQ为△PMN的⾓平分线.若∠MQN=72°,则∠P的度数是() A.18° B.36° C.48° D.60°12.如图,AD 是△ABC的⾓平分线,DF⊥AB,垂⾜为F,DE=DG,△ADG和△AED 的⾯积分别为60和35,则△EDF的⾯积为()A.25B.5.5C.7.5D.12.513.如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不⼀定成⽴的是() A.AD=BD B.BD=CD C.∠1=∠2 D.∠B=∠C14.如图,在△ABC中,∠C=90°,AD平分∠BAC与BC边交于点D,BD=2CD,若点D到AB的距离等于5cm,则BC的长为()A.5B.10C.15D.⽆法确定15.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的⾯积是28cm2,AB=20cm,AC=8cm,则DE的长是()A.4cmB.3cmC.2cmD.1cm16.如图,R t△ABC中,∠C=90°,AC=4,BC=3,DE是AC边的中垂线,分别交AC,AB于点E,D,则△DBC的周长为()A.6B.7C.8D.917.某市在旧城改造中,计划在⼀块如图所⽰的△ABC空地上种植草⽪以美化环境,已知∠A=150°,这种草⽪每平⽅⽶售价a元,则购买这种草⽪⾄少需要()A.300a元B.150a元C.450a元D.225a元18.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC的值是()A.6cmB.4cmC.3cmD.3cm⼆、填空题(本⼤题共16⼩题,共48.0分)19.如图,在R t△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为 ______ .20.等腰三⾓形⼀腰上的⾼线与另⼀腰夹⾓为50°,则该三⾓形的顶⾓____ .21.如果等腰三⾓形的两个⾓的⽐是2:5,那么底⾓的度数为______ .22.如图,AD是△ABC的BC边上的中线,DE∥AB,若AB=5,则DE的长为____.23.已知等腰三⾓形△ABC的⼀个外⾓等于130°,则底⾓为 ______ .24.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为 ______ .25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是 ______ ;(2)若∠BAC=128°,则∠DAE的度数是____ .26.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是 ______ .27.如图,若AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°那么∠CAE=____°.28.等腰三⾓形的周长是24,其中⼀边长是10,则腰长是 ______ .=24,则△DBC的29.如图BD是△ABC的⼀条⾓平分线,AB=8,BC=4,且S△ABC⾯积是 ______ .30.在△ABC 中,BC=12cm ,AB 的垂直平分线与AC 的垂直平分线分别交BC 于点D 、E ,且DE=4cm ,则AD+AE= ______ cm .31.在⼀个内⾓为20°的等腰三⾓形中,它的⼀腰上的⾼与另⼀腰的夹⾓为 ______ .32.如图,在△ABC 中,∠C=90°,BC=3,AC=4,BD 平分∠AB C 交AC 于点D ,则点D 到AB 的距离为 ______ .33.若△ABC 的周长为12,∠A 和∠B 的平分线相交于点P ,点P 到边AB 的距离为1,则△ABC 的⾯积为 ______ .34.在△ABC 中,∠C=90°,∠A=30°,AB=16,则AC 等于 ______ .三、解答题(本⼤题共6⼩题,共48.0分)35.如图,在△ABC,AB=AC ,点D 、E 在BC 上,BD=CE .试说明:∠1=∠2.36.如图△ABC 中,AB=BC ,∠B=36°,BC 的垂直平分线DE交AB 于D ,垂⾜为E ,试说明:BD=CD=AC .37.如图, AC 平分∠B AD ,CE ⊥AB CF ⊥AD 且BC=CD 求证:BE=DF38.(1)已知等腰三⾓形的⼀边长等于8cm ,⼀边长等于9cm ,求它的周长;(2)等腰三⾓形的⼀边长等于6cm ,周长等于28cm ,求其他两边的长.39.已知:如图,AB ⊥BC DC ⊥B C∠EAB =∠CED=60°AB=3,CE=4 .求AD 的长40.如图,在△ABC 中AB=AC ,AD 是平分∠BAC ,且∠EB C=∠E=60°.BE=6 ED=2 求BC 的长.41、已知∠1=∠2,∠3=∠4 ,求证:①∠5=∠6 ②AC ⊥BD ,BE=CE42.等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三⾓形?试说明你的结论.3 A B C DE 1 2 4 5 6B。

2022年最新北师大版八年级数学下册第一章三角形的证明专题测试练习题(含详解)

2022年最新北师大版八年级数学下册第一章三角形的证明专题测试练习题(含详解)

北师大版八年级数学下册第一章三角形的证明专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A.等腰三角形的角平分线、中线、高线互相重合B.一个三角形被截成两个三角形,每个三角形的内角和是90度C.有两个角是60°的三角形是等边三角形D.在△ABC中,2∠=∠=∠,则ABC为直角三角形A B C2、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.所有的直角三角形都是全等三角形D.所有的等边三角形都是全等三角形3、下列命题成立的有()个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E 处,折痕为BD.则△AED的周长为7cm;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC.A .1B .2C .3D .44、如图,在△AAA 中,AD 是角平分线,且AD AC =,若60BAC ∠=︒,则B 的度数是( )A .45°B .50°C .52°D .58°5、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .26、如图,在△ABC 中,AB =AC =6cm ,AD ,CE 是△ABC 的两条中线,CE =4cm ,P 是AD 上的一个动点,则BP +EP 的最小值是( )A .3cmB .4cmC .6cmD .10cm7、下列各组数据中,能构成直角三角形的三边的长的一组是( )A .1,2,3B .4,5,6C .5,12,13D .13,14,158、下列以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =1,b =1,c =√2B .a =2,b =3,c =√13C .a =3,b =5,c =7D .a =6,b =8,c =109、如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( )A .18B .16C .17D .无法确定10、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上午9时,一艘船从小岛A 处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B 处,若从灯塔C 处分别测得小岛A 、B 在南偏东34°、68°方向,则小岛B 处到灯塔C 的距离是______海里.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、等腰△AAA 的顶角为30°,腰长为8,则△AAA 的面积为______.4、如图,△AAA 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为______度.5、如图,在△AAA 中,AB AC =,70BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,将∠的度数为________.∠沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则OECC三、解答题(5小题,每小题10分,共计50分)1、如图所示,校园里有两条路AA,AA,在交叉口附近有两块宣传牌A,A,学校准备在这里(∠AAA内部)安装一盏路灯,要求灯柱A离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置A.(不写过程,保留作图痕迹)2、如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.3、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.5、数学课上,王老师布置如下任务:如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.下面是小路设计的尺规作图过程.作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=,( )(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠,( )(填推理的依据)∴∠ACB=2∠A.-参考答案-一、单选题1、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.2、B【分析】根据全等三角形的性质,等边三角形的性质判断即可.【详解】解:A 、全等三角形是指形状和大小相同的两个三角形,该选项错误;B 、全等三角形的周长和面积分别相等,该选项正确;C 、所有的直角三角形不一定都是全等三角形,该选项错误;D 、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键.3、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E处,折痕为BD.如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.4、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,60∠=︒,BAC∴∠DCA=12BAC=30°,∵AD=AC,∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.5、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.6、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.7、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A 不符合题意;B. 2224+56≠,不是直角三角形,故B 不符合题意;C. 2225+12=13,是直角三角形,故C 不符合题意;D. 22213+1415≠,不是直角三角形,故D 不符合题意,故选:C .【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.8、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、22211+=,该三角形是直角三角形,故此选项不符合题意;B 、22223+=,该三角形是直角三角形,故此选项不符合题意;C 、222357+≠,该三角形不是直角三角形,故此选项符合题意;D 、2226810+=,该三角形是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.【详解】解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.10、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC 是等边三角形,故③正确;④如图2,在AC 上截取AE =PA ,∵∠PAE =180°﹣∠BAC =60°,∴△APE 是等边三角形,∴∠PEA =∠APE =60°,PE =PA ,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题1、20【分析】根据所给的角的度数,容易证得BCA∆是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【详解】解:据题意得,34∠=︒,DBC∠=︒,68A∠=∠+∠,DBC A C∴∠=∠=︒,34A C∴=,AB BC51220AB=⨯=,3∴=(海里).BC20故答案是:20.【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、16【分析】过点B 作BD ⊥AC ,利用30°所对的直角边是斜边的一半,可求出BD ,然后求面积即可.【详解】解:如图所示,过点B 作BD ⊥AC ,∵∠A =30°,AB =AC =8,∴BD =12AB =4,∴S △ABC =12BD ·AC =16故答案为:16.【点睛】此题考查的是直角三角形的性质:30°所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键.4、75【分析】由题意,ACD △是等腰三角形,然后求出CAE ∠的度数,再根据三角形的外角性质,即可求出BED ∠的度数.【详解】解:∵ABC 是等腰直角三角形,∴AC =BC ,∠ABC =∠BAC =45°,∠ACB =90°,∵△BCD 是等边三角形,∴BC =CD ,∠BCD =60°,∴AC =CD ,∠ACD =90°+60°=150°,∴ACD △是等腰三角形, ∴1(180150)152CAE CDE ∠=∠=⨯︒-︒=︒,∴451530BAE ∠=︒-︒=︒,∴304575BED BAE ABE ∠=∠+∠=︒+︒=︒;故答案为:75.【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出15CAE CDE ∠=∠=︒.5、140°【分析】连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA =OB ,根据等边对等角可得∠ABO =∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB =OC ,再根据等边对等角求出∠OCB =∠OBC ,根据翻折的性质可得OE =CE ,然后根据等边对等角求出∠COE ,再利用三角形的内角和定理列式计算即可.【详解】解:如图:连接OB 、OC ,∵∠BAC =70°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×70°=35°,又∵AB =AC ,∴∠ABC =12(180°−∠BAC )=12(180°−70°)=55°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =35°,∴∠OBC =∠ABC −∠ABO =55°−35°=20°,∵AO 为∠BAC 的平分线,AB =AC ,∴OB =OC ,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=20°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=20°,在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−20°−20°=140°,故答案为:140°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键.三、解答题1、见详解【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】解:连结CD,作CD的垂直平分线,和∠AOB的平分线,两线交于P,如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.2、(1)∠DFE=90°;(2)见解析【分析】(1)先求得∠BAD=30°,∠BAE=∠EAD=15°,即可求得∠EAC=75°,由AC=CE,可求得∠EAC=∠AEC=75°,即可求得∠DFE=90°;(2)在Rt△AFC中,求得∠FCA=30°,AC=2AF=AB,过点E作EG⊥AB于点G,求得AG=AF,得到BG=AG,即可得到△ABF为等腰三角形,即可证明AE=BE.【详解】解:(1)∵△ACD是等边三角形,∴∠CAD=60°,∵∠BAC=90°,∴∠BAD=90°-60°=30°,∵∠BAE=15°,∴∠BAE=∠EAD=15°,∴∠EAC=90°-15°=75°,∵AC=CE,∴∠EAC=∠AEC=75°,∴∠DFE=∠EAD+∠AEC=15°+75°=90°;(2)由(1)得∠DFE=90°,即∠AFC=∠AFE=90°,∵△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,∴∠CAD=60°,AB=AC,∴∠FCA=30°,∴AC =2AF ,即AB =2AF ,过点E 作EG ⊥AB 于点G ,∵∠BAE =∠EAD =15°,且∠EFA =90°,EG ⊥AB ,∴EG =EF ,又AE = AE ,∴Rt △EAG ≌Rt △EAF (HL ),∴AG =AF ,∴AB =2AG ,∴BG =AG ,又EG ⊥AB ,∴△ABF 为等腰三角形,∴AE =BE .【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.3、见解析【分析】根据等腰三角形的性质,可得∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,从而得到△BDE ≌△CDE ,进而得到∠DCE =∠DBE ,再由BE 平分∠ABC ,可得12DBE ABC ∠=∠ ,进而得到12DCE ACB ∠=∠,即可求证.【详解】解:∵AB=AC,AD是△ABC的中线,∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,∵DE=DE,∴△BDE≌△CDE,∴∠DCE=∠DBE,∵BE平分∠ABC,∴12DBE ABC∠=∠,∴12DCE ABC ∠=∠,∴12DCE ACB ∠=∠,∴CE平分∠ACB.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.4、(1)见解析;(2)(0,94)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.【详解】解:(1)如图,点P即为所求;(2)∵A的坐标(0,6),点B的坐标(3,0),∴OA=6,OB=3,∴PA=PB=OA-OP=6-OP,∵PB2-OP2=OB2,∴(6-OP)2-OP2=32,解得OP=94,∴点P的坐标为(0,94).【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.。

北师大版八年级下学期数学第一章三角形的证明同步练习题

北师大版八年级下学期数学第一章三角形的证明同步练习题

新北师大版八年级下学期《第一章三角形的证明》同步测试题一、选择题1、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设【】A、a不垂直于cB、a,b都不垂直于cC、a⊥bD、a与b相交2、有下列四个命题:①等腰三角形两腰上的中线相等,②等腰三角形两腰上的高相等,③等腰三角形两底角的平分线相等,④等腰三角形底边上的中点到两腰的距离相等. 正确的命题的个数有【】 A、1个B、2个C、3个D、4个3、如图,△A BC中,∠B=∠BAD,∠ADC=∠C,BD=5,DC=m,则AC是【】A、4B、m-5C、5D、m+54、下列图形中,两个三角形一定全等的是【】A、含80°角的两个锐角三角形 B、边长为20cm的两个等边三角形 C、腰长对应相等的两个等腰三角形 D、有一个钝角对应相等的两个等腰三角形5、在证明“在△ABC中至多有一个直角或钝角”时,第一步应假设【】A、三角形中至少有一个直角或钝角B、三角形中至少有两个直角或钝角C、三角形中没有直角或钝角D、三角形中三个角都是直角或钝角6、下列命题中正确的个数是【】①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高重合;④只有两条边相等的等腰三角形是轴对称图形,对称轴有1条.A、1个B、2个 C、3个 D、4个7、等腰三角形的一个外角是120°,一边长为acm,那么它的周长是【】A、3acmB、2acmC、acmD、无法确定8、如图,在∠AOB的两边上截取AO=BO,CO=DO,连接AD,BC交于点P,则下列结论正确的是:(1)△AOD≌△BOC;(2)△APC≌△BPD;(3)点P在∠AOB的平分线上【】A、只有(1) B、只有(2)C、只有(1)(2)D、(1)(2)(3)9、如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是【】A、平行线之间的距离处处相等 B、到角的两边距离相等的点在角的平分线上 C、角的平分线上的点到角的两边的距离相等 D、到线段的两个端点距离相等的点在线段的垂直平分线上10、△ABC中,若,则此三角形为【】三角形. A、等腰B、直角C、等腰直角 D、等边11、如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为【】 A、B、1 C、2 D、不确定12、已知等边三角形的面积是,则它的高是【】A、cmB、cmC、cmD、cm13、Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①BE+CF=BC;②;③=AD·EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是【】A、1个B、2个C、3个D、4个14、如图所示,AD平分∠BAC,AD=BD,AC=AB,则【】A、AC⊥CDB、AC=2CDC、AC=BDD、BD=2CD15、如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,,则y关于x的函数图象大致为【】A、B、C、D、二、填空题16、等边三角形的每个内角都等于______________________.17、如图,已知∠A=∠D=90°,若要依据“HL”证明△ABC≌△DCB,应添加条件_________ ___________ _____;若要依据“AAS”证明△ABC≌△DCB,应添加的条件是_________________________________.18、等腰三角形是轴对称图形,它的对称轴是__________________.19、如图,在△ABC中,AB=AC,∠B=40°,则∠A=____________.20、如图,在△ABC中,AB=AC,D、E、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD.若∠A=40°,则∠EDF=______°.21、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于_______________度.22、△ABC中,AB=AC,若BC=CD=DE=EF=FA,则∠A=______°.23、如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD,∠ADC=146°,则∠BCE=___________°.三、解答题24、(1)小丽同学说“每一个定理不一定都有逆定理,因为逆命题不一定正确.”你认为她的说法正确吗?如果不正确,应如何改正?25、写出命题“平行于同一条直线的两条直线互相平行”的逆命题,并判定这对互逆命题的真假.26、如下图所示,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延长线于点E,试说明△ACE是等边三角形.27、如图,△ABC中,∠A=60°,高BD、CE交于M,MD=5,ME=7. 求BD、CE的长.28、如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC交AC于D.求证:AD+BD=BC.四、证明题29、求证:在一个三角形中,如果两个角不等,那么它们所对的边也不等.30、如图所示,AB=AC,DB=DC,AD的延长线交BC于点E.求证:BE=EC.31、写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,____________________________________.求证:______________________________________________________.证明:32、如图所示,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB于E,DF⊥AC于F.求证:∠B=∠C.33、如图,△ABC中,从点C向∠BAC的平分线引垂线,垂足为点E,设AE交BC于点D,且AB=AD.求证:.五、应用题34、如图是某市部分街道示意图,AB=BC=AC,CD=CE=DE,A、B、C、D、E、F、G、H为“公共汽车”停靠点,“公共汽车甲”从A站出发,按照A、H、G、D、E、C、F的顺序到达F站,“公共汽车乙”从B站出发,沿F、H、E、D、C、G的顺序到达G站.如果甲、乙分别从A、B 站同时出发,在各站耽误的时间忽略不计,两车的速度一样,试问哪一辆汽车先到达指定站?为什么?35、有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D D C B B D A D B C B C C A B题号16 17 18 19 20 21 22 23答案60AB=DC或AC=DB;∠ABC=∠DCB或∠ACB=∠DBC顶角平分线所在直线100°7070或2020 5624)、解:她的说法正确,理由如下:命题有真假命题之分,而定理是经过证明后得出的正确的命题,命题正确时逆命题不一定正确,即定理的逆命题不一定是真命题,所以虽然每个命题都有逆命题,但每个定理不一定存在逆定理,只有当原定理的逆命题是真命题时,原定理的逆命题才能称为逆定理.25)、【解答】1、逆命题:“如果两条直线互相平行,那么这两条直线都与第三条直线平行”,该命题是假命题;而原命题是真命题.26)、【解答】1、因为CD平分∠ACB,∠ACB=120°,所以∠ACE=180°-∠ACB=60°,且.因为AE∥DC,所以∠ACD=∠CAE,∠BCD=∠E.所以∠CAE=∠E=∠ACE=60°.所以△ACE是等边三角形.27)、【解答】解:∵BD⊥AC,∴∠ADB=90°.又∵∠A=60°,∴∠ABD=90°-60°=30°,同理可得∠ACE=30°,在Rt△BEM中,∠EBM=30°,∠BEM=90°,∴BM=2ME.∵ME=7,∴BM=14.同理由MD=5,得CM=2MD=10,∴BD=BM+MD=19,CE=CM+EM=10+7=17. CE取点F,使DE=DF.∵AB=AC,∠A=100°,∴∠ABC=∠C==40°.∵BD平分∠ABC,∴∠ABD=∠DBE=20°.∵在△ABD和△EBD中,AB=EB,∠ABD=∠DBE,BD=BD,∴△ABD≌△EBD,∴∠BED=∠A=100°,∴∠DEF=180°-100°=80°.∵DE=DF,∴∠DFE=∠DEF=80°,∴∠BDF=180°-80°-20°=80°,∴BD=BF,∠DFC=180°-80°=100°,∴∠FDC=180°-100°-40°=40°,∴DF=FC,∴DF=FC=DE=AD,∴BC=BF+FC=BD+AD.29)、【解答】1、证明:假设在一个三角形中,这两个不等的角所对的边相等,根据等边对等角,它们所对的两个角也相等,这与已知条件相矛盾,说明假设不成立,所以在一个三角形中,如果两个角不等,那么它们所对的边也不等.30)、【解答】1、证明:因为AB=AC,BD=DC,AD=AD,所以∠BAE=∠CAE.又因为AB=AC,所以BE=EC.31)、【解答】解:在△ABC中,∠B=∠C,求证:AB=AC.证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.32)、【解答】1、∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∠DEB=∠DFC=90°,∴(Rt)△DEB≌(Rt)△DFC(HL).∴∠B=∠C.33)、【解答】1、分别延长AB,CE交于点F.∵AE平分∠FAC,∴∠FAE=∠CAE.∵∠FAE=∠CAE,∠AEF=∠AEC=90°,AE=AE,∴△AEF≌△AEC(AS A),∴AF=AC,EF=EC.又过点E作EG∥AF,交BC于点G,∴,∠ABD=∠DGE.∵AB=AD,∠ABD=∠ADB=∠GDE=∠DGE,∴DE=EG,∴AE=AD+DE=AB+EG====. 所以△ABC与△ECD均为等边三角形,且∠ACE=60°.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE=120°,CD=CE,所以△ACD≌△BCE(SAS).所以AD=BE,∠1=∠2.在△BCF和△ACG中,∠1=∠2,BC=AC,∠BCF=∠ACG=60°,所以△BCF≌△ACG(ASA).所以CF=CG.又因为DE+EC=ED+CD,所以AD+DE+EC+CF=BE+ED+CD+CG.即甲、乙两车同时到达指定站.35)、【解答】1、解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有AB=10.扩充部分为Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB=AD=10时,可求CD=CB =6.得△ABD的周长为32m.②如图2,当AB=BD=10时,可求CD=4.由勾股定理,得.得△ABD的周长为m.如图③,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理,得.得△ABD 的周长为m.====Word行业资料分享--可编辑版本--双击可删====。

第一章 三角形的证明 课后单元强化练习试题 2022-2023学年北师大版八年级数学下册

第一章 三角形的证明 课后单元强化练习试题 2022-2023学年北师大版八年级数学下册

第一章 三角形的证明 课后单元强化练习试题 2022-2023学年北师大版八年级数学下册一、单选题(共 10 小题,共30分)1、若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的底角为( )A.32.5°B.57.5C.65°或57.5°D.32.5°或57.5°2、如图所示,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )A . AD =AEB . ∠AEB =∠ADC C . BE =CD D . AB =AC3、若∠AOB=44°,P 为∠AOB 内一定点,点M 在OA 上,点N 在OB 上,当△PMN 的周长取最小值时,∠MPN 的度数为( )A .82°B .84°C .88°D .92°4、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个5、如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E ∠=,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm6、下列说法正确的是( )A .三角形内部到三边距离相等的点是三边垂直平分线的交点B .三条线段a 、b 、c ,如果a b c +>,则以这三条线段为边能够组成三角形C .如果两个三角形有两边和其中一边上高分别相等,那么这两个三角形全等D .若两个三角形有两边和其中一边上的中线分别相等,那么这两个三角形全等7、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .308、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°9、如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30︒B .25︒C .35︒D .65︒10、如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G ,下列结论中正确的是( ) ①BCD 为等腰三角形;②BF =AC ;③CE =12BF ;④BH =CE .A .①②B .①③C .①②③D .①②③④二、填空题(共 6小题,共18分)11、已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.12、在△ABC 中,AC =BC =5,AB =8,点D 在AB 边上,连接CD ,若CD =√13,则线段AD 的长为 .13、如图,△ABC 中,AB AC ⊥,AD BC ⊥于D ,30B ∠=︒,则:ADC BDA S S =△△__________________;14、如图,B BDE ∠=∠,点G 分别为AD 与CF 的中点,若3,5CE EF ==,则AC =______.15、如图,四边形ABCD中,AD BC∠,E是直线AD上∥,连接BD,BD平分ABC一点,8AB=,2DE=,则AE的长为________.16、如图,四边形ABCD中, AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD=a,则∠ACB的度数为____________.(用含a的代数式表示)三、解答题(共 9小题)17、(6分)图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18、(6分)如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21 cm,△ABD的周长为13 cm,求AE的长.19、(6分)已知90=,求证:点E在∠=∠=︒,BC与AD交于点E,AC BDACB BDA线段CD的垂直平分线上.20、(6分)在△ABC中,∠ACB=90°.现给出以下3个关系:①CD垂直于AB,②BE平分∠ABC,③∠CFE=∠CEF,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.21、(8分)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.22、(8分)如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.23、(10分)如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q 同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为Qts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?24、(10分)如图,等边ABC的角平分线,D为AO上一点,△中,AO是BAC以CD为一边且在CD下方作等边CDE△,连结BE.(1)求证:ACD BCE △≌△;(2)延长BE 至Q , P 为BQ 上一点,连结CP 、QC 使5CP CQ ==, 若8BC =时,求PQ 的长.25、(12分)(1)模型:如图1,在ABC 中,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,求证:::ADB ADC S S AB AC =△△.(2)模型应用:如图2,AD 平分EAC ∠交BC 的延长线于点D ,求证:::AB AC BD CD =.(3)类比应用:如图3,AB 平分DAE ∠,AE AD =,180D E ∠+∠=︒,求证:::BE CD AB AC =.。

北师大版数学八年级下册第一章三角形的证明第1节等腰三角形课堂练习

北师大版数学八年级下册第一章三角形的证明第1节等腰三角形课堂练习

第一章三角形的证明第1节等腰三角形课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图,在ABC中,AB AC=,40A∠=︒,以点B为圆心,BC长为半径作弧,交AC于点D,连接BD,则ABD∠的度数为()A.10︒B.20︒C.30D.40︒2.如图,在ABC中,AB AC=,AD BC⊥,若3AD=,8BC=,则AB的长为()A.5B.4C.3D.13.若等腰三角形的一个内角为50°,则其顶角的度数为()A.80°B.50°C.50°或65°D.50°或80°4.等腰三角形两边长a,b是方程组233a ba b-=⎧⎨+=⎩的解,则该等腰三角形周长为()A.5B.4或5C.4D.5或65.下列命题:①等腰三角形的角平分线、中线和高重合;①等腰三角形两腰上的高相等;①等腰三角形的最短边是底边;其中正确的有()A.1个B.2个C.3个D.0个6.如图,ABC∆中,AB AC=,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.2对B.3对C.4对D.5对7.已知等腰三角形的周长为17,一边长为7,则此等腰三角形的底边长为()A.3B.7C.3或7D.3或58.若等腰三角形的顶角是40°,则它的底角是()A.40°B.70°C.80°D.100°9.如图,在①ABC中,AB=AC=4,①ABC和①ACB的平分线交于点E,过点E作MN①BC分别交AB、AC于M、N,则①AMN的周长为()A.4B.6C.8D.10评卷人得分二、填空题10.在ABC中,90C∠=︒,30A∠=︒,2BC=,则AC的长为_______________________.11.已知一个三角形工件尺寸(单位:dm)如图所示,则高h是________dm,它的面积是________2dm.12.已知等腰三角形的三边长分别为:1x+、23x+、7,则其中x的值为___________.13.一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长_________cm.14.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的周长为___________.15.如图,在四边形ABCD中,==120,=A B AB AD∠∠①ADC和①DCB的平分线交于点P,且点P在AB边上.若BC=3,DC=21,则AB的长是__________.评卷人得分三、解答题16.如图,在ABC中,AB AC=,BC,AB边上的高AD,CE相交于点F,且AE CE=.(1)求证:AEF CEB△≌△;(2)若12AF=,求CD的长.17.如图,△ABC中,AB=AC,D点在BC上,①BAD=30°,且①ADC=60°,BD=3,求CD.18.某初中“数学兴趣小组”开展实践活动,在校园里测量一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池和建筑物遮挡,没有办法直接测量其长度.经测量得知AB=AD=60米,①A=60°,BC=80米,①ABC=150°.如果你是数学兴趣小组的成员,请根据测量数据求出CD的长度.19.如图,①ABC是等边三角形,边长是6(1)求高AD的长;(2)求①ABC的面积.20.已知等腰三角形的周长为30cm,其底边长为x,腰长为y.(1)请写出y与x的函数关系式,并求其中自变量x的取值范围;(2)当这个三角形中有一个角为60°时,求x的值.参考答案:1.C【解析】【分析】在△ABC中可求得①ACB=①ABC=70°,在△BCD中可求得①DBC=40°,由此可求出①ABD.【详解】解:①AB=AC,①A=40°,①①ABC=①ACB=(180°-40°)÷2=70°,又①BC=BD,①①BDC=①BCD=70°,①①DBC=180°-70°×2=40°,①①ABD=①ABC﹣①DBC=70°﹣40°=30°,故选:C.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.2.A【解析】【分析】先根据等腰三角形的性质得到BD=CD,再根据勾股定理即可得到结论.【详解】解:①AB=AC,AD①BC,BC=8,BC=4,①BD=CD=12①AD=3,BD=4,AD①BC,①AB=2222++=5,D D=34A B故选:A.【点睛】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.3.D【解析】【分析】分①50︒的内角为等腰三角形的顶角,①50︒的内角为等腰三角形的底角两种情况,分别根据等腰三角形的定义、三角形的内角和定理即可得.【详解】解:由题意,分以下两种情况:①当50︒的内角为等腰三角形的顶角时,则这个等腰三角形的顶角的度数为50︒;①当50︒的内角为等腰三角形的底角时,则这个等腰三角形的顶角的度数为180505080︒-︒-︒=︒;综上,这个等腰三角形的顶角的度数为50︒或80︒,故选:D.【点睛】本题考查了等腰三角形的定义、三角形的内角和定理,正确分两种情况讨论是解题关键.4.A【解析】【分析】先解二元一次方程组求出a、b的值,然后进行分类讨论a为腰和为底时的情形.【详解】解:解方程组233a ba b-=⎧⎨+=⎩得:21ab=⎧⎨=⎩所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故选A.【点睛】本题主要考查了等腰三角形的性质,构成三角形的条件,解二元一次方程组,解题的关键在于能够熟练掌握相关知识进行求解.5.A【解析】【分析】根据等腰三角形的性质进行逐一判断即可得到答案.【详解】解:等腰三角形的顶角的角平分线、底边的中线和底边的高重合,故①错误; 等腰三角形两腰上的高相等,故①正确;等腰三角形的最短边不一定是底边,故①错误;故选:A.【点睛】本题主要考查了等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解. 6.C【解析】【分析】根据AB AC =,D 是BC 的中点,可得CAD BAD ∠=∠ ,90ADC ADB ︒∠=∠= ,BD CD = ,从而AOC BOC ≅,Rt OCD Rt OBD ≅,ACD ABD ≅,再根据EF 垂直平分线AC ,可得Rt AOE Rt COE ≅,即可求解.【详解】解:①AB AC =,D 是BC 的中点,①CAD BAD ∠=∠ ,90ADC ADB ︒∠=∠= ,BD CD = ,①AO AO = ,①()AOC AOB SAS ≌,①OC OB = ,①()Rt OCD Rt OBD HL ≅ ,①AB AC =,AD AD = ,①()ACD ABD SSS ≅ ,①EF 垂直平分线AC ,①AO CO = ,①OE OE = ,①()Rt AOE Rt COE HL ≅ ,①图中全等三角形的对数是4对.故选:C .【点睛】本题主要考查了三角形全等的判定和性质,熟练掌握三角形全等的判定定理和性质定理是解题的关键.7.C【解析】【分析】已知了等腰三角形的周长和一边的长,但是没有明确长为7的边是腰长还是底边长,因此要分类讨论.最后要根据三角形三边关系将不合题意的解舍去.【详解】解:本题可分两种情况:①当腰长为7时,底边长=17-2×7=3;经检验,符合三角形三边关系;①底边长为7,此时腰长=(17-7)÷2=5,经检验,符合三角形三边关系; 因此该等腰三角形的底边长为3或7.故选:C .【点睛】本题主要考查了等腰三角形的性质以及三角形三边关系的应用等知识.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.B【解析】【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【详解】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为180402︒︒-=70°.故选:B.【点睛】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.9.C【解析】【分析】根据BE、CE是角平分线和MN①BC可以得出MB=ME,NE=NC,继而可以得出①AMN的周长=AB+AC,从而可以得出答案.【详解】解:①BE,CE分别是①ABC与①ACB的角平分线,①①MBE=①EBC,①NCE=①ECB,①MN①BC,①①MEB=①EBC,①NEC=①ECB,①①MBE=①MEB,①NCE=①NEC,①MB=ME,NC=NE,①AB=AC=4,①①AMN的周长=AM+ME+NE+AN=AM+MB+AN+NC=AB+AC=4+4=8.故选:C.【点睛】本题考查了平行线的性质和等腰三角形的判定,是一道综合题,能够推出MB=ME,NE=NC是解题的关键.10.23【解析】【分析】利用含30°直角三角形中,30°所对直角边等于斜边的一半的性质求得AB的长,然后利用勾股定理求解AC.【详解】解:如图:①在Rt①ABC中,①C=90°,①A=30°,BC=2,①AB=2BC=4,①AC=2222AB BC-=-=,4223①AC的长为23,故答案为:23.【点睛】本题考查了含30°角的直角三角形的性质及勾股定理,掌握相关性质定理正确推理计算是解题关键.11.412【解析】【分析】过点A作AD①BC于点D,由等腰三角形的性质可知AD是BC的垂直平分线,故可得出BD的长,根据勾股定理求出AD的长,再根据三角形面积公式计算即可.【详解】解:过点A作AD①BC于点D,则AD=h,①AB=AC=5dm,BC=6dm,①AD是BC的垂直平分线,①BD=12BC=3dm.在Rt①ABD中,AD=2222534AB BD-=-=dm,即h=4(dm).S=164122⨯⨯=2dm故答案为:4,12.【点睛】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.2【解析】【分析】因为x+1,2x+3,7是等腰三角形的三边长,但没有明确指明哪是腰,哪是底,因此要分类讨论.【详解】解:①当x+1=2x+3时,解得x=-2(不合题意,舍去);①当x+1=7时,解得x=6,则等腰三角形的三边为:7、15、7,因为7+7=14<15,不能构成三角形,故舍去;①当2x+3=7时,解得x=2,则等腰三角形的三边为:3、7、7,能构成三角形.所以x的值是2.故答案为:2.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;在解决与等腰三角形有关的问题时,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.13.17【解析】【分析】分3cm为等腰三角形的腰和7cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详解】解:分两种情况:当腰为3时,3+3<7,所以不能构成三角形;当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.故答案为:17.【点睛】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解本题的关键.14.19cm【解析】略15.12【解析】【分析】在CD上截取DE=AD,CF=CB,证明△ADP①①EDP(SAS),由全等三角形的性质得出①A=①DEP=120°,AP=PE,同理△CFP①①CBP(SAS),证出△PEF为等边三角形,求出AP 的长,则可得出答案.【详解】解:在CD上截取DE=AD,CF=CB,①PD 平分①ADC ,CP 平分①DCB ,①①ADP =①EDP ,①FCP =①PCB ,在△ADP 和△EDP 中,DE DA ADP EDP DP DP ⎧⎪∠∠⎨⎪⎩===,①①ADP ①①EDP (SAS ),①①A =①DEP =120°,AP =PE ,同理△CFP ①①CBP (SAS ),①①B =①PFC =120°,PB =PF ,①①PEF =①PFE =60°,①①PEF 为等边三角形,①PE =PF ,①P A =PB ,设P A =PB =x ,则AD =2x ,EF =x ,①BC =3,DC =21,①2x +x +3=21,解得x =6,①AB =12.故答案为12.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,证明△ADP ①①EDP 是解题的关键.16.(1)见解析;(2)6【解析】【分析】(1)先证①EAF =①ECB ,再结合①AEF =①CEB =90°且AE =CE 利用全等三角形的判定得①AEF ①①CEB ;(2)由全等三角形的性质得AF =BC ,由等腰三角形的性质“三线合一”得BC =2CD ,等量代换得出结论.【详解】(1)证明:①CE ①AB ,①①AEF =①CEB =90°.①①AFE +①EAF =90°,①AD ①BC ,①①ADC =90°,①①CFD +①ECB =90°,又①①AFE =①CFD ,①①EAF =①ECB .在①AEF 和①CEB 中,90EAF ECB AE CE AEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ①①AEF ①①CEB (ASA );(2)①①AEF ①①CEB ,AF =12,①AF =BC =12,①AB =AC ,AD ①BC ,①CD =BD =12BC =6,①CD 的长为6.【点睛】此题考查了全等三角形的判定与性质,等腰三角形的性质,其中全等三角形的判定方法有:SSS ;SAS ;ASA ;AAS ;以及HL (直角三角形的判定方法).17.CD =6.【解析】【分析】先根据题意求出①B 、①C 、①DAC 的度数,然后再根据等腰三角形的判定与性质以及含30度直角三角形的性质即可即可.【详解】证明:①①ADC =60°,①BAD =30°,①①B=①ADC﹣①BAD=60°﹣30°=30°=①BAD,①BD=AD=3,①AB=AC,①①B=①C=30°,①①BAC=120°,①①DAC=120°﹣30°=90°,①CD=2AD=6.【点睛】本题主要考查等腰三角形的判定和性质、含30度角直角三角形性质等知识,灵活应用等腰三角形的判定与性质成为解答本题的关键.18.CD的长度为100m【解析】【分析】直接利用等边三角形的判定与性质得出BD的长,再利用勾股定理得出DC的长.【详解】解:连接BD,①AB=AD=60m,①A=60°,①①ABD为等边三角形,①BD=AB=AD=60m,且①ABD=60°,①①ABC=150°,①①DBC=①ABC﹣①ABD=90°,在Rt①CBD中,①DBC=90°,BC=80m,BD=60m,根据勾股定理得:BC2+BD2=CD2,即CD=22BC BD=100(m)答:CD的长度为100m.【点睛】此题主要考查了勾股定理的应用以及等边三角形的判定与性质,正确得出①BCD是直角三角形是解题关键.19.(1)33;(2)93.【解析】【分析】(1)根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD=3,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,(2)根据三角形的面积公式即可求三角形ABC的面积,即可解题.【详解】解:(1)①等边三角形ABC,AD为高线,①BD=CD=12BC=1632⨯=,在直角三角形ABD中,①AD=226333-=.(2)①BC=6,AD=33,①等边①ABC的面积=12BC•AD=12×6×33=93.【点睛】本题考查了等边三角形的性质,勾股定理,掌握等边三角形的性质和勾股定理是解题的关键.20.(1)y=15﹣12x(0<x<15);(2)10cm【解析】【分析】(1)根据等腰三角形的周长公式求出y与x的函数关系式,由三角形三边的关系可得取值范围;(2)若有一个角是60°则三角形是等边三角形,进而可得x的值.【详解】解:(1)∵等腰三角形的周长为30cm,腰长为ycm,底边长为xcm,∴2y+x=30,∴y=1512-x(0<x<15);(2)若有一个角是60°则三角形是等边三角形,所以x=3013⨯=10(cm).答:x的值是10cm.【点睛】此题主要考查了等腰三角形的性质,根据已知得出y与x的函数关系式是解题关键.。

2019届数学八年级(下)第1周周未练习卷 .doc

2019届数学八年级(下)第1周周未练习卷 .doc
邱月玲
南海区大沥许海中学
我是什么
区嘉瑞
顺德区北滘镇承德小学
语文园地一--识字加油站
任俊一
顺德区李介甫小学
第十一单元 盐 化肥--单元复习
沈艺年
顺德区龙江龙山中学
第五章 生活中的轴对称--回顾与思考
石小梅
顺德区杏坛梁球琚初级中学
团体辅导案例
苏凤轩
顺德区北滘中心小学
花形面包制作
苏少琼
佛山市启聪学校
第一单元:走进化学工业--练习与实践
2018年佛山市“一师一优课、一课一名师”
活动“市级优课”获奖名单
优课名称
姓 名
单 位
跳短绳:合作跳短绳
邹明飞
顺德区德胜小学
Revision 1--Lesson 2
周洪慧
禅城区南庄镇中心小学
Module 5--Unit 1 They're cows.
郑晓娟
南海区桂城街道桂江小学
加与减--小小图书馆
衣博
分子间作用力 分子晶体
王丹
南海区狮山高级中学
爵士音乐--演艺人:钢琴音乐
陶莟冰
南海区狮山高级中学
元素周期表
谭德鸿
南海区第一中学
勾股定理-一定是直角三角形吗
马芳华
禅城区南庄镇第三中学
Module 4 More things to learn--Unit 3 Story time
罗凤梅
南海区南光中英文学校
Module 3 Sports--Unit 3 Language in use
李婉玲
顺德区勒流江义初级中学
点线色,你我他--七彩虹
李欣怡
三水区乐平镇中心小学
Writing Help

八年级下册数学练习题

八年级下册数学练习题

八年级下册数学练习题(总32页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2八年级下期末021一、 填空题。

(每小题5分,共40分)1、当x_______时,分式x2-11有意义。

2、用科学记数法表示:=_______。

3、反比例函数y=xk 的图象分布在第一、三象限内,则k 的取值范围是 ______。

4、在△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,AB=8,则BC=______ 。

5、如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD=120°,AC=12cm ,则△ABO 的面积是____ cm 2。

6、 如图,在直角梯形中,底AD=6 cm ,BC=11 cm ,腰CD=12 cm ,则这个直角梯形的周长为______cm 。

7、 数据11,9,7,10,14,7,6,5的中位数是是______。

8、一组数据的方差S 2=101[(x 1-2)2+(x 2-2)2+…+(x 10-2)2],则这组数据的平均数是_______。

二、 选择题。

(每小题5分,共40分)9、若m a 2-b 2 =ba b a -+的值为零,则m 等于 ( )A 、a+bB 、a-bC 、(a+b)2D 、(a-b)210、化简(-x1)÷1x 2+x 的结果为 ( )A 、-x-1B 、-x+1C 、-1-1 xD 、1-1 x 11、反比例函数的图象经过点M (-2,1),则此反比例函数为)y=x 2 B 、 y= -x 2 C 、y=x 21 D 、y= -x21( )A 、6,8,10B 、 7,24,25C 、9,12,15D 、15,20,3013、正方形具备而菱形不具备的性质是()A、四条边都相等B、四个角都是直角C、对角线互相垂直平分D、每条对角线平分一组对角14、等腰梯形的腰长为13cm,两底差为10cm,则高为()A、69cmB、12cmC、69cmD、144cm15、数据8,10,12,9,11的平均数和方差分别是()A、10和2B、10和2C、50和2D、50和216、人数相等的甲、乙两班学生参加测验,两班的平均分相同,且S2甲=240,S2乙=200,则成绩较稳定的是()A、甲班B、乙班C、两班一样稳定D、无法确定三、解答题。

八下数学每日一练:加权平均数及其计算练习题及答案_2020年综合题版

八下数学每日一练:加权平均数及其计算练习题及答案_2020年综合题版

考点: 一元一次不等式的应用;加权平均数及其计算;
答案
~~第2题~~ (2019吴兴.八下期末) (1) 在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
语文
数学
英语
科学

95
95
80
150

105
90
90
139

100
100
85
139
若欲从中表扬2人,请你从平均数的角度分析哪两人将被表扬?
度数
9
10
11
天数
3
1
1
(1) 求这5天的用电量的平均数;
(2) 求这5天用电量的众数、中位数;
(3) 学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.
考点: 用样本估计总体;加权平均数及其计算;
答案
2020年 八 下 数 学 : 统 计 与 概 率 _数 据 分 析 _加 权 平 均 数 及 其 计 算 练 习 题 答 案
1.答案:
2.答案:
3.答案: 4.答案: 5.答案:
册数
0
1
2
3
4
人数
3
13
16
17
1
(1) 这50个样本数据的众数为、中位数为; (2) 求这50个样本数据的平均数;
(3) 根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.
考点: 用样本估计总体;统计表;加权平均数及其计算;中位数;众数;
答案
~~第4题~~ (2019永康.八下期末) 某校开展“诵读诗词经典,弘扬传统文化”诗词诵读活动,为了解八年级学生在这次活动中的诗词 诵背情况,随机抽取了30名八年级学生,调查“一周诗词诵背数量调查结果如表所示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下数学练习题(第一周)
一、选择题(共2小题;共20分)
1. 下列式子中,一定是二次根式的是 A. − 7
B. 73
C. x
D. x
2. 如果 x +1有意义,则x 的取值范围为
A. x ≥0
B. x ≥−1
C. x >−1
D. x ≥1
3. 计算 15 2
的结果等于
A. 225
B. 15
C. ±15
D. −15
4. 若代数式1x−1
+ x 有意义,则实数x 的取值范围是
A. x ≠1
B. x ≥0
C. x ≠0
D. x ≥0且x ≠1 5. 计算 8× 2的结果是
A. 10
B. 4
C. 6
D. 2
6. 下列各等式成立的是
A. 4 5×2 5=8 5
B. 5 3×4 2=20 5
C. 4 3×3 2=7 5
D. 5 3×4 2=20 6
7. 下列各式中,一定成立的是
A. − 2
=−3 B. −10 2=−10 C. −6 2=6
D. a 2=a
8. 已知实数a 在数轴上的对应点的位置如图所示,则化简∣1−a ∣+2
A. 1
B. −1
C. 1−2a
D. 2a −1 9. 若 a +b +5+∣2a −b +1∣=0,则 b −a 2015=
A. −1
B. 1
C. 52015
D. −52015
10如果一个直角三角形的两条直角边长分别为a = ,b = 1
5,那么这个直角三角形的面积是
A. 8
B. 2
C. 1
D. 2
二、填空题(共3小题;共15分) 11. 若一个长方形的面积是10 cm 2,它的长与宽的比为5:1,则它的长为 cm ,宽为 cm . 12. 若整数x 满足∣x ∣≤3,则使 7−x 为整数的x 的值是 .(只需填一个)
13. 若y =
x−4+ 4−x
2
−2,则 x +y y = .
14. 若∣x −y ∣+ y −2=0,则x y−3的值为 . 15. 若 x −3 2=3−x ,则x 的取值范围是 .
三、解答题(共10小题;共60分)
11. 当x为何值时,下列各式有意义?
(1)−x;(2)3−2x;
(3)x−3
x−4
;(4) −x−12.
12. 计算:
(1)2
;(2) −2
2

(3)7
22
;(4) −21
2
2
;
(5) −5
32
;(6)5−2;
(7)− −1
22
;(8)2
13. 计算:
(1)3×13;(2)7×28;
(3)512×1
2;(4)975×1
39

(4)4⋅1
y
;(5)6× −3.
14. 化简:
(1)36×81;(2)−4×−361;
(3)9a2b3c5(a≥0,b≥0,c≥0).
15. 化简:
(1)32×53×6;(2)30×22
3
×0.4;
(3)27×312×5
83;(4)1
3
30×401
2
×3
2
22
3

16. 已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a−6+32−a,求此三角形
的周长.
17.因式分解:(1)2712y y -+
(2)()()()()a b x y b a x y ----+
18.先化简,再求值。

2)4()2)(2(y x y x y x +--+,其中5=x ,2=y .
19.小华家新购了一套结构如图的住房,正准备装修. (1)试用代数式表示这套住房的总面积;
(2)若x =2.5 m ,y =4m ,装修客厅和卧室至少需要准备面积为多少的木地板?。

相关文档
最新文档