数学宝典-公式定理大全500例

合集下载

数学公式定律大全

数学公式定律大全

数学公式定律大全1、定理:加法交换律两边加上相同的数都会得到同样的结果,即a+b=b+a2、定理:乘法交换律两边乘以相同的数也会得到同样的结果,即a*b=b*a3、定理:乘法分配律乘法可以分配给加法,即a*(b+c)=a*b+a*c4、定理:乘法结合律加法可以结合乘法,即a*(b*c)=(a*b)*c5、定理:乘方律数的平方等于这个数乘以它本身,即a^2=a*a6、定理:乘方公式三个数的乘方相加等于这三个数乘以它们的积,即a^3+b^3+c^3=(a*b*c)^37、定理:算术和的计算公式一个有n项的等差数列和可表示为 Sn = n * (a1 + an) / 28、定理:算术积的计算公式一个有n项的等差数列的积可表示为 Pn = (an - a1) * (a2 - a1) * (a3 - a1) *…* (an - an - 1)9、定理:立方和公式一个有n项的立方数列和可表示为 Sn = n * (a1^3 + an^3) / 210、定理:立方积公式一个有n项的立方数列的积可表示为 Pn = (an - a1)^3 * (a2 - a1)^3 * (a3 - a1)^3 *…* (an - an - 1)^311、定理:平方差公式设a1,a2,a3,…,an为n个数,则它们的平方差为:A2 = (a1 -a2)^2 + (a2 - a3)^2 + …+ (an - an - 1)^212、定理:立方差公式设a1,a2,a3,…,an为n个数,则它们的立方差为:A2 = (a1 -a2)^3 + (a2 - a3)^3 + … + (an - an - 1)^313、定理:二次根式定理一元二次方程的一般解为:ax^2 + bx + c = 0,其中a≠0。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

高等数学公式大全

高等数学公式大全

高等数学宝典(上篇)——公式大全(含微分方程、复变函数)一. 初等数学1. 三角函数 (1) 相互联系,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x xx= 奇变偶不变, 符号看象限:⎩⎨⎧±±=±±±=±=+,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f nf αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±tan tan 1tan tan )tan(βαβαβα∓±=±(3) 积化和差)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21cos cos βαβαβα−++=)].cos()[cos(21sin sin βαβαβα−−+−=(4) 和差化积2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−,2cos 2cos 2cos cos βαβαβα−+=+ .2sin 2sin 2cos cos βαβαβα−+−=−(5) 降幂公式22cos 1sin 2αα−=.22cos 1cos 2αα+= (6) 半角公式, ,1cos sin tansin 1cos αααα−==+, 1cos sin cot sin 1cos αααα+==−.2. 复数(1) 代数表示 z = a +b i(2) 三角表示 z = r (cos θ +i sin θ), 其中r = |a + b i| = , a = r cos θ, b = r sin θ. (3) 指数表示 a + b i = re i θ (欧拉公式: e i θ = cos θ +i sin θ ).3. 一些常见的曲线(1) 圆222a y x =+的参数方程为⎩⎨⎧==,sin ,cos θθa y a x极坐标方程为ρ = a (θ∈[0, 2π) );(2) 圆222)(a a y x =−+的参数方程为⎩⎨⎧+==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = 2a sin θ (θ∈[0, π) ) ;(3)圆222)(a y a x =+−的参数方程为⎩⎨⎧=+=,sin ,cos t a y t a a x (t ∈[0, 2π) )极坐标方程为ρ = 2a cos θ )]2,2((ππθ−∈ ;(4) 圆222)(a y a x =++的参数方程为⎩⎨⎧=+−=,sin ,cos t a y t a a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a cos θ ))23,2[(ππθ∈;(5) 圆222)(a a y x =++的参数方程为⎩⎨⎧+−==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a sin θ (θ∈[π, 2π) );(6) 椭圆12222=+b y a x 的参数方程为⎩⎨⎧==,sin ,cos t b y t a x (t ∈[0, 2π) );(7) 空间螺线⎪⎩⎪⎨⎧===,,sin ,cos bt z t a y t a x (t;(8) 笛卡儿叶线x 3+y 3=3axy的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x ;(9) 星形线x 2/3+y 2/3=a 2/3的参数方程为⎪⎩⎪⎨⎧==θθ33sin cos a y a x ; (10) 摆线(圆滚线) 22)1arcsin(y ay aya x −−−=的参数方程为⎩⎨⎧−=−=)cos 1()sin (t a y tt ax;(11) 心形线)(2222x y x a y x −+=+的极坐标方程为ρ = a (1-cos θ);(12) 心形线)(2222x y x a y x ++=+的极坐标方程为ρ = a (1+cos θ);(13) 双纽线(x 2+y 2)2=a 2(x 2-y 2)的极坐标方程为ρ2 = a 2cos2θ ;(14) 双纽线(x 2+y 2)2=2a 2xy的极坐标方程为ρ2 = a 2sin2θ ;(15) 阿基米德螺线xya y x arctan 22=+的极坐标方程为ρ = a θ(16) 不经过原点的直线ax + by + c = 0 (a 2 + b 2 ≠ 0)⇒ a ρcos θ + b ρsin θ + c = 0⇒.sin cos θθρb a c+=例如: x = a (a > 0) ⇒2,2(cos ππθθρ−∈=ax = a (a <0) ⇒23,2(cos ππθθρ∈=a y = a (a >0) ⇒);,0(sin πθθρ∈=ay = a (a <0) ⇒);2,(sin ππθθρ∈=ay = x − a (a > 0) ⇒43,4(sin cos ππθθθρ−∈+=a 二. 极限1. |q |<1, nn q ∞→lim = 0. 2. n n n ∞→lim =1.3. 设数列{a n }与{b n }都收敛, a a n n =∞→lim , b b n n =∞→lim , 则n n n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim = a ±b ; )lim )(lim ()(lim n n n n n n n b a b a ∞→∞→∞→== ab ;n n n n n n n b a b a ∞→∞→∞→=lim lim lim =b a (b ≠0). 4. 设x n =m m ll n b n b b n a n a a ++++++ 1010, 其中a l ≠0, b m ≠0, l ≤m , 则∞→n lim x n =⎩⎨⎧<=m l m l a m l 0. 5. ∞→n lim (p 1+22p+…+n p n ) =2)1(−p p , 其中p >1. 6. ()nn n 11lim +∞→= e. 7. 设)(lim 0x f x x →=A , )(lim 0x g x x →=B . 则)(lim )(lim )()([lim 0x g x f x g x f x x x x x x →→→±=±= A ±B;)](lim )][(lim [)]()([lim 0x g x f x g x f n n x x ∞→∞→→== AB ; )(lim )(lim )()(lim 000x g x f x g x f x x x x x x →→→==B A(B ≠0).8. 设y = f (u )与u = g (x )的复合函数f [g (x )]在x 0的某去心邻域)(0x N内有定义.若)(lim 0x g x x →=u 0, )(lim 0u f u u →=A , 且∀x ∈)(0x N, 有g (x )≠u 0, 其中x 0, u 0为有限值.则复合函数f [g (x )]当x →x 0时也有极限, 且)]([lim 0x g f x x →=)(lim 0u f u u →=A .9. x x x sin lim 0→=1. xx x ⎟⎠⎞⎜⎝⎛+∞→11lim = e.10. 常用的等价无穷小:sin x ~tan x ~arcsin x ~arctan x ~ x (x →0); (1- cos x )~221x (x →0) ln(1+x )~x (x →0) (e x -1)~x (x →0) (n x +1-1)~nx (x →0); [α)1(x +-1]~αx (x →0). 三. 导数与微分1. 导数定义: 0000000)()(lim )()(lim lim)(0x x x f x f x x f x x f x yx f x x x x −−=∆−∆+=∆∆=′→→∆→∆.2. 函数四则运算的求导法则).()(])()([x v x u x v x u ′±′=′± ).()()()(])()([x v x u x v x u x v x u ′+′=′⋅.)()()()()()()(2x v x v x u x v x u x v x u ′−′=⎥⎦⎤⎢⎣⎡/3. 反函数的求导法则设定义在区间I 上的严格单调连续函数x = f ( y )在点y 处可导, 且0)(≠′y f , 则其反函数y = f -1(x )在对应的点x 处可导, 且)(1)()(1y f x f′=′−即yx x y d d 1d d =. 4. 复合函数的求导法则设函数)(x u ϕ=在点x 处可导, 函数y = f (u )在对应的点)(x u ϕ=处可导, 则复合函数))((x f y ϕ=在点x 处可导, 且),()(d d x u f xyϕ′′=即x u u y x y d d d d d d ⋅=. 5. 设函数y = f (x )由参数方程⎩⎨⎧==)()(t y t x ψϕ确定. ),(t x ϕ= )(t y ψ=在区间],[βα上可导, 函数)(t x ϕ= 具有连续的严格单调的反函数),(1x t −=ϕ且,0)(≠′t ϕ则)).(()(1x t y −==ϕψψ函数y = f (x )的导函数由参数方程⎪⎩⎪⎨⎧′′=′=)()()(t x t y y t x ϕ确定.6. 基本求导公式(1) (x α)′ = αx α−1. (2)(a x )′ = a x ln a . (3) (e x )′ = e x . (4) (log a x )′ =1ln x a . (5) (ln x )′ =1x. (6) (sin x )′ = cos x . (7) (cos x )′ = −sin x . (8) (tan x )′ = sec 2x . (9)(cot x )′ = −csc 2x . (10) (sec x )′ = sec x ⋅tan x . (11) (csc x )′ = −csc x ⋅cot x . (12) (arcsin x )′=(arccos x )′ =(14) (arctan x )′ =211x +. (15) (arccot x )′ = −211x +. 7. 一些简单函数的高阶导数(n , k 为正整数) (1)⎪⎩⎪⎨⎧>=<+−−⋅=−,0,!,)1()1()()(n k n k n n k x k n n n x k n k n(2) ,)1()1()1()()(k n k k n x k n n n x −−−−++⋅−= (3) ,)1()1(])1[()(k k x k x −+−−⋅=+ααααα (4) ),(ln )()(a a a k x k x = 特别的, ,)()(x k x e e =(5) ,)!1()1()(ln 1)(kk k x k x −−=− (6) )1()!1()1()]1[ln(1)(k k k x k x +−−=+−(7)),2sin()(sin )(πk x x k += (8) 2cos()(cos )(πk x x k +=(9) ()()()0()nn k n k k n k uv C u v −==∑ ()(1)(2)()()()(1)(1)(1)2!!n n n n k k n n n n n n k u v nu v u v u v uv k −−−−−−+′′′=++++++8. 微分四则运算法则: ,d d )(d v u v u ±=± ,d d )(d v u u v uv += ).0(d d d 2≠−=⎟⎠⎞⎜⎝⎛v v vu u v v u 9. 微分复合运算法则(一阶微分形式不变性)设函数y = f [g(x )]由可微函数y = f (u )与u = g (x )复合而成, 则有,d )(d u u f y ′= ,d )(d x x g u ′= 另一方面, d y =().d )(d )()(d )]([u u f x x g u f x x g f ′=′′=′10. 拉格朗日中值定理:设函数f (x )满足下列条件: (1) f (x )∈C [a , b ], (2) f (x )在(a , b )内可导. 则至少存在一点ξ∈(a , b ), 使得f (b ) − f (a ) = f ′(ξ)(b −a ). 11. 柯西中值定理:设函数f (x ), g (x )满足下列条件:(1) f , g ∈C [a , b ], (2) f , g 在(a , b )内可导, (3) g ′(x )≠0 ∀x ∈(a , b ).则至少存在一点ξ∈(a , b ), 使得)()()()()()(ξξg f a g b g a f b f ′′=−−13. 洛必达法则设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,0)(lim )(lim 0==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3) A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,)(lim )(lim 0∞==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3)A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 不可用洛必达法则的情形.(1) 21lim 1++→x x x , (2) xx x x sin lim +∞→, (3) x x xx x e e e e −−+∞→+−lim .事实上, 21lim 1++→x x x =32, xx x x sin lim +∞→=sin 1(lim x xx +∞→=1, x x x x x e e e e −−+∞→+−lim =x x x e e 2211lim −−+∞→+−=1. 14. 带皮亚诺余项的泰勒公式设函数f (x )在x 0处n 阶可导, 则f (x )=k nk k x x k x f )!)(000)(−∑=+ o((x -x 0)n ). 15. 几个初等函数的麦克劳林公式(1) e x =1+x +21x 2+61x 3+…+!1n x n+ o(x n ).(2) sin x = x -!31x 3+!51x 5-…+(-1)n )!12(1+n x 2n +1 + o(x 2n +1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n + o(x 2n ).(4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n + o(x n ).(5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα + o(x n ).(6) sin 2x =22cos 1x −=()⎥⎦⎤⎢⎣⎡+−+−+−−n nn x n x x x 2242)2(o )!2()2()1(!4)2(!2)2(12121=)(o !)!12(!2)1(3221142n n n n x x n n x x +−−++−−+ .(7) cos 2x =1- sin 2x = 1-)(o !)!12(!2)1(322142n n n nx x n n x x +−−+−+− .16. 带拉格朗日余项的泰勒公式设函数)(],[)(n b a C x f ∈, 且)1(),()(+∈n b a C x f , 则],[,0b a x x ∈∀, 有 f (x )=knk k x x k x f )!)(000)(−∑=+10)1()()!1()(++−+n n x x n f ξ, 其中ξ介于x 与x 0之间. 17. 几个初等函数的带拉格朗日余项的麦克劳林公式(1) e x=1+x +21x 2+61x 3+…+!1n x n+1)!1(++n x x n e θ (x ∈R , 0<θ<1).(2) sin x = x -!31x 3+!51x 5-…+(-1)n -1)!12(1−n x 2n -1 +12)!12(cos )1(++−n n x n x θ (x ∈R , 0<θ<1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n +221)!22(cos )1(+++−n n x n x θ (x ∈R , 0<θ<1). (4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n+)1(1)1)(1()1(++++−n n n x n x θ (x ∈R , 0<θ<1). (5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα +11)1)!1()()1(+−−++−−n n x x n n αθααα (x ∈R , 0<θ<1). 18. 曲率(1) 设曲线C 在直角坐标系中的方程为y = y (x )且y (x )具有二阶导数. 则K =232])(1[y y ′+′′.(2) 设曲线C 的参数方程为⎩⎨⎧==)()(t y y t x x , 则K =2322])()[(t t t t t t y x y x y x ′+′′′′−′′′. 四. 一元积分1. 定积分的性质(1) 若f , g 在[a , b ]上可积, k 1, k 2∈R , 则∫+bax x g k x f k )]d ()([21.)d (d )(21∫∫+=babax x g k x x f k(2) 若f 在某区间I 上可积, 则f 在I 的任一子区间上可积, 且∀a , b , c ∈I ,∫bax x f d )(.)d (d )(∫∫+=bcc ax x f x x f(3) 若f , g 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≤g (x ), 则∫bax x f d )(≤.d )(∫bax x g(4) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≥0, 则∫bax x f d )(≥0.(5) 若f 在[a , b ]上可积, 则∫bax x f d )(≤.d )(∫bax x f(6) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], m ≤f (x )≤M , 则m (b -a )≤∫bax x f d )(≤M (b -a ).(7) 若f ∈C [a , b ], 则至少存在一点ξ∈[a , b ]使∫bax x f d )(= f (ξ)(b -a ).2. 变上限积分所定义的函数的性质设f (x )∈C[a , b ], 则函数∫=Φxat t f x d )()(在区间[a , x ]上可导, 且Φ′(x )= f (x ).3. 微积分学基本公式若f (x )∈C[a , b ], F (x )为f (x )在区间[a , b ]上的一个原函数, 则∫bax x f d )(= F (b )-F (a ).4. 不定积分的性质(1) ),(]d )([x f x x f =′∫,d )(]d )([d x x f x x f =∫,)(d )(C x f x x f +=′∫ .)()(d C x f x f +=∫(2) 设f (x ), g (x )有原函数, k 1, k 2∈R , 则.d )(d )(d )]()([2121∫∫∫+=+x x g k x x f k x x g k x f k5. 基本积分表(1) d k x kx C =+∫ (k 是常数). (2) 1d 1x x x C ααα+=++∫ (α ≠−1)(3) 1d ln ||x x C x =+∫. (4) 21d arctan 1x x C x =++∫.(5)arcsin x x C =+. (6) cos d sin x x x C =+∫. (7) sin d cos x x x C =−+∫. (8) 221d sec d tan cos x x x x C x==+∫∫. (9) 221d csc d cot sin x x x x C x==−+∫∫. (10) sec tan d sec x x x x C =+∫. (11) csc cot d csc x x x x C =−+∫. (12) d x xe x e C =+∫.(13) d ln xxa a x C a=+∫. (14) sh d ch x x x C =+∫. (15)ch d sh x x x C =+∫. (16) tan d ln |cos |x x x C =−+∫.(17) cot d ln |sin |x x x C =+∫ (18) sec d ln |sec tan |x x x x C =++∫.(19)csc d ln |csc cot |x x x x C =−+∫ (20)2211d arctan xx C a x a a=++∫. (21) 2211d ln 2x a x C x a a x a −=+−+∫. (22) 2211d ln 2a x x C a x a a x −=+−−∫.(23)C +∫. (24) ln(x x C =++∫.(25) 2ln ||2a x x C =±+∫.(26) 2arcsin 2a x x C a =+∫. (27) /20sin d n n I x x π=∫=/20cos d nx x π∫=21n n I n−−.6. 换元积分法(1) 第一类换元积分法: 设函数u =ϕ (x )可微, F (u )为f (u )的一个原函数. 则∫′x x x f d )()]([ϕϕ∫=u u f d )(C u F +=)(.)]([C x F +=ϕ(2) 常见的凑微分法①)(d 1d b ax ax +=(a , b 为常数且a ≠0) ②)(d )1(1d 1b ax an x x n n++=+(a , b 为常数且a ≠0, n ≠-1)③),(ln d 1x x x= ④),(d d xx e x e = ⑤),(cos d d sin x x x −= ⑥),(tan d d sec 2x x x = ⑦),(arctan d d 112x x x =+ ⑧∫+x x a 122∫+++++=x x a x a x x a x d )(222222∫++++=)(d 12222x a x x a x , ⑨∫−x a x d 122∫−−+−+=x a x a x x a x x d )(222222∫−+−+=)(d 12222a x x a x x ,⑩∫−+x x x d 112=∫−x x 112∫−+x x x d 12∫−−−=)1(d 1121arcsin 22x x x .(3) 第二类换元积分法: 设函数f (x ) 连续, 函数x = ϕ (u )有连续的导数, ϕ '(u )≠0, 且∫′u u u f d )()]([ϕϕ.)(C u F +=则∫x x f d )(∫′=u u u f d )()]([ϕϕC u F +=)(.)]([1C x F +=−ϕ (4) 常见的第二类换元法①令u b ax n =+(a , b 为常数且a ≠0) ②令nd cx bax ++= t (其中ac ≠0, b , d 不同时为零) ③令,1u x =④令u = tan 2x , 则sin x =221u u +, cos x =2211u u −+, d x =22d 1uu +.⑤令x = a sin t , = a cos x , d x = a cos t d t , 其中a > 0, t ∈ [0, π/2].⑥令x = a sec t , a tan x , d x = a sec t tan t d t , 其中a > 0, t ∈ (0, π/2).⑦令x = a tan t , a sec x , d x = a sec 2x d t , 其中a > 0, t ∈ (0, π/2).7. 分部积分法(1) 不定积分的分部积分法∫u (x )d v (x ) = u (x )v (x ) - ∫v (x )d u (x )(2) 分部积分法中u (x ), v (x )的常见选取方法① P (x )sin x d x = -P (x )d(cos x ), P (x )cos x d x = P (x )d(sin x ). ② P (x )e x d x = P (x )d(e x ).③ P (x ) ln x d x = ln x d(∫P (x )d x ).④ e ax cos(bx )d x =a 1cos(bx )d(e ax ) =b 1e ax d(sin(bx )), e ax sin(bx )d x =a 1sin(bx )d(e ax ) =b1−e ax d(cos(bx )).(3) 定积分的分部积分法∫′bax x v x u d )()(∫=bax v x u )(d )(.)(d )()()(∫−=babax u x v x v x u8. 平面曲线的弧长(1) 在直角坐标系中: y = f (x ), x ∈[a , b ], 其中,C )()1(],[b a x f ∈取d s =,)d ()d (22y x +则∆s -d s = o(∆x ) (∆x →0), 于是.d )(12∫′+=bax y s(2) 参数方程⎩⎨⎧==)()(t y t x ψϕ t ∈[α, β], 其中,C )(),()1(],[βαψϕ∈t td s =22)d ()d (y x+,t =于是.d )]([])([22∫′+′=βαψϕt t t s(3) 极坐标系中: ρ = ρ (θ), θ∈[α, β], 则⎩⎨⎧==θθρθθρsin )(cos )(y x , .d )]([)(22∫′+=βαθθρθρs 9. 空间曲线的弧长设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩ t ∈[α, β], 其中(1)[,](),(),()C ,x t y t z t αβ∈则d s,t = 于是L的长度为.s t βα=∫10. 平面图形的面积(1) 直角坐标系中① y = f (x ) 与 y = g (x )以及x = a , x = b 所围成的图形的面积(其中f (x )≥ g (x )).d )]()([∫−=bax x g x f A② x = ϕ(y ) 与 x = ψ(y )以及y = c , y = d 所围成的图形的面积(其中ψ(y )≥ ϕ(y )).d )]()([∫−=dcy y y A ϕψ(2) 极坐标系中ρ = a θ, θ∈[α, β], ,d )(21d 2θθρ=A .d )(212∫=βαθθρA 11. 空间立体的体积(1) 平行截面面积A (x )已知的立体(a ≤ x ≤ b ): d V = A (x )d x , .d )(∫=bax x A V(2) 旋转体的体积① y = f (x ) (x ∈[a , b ])绕x 轴旋转一周(其中f (x )≥0), A (x ) = π f 2(x ), 故.d )(2∫=b a x x f V π② x = g (y ) (y ∈[c , d ])绕y 轴旋转一周(其中g (y )≥0), A (y ) = πg 2(y ), 故.d )(2∫=dcy y g V π五. 微分方程1. 一阶可分离变量的微分方程:),()(d d y g x f xy=其中f (x ), g (y )连续. )()(d d y g x f x y =x x f y g y d )()(d =⇒∫∫=⇒x x f y g yd )()(d .)()(C x F y G +=⇒ (其中g (y )≠0, )(1)(y g y G =′ F ′ (x ) = f (x ), C 为任意常数) 2. 一阶线性微分方程: ),()(d d x q y x p xy=+其中p (x ), q (x )连续.(1) 对于,0)(d d =+y x p x y分离变量得:,d )(d x x p yy −= ∫=−x x p Ce y d )(( C 为任意常数). (2) 对于),()(d d x q y x p xy=+ ∫=−x x p e x C y d )()(得].d )([d )(d )(C x e x q e y x x p x x p +∫∫=∫− 3. 可经变量代换化为已知类型的几类一阶微分方程 (1) 齐次方程:),,(d d y x f xy= 其中f (tx , ty ) = f (x , y ), .0≠∀t①将原方程化为),(d d x yx y ϕ= ②令x y u =得,ux y = 从而d d d d x u x u x y +=代入原方程并整理得,)(d d u u xux −=ϕ③分离变量, 得,d )(d xxu u u =−ϕ ④两边积分,⑤以xy代替u . (2) 伯努里方程: ,)()(d d αy x q y x p x y=+其中.1,0≠α①两边同除以αy 得),()(d d 1x q y x p xy y =+−−αα②令,1α−=y z 则,d d )1(d d x y y xz αα−−= 原方程化为),()1()()1(d d x q z x p x z αα−=−+ ③解上述关于z 的一阶线性非齐次微分方程,④ 以α−1y 代替z .4. 可降阶的高阶微分方程 (1) )()(x f yn =型(2) 不显含未知函数y 的方程:).,(y x f y ′=′′令,z y =′ 则).,(d d z x f xz= 若解之得),,(1C x z ϕ= 则.d ),(21∫+=C x C x y ϕ (3) 不显含自变量x 的方程: ).,(y y f y ′=′′改取y 为自变量, 令),(y z y z =′= 则.d d d d d d d d yz z x y y z x z y ⋅=⋅==′′ 于是原方程化为).,(d d z y f y zz= 这是关于z (y )的一阶微分方程, 若解之得: ),,(1C y z ϕ= 即),,(d d 1C y x y ϕ= 则.),(d 21∫+=C C y yx ϕ5. 设a 1(x ), a 2(x ) f (x ) ∈ C I , 则∀x ∈I 及任给的初始条件y (x 0) = y 0, y ′(x 0) = y 1, 初值问题⎩⎨⎧=′==+′+′′,)(,)(),()()(100021y x y y x y x f y x a y x a y 存在定义于区间I 上的唯一解y = y (x ).6. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个解, 1212()()()()()y x y x W x y x y x =′′, 则(1) y 1(x ), y 2(x )在区间I 上线性相关 ⇔ ∃x 0∈I 使它们的Wronski 行列式W (x 0) = 0.(2) y 1(x ), y 2(x )在区间I 上线性无关⇔∀x ∈I , 它们的Wronski 行列式W (x ) ≠ 0. 7. 线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0必存在两个线性无关的解.8. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个线性无关的解, 则该线性齐次方程的解集S 是y 1(x ), y 2(x )生成的一个二维线性空间{}112212|,.y c y c y c c =+为任意常数9. 设y *(x )是二阶线性非齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = f (x ) ①的一个特解, y 1(x ), y 2(x )是对应的齐次方程 y ″ + a 1(x )y ′ + a 2(x ) y = 0 ②的两个线性无关的解, 则y = c 1y 1(x ) + c 2y 2(x ) + y *(x )为非齐次方程①的通解. 10. 设)(*x y i 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f i (x ) (i = 1, 2, …, n )的特解,则)()(**1x y x y n ++ 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f 1(x ) + … + f n (x )的特解. 11. 二阶线性常系数齐次方程的解法(1) 特征方程ar 2+br +c = 0有两个相异实根r 1, r 2, 则通解.2121xr xr e c e c y += (2) 特征方程有两个相等实根r 1 = r 2 = r , 则通解.)(21rx e x c c y +=(3) 特征方程有一对共轭复根r = α ± i β, 则通解).sin cos (21x c x c e y xββα+= 12. 二阶线性常系数非齐次方程的解法(1) 待定系数法求ay ″+by ′+cy = f (x ) (a ≠0, b , c 为常数)的特解.① f (x ) = P n (x )e α x .若α不是ar 2+br +c = 0的根, 则令y * = (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的单根, 则令y * = x (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的重根, 则令y * = x 2(b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 再代入原方程, 通过比较系数确定b 0, b 1, …, b n . ② f (x ) = P n (x )e α x cos βx 或f (x ) = P n (x )e α x sin βx .先求ay ″+by ′+cy = P n (x )e α x [cos βx + isin βx ] = P n (x )e (α+i β)x 的特解Y *.则原方程的特解互取为⎪⎩⎪⎨⎧===xe x P xf Y xe x P xf Y y xn xn ββααsin )()( *,Im cos )()( *,Re * (2) 常数变易法13. n 阶Euler 方程: a 0x n y (n ) + a 1x n -1y (n -1) +…+ a n -1xy ′ + a n y = f (x ) (其中a 0, a 1, …, a n 为常数). 14. 二阶Euler 方程的解法.令x = e t, 则ax 2y ′′ + bxy ′ + cy = f (x )化为).(d d )(d d 22te f cy ty a b t y a =+−+这是一个线性常系数微分方程, 求出其通解后将t 换为ln x 即得原方程的解.六. 多元函数微分学1. 偏导数定义00(,)x y zx ∂∂ = z x (x 0, y 0) = f x (x 0, y 0) = x y x f y x x f x ∆−∆+→∆),(),(lim 00000.00(,)x y zy ∂∂ = z y (x 0, y 0) = f y (x 0, y 0) = y y x f y y x f y ∆−∆+→∆),(),(lim 00000.),,()(2222y x f xfx z x z x xx =∂∂=∂∂=∂∂∂∂ ),,()(22y x f y x f y x z x z y xy =∂∂∂=∂∂∂=∂∂∂∂),,()(22y x f x y fx y z y z x yx =∂∂∂=∂∂∂=∂∂∂∂ ),,()(2222y x f y f y z y z y yy =∂∂=∂∂=∂∂∂∂2. 可微的必要条件:若函数f (x , y )在点M 0(x 0, y 0)处可微, 则 ① f (x , y )在点M 0(x 0, y 0)处连续;② f (x , y )在点M 0(x 0, y 0)处存在偏导数, 且.d ),(d ),(d 0000),(00y y x f x y x f z y x y x+=3. 全微分的运算法则d[f (x , y ) ± g (x , y )] = d f (x , y ) ± d g (x , y );d[f (x , y )g (x , y )] = g (x , y )d f (x , y ) + f (x , y )d g (x , y );),(),(d ),(),(d ),(),(),(d2y x g y x g y x f y x f y x g y x g y x f −= (g (x , y ) ≠ 0). 4. 方向导数(1) z = f (x , y )在点M 0(x 0, y 0)处沿着向量l 的方向导数00(,)x y z ∂∂lty x f t y t x f t ),()cos ,cos (lim00000−++→βα,其中向量l 的方向余弦为cos α, cos β.(2) 若函数f (x , y )在点M 0(x 0, y 0)处可微, 则f (x , y )在点M 0(x 0, y 0)处沿任一方向l 的方向导数都存在,且有.cos ),(cos ),(0000),(00βαy x f y x f zy x y x +=∂∂l5. 梯度grad f (x 0, y 0)j.),(i ),(0000y x f y x f y x +=6. 复合函数微分法(1) 设函数u = ϕ(x ), v = ψ(x )在点x 处可导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x ), ψ(x ))在点处可导, 且x vv z x u u z x z d d d d d d ∂∂+∂∂=d d grad {,}.d d u v z x x=⋅ (2) 设函数u = ϕ(x , y ), v = ψ(x , y )在点(x , y )处可偏导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x , y ), ψ(x , y ))在点(x , y )处存在偏导数, 且xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂},,{grad x v x u z ∂∂∂∂⋅= y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂},,{grad yv y u z ∂∂∂∂⋅= 7. 隐函数微分法(1) 设二元函数F (x , y )满足下列条件:①F x (x , y ), F y (x , y )在点(x 0, y 0)的某邻域内连续. ②F (x 0, y 0) = 0, ③F y (x 0, y 0) ≠ 0.则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的函数y = y (x )满足: (i) y 0 = y (x 0), F (x , y (x )) ≡ 0, ∀x ∈N (x 0, δ ).(ii) 在N (x 0, δ )中, 函数y = y (x )有连续的导数, 且yxF F y −=′ (2) 设n +1元函数F (x 1, x 2, …, x n , y )满足下列条件:①),,,,(21y x x x F n x i (i = 1, 2, …, n ), F y (x 1, x 2, …, x n , y )在点M 0的某邻域内连续. ②F (M 0, y 0) = 0, ③F y (M 0, y 0) ≠ 0.则存在点M 0的一个邻域N (M 0, δ )以及在N (M 0, δ )内定义的唯一的一个n 元函数 y = y (x 1, x 2, …, x n )满足: (i) y 0 = y (M 0),且F (x 1, x 2, …, x n , y (x 1, x 2, …, x n )) ≡ 0, ∀( x 1, x 2, …, x n )∈N (M 0, δ ). (ii) y = y (x 1, x 2, …, x n )在N (M 0, δ )中有一阶连续偏导数, 且y x iF F x yi −=∂∂(i = 1, 2, …, n ).(3) 设三元函数F (x , y , z ), G (x , y , z )满足下列条件:①F x , F y , F z , G x , G y , G z 在点M 0(x 0, y 0, z 0)的某邻域内连续.②F (x 0, y 0, z 0) = 0, G (x 0, y 0, z 0) = 0, ③.00≠M zy z y G G F F则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的一组函数⎩⎨⎧==)()(x z z x y y 满足:(i) y 0 = y (x 0), z 0 = z (x 0), 且⎩⎨⎧≡≡0))(),(,(0))(),(,(x z x y x F x z x y x F ∀x ∈N (x 0, δ ).(ii) y = y (x ), z = z (x )在N (x 0, δ )中均有连续的导数,且,),(),(),(),(d d z y G F x z G F x y ∂∂∂∂=,),(),(),(),(d d z y G F y x G F x z ∂∂∂∂=其中,),(),(x z x z G G F F x z G F =∂∂,),(),(zy zy G G F F z y G F =∂∂.),(),(yx yx G G F F y x G F =∂∂8. 切线方程与法平面方程(1) 设曲线Γ的参数方程为(),(),(),x x t y y t z z t =⎧⎪=⎨⎪=⎩ M 0, M 的坐标分别为(x (t 0), y (t 0), z (t 0)), 则切线方程为)()()(000000t z z z t y y y t x x x ′−=′−=′− 故切向量为a = {x ′(t 0), y ′(t 0), z ′(t 0)}, 法平面的方程为x ′(t 0)(x -x 0) + y ′(t 0) (y -y 0) + z ′(t 0)(z -z 0) = 0. (2) 设曲线Γ的方程为⎩⎨⎧==),(),(x z z x y y 则点))(),(,(0000x z x y x M 处的切线方程为)()()()(100000x z x z z x y x y y x x ′−=′−=− 法平面方程为:(x -x 0) + y ′(x 0) (y -y (x 0)) + z ′(t 0)(z -z (x 0)) = 0.(3) 设曲线Γ的方程为⎩⎨⎧==,0),,(,0),,(z y x G z y x F 它确定⎩⎨⎧==),(),(x z z x y y 则点M 0处的切线方程为:00),(),(),(),(),(),(000M M M y x G F z z x z G F y y z y G F x x ∂∂−=∂∂−=∂∂−法平面方程为:.0)(),(),()(),(),()(),(),(000000=−∂∂+−∂∂+−∂∂z z y x G F y y x z G F x x z y G F M M M9. 切平面方程与法线方程(1) Σ: F (x , y , z ) = 0在点M 0(x 0, y 0, z 0)处的切平面方程为,0))(())(())((000000=−+−+−z z M F y y M F x x M F z y x法线方程为)()()(000000M F z z M F y y M F x x z y x −=−=−(2) Σ: z = f (x , y )在点M 0(x 0, y 0, z 0)处的切平面方程为,0)())(,())(,(0000000=−−−+−z z y y y x f x x y x f y x法线方程为1),(),(0000000−−=−=−z z y x f y y y x f x x y x10. 多元函数的Taylor 公式设二元函数f (x , y )在点M 0(x 0, y 0)的某邻域N (M 0)内有n +1阶连续偏导数. 则 ∀M (x 0+∆x , y 0+∆y )∈N (M 0), 有),(00y y x x f ∆+∆+),()(),(0000y x f y y x x y x f ∂∂⋅∆+∂∂⋅∆+= +∂∂⋅∆+∂∂⋅∆+),((!21002y x f yy x x),()(!100y x f y y xx n n ∂∂⋅∆+∂∂⋅∆+),()()!1(1001y y x x f y y x x n n ∆+∆+∂∂⋅∆+∂∂⋅∆+++θθ 其中0<θ <1.上式称为二元函数f (x , y )在点M 0处带有Lagrange 型余项的n 阶Taylor 公式. 特殊情形 (1) 中值公式),(00y y x x f ∆+∆+y y y x x f x y y x x f y x f y x ∆∆+∆++∆∆+∆++=),(),(),(000000θθθθ其中0<θ <1.(2) 一阶Taylor 公式),(00y y x x f ∆+∆+),((),(0000y x f y y xx y x f ∂∂⋅∆+∂∂⋅∆+=),()(21002y y x x f yy x x ∆+∆+∂∂⋅∆+∂∂⋅∆+θθ0],[),(00M y x f f y x y x f ⎥⎦⎤⎢⎣⎡∆∆+=⎥⎦⎤⎢⎣⎡∆∆∆∆+y x M H y x f )(],[21*其中M *(x 0+θ∆x , y 0+θ∆y ), 0<θ <1, H f (M )为f 在点M (x , y )处的Hessian 矩阵.⎥⎥⎦⎤⎢⎢⎣⎡yy xy xy xx f f f f(3) Maclaurin 公式f (x , y ) = f (0, 0)∑=∂∂+∂∂⋅+nk k f y y x x k 1)0,0()(!1),(()!1(11y x f y y x x n n ∆∆∂∂⋅+∂∂⋅+++θθ, 其中0<θ <1.七. 数量函数积分1. 数量函数积分的定义 ∫Ω f (M )d Ω = 01lim()nkk d k f M→=∆Ω∑.2. 数量函数积分的性质(1) ∫Ω [a f (M ) + b g (M )]d Ω = a ∫Ω f (M )d Ω + b ∫Ω g (M )d Ω, 其中a , b 为常数.(2) ∫Ω f (M )d Ω = ∫Ω1 f (M )d Ω + ∫Ω2 f (M )d Ω, 其中Ω = Ω1∪Ω2, 且Ω1与Ω2无公共内点. (3) f (M ) ≤ g (M ) (∀M ∈Ω) ⇒ ∫Ω f (M )d Ω ≤ ∫Ω g (M )d Ω. (4) |∫Ω f (M ) d Ω| ≤ ∫Ω | f (M )|d Ω.(5) a ≤ f (M ) ≤ b (∀M ∈Ω) ⇒ aV ≤ ∫Ω f (M )d Ω ≤ bV , 其中V 为Ω的度量. (6) f (M ) ∈ C Ω ⇒ ∃M ∗∈Ω s.t. ∫Ω f (M )d Ω = f (M ∗)V , 其中V 为Ω的度量. 3. 直角坐标系下的二重积分的计算(1) D = {(x , y ) | a ≤ x ≤ b , ϕ1(x ) ≤ y ≤ ϕ2(x )}, 则∫∫D f (x , y )d σ =21()()d (,)d bx ax x f x y y ϕϕ∫∫.(2) D = {(x , y ) | c ≤ y ≤ d , ψ1(y ) ≤ x ≤ ψ2(y )}, 则∫∫D f (x , y )d σ =21()()d (,)d dy cy y f x y x ψψ∫∫.4. 二重积分换元法设函数f (x , y )在有界闭区域D 上连续, x = ϕ(u , v ) 和 y = ψ(u , v )有一阶连续偏导数, 且Jacobi 行列式J (u , v ) =(,)(,)x y u v ∂∂=u vu vϕϕψψ≠ 0,则 ∫∫D f (x , y )d x d y = ∫∫D f (ϕ(u , v ), ψ(u , v ))|J (u , v )|d u d v .5. 极坐标系下二重积分的计算令x = ρcos ϕ, y = ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (ρcos ϕ, ρsin ϕ)ρd ρd ϕ. (1) 极点O 在D 的外部D = {(ϕ, ρ) | α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ)}, 则∫∫D f (x , y )d x d y =21()()d (cos ,sin )d f βρϕαρϕϕρϕρϕρρ∫∫.(2) 极点O 在D 的边界曲线上D = {(ϕ, ρ) | α ≤ ϕ ≤ β, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =()d (cos ,sin )d f βρϕαρϕρϕρϕρ∫∫.(3) 极点O 在D 的内部D = {(ϕ, ρ) | 0 ≤ ϕ ≤ 2π, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =2()d (cos ,sin )d f πρϕϕρϕρρρϕ∫∫.6. 广义极坐标变换令x = a ρcos ϕ, y = b ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (a ρcos ϕ, b ρsin ϕ)ab ρd ρd ϕ. 7. 直角坐标系下三重积分的计算(1) Ω = {(x , y , z ) | (x , y ) ∈ D xy , z 1(x , y ) ≤ z ≤ z 2(x , y )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d xyz x y z x y D f x y z z x y ∫∫∫. (2) Ω = {(x , y , z ) | (y , z ) ∈ D yz , x 1(y , z ) ≤ x ≤ x 2(y , z )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d yzx y z x y z D f x y z x y z ∫∫∫.(3) Ω = {(x , y , z ) | (z , x ) ∈ D zx , y 1(z , x ) ≤ y ≤ y 2(z , x )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d zxy z x y z x D f x y z y z x ∫∫∫.(4) Ω = {(x , y , z ) | (x , y ) ∈ D (z ), p ≤ z ≤ q }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d qpD z f x y z x y z ∫∫∫. (5) Ω = {(x , y , z ) | (y , z ) ∈ D (x ), a ≤ x ≤ b }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d ba D x f x y z y z x ∫∫∫. (6) Ω = {(x , y , z ) | (z , x ) ∈ D (y ), c ≤ y ≤ d }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d d cD y f x y z z x y ∫∫∫.8. 柱面坐标系下三重积分的计算令x = ρcos ϕ, y = ρsin ϕ, z = z , 则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ρcos ϕ, ρsin ϕ, z )ρd ϕd ρd z . 9. 球面坐标系下三重积分的计算令x = r sin θcos ϕ, y = r sin θsin ϕ, z = r cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (r sin θcos ϕ, r sin θsin ϕ, r cos θ)r 2sin θd r d θd ϕ. 10. 广义球坐标系下三重积分的计算令x = ar sin θcos ϕ, y = br sin θsin ϕ, z = cr cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ar sin θcos ϕ, br sin θsin ϕ, cr cos θ)abcr 2sin θd r d θd ϕ.11. 第一型曲线积分的计算(1) L : y = y (x ) ∈(1)[,]C,a b 则 ∫L f (x , y )d s=(,(baf x y x x ∫.(2) L : x = x (y ) ∈(1)[,]C ,c d 则 ∫L f (x , y )d s=((),dcf x y y y ∫.(3) L : x = x (t ), y = y (t ) ∈(1)[,]C ,αβ 则 ∫L f (x , y )d s=((),(f x t y t t βα∫.(4) L : ρ = ρ(ϕ) ∈(1)[,]C,αβ 则 ∫L f (x , y )d s=(()sin ,()cos f βαρϕϕρϕϕϕ∫.(5) L : x = x (t ), y = y (t ), z = z (t ) ∈(1)[,]C ,αβ 则∫L f (x , y , z )d s=((),(),(.f x t y t z t t βα∫12. 第一型曲面积分的计算(1) 设Σ: z = z (x , y )分片光滑, f 在Σ上连续, Σ在xOy 平面上的投影区域为D xy ,则∫∫Σ f (x , y , z )d A=(,,(,d xyD f x y z x y x y ∫∫.(2) 设Σ: y = y (z , x )分片光滑, f 在Σ上连续, Σ在zOx 平面上的投影区域为D zx ,则∫∫Σ f (x , y , z )d A=(,(,),d zxD f x y z x z z x ∫∫.(3) 设Σ: x = x (y , z )分片光滑, f 在Σ上连续, Σ在yOz 平面上的投影区域为D yz ,则∫∫Σ f (x , y , z )d A=((,),,d yzD f x y z y z y z ∫∫.13. 线密度为µ(x , y )的平面曲线段L 的质心坐标(x ,y )(,)d (,)d LLx x y s x x y s µµ=∫∫,(,)d (,)d LLy x y s y x y sµµ=∫∫.14. 面密度为µ(x , y )的平面薄片D 的质心坐标(x ,y )(,)d d (,)d d DDx y x y x x y x y x µµ=∫∫∫∫,(,)d d (,)d d DDx y x y y x y x yy µµ=∫∫∫∫. 15. 密度为µ(x , y , z )的空间立体Ω的质心坐标(x ,y ,z )(,,)d d d (,,)d d d x y z x y z x x y z x y x z µµΩΩ=∫∫∫∫∫∫,(,,)d d d (,,)d d d x y z x y z y x y z x y y z µµΩΩ=∫∫∫∫∫∫, (,,)d d d (,,)d d d x y z x y z z x y z x y z zµµΩΩ=∫∫∫∫∫∫.16. 线密度为µ(x , y )的平面曲线段L 对x 轴的转动惯量I x = ∫L y 2µd s , 对y 轴的转动惯量I y = ∫L x 2µd s . 17. 面密度为µ(x , y )的平面薄片D 对x 轴的转动惯量I x = ∫∫D y 2µd σ, 对y 轴的转动惯量I y = ∫∫D x 2µd σ. 18. 密度为µ(x , y , z )的空间立体Ω关于x 轴, y 轴, z 轴的转动惯量I x , I y , I z .I x = ∫∫∫Ω (y 2+ z 2)µd x d y d z , I y = ∫∫∫Ω (z 2+ x 2)µd x d y d z , I z = ∫∫∫Ω (x 2+ y 2)µd x d y d z .19. 线密度为µ(x , y )的平面曲线段 L 对位于L 外的点M 0(x 0, y 0)处的单位质点的引力F 的两个分量F x =03()(,)d L k x x x y s r µ−∫, F y =03()(,)d L k y y x y s rµ−∫, 其中k 为引力常数, r20. 面密度为µ(x , y , z )的曲面块Σ对Σ外的一点M 0(x 0, y 0, z 0)处单位质点的引力F 的三个分量F x =03()d k x x A r µΣ−∫∫, F y =03()d k y y A r µΣ−∫∫, F z =03()d k z z A rµΣ−∫∫,。

初中高中数学定理公式大全

初中高中数学定理公式大全

初中高中数学定理公式大全1.代数运算定理:-加法交换律:a+b=b+a-减法交换律:a-b≠b-a-乘法交换律:a×b=b×a-除法交换律:a÷b≠b÷a-分配律:a×(b+c)=a×b+a×c2. 平方差公式:(a + b)² = a² + 2ab + b²3. 平方和公式:(a - b)² = a² - 2ab + b²4. 一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / (2a)5. 正弦定理:a/sinA = b/sinB = c/sinC6. 余弦定理:c² = a² + b² - 2abcosC7. 对数公式:loga(ab) = loga(a) + loga(b)8.指数公式:a^m×a^n=a^(m+n)9.相反数的求法:-(-a)=a10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n12.绝对值公式:,a×b,=,a,×,b13.分式的乘法公式:(a/b)×(c/d)=(a×c)/(b×d)14.微积分的基本定理:积分与微分是互逆的15.等腰三角形的定理:等腰三角形的底角相等,等腰三角形的两底边相等16.等边三角形的定理:等边三角形的三边相等,等边三角形的三个内角都是60度17.三角函数的和差化积公式:- 正弦的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB- 余弦的和差化积公式:cos(A ± B) = cosAcosB ∓ sinAsinB18.直角三角形的勾股定理:a²+b²=c²19.等角三角函数的关系式:- 正弦和余弦的关系式:sin²θ + cos²θ = 1- 正切和余切的关系式:tanθ × cotθ = 120.对数函数的性质:-对数函数的底数必须大于0且不等于1- 对数函数的性质:loga(b × c) = loga(b) + loga(c)。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

小学数学全部公式定理

小学数学全部公式定理

小学数学全部公式定理小学数学的全部公式和定理非常多,以下列举了一些常见的:1.十以内加减法口诀:-一加一等于二,一加二等于三,依此类推。

-二减一等于一,三减一等于二,依此类推。

2.乘法口诀表:-一乘一等于一,一乘二等于二,依此类推。

-九乘九等于八十一,依此类推。

3.两个数的和与差:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²4.两个数的积:-(a+b)×(a-b)=a²-b²5.任意数的乘方:-aⁿ×aᵐ=aⁿ⁺ᵐ-(aⁿ)ᵐ=aⁿᵐ6.分数的加减:- (a/b) + (c/d) = (ad + bc) / (bd)- (a/b) - (c/d) = (ad - bc) / (bd)7.分数的乘除:-(a/b)×(c/d)=(a×c)/(b×d)-(a/b)÷(c/d)=(a×d)/(b×c)8.面积公式:-长方形的面积:面积=长×宽-正方形的面积:面积=边长×边长-三角形的面积:面积=底×高/2-圆的面积:面积=π×半径²9.周长公式:-长方形的周长:周长=(长+宽)×2-正方形的周长:周长=边长×4-三角形的周长:周长=边a+边b+边c-圆的周长:周长=2×π×半径10.周期公式:-一年的秒数:365天×24小时×60分钟×60秒-一天的秒数:24小时×60分钟×60秒-一小时的秒数:60分钟×60秒-一分钟的秒数:60秒。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全1.代数公式- 两个数的乘积等于它们的积:ab = ba- 两个数乘积的倒数等于它们的倒数的乘积:(ab)^-1 = a^-1 * b^-1- 两个数的平方和等于它们的平方和的两倍加上它们的积:(a + b)^2 = a^2 + 2ab + b^2- 两个数的平方差等于它们的平方差的两倍减去它们的积:(a -b)^2 = a^2 - 2ab + b^22.平面几何定理- 锐角三角形的三条边的平方之和等于两倍的三个角的余弦值之和:a^2 + b^2 + c^2 = 2(abcosC + bccosA + cacosB)-三角形内角和定理:三角形的三个内角的和等于180度:A+B+C=180度-等腰三角形底角定理:等腰三角形的底角等于顶角的一半:A=B/2 -相似三角形的对应边成比例:a/b=c/d3.空间几何定理-空间直角三角形的斜边的平方等于两个直角边的平方的和:c^2=a^2+b^2-空间三角形内角和定理:空间三角形的三个内角的和等于180度:A+B+C=180度-垂直平分线定理:平面内相交的两条直线的垂直平分线互相垂直4.数列与数学归纳法-等差数列的通项公式:an = a1 + (n - 1)d-等差数列的前n项和公式:Sn = (n/2)(a1 + an)-等比数列的通项公式:an = a1 * r^(n - 1)-等比数列的前n项和公式(当r不等于1时):Sn=a1*(1-r^n)/(1-r) -数学归纳法:若数学命题在数的一部分上成立且下一部分数的成立是依赖于上一部分数的成立,则该数学命题在全体正整数上成立5.概率-事件的概率:P(A)=n(A)/n(S),其中n(A)表示事件A中的有利结果数,n(S)表示样本空间中的总结果数-互斥事件的概率和:P(A+B)=P(A)+P(B),其中A和B是互斥事件- 事件的相对频率概率:P(A) = lim(n(A) / n),其中n表示试验次数6.函数- 一次函数的解析式:y = kx + b,其中k表示斜率,b表示截距- 二次函数的解析式:y = ax^2 + bx + c,其中a表示二次项系数,b表示一次项系数,c表示常数项这只是初中数学常用的一些公式和定理的简要介绍,数学含有广泛且深奥的知识。

数学公式定理大全(最新版)

数学公式定理大全(最新版)

一、图形周长、面积公式1.正方形的面积=边长×边长S= a×a正方形的周长=边长×4 C=4a边长=周长÷42.长方形的面积=长×宽S= a×b长方形的周长=(长+宽)×2 C=(a+b)×2 长=周长÷2-宽宽=周长÷2-长3.平行四边形的面积=底×高S= a×h底=面积÷高高=面积÷底4. 三角形的面积=底×高÷2 S= a ×h÷2底=面积×2÷高高=面积×2÷底5.梯形的面积=(上底+下底)×高÷2 S=(a+b) h÷2高=面积×2÷(上底+下底)6.内角和:三角形的内角和=180度7.长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 长方体体积=长×宽×高V=abh8.正方体的体积=棱长×棱长×棱长 V=a3正方体的表面积=棱长×棱长×6 S=6a29. 长方体(或正方体)的体积=底面积×高 V=Sh长方体(或正方体)的体积=横截面的面积×长10.圆的半径=直径÷2 直径=半径×2圆的周长=直径×πC=πd=2πr11.圆的面积=半径×半径×πS=πr212.圆柱的表(侧)面积等于底面的周长乘高 S=C h=πdh=2πr 13.圆柱的表面积等于底面的周长乘高再加上两头的圆的面积S=Ch+2S=C h+2πr214.圆柱的体积:圆柱的体积等于底面积乘高 V=Sh 15.圆锥的体积=1/3底面积×高V=1/3Sh二、单位进率换算长度单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位换算1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积、容积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1公顷=10000平方米1平方千米=100公顷1平方千米=1000000平方米1升=1立方分米=1000毫升1毫升=1立方厘米重量换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月1日=24小时1时=60分1分=60秒1时=3600秒大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天三、数量关系式1.单价×数量=总价单价=总价÷数量数量=总价÷单价2.单产量×数量=总产量单产量=总产量÷数量数量=总产量÷单产量3.速度×时间=路程速度=路程÷时间时间=路程÷速度4.工效×时间=工作总量工效=工总÷时间时间=工总÷工效5.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)四、概念部分1、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初中数学定理公式大全

初中数学定理公式大全

初中数学定理公式大全1. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

2. 三角形内角和定理:三角形内角和等于180°。

3. 同位角定理:平行线上的同位角相等;同位角的和等于180°。

4. 对顶角定理:对顶角相等。

5. 中线定理:三角形中线的长度等于其对边的一半。

6. 垂线定理:平行四边形中,对角线互相垂直。

7. 圆的面积公式:圆的面积等于πr²(r为半径)。

8. 圆的周长公式:圆的周长等于2πr(r为半径)。

9. 三角形面积公式:三角形的面积等于底边长度乘以高的一半。

10. 等腰三角形定理:等腰三角形的底角相等。

11. 相交弧定理:相交弧所对的圆心角相等。

12. 弧长公式:弧长等于圆心角的大小(弧度制)乘以半径。

13. 直线与圆的交点定理:垂直于半径的直线与圆相交于圆上的点。

14. 三视图投影定理:物体的三视图投影分别从正面、左侧面和上面观察时所得的形状组成的图形。

15. 垂直平分线定理:平面上任意一点到直线的垂线长度相等的点都在这条直线的垂直平分线上。

16. 二次函数顶点公式:二次函数的顶点坐标为(-b/2a,c-b²/4a)。

17. 三角恒等式:正弦定理、余弦定理和正切定理等。

18. 多面体欧拉定理:V-E+F=2(V,E,F分别为多面体的顶点数、边数和面数)。

19. 相似三角形定理:两个三角形如果对应角相等,则它们相似。

20. 圆锥体积公式:圆锥的体积等于1/3Πr²h(r为底面半径,h为高)。

21. 球体积公式:球的体积等于4/3Πr³(r为半径)。

22. 立方体积公式:立方体的体积等于边长的立方。

23. 直角梯形面积公式:直角梯形的面积等于上底加下底乘以高的一半。

24. 点到直线的距离公式:点到直线的距离等于点到直线的垂线长度。

25. 矩形面积公式:矩形的面积等于长乘以宽。

以上是初中数学定理公式大全,掌握这些定理和公式对初中数学学习非常重要。

初中数理化公式定律大全

初中数理化公式定律大全

初中数理化公式定律大全一、数学公式定律1.二次方程的求解公式(欧拉公式):对于二次方程ax^2 + bx + c = 0,其求解公式为:x = (-b ±√(b^2-4ac))/(2a)2.勾股定理:直角三角形中,a^2+b^2=c^2,其中a和b为直角边的长度,c为斜边的长度。

3.三角函数的基本关系:对于任意角θ(θ为弧度制),sin^2θ + cos^2θ = 1,tanθ = sinθ/cosθ。

4.等差数列求和公式:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数,其和Sn的求解公式为:Sn = (n/2)(a1 + an)5.等比数列求和公式:对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数,其和Sn的求解公式为:Sn=a1*(r^n-1)/(r-1)6.梯形面积公式:对于梯形的上底a,下底b和高h,其面积S的求解公式为:S=(a+b)*h/27.三角形面积公式:对于三角形的底边长b和高h,其面积S的求解公式为:S=b*h/28.圆的周长和面积公式:对于圆的半径r,其周长C和面积A的求解公式分别为:C=2πr,A=πr^29.定积分的定义:对于函数f(x)在区间[a,b]上的定积分的定义为:∫[a, b] f(x)dx = lim(n→∞) Σ(k=1→n) f(xk)Δx,其中Δx = (b-a)/n,xk为[a+(k-1)Δx, a+kΔx]上的任意一点。

10.泰勒级数展开:对于函数f(x)在x=a处的泰勒级数展开为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...二、物理公式定律1.牛顿第一定律(惯性定律):任何物体都保持静止或匀速直线运动,直到外力强迫其改变状态。

2.牛顿第二定律(运动定律):物体所受合力等于质量与加速度的乘积,即 F = ma,其中F为合力,m为物体质量,a为加速度。

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。

3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。

5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。

6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。

7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。

8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。

9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。

10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。

11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。

12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。

13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。

14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。

15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。

16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。

初中数学公式定理大全推荐文档

初中数学公式定理大全推荐文档

初中数学公式定理大全推荐文档
一、有关数值的基本定理
1、比例定理:如果两个量满足比例关系:A:B=C:D,那么,A:B=E:F,A:C=B:D=E:F。

2、等比数列:一个数列中,任何一项与它的前一项的比值相等,则
这个数列称为等比数列。

3、等比定理:在等比数列中,任意两项的积等于它们的公比的平方。

4、等差数列:一个数列中,任何一项与它的前一项的差相等,则这
个数列称为等差数列。

5、等差定理:在等差数列中,任意两项的差等于它们的公差。

6、平方和定理:若一个数列的平方和是已知数,则这个数列称为平
方和定理。

二、图形定义
1、直线:平面上两点之间的无限小的线段,它们的坐标值不同,这
个线段就是直线。

2、射线:平面上一点到另一点之间,只有一个方向的无限小的线段,它们的坐标值不同,这个线段就是射线。

3、线段:平面上一点到另一点之间,有两个方向的有限的线段,它
们的坐标值不同,这个线段就称为线段。

4、点:平面上有两个不同的位置,它们的坐标值不同,这个点就是点。

5、圆:圆心到任意一点的距离都等于半径,这个圆就是圆。

6、圆弧:圆心到任意一点的距离都小于半径,这个弧就是圆弧。

高等数学公式大全-高等数学宝典

高等数学公式大全-高等数学宝典

高等数学公式(一)三角函数公式系列平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·ta nγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/Bsin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三倍角公式sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2三角函数的角度换算公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)(二)微积分公式系列导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

数学公式宝典范文

数学公式宝典范文

数学公式宝典范文一、代数公式:1.两数相乘公式:(a + b)^2 = a^2 + 2ab + b^22.二次方程求根公式:ax^2 + bx + c = 0的根为 x = (-b ± √(b^2 - 4ac))/(2a)3.因式分解公式:a^2-b^2=(a+b)(a-b)4.完全平方公式:a^2 + 2ab + b^2 = (a + b)^25.平方差公式:a^2 - 2ab + b^2 = (a - b)^2二、几何公式:1.圆的面积公式:A=πr^22.圆的周长公式:C=2πr3.长方形的面积公式:A=l×w4.长方形的周长公式:C=2l+2w5.三角形的面积公式:A=1/2×b×h三、三角函数公式:1.正弦定理:a/sinA = b/sinB = c/sinC2.余弦定理:a^2 = b^2 + c^2 - 2bc·cosA3.正切定理:tanA = sinA/cosA四、微积分公式:1.导数公式:(u+v)'=u'+v'2.乘法法则:(uv)' = u'v + uv'3.除法法则:(u/v)' = (u'v - uv')/v^24.链式法则:(f(g(x)))'=f'(g(x))·g'(x)五、概率公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)·P(B,A)这些公式只是数学中的冰山一角,但它们可以帮助我们解决很多实际问题,也是我们学习和研究数学的基石。

希望通过这些公式的介绍,能够对大家的数学学习、解题过程有所帮助。

除了公式,数学还有很多重要的定理。

以下是一些著名的数学定理:一、费马大定理:费马大定理或费马最后定理是法国数学家皮埃尔·德·费尔马在1637年提出的一个整数论问题,它断言:当n大于2时,同余式x^n+y^n=z^n没有正整数解。

数学公式宝典

数学公式宝典

数学公式宝典数学公式宝典是数学学习和研究中重要的参考工具之一、在这本宝典中,收录了许多数学领域的公式,为学生和研究者提供了方便快捷的查询和使用方式。

下面将介绍几个数学领域中的重要公式。

1.代数公式:- 二次方程求根公式:对于二次方程ax^2+bx+c=0,其根的公式为x=(-b±√(b^2-4ac))/2a。

这个公式可以帮助我们求解二次方程的解。

-四则运算法则:加法、减法、乘法和除法是代数运算中常用的四种基本运算。

这些运算有相应的公式,如加法公式(a+b=c)、减法公式(a-b=c)、乘法公式(a*b=c)和除法公式(a/b=c)等。

2.几何公式:-勾股定理:对于一个直角三角形,其两个直角边的平方和等于斜边的平方,即a^2+b^2=c^2、这个公式在解决直角三角形问题中经常使用。

-圆的面积公式:圆的面积公式为A=πr^2,其中A表示圆的面积,r表示圆的半径。

这个公式可以用来求解圆形的面积。

3.微积分公式:-导数公式:导数表示函数在其中一点的变化率,对于函数f(x),其导数可以表示为f'(x)。

常用的导数公式包括常数函数导数、幂函数导数、指数函数导数、对数函数导数等。

-积分公式:积分是导数的逆运算,表示函数在一定区间上的累积变化量。

常用的积分公式有不定积分公式(求解原函数)和定积分公式(计算曲线下的面积)等。

4.概率与统计公式:-概率公式:概率是描述事件发生可能性的数值,常用的概率公式包括加法法则、乘法法则、全概率公式和贝叶斯定理等。

-统计学公式:统计学是研究收集、整理、分析和解释数据的科学,常用的统计学公式包括均值、中位数、标准差、相关系数等。

这里只是简单介绍了一些数学领域中的公式,实际上数学公式宝典中的内容非常丰富。

数学公式宝典是数学学习和研究的重要工具,能够帮助人们更便捷地理解和应用数学知识。

通过学习和掌握这些公式,可以更好地解决数学问题、推导数学结论,进一步提高数学能力和应用水平。

初中数学公式定理大集合

初中数学公式定理大集合

初中数学公式定理大集合初中数学是学习数学的基础阶段,其中有许多重要的公式和定理需要掌握。

下面是初中数学公式定理的大集合,详细介绍了每个公式和定理的内容和应用。

希望对你的学习有所帮助。

一、整式的加减乘除法1.加法和减法法则(a+b)+c=a+(b+c)a+b=b+aa+0=aa+(-a)=02.乘法法则a×(b+c)=a×b+a×ca×b=b×aa×1=aa×0=03.除法法则(a+b)÷c=a÷c+b÷c(a×b)÷c=a÷c×b二、一元一次方程与不等式1.方程的定义和性质方程是两个代数式(通常是整式)相等的等式。

方程的解是使方程成立的未知量的值。

2.一元一次方程的解法使用解方程的基本性质,如变量移项,合并同类项,因式分解等来求解。

3.一元一次不等式的解法根据不等式的性质,如加减乘除规则,应用代数方法求解。

4.绝对值不等式的解法根据绝对值的性质,将绝对值不等式转化为条件不等式来求解。

三、一元二次方程与不等式1.一元二次方程的定义和性质形如ax² + bx + c = 0的方程称为一元二次方程。

一元二次方程可以有0、1或2个实数根。

2.一元二次方程的求根公式一元二次方程ax² + bx + c = 0的解是x = (-b ± √(b² - 4ac)) / (2a)。

3.一元二次不等式的解法将不等式转化为二次方程,然后解方程来求解。

四、平面图形的面积和体积1.三角形的面积公式三角形的面积等于底乘以高的一半,即S = 1/2bh。

2.长方形的面积公式长方形的面积等于长度乘以宽度,即S = lw。

3.正方形的面积公式正方形的面积等于边长的平方,即S=a²。

4.梯形的面积公式梯形的面积等于上底加下底乘以高的一半,即S=(a+b)h/25.圆的面积公式圆的面积等于半径的平方乘以π,即S=πr²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m i n m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质 (1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a am nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b yc ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02pCF x =+.过焦点弦长p x x px p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔ (1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB = 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r 分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅= (m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式dd =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n n n n n nA A A ++=-; (5)11m m m n n nA A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m=⋅=-.159.“错位问题”及其推广。

相关文档
最新文档