数学知识点-学年八年级数学上学期期末联考试题(A卷) (新人教版 第16套)-总结
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。
人教版八年级数学上册期末试卷及参考答案
人教版八年级数学上册期末试卷及参考答案,感觉复习不怎么样的你,也不要浮躁,要知道临阵磨枪,不快也光。
诚心祝愿你考场上“亮剑”,为自己,也为家人!祝你八年级数学期末考试成功!下面是店铺为大家精心推荐的人教版八年级数学上册期末试卷,希望能够对您有所帮助。
人教版八年级数学上册期末试题一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列命题中,假命题是( )A.9的算术平方根是3B. 的平方根是±2C.27的立方根是±3D.立方根等于﹣1的实数是﹣12.下列命题中,假命题是( )A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则b⊥cC.互补的角是邻补角D.邻补角是互补的角3.下列长度的线段中,能构成直角三角形的一组是( )A. ,,B.6,7,8C.12,25,27D.2 ,2 ,44.下列计算正确的是( )A. B. C.(2﹣ )(2+ )=1 D.5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A. B. C. D.7.方程组的解为,则被遮盖的两个数分别是( )A.1,2B.5,1C.2,﹣1D.﹣1,98.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )A.4B.8C.12D.209.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.大小关系不能确定10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )A.10cmB.12cmC.19cmD.20cm二、填空题(本大题共8小题,每小题3分共24分)11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为件.12.若点A(m,5)与点B(2,n)关于原点对称,则3m+2n的值为.13.有四个实数分别为32,,﹣23,,请你计算其中有理数的和与无理数的积的差,其结果为.14.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.15.等腰直角三角形ABC的直角顶点C在y轴上,AB在x轴上,且A在B的左侧,AC= ,则A点的坐标是.16.已知 +(x+2y﹣5)2=0,则x+y= .17.如图,点D在△ABC边BC的延长线上,DE⊥AB于E,交AC 于F,∠B=50°,∠CFD=60°,则∠ACB=.18.已知A地在B地的正南方3km,甲、乙两人同时分别从A、B 两地向正北方向匀速行驶,他们与A地的距离s(km)和所行的时间t(h)之间的函数关系如图所示,当他们行进3h时,他们之间的距离为km.三、(本大题共7小题,19题8分,第20,21,22,23,24小题各6分,25小题8分,共44分)19.(1)计算:3 + ﹣4(2)解方程组: .20.如图,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(BC)有5米.求旗杆的高度.21.已知:如图,AB∥CD,AD∥BC,∠1=50°,∠2=80°.求∠C的度数.22.甲、乙两名同学参加学校组织的100米短跑集训,教练把10天的训练结果用折线图进行了记录.(1)请你用已知的折线图所提供的信息完成下表:平均数方差 10天中成绩在15秒以下的次数甲 15 2.6 5乙(2)学校欲从两人中选出一人参加市中学生运动会100米比赛,请你帮助学校作出选择,并简述你的理由.23.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?24.小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)当50≤x≤80时,求y与x的函数关系式;(3)小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点时,小亮行走的路程是多少?25.已知△ABC,(1)如图1,若D点是△ABC内任一点、求证:∠D=∠A+∠ABD+∠ACD.(2)若D点是△ABC外一点,位置如图2所示.猜想∠D、∠A、∠ABD、∠ACD有怎样的关系?请直接写出所满足的关系式.(不需要证明)(3)若D点是△ABC外一点,位置如图3所示、猜想∠D、∠A、∠ABD、∠ACD之间有怎样的关系,并证明你的结论.人教版八年级数学上册期末试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分,每小题只有一个正确答案)1.下列命题中,假命题是( )A.9的算术平方根是3B. 的平方根是±2C.27的立方根是±3D.立方根等于﹣1的实数是﹣1【考点】立方根;算术平方根;命题与定理.【分析】分别对每个选项作出判断,找到错误的命题即为假命题.【解答】解:A、9的算术平方根是3,故A选项是真命题;B、 =4,4的平方根是±2,故B选项是真命题;C、27的立方根是3,故C选项是假命题;D、﹣1的立方根是﹣1,故D选项是真命题,故选C.【点评】本题考查了立方根和算术平方根的定义,属于基础题,比较简单.2.下列命题中,假命题是( )A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则b⊥cC.互补的角是邻补角D.邻补角是互补的角【考点】命题与定理.【分析】根据邻补角的性质及常用的知识点对各个命题进行分析,从而得到正确答案.【解答】解:A、垂直于同一条直线的两直线平行,是真命题,不符合题意;B、已知直线a、b、c,若a⊥b,a∥c,则b⊥c,是真命题,不符合题意;C、互补的角不一定是邻补角,是假命题,符合题意;D、邻补角是互补的角,是真命题,不符合题意.故选:C.【点评】此题主要考查了命题与定理,熟练掌握相关定理是解题关键.3.下列长度的线段中,能构成直角三角形的一组是( )A. ,,B.6,7,8C.12,25,27D.2 ,2 ,4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、( )2+( )2≠( )2,故不是直角三角形,此选项错误;B、62+72≠82,故不是直角三角形,此选项错误;C、122+252≠272,故不是直角三角形,此选项错误;D、(2 )2+(2 )2=(4 )2,故是直角三角形,此选项正确.故选:D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.下列计算正确的是( )A. B. C.(2﹣ )(2+ )=1 D.【考点】二次根式的加减法;二次根式的性质与化简;二次根式的乘除法.【分析】根据二次根式的运算法则,逐一计算,再选择.【解答】解:A、原式=2 ﹣ = ,故正确;B、原式= = ,故错误;C、原式=4﹣5=﹣1,故错误;D、原式= =3 ﹣1,故错误.故选A.【点评】根式的加减,注意不是同类项的不能合并.计算二次根式时要注意先化简成最简二次根式再计算.5.点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【考点】点的坐标.【分析】根据点P到两坐标轴的距离相等,可得|2﹣a|=|3a+6|,即可求出a的值,则点P的坐标可求.【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选D.【点评】本题考查了点到两坐标轴的距离相等的特点,即点的横纵坐标的绝对值相等.6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A. B. C. D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.7.方程组的解为,则被遮盖的两个数分别是( )A.1,2B.5,1C.2,﹣1D.﹣1,9【考点】二元一次方程组的解.【专题】计算题.【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮住得两个数分别为5,1,故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为( )A.4B.8C.12D.20【考点】算术平均数.【分析】只要运用求平均数公式:即可列出关于d的方程,解出d即可.【解答】解:∵a,b,c三数的平均数是4∴a+b+c=12又a+b+c+d=20故d=8.故选B.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.9.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC=∠AEBC.∠ADC<∠AEBD.大小关系不能确定【考点】三角形的外角性质.【分析】利用三角形的内角和为180度计算.【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴等量代换后有∠ADC=∠AEB.故选B.【点评】本题利用了三角形内角和为180度.10.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约( )A.10cmB.12cmC.19cmD.20cm【考点】平面展开-最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.二、填空题(本大题共8小题,每小题3分共24分)11.在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为 5.5 件.【考点】中位数.【专题】应用题.【分析】根据中位数的定义解答.把数据按大小排列,第3、4个数的平均数为中位数.【解答】解:从小到大排列为:3,4,5,6,6,7.。
人教版数学八年级上册期末考试试卷及答案
人教版数学八年级上册期末考试试题一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x 3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a34.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1 7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD 9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±610.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.1011.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF 12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=.14.化简:=.15.如图,已知∠ACP=115°,∠B=65°,则∠A=.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=cm.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为,点B关于y轴的对称点坐标为.(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.22.(8分)解分式方程.(1)=;(2)=.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.24.(9分)某中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A 作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:;是线段AB的“文明点”为.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.参考答案与试题解析一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:B.3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a3【解答】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、+,故此选项错误;C、(a﹣1)(a+1)=a2﹣1,故此选项正确;D、a6÷a2=a4,故此选项错误;故选:C.4.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13【解答】解:设第三边的长为x,∵三角形两边的长分别是4和8,∴8﹣4<x<8+4,即4<x<12,只有5有可能,故选:B.5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C.7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故本选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故本选项错误;C、一条边对应相等,再加一组直角相等才能得出两三角形全等,故本选项错误;D、当两个直角三角形的两直角边对应相等时,由ASA可以判定它们全等;当一直角边与一斜边对应相等时,由HL判定它们全等,故本选项正确;故选:D.8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD【解答】解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.10.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.10【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是边AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+BD=BC+CD+DA=BC+AC=10,故选:D.11.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5【分析】把已知条件变形得到x﹣2=,两边平方得到x2=4x+1,利用降次的方法得到原式=3x﹣1,然后把x的值代入计算即可.【解答】解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).14.化简:=x.【分析】根据同分母的分式相加减法的法则,求出算式的值是多少即可.【解答】解:===x.故答案为:x.15.如图,已知∠ACP=115°,∠B=65°,则∠A=50°.【分析】根据三角形中一个外角等于与它不相邻的两个内角和求解.【解答】解:∵∠ACP=115°,∠B=65°,∴∠A=∠ACP﹣∠B=115°﹣65°=50°.故答案为:50°.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=4cm.【分析】根据含30度角的直角三角形的性质直接求解即可.【解答】解:根据含30度角的直角三角形的性质可知:BC=AB=4cm.故答案为:4.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为3.【分析】根据作图过程可得AE平分∠CAB,根据角平分线的性质即可得结论.【解答】解:根据作图过程可知:AE平分∠CAB,∵CB=8,BE=5,∴CE=BC﹣BE=8﹣5=3,∵∠C=90°,∴EC⊥AC,∴点E到AB的距离为3.故答案为:3.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为40或75.【分析】设BE=2t,则BF=3t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.【分析】根据二次根式的除法法则、负整数指数幂、绝对值的意义和零指数幂的意义计算.【解答】解:原式=+4+(1﹣)+1=+4+1﹣+1=6.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.【解答】解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2).(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.【分析】(1)根据轴对称的性质解决问题即可.(2)分别作出A,B,C的对应点A1,B1,C1即可.(3)利用分割法求三角形面积即可.【解答】解:(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2)故答案为:(﹣2,﹣3),(3,2).(2)如图,△A1B1C1即为所求作.=4﹣×1×2﹣×1×1﹣×12=1.5.(3)S△ABC22.(8分)解分式方程.(1)=;(2)=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=4x,解得:x=3,检验:当x=3时,2x(x+1)≠0,所以x=3是原分式方程的解;(2)去分母得:x﹣1+2(x+1)=4,解得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,因此x=1是增根,所以原分式方程无解.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.【分析】(1)由SAS证明△ABD≌△ACE即可;(2)先由全等三角形的性质得∠ACE=∠ABD=20°,再由等腰三角形的性质和三角形内角和定理得∠ABC=∠ACB=47°,则∠FBC=∠FCB=27°,即可得出答案.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD=20°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣86°)=47°,∴∠FBC=∠FCB=47°﹣20°=27°,∴∠BFC=180°﹣27°﹣27°=126°.24.(9分)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据“购买两种电脑的总费用不超过34万元,且购进乙种电脑的数量不少于甲种电脑数量的1.5倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【解答】解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.【分析】(1)由非负数的性质可求出x=﹣3,y=3,则可得出答案;(2)由等边三角形的性质得出AB=AC,AO=AD,∠DAO=∠CAB=60°,证明△DAC≌△OAB(SAS),由全等三角形的性质可得出CD=OB,∠ACD=∠ABO=90°,则可得出结论;(3)在AF上取一点P,使得AP=OM=a,连接BP,证明△BAP≌△BOM(SAS),由全等三角形的性质得出∠ABP=∠OBM,BP=BM,证明△FBP≌△FMB(SAS),由全等三角形的性质得出FP=FM=b,则得出c=a+b,结论得证.【解答】解:(1)∵x2+6x+y2﹣6y+18=0,∴(x+3)2+(y﹣3)2=0,∴x+3=0,y﹣3=0,∴x=﹣3,y=3,∴点A的坐标为(﹣3,3);(2)CD=AC,CD⊥AC.理由如下:∵△ABC和△AOD为等边三角形,∴AB=AC,AO=AD,∠DAO=∠CAB=60°,∴∠DAO﹣∠CAO=∠CAB﹣∠CAO,∴∠DAC=∠OAB,∴△DAC≌△OAB(SAS),∴CD=OB,∠ACD=∠ABO=90°,由(1)可知BO=AB=3,又∵AB=AC,∴CD=OB=AB=AC,且CD⊥AC,(3)证明:在AF上取一点P,使得AP=OM=a,连接BP,∵AB=BO,AP=OM,∠PAB=∠MOB=90°,∴△BAP≌△BOM(SAS),∴∠ABP=∠OBM,BP=BM,∵∠ABP+∠PBO=90°,∴∠OBM+∠PBO=90°,又∵△BEN为等腰直角三角形,∴∠FBN=45°,∴∠PBF=90°﹣45°=45°=∠FBN,又∵BF=BF,∴△FBP≌△FMB(SAS),∴FP=FM=b,∴AF=FP+AP,即c=a+b.∴.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB 的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:M1,M3;是线段AB的“文明点”为M1.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.【分析】(1)根据“富强点”,“文明点”的定义判断即可.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.求出点E,F的坐标,根据“民主点”的定义解决问题即可.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,由题意TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标,再根据对称性,求出S的坐标即可.【解答】解:(1)如图中,,根据定义可知:线段AB“富强点”为M1,M3,线段AB的“文明点”为M1.故答案为:M1,M3;M1.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.∵∠OAB=30°,∠AOB=90°,∴∠ABO=60°,又∵EA=EB,∴△ABE是等边三角形,同理可证△ABF也是等边三角形,∴∠AEB=∠AFB=60°,由图可知,E的横坐标为﹣3,F的横坐标为0,当M在点E上方,或M在点F的下方时,满足:0°<∠AMB<60°,∴M的横坐标m的取值范围为:m>0或m<﹣3.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,∵T为线段AB的“富强点”,∴TA=TB,∴TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标.在Rt△ACT′中,∠CAT′=30°,AC=,∴AT′==2,∴OT′=OA﹣AT′=1,∴T′(﹣1,0),在Rt△ABO中,∠OAB=30°,∴OB=AB=,作T′个关于直线AB的对称点S,过点S作SM⊥OA于M,根据对称性,∠SAB=∠OAB =30°,∴∠SAT′=60°,∵∠AT′S=60°,∴△SAT′是等边三角形,∵SM⊥AT′,∴AM=T′M=1,∴SM==,∴所求T′关于直线AB的对称点S的坐标为:(﹣2,).。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上册数学期末考试试卷带答案
人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列式子中,是分式的是()A .1πB .3xC .11x -D .25x3.如图,在△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,则∠ACD=()A .10°B .60°C .70°D .130°4.下列计算正确的是()A .333•2b b b =B .2336ab a b ()=C .3249•a a a ()=D .2224a a (﹣)=﹣5.数据0.000000005用科学记数法表示为()A .5×10﹣8B .5×10﹣9C .0.5×10﹣8D .0.5×10﹣96.下列长度的三条线段中,能组成三角形的是()A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .3cm ,3cm ,5cmD .3cm ,4cm ,8cm 7.若221()4y a y by -=-+,则a 的值可能是()A .14B .14-C .12D .188.在如图所示的钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架,这样实际上可以得到△ABD ≌△ACD ,理由不可能是()A .AAAB .ASAC .SASD .SSS9.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为()A .4B .6C .8D .1010.如图,在△ABC 中,CA 的平分线交BC 于点D ,过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接EF ,则下列结论中,不正确的是()A .∠AEF=∠AFEB .EF ∥BC C .AD 垂直平分EFD .S △BDF :S △CED=BF :CE二、填空题11.分解因式:25x 2﹣16y 2=_____.12.要使分式3m m +有意义,则m 的取值应满足__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.14.如图,ABN ACM ≌,∠B=35°,∠BAM=25°,则∠ANB=____________.15.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且OA 平分∠BAC ,OD=2,则OE=____________.16.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_____度.17.如图,等边△ABC 中,BD ⊥AC 于D ,QD =1.5,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为_____.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题19.计算:434224()(2)x x x x x ⋅⋅++-.20.先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.21.如图,已知∠AOB ,直线MN ∥OA .请根据以下步骤完成作图过程.(1)尺规作图(保留作图痕迹,不写作法);①以点O 为圆心,任意长为半径画弧,交OA ,OB 于点P 、Q ;②以P ,Q 为圆心,大于12PO 长为半径画弧,交于一点K ,连接OK ,交MN 于点L .(2)直接写出∠BOL 和∠AOL 的数量关系.22.小明利用一根长3m 的竿子来测量路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使3m BP =,并测得70APB ∠=︒,然后把竖直的竿子(3m)CD CD =在BP 的延长线上左右移动,使20CPD ∠=︒,此时测得11.2m BD =.请根据这些数据,计算出路灯AB 的高度.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥.求证:AE CE =.24.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.25.如图,某中学校园内有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,学校计划在中间留一块边长为(a+b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.27.超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵3元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料同一价格销售,两批全部售完后,获利不少于3000元,则销售单价至少为多少元?28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1.A2.C3.D4.B5.B6.C7.C8.A9.A10.B11.(54)(54)x y x y +-12.3m ≠-【分析】分母不为零时,分式有意义,利用分母不为零列不等式即可.【详解】解: 分式3m m +有意义,30,m ∴+≠3.m ∴≠-故答案为: 3.m ≠-【点睛】本题考查的是分式有意义的条件,利用分式有意义列不等式是解题的关键.13.6【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=2×360°,解得n=6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.60°【分析】根据ABN ACM △≌△可知35C B ∠=∠=︒,25CAN BAM ∠=∠=︒,根据ANB CAN C ∠=∠+∠计算求解即可.【详解】解:∵ABN ACM△≌△∴35C B ∠=∠=︒,BAN CAM∠=∠∴BAN MAN CAM MAN∠-∠=∠-∠∴25CAN BAM ∠=∠=︒∴60ANB CAN C ∠=∠+∠=︒故答案为:60°.【点睛】本题考查了全等三角形的性质,三角形外角的性质.解题的关键在于找出角度的数量关系.15.2【分析】证明△AOE ≌△AOD (AAS ),得OE=OD=2即可.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ODA=∠OEA=90°,∵OA 平分∠BAC ,∴∠1=∠2,在△AOE 和△AOD 中,21OEA ODA OA OA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOE ≌△AOD (AAS ),∴OE=OD=2,故答案为:2.【点睛】本题考查了全等三角形的判定与性质以及角平分线定义等知识,证明△AOE ≌△AOD 是解题的关键.16.30【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,∵AB 的垂直平分线MN 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=40°,∴∠DBC=∠ABC -∠ABD=70°-40°=30°.故答案为:3017.5【分析】作点Q 关于BD 的对称点Q′,连接PQ′交BD 于E ,连接QE ,此时PE+QE 的值最小,最小值PE+QE=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=2+1.5=3.5,∴AB=AC=2AD=7,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+QE的值最小,最小值为PE+QE=PE+EQ′=PQ′,∴QD=DQ′=1.5,∴AQ′=AD+DQ′=3.5+1.5=5,∵BP=2,∴AP=AB-BP=7-2=5,∴AP=AQ′=5,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5,∴PE+QE的最小值为5.∴答案为5.【点睛】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,解题的关键是学会利用轴对称解决最短问题.18.7【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【详解】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点睛】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.19.818x 【分析】首先利用同底数幂的乘法法则、幂的乘方与积的乘方法则计算,再合并同类项即可.【详解】解:原式88816x x x =++818x =【点睛】本题主要考查了整式的混合运算,熟练掌握同底数幂的乘法法则、幂的乘方与积的乘方法则是解题关键.20.1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+⎛⎫-÷ ⎪+++⎝⎭,=()22112x x x x -+⋅+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.21.(1)见解析(2)∠BOL=∠AOL【分析】(1)根据作图过程即可解决问题;(2)根据作图过程可得OL 平分∠AOB ,进而可得结论.(1)解:如图所示即为所求.(2)解:由作图可知:OL 平分∠AOB ,∴∠BOL=∠AOL .22.路灯AB 的高度是8.2m【分析】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB-PB 求出即可.【详解】解:∵20CPD ∠=︒,70APB ∠=︒,90CDP ABP ∠=∠=︒,∴70DCP APB ∠=∠=︒,20BAP DPC ∠=∠=︒在CPD △和PAB △中,CDP PBA CD PB DCP BPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()CPD PAB ASA ≌,∴DP AB =.∵11.2m BD =,3m BP =,∴8.2m DP BD BP =-=,即8.2m AB =.答:路灯AB 的高度是8.2m .23.见解析【分析】此题根据已知条件及对顶角相等的知识先证得△AED ≌△CEF ,则易求证AE =CE .【详解】证明:∵AB ∥FC ,∴∠ADE =∠CFE ,在△AED 和△CEF 中,ADE CFE DE FE AED CEF ∠⎪∠⎧⎩∠⎪∠⎨===,∴△AED ≌△CEF (ASA ),∴AE =CE .【点睛】主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.24.(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB 是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【详解】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD﹣∠PAB=30°﹣15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=12PB=3.5>3∴没有危险25.(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.26.(1)见解析(2)120°【分析】(1)根据“AAS”证明ABC FEC ≌,即可证明AB FE =;(2)根据∥AB CE 得到B FCE ∠=∠,进而证明E FCE B ACB ∠∠=∠=∠=,利用直角三角形性质得到90∠+∠+∠=︒E FCE ACB ,即可求出30ACB ∠=︒,30B ∠=︒,即可求出120A ∠=︒.(1)证明:∵CB 为ACE ∠的角平分线,∴ACB FCE ∠=∠,在ABC 与FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴() ≌ABC FEC AAS ,∴AB FE =;(2)解:∵∥AB CE ,∴B FCE ∠=∠,∴E FCE B ACB ∠∠=∠=∠=,∵ED AC ⊥,即90CDE ∠=︒,∴90∠+∠+∠=︒E FCE ACB ,即390ACB ∠=︒,∴30ACB ∠=︒,∴30B ∠=︒,∴1801803030120∠=︒-∠-∠=︒-︒-︒=︒A B ACB .27.(1)第一批饮料进货单价为6元;(2)销售单价至少为12元.【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y 元,根据利润=销售收入-进货成本,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元.依题意,得:5400120033x x =⨯+.解得:6x =.经检验,6x =是原方程的解,且符合题意.答:第一批饮料进货单价为6元.(2)第一批饮料进货数量为12006200÷=第二批饮料进货数量为5400(63)600÷+=.设销售单价为y 元,依题意,得:(200600)(12005400)3000y +-+.解得:y =12元答:销售单价至少为12元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.28.问题背景:EF=BE+DF ;探索延伸:仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为320海里【分析】问题背景:延长FD 到点G ,使DG=BE ,连接AG ,证明△ABE ≌△ADG ,得到△AEF ≌△AGF ,证明EF=FG ,得到答案;探索延伸:连接EF ,延长AE ,BF 相交于点C ,利用全等三角形的性质证明EF=AE+FB .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,首先证明,∠FOE=12∠AOB ,利用结论EF=AE+BF 求解即可.【详解】解:问题背景:由题意:△ABE ≌△ADG ,△AEF ≌△AGF ,∴BE=DG ,EF=GF ,∴EF=FG=DF+DG=BE+FD .故答案为:EF=BE+FD .探索延伸:EF=BE+FD 仍然成立.理由:如图2,延长FD 到点G ,使DG=BE ,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG ,又∵AB=AD ,在△ABE 和△ADG 中,AB ADB ADG BE DG=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG(SAS),∴AE=AG ,∠BAE=∠DAG ,又∵∠EAF=12∠BAD ,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD ﹣∠EAF ,=∠BAD ﹣12∠BAD=12∠BAD ,∴∠EAF=∠GAF .在△AEF 和△AGF 中,AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF(SAS),∴EF=FG ,又∵FG=DG+DF=BE+DF ,∴EF=BE+FD .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。
人教版八年级上册数学期末考试试卷带答案
人教版八年级上册数学期末考试试题一、单选题1.若分式x y yx +中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的一半2.下列长度的三条线段,能构成三角形的是()A .8,8,15B .4,5,9C .5,5,11D .3,6,93.将数字0.000 005写成科学记数法得到()A .50.510⨯B .6510⨯C .50.510-⨯D .6510-⨯4.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A .(a+b)2=a 2+2ab+b 2B .(a ﹣b)2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b)(a ﹣b)D .(a+b)(a ﹣2b)=a 2﹣ab ﹣2b 25.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A .50°B .30°C .20°D .15°7.如图,把一张长方形的纸,按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 是()A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.使分式1xx -有意义的x 的取值范围是()A .1x =B .1x ≠C .1x =-D .1x ≠-9.以下说法正确的是()①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A .①②B .②④C .①③D .①③④10.如图,在 ABC 中,边BC 的垂直平分线分别交AC ,BC 于点D ,E ,若 ABC 的周长为12,CE 52=,则 ABD 的周长为()A .10B .9C .8D .7二、填空题11.分解因式:2a 2﹣6a =______.12.a 2•a 3÷a 4=_____.13.如果102m =,103n =,那么10m n+=____________.14.在平面直角坐标系中,点M(1,2)关于y 轴对称点的坐标为_____.15.在△ABC 中,AB =5,BC =8,AC =6,AD 平分∠BAC ,则S △ABD :S △ACD =___.16.若a m =2,a n =3,则a m﹣n的值为_____.17.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.18.如图,已知线段2cm AB =,其垂直平分线CD 的作法如下:①分别以点A 和点B 为圆心,cm b 长为半径画弧,两弧相交于C ,D 两点;②作直线CD .上述作法中b 满足的条作为b ___1.(填“>”,“<”或“=”)19.如图,在ABC ∆中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,ABD ∆的周长为12,cm AC 的长为5cm ,那么ABC ∆的周长是___________cm三、解答题20.解分式方程:21133x x+=--21.化简:2x (x ﹣3y )+(5xy 2﹣2x 2y )÷y .22.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A (),'B (),'C (),(3)求出'''A B C ∆的面积23.如图,已知∠1=∠2,∠C=∠D,求证:△ABC≌△BAD.24.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?25.如图,在 ABC是等腰直角三角形,∠ACB=90°,点D、E分别是 ABC内的点,且EA=EB,BD=AC,BE平分∠DBC.(1)求证: DBE≌ CBE;(2)求证:∠BDE=45°.26.在△ABC 中,CA =CB ,∠ACB =120°,将一块足够大的三角尺PMN (∠M =90°,∠MPN =30°)按图示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角∠PCB =α,斜边PN 交AC 于点D .(1)当PN ∥BC 时,∠ACP =°(2)当α=15°时,求∠ADN 的度数.(3)在点P 滑动的过程中,△PCD 的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出α的大小.27.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .28.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D .(1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.参考答案1.C【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【详解】解:分式x y y x +中的x 、y 的值都变为原来的3倍,则此分式的值是原来的13,故选:C .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.2.A【分析】根据三角形的三边关系计算,判断即可.【详解】解:A 、∵15−8<8<15+8,∴长度为8,8,15的三条线段能构成三角形,本选项符合题意;B 、∵4+5=9,∴长度为4,5,9的三条线段不能构成三角形,本选项不符合题意;C 、∵5+5<11,∴长度为5,5,11的三条线段不能构成三角形,本选项不符合题意;D 、∵3+6=9,∴长度为3,6,9的三条线段不能构成三角形,本选项不符合题意;故选:A .【点睛】本题考查的是三角形的三边关系,掌握三角形两边之和大于第三边,三角形的两边差小于第三边是解题的关键.3.D【分析】按照小数科学记数法的原则表示即可.【详解】∵0.000005=6510-⨯故选D.【点睛】本题考查了小数的科学记数法,熟记小数的科学记数法中10的指数是负整数是解题的关键.4.C【分析】图甲中根据阴影部分面积等于大正方形减去小正方的面积,图乙中直接求长方形的即可,根据两个图形中阴影部分的面积相等,即可求解【详解】解:图甲阴影部分的面积为22a b -,图乙中阴影部分的面积等于()()a b a b +- 两个图形中阴影部分的面积相等,∴22a b -=()()a b a b +-故选C【点睛】本题考查了平方差公式与图形面积,正确的求出阴影部分面积是解题的关键.5.D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D .【点睛】此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.A【分析】根据三角尺可得330∠=︒,根据三角形外角的性质可得4∠13=∠+∠,根据直尺的两边平行,可得24∠∠=【详解】如图,3906030∠=︒-︒=︒,∠1=20°,∴4∠13=∠+∠203050=︒+︒=︒,直尺的两边平行,∴2450∠=∠=︒故选A【点睛】本题考查了三角形外角的性质,平行线的性质,直角三角形两个锐角互余,求得∠=︒是解题的关键.3307.C【分析】依据折叠即可得到AB=AC,进而得出△ABC的形状.【详解】解:由题可得,AB与AC可重合,即AB=AC,∴△ABC是等腰三角形.故选:C.【点睛】本题考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.8.B-≠,解答即可.【分析】根据分式的意义,由x10-≠【详解】解:根据分式的意义:x10∴x1≠,故选择:B.【点睛】本题考查了不等式的意义,解题的关键是计算分母不等于0.9.C【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【详解】①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选C.【点睛】本题考查了全等三角形的判定的应用,能理解全等三角形的判定定理是解此题的关键,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL 定理,但AAA、SSA,无法证明三角形全等.10.D【分析】首先根据垂直平分线的性质得到BD CD =,52BE CE ==,然后根据 ABC 的周长为12,即可求出 ABD 的周长.【详解】解:∵边BC 的垂直平分线分别交AC ,BC 于点D ,E ,∴BD CD =,52BE CE ==,即25BC EC ==,∵ ABC 的周长为12,∴12AB BC AC ++=,∵5BC =,∴7AB AC +=,∴ ABD 的周长7AB BD AD AB CD AD AB AC =++=++=+=.故选:D .【点睛】此题考查了垂直平分线的性质,整体方法的运用,解题的关键是熟练掌握垂直平分线的性质.11.2a(a-3)【分析】只需在原式中提取2a 分解即可.【详解】解:原式=2a(a-3),故答案为:2a(a-3).【点睛】本题考查利用提取公因式分解因式,能够熟练掌握分解因式的方法是解决本题的关键.12.a【分析】先根据同底数幂的乘法进行计算,再根据同底数幂的除法进行计算即可.【详解】a 2•a 3÷a 4=54a a a ÷=故答案为:a【点睛】本题考查了同底数幂的乘除法,掌握同底数幂的乘除法的运算法则是解题的关键.13.6【分析】根据同底数幂乘法的逆用即可求解.【详解】解:101010236m n m n +=⋅=⨯=,故答案为:6.【点睛】本题考查同底数幂乘法的逆用,掌握同底数幂相乘的法则是解题的关键.14.(-1,2)【分析】根据关于y 轴对称,纵坐标不变,横坐标变成相反数计算即可.【详解】∵点M(1,2)关于y 轴对称点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了点的坐标的对称性,熟记对称类型和坐标特点是解题的关键.15.5:6【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得出DE =DF ,根据三角形的面积公式求出答案即可.【详解】解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF ,设DE =DF =R ,∵S △ABD =12AB DE ⨯⨯=152⨯⨯R ,S △ACD =12AC DF ⨯⨯=162R ⨯⨯,∴S △ABD :S △ACD =5:6,故答案为:5:6.【点睛】本题考查了三角形的面积和角平分线的性质,注意:角平分线上的点到角的两边的距离相等.16.23.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【详解】am ﹣n =am÷an =2÷3=23,故答案为23.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.17.50°##50度【分析】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,进而根据等腰三角形的性质以及三角形内角和定理即可求得AOB ∠.【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠, ∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°【点睛】本题考查了等腰三角形的性质,等边对等角,轴对称的性质,根据轴对称求线段和最短,掌握轴对称的性质是解题的关键.18.>【分析】作图方法为:以A ,B 为圆心,大于12AB 长度画弧交于C ,D 两点,由此得出答案.【详解】解:∵2cm AB =,∴半径b 长度12AB >,即1cm b >.故答案为: .【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.19.17.△的周长为12cm,可得【分析】由DE是AC的垂直平分线,可得AD=DC,由ABDAB+AD+BD=12cm,再由AD=DC,可得AB+BC=12cm,结合AC=5cm进行计算即可.△的周长为12cm,【详解】解:∵ABD∴AB+AD+BD=12cm,∵DE是AC的垂直平分线,∴AD=DC,∴AB+DC+BD=12cm,∴AB+BC=12cm,∵AC=5cm,∴AB+BC+AC=17cm,的周长是17cm,即ABC故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,正确理解线段的垂直平分线的性质是解题的关键.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21.﹣xy【分析】根据单项式乘以多项式,多项式除以单项式去括号,再合并同类项即可【详解】解:原式=2x 2﹣6xy+5xy ﹣2x 2=﹣xy .【点睛】本题考查了单项式乘以多项式,多项式除以单项式,正确的计算是解题的关键.22.(1)所画图形见解析;(2)3,-3;-1,-3;0,4;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S ''' .【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=,∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.23.见解析【分析】根据已知条件,直接利用AAS 即可判定△ABC ≌△BAD .【详解】在△ABC 和△BAD 中,21C D AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△BAD (AAS ).【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题关键.24.(1)4000;(2)小勇同学两次慢跑的速度各是4003米/分、160米/分.【分析】(1)一次有氧耐力训练慢跑10圈,一圈400米,两数相乘即可求得答案.(2)设出第一次慢跑的速度,接着表示出第二次的速度,分别求出两次所用时间,根据两次时间的关系,列出方程,并求出方程.【详解】(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x 米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x 米.由题意可得:4000400051.2x x -=解得:4003x =经检验得:4003x =是原分式方程的解.∴第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米.答:小勇同学两次慢跑的速度各是4003米/分、160米/分.【点睛】本题主要是考查了分式方程的实际应用,熟练根据等式关系列出分式方程,并求解分式方程,是解题的关键,但注意分式方程一定要验根.25.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°26.(1)90;(2)45°;(3)可以,45°或90°或0°【分析】(1)根据平行线性质求出∠BCP ,即可得出答案.(2)求出∠ACP,根据三角形内角和定理求出∠PDC,即可得出答案;(3)分为三种情况:当PC=PD时,当PD=CD时,当PC=CD时,根据等腰三角形性质和三角形内角和定理得出关于α的方程,求出即可.【详解】解:(1)∵PN∥BC,∠MPN=30°,∴∠BCP=∠MPN=30°.∵∠ACB=120°,∴∠ACP=∠ACB-∠BCP=120°-30°=90°.(2)∵∠ACB=120°,∠PCB=15°,∴∠PCD=∠ACB-∠PCB=120°-15°=105°.∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°.∴∠ADN=∠PDC=45°.(3)△PCD的形状可以是等腰三角形.由题意知∠PCA=120°-α,∠CPD=30°.①若PC=PD,则∠PCD=∠PDC.∴∠PCD=12(180°-∠MPN)=12(180°-30°)=75°,即120°-α=75°,解得α=45°.②若PD=CD,则∠PCD=∠CPD=30°,即120°-α=30°,解得α=90°;③若PC=CD,则∠CDP=∠CPD=30°.∴∠PCD=180°-2×30°=120°,即120°-α=120°,解得α=0°,此时点P与点B重合,点D和点A重合.综合上述,当α=45°或α=90°或α=0°时,△PCD是等腰三角形,即α的大小是45°或90°或0°.27.【分析】由题意可得∠B=∠C=90°,BF=CE ,由“AAS”可证△ABF ≌△DCE ,可得AF=DE .【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,28.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE S S = ,∴1122CE AH BE AG ⨯⨯=⨯⨯,∴AH=AG ,∴DA 平分∠CDE.。
最新人教版八年级上册数学期末测试题(附答案)
最新人教版八年级上册数学期末测试题(附答案)过池塘,分别测量AC和BC的长度,再利用勾股定理求出AB的长度。
已知AC=15m,BC=20m,求AB的长度。
解题思路:根据勾股定理,设AB=x,则有x²=15²+20²,解得x=25.因此,AB的长度为25m。
19.(本小题满分6分)已知点A(2,-3),B(5,1),C(-1,4),求三角形ABC的周长。
解题思路:根据两点间距离公式,可求出AB、BC、CA的长度,然后将它们相加即可得到三角形ABC的周长。
计算过程如下:AB的长度:√[(5-2)²+(1-(-3))²] = √34BC的长度:√[(5-(-1))²+(1-4)²] = √41CA的长度:√[(2-(-1))²+(-3-4)²] = √74因此,三角形ABC的周长为√34+√41+√74.20.(本小题满分8分)已知函数f(x)=3x²-4x+5,求f(2a)与f(a+1)的值,并判断它们的大小关系。
解题思路:将2a和a+1代入函数f(x)中,即可求出f(2a)和f(a+1)的值。
计算过程如下:f(2a) = 3(2a)²-4(2a)+5 = 12a²-8a+5f(a+1) = 3(a+1)²-4(a+1)+5 = 3a²+2a+4因此,f(2a) = 12a²-8a+5,f(a+1) = 3a²+2a+4.接下来判断它们的大小关系,即f(2a)与f(a+1)的大小关系。
将它们相减,得到12a²-11a+1,根据一元二次方程的解法,可得a=1或a=1/12.将这两个值代入12a²-11a+1的值,发现当a=1时,f(2a)>f(a+1);当a=1/12时,f(2a)f(a+1)的解集为a∈(0,1/12)U(1/12,∞),而f(2a)<f(a+1)的解集为a=1/12.21.(本小题满分8分)如图,在平面直角坐标系中,点A(1,2)、B(-3,4)、C(-2,-1)、D(2,-3)依次连线,得到四边形ABCD。
人教版八年级上学期期末数学试题(含答案)
娨
娨,
娨
∵ 娨 娨,
∴ 娨 娨,
∴
是等边三角形,
∴ 娨,
在 中,
,
当 P、 、C 在同一直线上时,
取最大值 ,即为 5.
9
娨 晦晦ஓ
娨 ஓ.
∴ 的最大值是 5. 故答案为:5.
【分析】作点 B 关于射线 的对称点 ,连接 、 ,B'P.易证
是等边三角形,可得 娨 ,
则此时 A、C 两地相距( )千米。
A.12
B.
C.6
D.3
1
10.如果 的值为(
,ᆪ, )
是正数,且满足
䵐ᆪ䵐
娨晦 ,晦 Βιβλιοθήκη ᆪ䵐晦 ᆪ䵐䵐
晦 䵐
娨
,那么
䵐ᆪ 䵐 ᆪ䵐
䵐
ᆪ 䵐
A.-1
B.1
C.2
D.晦
二、填空题(每题 3 分,共 15 分) 11.已知一个包装盒的底面是内角和为 720°的多边形,它是由另一个多边形纸片剪掉一个角以后得到的,
C. ( ᆪ) 娨
ᆪ
D.
ᆪ 䵐 ᆪ 娨 ( ᆪ)
4.无论 a 取何值,下列分式总有意义的是( )
A.
晦 䵐晦
B. 䵐晦
C.
晦 晦
5.如图,将直尺和三角板按如图的样子叠放在一起,则 晦 䵐 娨(
D.
晦 䵐晦
)
A. ژஓ B. ஓஓ C.晦 ஓ D. ஓ
6.若三角形的底边长为 2a+1,该底边上的高为 2a﹣1,则此三角形的面积为( )
∴∠ADB=∠BEC=90°,
∴∠ABD+∠CBE=90°,∠BCE+∠CBE=90°,
人教版2022-2021年八年级上期末数学试卷含答案解析
八年级(上)期末(qī mò)数学试卷一、选择题选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目(tímù)要求)(1.(3分)在﹣3x、、﹣、、﹣、、中,分式(fēnshì)的个数是()A.3 B.4 C.5 D.62.(3分)下列(xiàliè)各式是最简二次根式的是()A.B.C.D.3.(3分)下列(xiàliè)运算正确的是()A.(x﹣y)2=x2﹣y2B.2﹣3=C.x6÷x2=x3D.(﹣3x2)3=﹣9x6 4.(3分)一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.65.(3分)如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.36.(3分)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x4﹣16=(x2+4)(x+2)(x﹣2)7.(3分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=()A.5 B.10 C.15 D.208.(3分)李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时(xiǎoshí)加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么(nà me)可列分式方程为()A.﹣=10 B.﹣=10C.﹣=D.﹣=9.(3分)如图所示,AB⊥BC且AB=BC,CD⊥DE且CD=DE,请按照图中所标注的数据,计算图中实线所围成的图形(túxíng)面积是()A.64 B.50 C.48 D.3210.(3分)如图所示,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC 的中点(zhōnɡ diǎn),直角∠EDF的两边(liǎngbiān)分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=S△ABC;③△DEF是等腰直角三角形;④当∠EDF在△ABC内绕顶点D旋转时D旋转时(点E不与点A、B 重合),∠BFE=∠CDF,上述结论始终成立的有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共15分,请把结果直接(zhíjiē)填在答题纸上的对应横线上)11.(3分)2021年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种长度约为0.000000456毫米(háo mǐ)的病毒,把0.000000456用科学记数法表示为.12.(3分)9x2+mx+16是一个完全(wánquán)平方式,那么m=或.13.(3分)当x=时,分式(fēnshì)的值为0.14.(3分)如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点(zhōnɡ diǎn),P是AB上一动点,则PC+PD的最小值为.15.(3分)如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④…,图n的周长记为C n,若n≥3,则C n ﹣C n﹣1=.二、解答题(本大题共8小题,共55分,解答应写出文字说明、证明过程或推演过程)16.(4分)完成下列两道计算题:(1)﹣15+;(2)(﹣)+.17.(5分)解分式方程(fēn shì fānɡ chénɡ):﹣1=.18.(6分)先化简,再求值:÷(x+3﹣),其中(qízhōng)x=﹣5.19.(7分)如图,在△ABC中,AB=AC,∠DAC是△ABC的一个(yī ɡè)外角.实验与操作:根据要求进行尺规作图,并在图中标明(biāomíng)相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段(xiànduàn)AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF探究与猜想:若∠BAE=15°,则∠B=.20.(8分)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.21.(7分)阅读材料:把代数式x2﹣6x﹣7因式分解,可以如下分解:x2﹣6x﹣7=x2﹣6x+9﹣9﹣7=(x﹣3)2﹣16=(x﹣3+4)(x﹣3﹣4)=(x+1)(x﹣7)(1)探究:请你仿照上面(shàng miɑn)的方法,把代数式x2﹣8x+7因式分解(yīn shì fēn jiě);(2)拓展(tuò zhǎn):把代数式x2+2xy﹣3y2因式分解(yīn shì fēn jiě):当=时,代数式x2+2xy﹣3y2=0.22.(8分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成(wán chéng);若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么该工程施工费用是多少?23.(10分)已知△ABC和△ADE都是等腰直角三角形,点D是直线BC上的一动点(点D不与B、C重合),连接CE.(1)在图1中,当点D在边BC上时,求证:BC=CE+CD;(2)在图2中,当点D在边BC的延长线上时,结论BC=CE+CD是否还成立?若不成立,请猜想BC、CE、CD之间存在的数量关系,并说明理由;(3)在图3中,当点D在边BC的反向延长线上时,补全图形,不需写证明过程,直接写出B C、CE、CD之间存在的数量关系.参考答案与试题(shìtí)解析一、选择题选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合(fúhé)题目要求)1.(3分)在﹣3x、、﹣、、﹣、、中,分式(fēnshì)的个数是()A.3 B.4 C.5 D.6【解答(jiědá)】解:﹣3x、、﹣、、﹣、、中,分式(fēnshì)是:、﹣、﹣,共3个.故选:A.2.(3分)下列各式是最简二次根式的是()A.B.C.D.【解答】解:A、,不是最简二次根式,错误;B、,不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.3.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.2﹣3=C.x6÷x2=x3D.(﹣3x2)3=﹣9x6【解答】解:A、(x﹣y)2=x2﹣2xy+y2,故此选项错误;B、2﹣3=,故此选项正确;C、x6÷x2=x4,故此选项错误;D、(﹣3x2)3=﹣27x6,故此选项错误;故选:B.4.(3分)一个正多边形的内角和为900°,那么从一点(yī diǎn)引对角线的条数是()A.3 B.4 C.5 D.6【解答(jiědá)】解:设多边形的边数为n,由题意(tí yì)得,(n﹣2)•180°=900°,解得n=7,所以(suǒyǐ),从一点引对角线的条数=7﹣3=4.故选:B.5.(3分)如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成(gòuchéng)一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.3【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.6.(3分)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x4﹣16=(x2+4)(x+2)(x﹣2)【解答(jiědá)】解:A、不是因式分解,故本选项不符合(fúhé)题意;B、不是因式分解,故本选项不符合(fúhé)题意;C、不是(bù shi)因式分解,故本选项不符合题意;D、是因式分解,故本选项符合(fúhé)题意;故选:D.7.(3分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=()A.5 B.10 C.15 D.20【解答】解:设BD=x,则CD=20﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=,同理可得,CF=,∴BE+CF=.故选:B.8.(3分)李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为()A.﹣=10 B.﹣=10C.﹣=D.﹣=【解答】解:设原来的行驶速度为xkm/h,可列分式方程为:﹣=.故选:C.9.(3分)如图所示,AB⊥BC且AB=BC,CD⊥DE且CD=DE,请按照(ànzhào)图中所标注的数据,计算图中实线所围成的图形面积是()A.64 B.50 C.48 D.32【解答(jiědá)】解:∵AB⊥BC,CM⊥DB,AP⊥BD,∴∠APB=∠BMC=∠ABC=90°,∴∠ABP+∠BAP=90°,∠ABP+∠CBM=90°,∴∠BAP=∠CBM,在△ABP和△BCM中,∴△ABP≌△BCM(AAS),∴AP=BM=3,BP=CM=2,同理可得CM=DN=2,DM=EH=5,∴PN=12,∴梯形(tīxíng)AENP的面积=×(AP+EN)×PN=×(3+5)×12=48,∴阴影(yīnyǐng)部分的面积=S梯形(tīxíng)AENP﹣S△ABP﹣S△BCD﹣S△DEN=48﹣×3×2﹣×(3+5)×2﹣×5×2=48﹣3﹣8﹣5=32.故选:D.10.(3分)如图所示,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC 的中点(zhōnɡ diǎn),直角∠EDF的两边分别交AB、BC于点E、F,给出以下(yǐxià)结论:①AE=BF;②S四边形BEDF=S△ABC;③△DEF是等腰直角三角形;④当∠EDF在△ABC内绕顶点D旋转(xuánzhuǎn)时D旋转时(点E不与点A、B重合),∠BFE=∠CDF,上述(shàngshù)结论始终成立的有()个.A.1 B.2 C.3 D.4【解答(jiědá)】解:∵ED⊥FD,BD⊥AC,∴∠BDE+∠BDF=90°,∠BDF+∠FDC=90°,∴∠BDE=∠FDC,∵B、E、D、F四点共圆,∴∠BFE=∠BDE,∴∠BFE=∠CDF,选项④正确;∵△ABC为等腰直角三角形,BD⊥AC,∴∠EBD=∠C=45°,BD=CD,在△BED和△CFD中,,∴△BED≌△CFD(ASA),∴BE=CF,∴AE=BF,选项①正确;DE=DF,∴△DEF为等腰直角三角形,选项③正确(zhèngquè);∴S四边形BEDF=S△BED+S△BDF=S△CFD+S△BDF=S△BDC=S△ABC,选项②正确(zhèngquè).上述结论中始终(shǐzhōng)成立的有4个.故选:D.二、填空题(每小题3分,共15分,请把结果(jiē guǒ)直接填在答题纸上的对应横线上)11.(3分)2021年诺贝尔生理学或医学奖得主中国科学(kēxué)家屠呦呦,发现了一种长度约为0.000000456毫米的病毒,把0.000000456用科学记数法表示为 4.56×10﹣7.【解答】解:把0.000000456用科学记数法表示为4.56×10﹣7,故答案为:4.56×10﹣7.12.(3分)9x2+mx+16是一个完全平方式,那么m=24或﹣24.【解答】解:∵9x2+mx+16=(3x)2+mx+42,∴mx=±2×3x×4,解得m=±24.故答案为:24或﹣24.13.(3分)当x=﹣1时,分式的值为0.【解答】解:分式的值为0,则3x2﹣3=0,(x﹣1)(x﹣3)≠0,解得:x=﹣1.故答案为:﹣1.14.(3分)如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为12.【解答(jiědá)】解:作C关于(guānyú)AB的对称点C',连接C′D,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AC',∴△ACC'为等边三角形,∴CP+PD=DP+PC'为C'与直线(zhíxiàn)AC之间的连接线段,∴最小值为C'到AC的距离(jùlí)=AB=12,故答案(dá àn)为:1215.(3分)如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④…,图n的周长记为C n,若n≥3,则C n ﹣C n﹣1=.【解答(jiědá)】解:∵C1=1+1+1=3,C2=1+1+=,C3=1+1+×3=,C4=1+1+×2+×3=,…∴C3﹣C2=﹣=;C4﹣C3=﹣=则C n﹣C n﹣1=,故答案(dá àn)为:.二、解答题(本大题共8小题,共55分,解答应写出文字说明、证明过程(guòchéng)或推演过程)16.(4分)完成(wán chéng)下列两道计算题:(1)﹣15+;(2)(﹣)+.【解答(jiědá)】(1)解:原式=3﹣15×+×=3+=;(2)原式=(5﹣2)=417.(5分)解分式方程:﹣1=.【解答】解:去分母得:x2﹣2x﹣x2+4=8,解得:x=﹣2,检验:将x=﹣2代入最简公分母(x+2)(x﹣2)=0,则x=﹣2是原方程(fāngchéng)的增根,原方程无解.18.(6分)先化简,再求值:÷(x+3﹣),其中(qízhōng)x=﹣5.【解答(jiědá)】解:原式=÷=•=﹣=﹣,当x=﹣5时,原式=﹣=19.(7分)如图,在△ABC中,AB=AC,∠DAC是△ABC的一个(yī ɡè)外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留(bǎoliú)作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF探究与猜想:若∠BAE=15°,则∠B=55°.【解答】解:如图所示,∠B=55°.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵AM平分(píngfēn)∠DAC,∴∠DAM=∠CAM,而∠DAC=∠ABC+∠ACB,∴∠CAM=∠ACB,∴EF垂直平分AC,∴OA=OC,∠AOF=∠COE,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,即AC和EF互相(hù xiāng)垂直平分,∴四边形AECF的形状(xíngzhuàn)为菱形.∴EA=EC,∴∠EAC=∠ACB=∠B=.故答案(dá àn)为:55°20.(8分)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证(qiúzhèng):△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.【解答(jiědá)】(1)证明(zhèngmíng):证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠OCD,在△ABD和CFD中,,∴△ABD≌△CFD(AAS),(2)∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.21.(7分)阅读(yuèdú)材料:把代数式x2﹣6x﹣7因式分解,可以如下(rúxià)分解:x2﹣6x﹣7=x2﹣6x+9﹣9﹣7=(x﹣3)2﹣16=(x﹣3+4)(x﹣3﹣4)=(x+1)(x﹣7)(1)探究:请你仿照上面(shàng miɑn)的方法,把代数式x2﹣8x+7因式分解(yīn shì fēn jiě);(2)拓展(tuò zhǎn):把代数式x2+2xy﹣3y2因式分解(yīn shì fēn jiě):当=﹣3或1时,代数式x2+2xy﹣3y2=0.【解答(jiědá)】解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.22.(8分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么该工程施工费用是多少?【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×10+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程(gōngchéng)的规定时间是30天.(2)该工程由甲、乙队合做完成(wán chéng),所需时间为:1÷(+)=18(天),则该工程施工费用(fèi yong)是:18×(5000+3000)=144000(元),答:该工程(gōngchéng)的费用为144000元.23.(10分)已知△ABC和△ADE都是等腰直角三角形,点D是直线BC上的一动(yīdòng)点(点D不与B、C重合),连接CE.(1)在图1中,当点D在边BC上时,求证:BC=CE+CD;(2)在图2中,当点D在边BC的延长线上时,结论BC=CE+CD是否还成立?若不成立,请猜想BC、CE、CD之间存在的数量关系,并说明理由;(3)在图3中,当点D在边BC的反向延长线上时,补全图形,不需写证明过程,直接写出BC、CE、CD之间存在的数量关系.【解答】解:(1)如图1中,∵AB=AC,∠ABC=∠ACB=45°,AD=AE,∠ADE=∠AED=45°,∴∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD;(2)不成立(chénglì),存在的数量关系为CE=BC+CD.理由(lǐyóu):如图2,由(1)同理可得,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴BD=BC+CD,∴CE=BC+CD;(3)如图3,结论(jiélùn):CD=BC+EC.理由(lǐyóu):由(1)同理可得,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴CD=BC+BD=BC+CE,内容总结(1),图n的周长记为Cn,若n≥3,则Cn﹣Cn﹣1=.【解答】解:∵C1=1+1+1=3,C2=1+1+=,C3=1+1+×3=,C4=1+1+×2+×3=,。
人教版八年级数学上册期末测试题(附参考答案)
人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。
人教版八年级2021-2022学年度第一学期期末数学试题及答案
【解析】
【分析】先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.
【详解】∵矩形的周长为10,
∴a+b=5,
∵矩形的面积为6,
∴ab=6,
∴a2b+ab2=ab(a+b)=30.故选C.
【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
B. ,计算正确,故本选项错误;
C. ,原式计算正确,故本选项错误;
D. ,计算错误,故本选项正确.
故选D.
【点睛】本题考查了同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键.
4.【答案】B
【解析】
【分析】先根据等腰三角形的性质可求出 的度数,再根据三角形的外角性质即可得.
详解】
人教版2021-2022学年度第一学期期末检测试卷
八年级数学
(满分:150分时间:120分钟)
题号
一
二
三
四
五
总分
得分
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.下列图形中,不是轴对称图形的是()
A. B. C. D.
2.在下列长度的四根木棒中,能与 , 长的两根木棒钉成一个三角形的是()
25.平面直角坐标系中,点 坐标为 , 分别是 轴, 轴正半轴上一点,过点 作 轴, ,点 在第一象限, ,连接 交 轴于点 , ,连接 .
(1)请通过计算说明 ;
(2)求证 ;
(3)请直接写出 的长为.
26.阅读材料:如图1, 中,点 , 在边 上,点 在 上, , , ,延长 , 交于点 , ,求证: .
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()A .1组B .2组C .3组D .4组3.一个多边形的每一个内角都是135°,则这个多边形是()A .七边形B .八边形C .九边形D .十边形4.某病毒的直径为100纳米(1纳米=0.000000001米),100纳米用科学记数法表示为()A .81010-⨯米B .7110-⨯米C .9110-⨯米D .80110-⨯.米5.在直角坐标系中,点A (–2,2)与点B 关于x 轴对称,则点B 的坐标为()A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2)6.把一副三角板按如图叠放在一起,则α∠的度数是()A .165B .160C .155D .150 7.下列各式中,正确的是()A .2242ab b a c c =B .1a b b ab b ++=C .23193x x x -=-+D .22x y x y -++=-8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B ,下列结论中不一定成立的是()A .PA PB =B .PO 平分APB ∠C .=OA OBD .AB 垂直平分OP9.如图,在四边形ABCD 中,AB ∥DC ,DAB ∠的平分线交BC 于点E ,DE AE ⊥,若6AD =,4BC =,则四边形ABCD 的周长为()A .14B .15C .16D .1710.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-11.在ABC 中,已知8AB =,5AC =,6BC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD (如图所示).则下列结论:①DE AB ⊥②ADE V 的周长等于7③:3:4BCD ABD S S = ④CD AD =,其中正确的是()A .①②B .②③C .①②③D .②③④12.由图,可得代数恒等式()A .()2222a b a ab b +=++B .()()22232a b a b a ab b ++=++C .()()2224a b a b a ab b ++=++D .()222232a b a ab b +++=二、填空题13.计算:(20112-⎛⎫-= ⎪⎝⎭________.14.若分式211x x--的值为零,则x 的值为________.15.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________°.16.如图,在ABC 中,AB AC =,点P 在ABC ∠的平分线上,将PBC 沿PC 对折,使点B 恰好落在AC 边上的点D 处,连接PD ,若AD PD =,则A ∠=______.17.分解因式:a -2ax+a 2x =__________.18.如图,∠B =50°,∠C =70°,∠BAD 平分线与∠ADC 外角平分线交于点F ,则∠F =_____.三、解答题19.计算:(1)()()322ab ab ÷-;(2)()()()2412525x x x +-+-.20.解方程:21324x x =--.21.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.22.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A 1B 1C 1的面积.23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.24.如图,已知ABC 中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在CA 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,BPD △与CQP V 是否全等?请说明理由:②若点Q 与点P 的运动速度不相等,要使BPD △与CQP V 全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC 的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC 的哪条边上.25.在直角ABC 中,90ACB ∠= ,60B ∠= ,AD ,CE 分别是BAC ∠和BCA ∠的平分线,AD ,CE 相交于点F .()1求EFD ∠的度数;()2判断FE 与FD 之间的数量关系,并证明你的结论.26.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?27.晓芳利用两张正三角形纸片,进行了如下探究:初步发现:如图1,△ABC 和△DCE 均为等边三角形,连接AE 交BD 延长线于点F ,求证:∠AFB =60°;深入探究:如图2,在正三角形纸片△ABC 的BC 边上取一点D ,作∠ADE =60°交∠ACB 外角平分线于点E ,探究CE ,DC 和AC 的数量关系,并证明;拓展创新:如图3,△ABC 和△DCE 均为正三角形,连接AE 交BD 于P ,当B ,C ,E 三点共线时,连接PC ,若BC =3CE ,直接写出下列两式分别是否为定值,并任选其中一个进行证明:(1)3AP PD PC -;(2)2AP PC PD BD PC PE++-+.参考答案1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,判断即可.【详解】解:(1)223+>,232+>,223-<,322-<,能构成;(2)235+=,不能构成;(3)146+<,不能构成;(4)345+>,354+>,453+>,435-<,534-<,543-<能构成;故选:B .【点睛】本题是对三角形三边关系的考查,熟练掌握三角形三边关系是解决本题的关键.3.B【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【详解】多边形的边数是:n =360°÷(180°﹣135°)=8.故选:B .【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100纳米=0.0000001米7110-=⨯米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.6.A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.C【分析】根据分式的基本性质对选项逐一判断即可.【详解】A 、2242ab b a c ac=,故错误;B 、11a b ab a b+=+,故错误;C 、23193x x x -=-+,故正确;D 、22x y x y -+-=-,故错误;故选C .【点睛】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.8.D【分析】根据角平分线的性质,垂直平分线的判定和三角形全等的判定和性质逐项进行判定即可.【详解】解:对A 、B 、C 选项,∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴PA PB =,∵在Rt PAO ∆和Rt PBO ∆中==PA PB OP OP⎧⎨⎩,∴Rt Rt OPA OPB ∆∆≌,∴APO BPO ∠=∠,=OA OB ,∴PO 平分APB ∠,故A 、B 、C 正确,不符合题意;D .∵PA PB =,=OA OB ,∴OP 垂直平分AB ,但AB 不一定垂直平分OP ,故D 错误,符合题意.【点睛】本题主要考查了角平分线的性质,垂直平分线的判定,全等三角形的判定和性质,根据题意证明Rt Rt OPA OPB ∆∆≌,是解题的关键.9.C【分析】延长AB 、DE 相交于点F ,根据AED AEF ∆∆≌得到DE EF =,AD AF =,再证明DEC FEB ∆∆≌得到DC BF =,从而推算出四边形ABCD 的周长等于2AD BC +得到答案.【详解】解:如下图所示,延长AB 、DE 相交于点F,DAB ∠的平分线交BC 于点E ,∴DAE FAE ∠=∠,∵DE AE ⊥,90AED AEF ∠=∠=︒∴,∵AE=AE ,∴AED AEF ∆∆≌,∴DE EF =,AD AF =,∵AB ∥DC ,∴CDE EFB ∠=∠,∵CDE EFB DE EF DEC FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DEC FEB ∆∆≌,∴DC BF =,∵6AB DC AB BF AF +=+==,∴四边形ABCD 的周长为66416AD AB BC DC AD AF BC +++=++=++=,故选:C .【点睛】本题考查全等三角形、平行线和角平分线的性质,解题的关键是熟练掌握全等三角形、平行线和角平分线的相关知识.10.A【分析】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,由题意得:759011.82x x =+,故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.11.B【分析】由折叠的性质得到CBD EBD ≅ ,继而得到BED C ∠=∠,根据题意90C ∠<︒,据此判断①错误;由折叠的性质得到DC=DE ,BE=BC=6,求得AED △的周长为:AD+AE+DE=AC+AE=7,可判断②;设点D 到AB 的距离为h ,根据三角形面积公式得到11::6:83:422BCD ABD S S h BE AB =⋅⋅== ,可判断③;设点B 到AC 的距离为m ,根据三角形面积公式得到11:::3:422BCD ABD S S m CD m AD CD AD =⋅⋅== ,可判断④.【详解】解:沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,CBD EBD≅ ,CBD EBD BED C∴∠=∠∠=∠90C ∠<︒90DEB ∴∠<︒DE ∴不垂直AB ,故①错误;由折叠的性质可知DC=DE ,BE=BC=68AB = 2AE AB BE ∴=-=AED ∴ 的周长为:AD+AE+DE=AC+AE=7,故②正确;设点D 到AB 的距离为h ,11::6:83:422BCD ABD S S h BE h AB ∴=⋅⋅== ,故③正确;设点B 到AC 的距离为m ,11:::3:422BCD ABD S S m CD m AD CD AD ∴=⋅⋅== ,故④错误,故选:B.【点睛】本题考查翻折变换,三角形周长的求法、三角形的面积公式等知识,是基础考点,掌握相关知识是解题关键.12.B【分析】根据大长方形的面积等于3个正方形的面积加上3个长方形的面积即可求解.【详解】解:依题意,得()()22232a b a b a ab b ++=++.故选B .【点睛】本题考查了多项式乘法与图形的面积,数形结合是解题的关键.13.3【分析】原式根据负整数指数幂、零指数幂的运算法则化简各项后,再进行减法运算即可得到答案.【详解】解:(201141=32-⎛⎫-=- ⎪⎝⎭.故答案为:3.【点睛】本题主要考查了负整数指数幂、零指数幂,熟练掌握负整数指数幂、零指数幂的运算法则是解答本题的关键.14.=1x -【分析】根据分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零,即可得到答案.【详解】解;根据分式的值为零的条件得:210x -=,且10x -≠,解得:=1x -,故答案为:=1x -.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.15.60【分析】连接,BP BE ,先根据等边三角形的性质可得60,ACB BE AC ∠=︒⊥,从而可得30CBE ∠=︒,再根据等边三角形的性质、线段垂直平分线的性质可得PB PC =,从而可得PC PE PB PE +=+,然后根据两点之间线段最短可得当点,,B P E 共线时,PB PE +最小,最后根据等腰三角形的性质可得30BCP CBE ∠=∠=︒,利用三角形的外角性质即可得出答案.【详解】解:如图,连接,BP BE ,ABC 是等边三角形,E 是AC 的中点,60ACB ∠=︒∴,BE AC ⊥,9030CBE ACB ∴∠=︒-∠=︒,AD 是等边ABC 的BC 边上的高,AD ∴垂直平分BC ,PB PC ∴=,PC PE PB PE ∴+=+,由两点之间线段最短得:如图,当点,,B P E 共线时,PB PE +最小,最小值为BE ,此时有30BCP CBE ∠=∠=︒,则60CPE BCP CBE ∠=∠+∠=︒,故答案为:60.【点睛】本题考查了等边三角形的性质、两点之间线段最短等知识点,利用两点之间线段最短找出PC PE +最小时,点P 的位置是解题关键.16.36︒【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得PBC PCB ∠=∠,从而得到BP PC =,PD PC =,进一步证明PDC PCD ∠=∠,再根据ABP ACP ∆∆≌得到PDC BAC ∠=∠,推算出2ABC BCA BAC ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如下图所所示,连接AP ,∵点P 在ABC ∠的平分线上,∴ABP PBC ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∵折叠,∴PCB DCP ∠=∠,∴PBC PCB ∠=∠,∴BP PC =,∵BP PD =,∴PD PC =,∴PDC PCD ∠=∠,∴ABP PBC BCP PCD PDC ∠=∠=∠=∠=∠,∵AD PD =,∴PAD APD ∠=∠,∵2PDC PAD APD PAD ∠=∠+∠=∠,∵AB ACAP AP BP PC=⎧⎪=⎨⎪=⎩,∴ABP ACP ∆∆≌,∴BAP PAC ∠=∠,∴PDC BAC ∠=∠,∴2ABC BCA BAC ∠=∠=∠,∵180ABC BCA BAC ∠+∠+∠=︒∴22180BAC BAC BAC ∠+∠+∠=︒,∴36BAC ∠=︒.【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明2ABC BCA BAC ∠=∠=∠.17.a 2(1)x -【分析】首先提取公因式a ,然后利用完全平方公式.【详解】解:原式=a(1-2x+2x )=a 2(1)x -.18.80︒【分析】设∠ADC=x ,则∠ADG=180°-x ,先证明∠BAE=∠C+∠EDC-∠B=x+20°,再由角平分线的定义得到1902ADF x =︒-∠,1102DAF x =︒+∠,再利用三角形内角和定理求解即可.【详解】解:设∠ADC=x ,则∠ADG=180°-x ,∵∠AEB=∠DEC ,∠AEB+∠B+∠BAE=180°,∠DEC+∠C+∠EDC=180°,∴∠B+∠BAE=∠C+∠EDC ,∴∠BAE=∠C+∠EDC-∠B=x+20°,∵AF 平分∠BAD ,DF 平分∠ADG ,∴119022ADF ADG x ==︒-∠∠,111022DAF BAD x ==︒+∠∠,∴1118018090108022F ADF DAF x x =︒--=︒-︒+-︒-=︒∠∠∠,故答案为:80︒.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,正确得到∠BAE=∠C+∠EDC-∠B 是解题的关键.19.(1)4ab(2)8x 29+【分析】(1)根据积的乘方、同底数幂的除法法则解答;(2)根据完全平方公式、平方差公式解答.(1)解:()()322ab ab ÷-6322a b a b =÷4ab =;(2)解:()()()2412525x x x +-+-()()22421425x x x =++--22484425x x x =++-+829x =+.20.1x =【分析】先去分母,方程两边同时乘以(2)(2)x x +-,转化为解一元一次方程,再验根即可.【详解】解:方程两边同时乘以(2)(2)x x +-得,23x +=1x ∴=经检验,1x =是分式方程的解1x ∴=.21.-2【详解】试题分析:原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将0x =代入计算即可求出值.试题解析:原式2541,112x x x x x x x ⎛⎫+-+=-⋅ ⎪++-⎝⎭2541,12x x x x x x +-++=⋅+-()221,12x x x x -+=⋅+-2x =-.当0x =时,原式 2.=-22.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【分析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.23.证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.24.(1)①△BPD ≌△CQP ,理由见解析;②点Q 的运动速度为4cm/s ,理由见解析;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;②因为VP≠VQ ,所以BP≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度;(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得.(1)①1秒钟时,△BPD 与△CQP 全等;理由如下:∵t=1秒,∴BP=CQ=3(cm )∵AB=12cm ,D 为AB 中点,∴BD=6cm ,又∵PC=BC-BP=9-3=6(cm ),∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵VP≠VQ ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD ≌△CPQ ,只能BP=CP=4.5,∵△BPD ≌△CPQ ,∴CQ=BD=6.∴点P 的运动时间 4.5 1.533BP t ===(秒),此时641.5Q CQ V t ===(cm/s ).(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得:4x=3x+2×12,解得:x=24,此时P 运动了24×3=72(cm )又∵△ABC 的周长为33cm ,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题是三角形综合题目,考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用;熟练掌握三角形全等的判定和性质是解决问题的关键.25.(1)120°;(2)FE=FD ;见解析.【分析】(1)由已知条件易得∠BAC=30°,结合AD ,CE 分别是∠BAC 和∠ACB 的角平分线可得∠FAC=15°,∠FCA=45°,由此结合三角形内角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.(2)如下图,在AC 是截取AG=AE ,连接FG ,在由已知条件易证△AGF ≌△AEF ,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,结合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,这样结合∠GCF=∠DCF ,CF=CF 即可得到△GCF ≌△DCF ,由此可得FG=FD ,结合FE=FG 即可得到FE=FD.【详解】(1)∵ABC 中,90ACB ∠= ,60B ∠=∴30BAC ∠= ,∵AD 、CE 分别是BAC ∠、BCA ∠的平分线,∴1152FAC BAC ∠=∠= ,1452FCA ACB ∠=∠= ,∴180120AFC FAC FCA ∠=-∠-∠= ,∴120EFD AFC ∠=∠= ;()2FE 与FD 之间的数量关系为FE FD =;在AC 上截取AG AE =,连接FG,∵AD 是BAC ∠的平分线,∴EAF GAF∠=∠在EAF △和GAF 中,∵AEAGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴AEF △≌AGF ,∴FE FG =,∠AFG=∠AFE=∠FAC+∠ECA=60°,∴∠CFD=∠AFE=60°,∴∠CFD=∠CFG ,∵在FDC △和FGC △中,DFC GFCFC FC FCG FCD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴CFG △≌CFD △,∴FG FD =,∴FE FD =.26.(1)5;(2)962.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解;(2)求出两次的购进千克数,根据利润=售价-进价,可求出结果.【详解】(1)设第一次所购水果的进货价是每千克x 元,依题意,得1650x 0.5+=3500x⨯,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1-5%)×8-500]+[300×(1-2%)×8-1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.27.初步发现:证明见解析;深入探究:CE+DC=AC ,证明见解析;拓展创新:(1)2,证明见解析;(2)1,证明见解析【分析】初步发现:只需要利用SAS 证明△BCD ≌△ACE 得到∠CBD=∠CAE ,由∠BOC=∠AOF ,推出∠AFO=∠BCO=60°,由此即可证明结论;深入探究:在AB 上取一点G 使得BG=BD ,连接DG ,先证明△BDG 是等边三角形,得到BG=BD=DG ,∠BGD=60°,再利用ASA 证明△AGD ≌△DCE 得到CE=GD=BD ,即可证明CE+DC=AC ;拓展创新:(1)如图所示,在AE 上取一点F ,使得EF=PD ,先证明△ACE ≌△BCD 得到AE=BD ,∠AEC=∠BDC ,再证明△CPD ≌△CFE 得到PD=FE ,∠PCD=∠FCE ,PC=CF ,进而证明△PCF 是等边三角形,得到PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,利用面积法证明CG=CH ,得到3BP PE =,得到34AE BD PC PD ==+23AP PC PD =+,由此即可得到结论;(2)根据(1)所求分别用PC 和PD 表示出分子和分母的线段的和差即可得到答案.【详解】解:初步发现:如图所示,设AC 与BF 交于O ,∵△ABC 和△CDE 都是等边三角形,∴CB=CA ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴∠CBD=∠CAE ,∵∠BOC=∠AOF ,∠AOF+∠AFO+∠OAF=180°,∠CBO+∠BOC+∠BCO=180°,∴∠AFO=∠BCO=60°,即∠AFB=60°;深入探究:CE+DC=AC ,证明如下:如图所示,在AB 上取一点G 使得BG=BD ,连接DG ,∵△ABC 是等边三角形,∴AC=BC=AB ,∠ACB=∠B=60°,∴∠ACF=120°,△BDG 是等边三角形,∴BG=BD=DG ,∠BGD=60°,∴∠AGD=120°,AG=DC ,∵CE 平分∠ACF ,∴1602ECF ACE ACF ∠=∠=∠=︒,∴∠DCE=120°,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD ,∠B=∠ADE=60°,∴∠CDE=∠BAD ,在△AGD 和△DCE 中,DAG EDCAG DC AGD DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△DCE (ASA ),∴CE=GD=BD ,∴CE+DC=BD+DC=BC ,∴CE+DC=AC;拓展创新:(1)32AP PDPC -=,证明如下:如图所示,在AE 上取一点F ,使得EF=PD ,∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,∴∠BCD=∠ACE ,在△ACE 和△BCD 中,AC BCACE BCD CE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∠AEC=∠BDC ,在△CPD 和△CFE 中,CD CECDP CEF DP EF=⎧⎪∠=∠⎨⎪=⎩,∴△CPD ≌△CFE (SAS ),∴PD=FE ,∠PCD=∠FCE ,PC=CF ,∴∠PCD+∠DCF=∠FCE+∠DCF ,∴∠PCF=∠DCE=60°,∴△PCF 是等边三角形,∴PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,∵△ACE ≌△BCD ,∴ACE BCD S S =△△,∴1122BD CG AE CH ⋅=⋅,∴CG=CH ,∵BC=3CE ,∴3BCP PCE S S =△△,∴11322BP CG PE CH ⋅=⨯⋅,∴3BP PE =,∴33334AE BD BP PD PE PD PF EF PD PC PD ==+=+=++=+,∴3423AP AE PE PC PD PF EF PC PD =-=+--=+,∴32322AP PD PC PD PDPC PC -+-==;(2)21AP PC PDBD PC PE ++=-+,证明如下:由(1)可得223235AP PC PD PC PD PC PD PC PD ++=+++=+,343435BD PC PE PC PD PC PF EF PC PD PC PC PD PC PD -+=+-++=+-++=+,∴21AP PC PDBD PC PE ++=-+;。
人教版八年级上学期数学《期末测试卷》及答案
,
,
则原式 .
故选: .
[点睛]本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.
9.若分式方程 无解,则 的值为()
A. 5B. C. D.
[答案]B
[解析]
[分析]
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程即可求出m的值.
由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
[详解]∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°−∠A)÷2=70°,
∵线段AB的垂直平分线交AB于D,交AC于E,
[分析]
根据分式有意义分母不为零求解即可.
[详解]解:若分式 有意义,则 ,即 ,
故答案选:C.
[点睛]本题考查分式有意义的条件,掌握分式有意义时分母不为零是解题的关键.
4.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()
A. ∠A=∠CB. ∠D=∠BC.AD∥BCD.DF∥BE
[答案]12
[解析]
[分析]
乘积含x项包括两部分,①mx×2,②8×(-3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.
[详解]由题意得,乘积含x项包括两部分,①mx×2,②8×(-3x),
又∵(mx+8)(2-3x)展开后不含x的一次项,
∴2m-24=0,
解得:m=12.
故答案为12.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
人教版八年级数学上 学期期末联考试卷.docx
初中数学试卷桑水出品2016-2017学年上学期八年级期末联考试卷数 学(全卷三个大题,含26小题,考试时间120分钟,满分120分)注意:1.考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上 答题无效。
2.考试结束后,请将试题卷和答题卷一并交回。
一、选择题(每小题3分,10小题,共30分) 1.下列大学的校徽图案中,是轴对称图形的是( )A. B. C. D.2.下列运算正确的是( )A .532523x x x =+ B .0( 3.14)0π-= C .236-=- D .()623x x =3.若分式23xx +有意义,则x 的取值范围是( ) A .3≠x B .3-≠x C .3>x D .3->x 4.如果229y kxy x +-是一个完全平方式,那么k 的值是( ) A .3 B .±6 C .6 D .±35.下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,11C .12,5,6D .3,4,5 6. 如图,△ABC 中,∠A =50°,∠ABC=70°,BD 平分∠ABC , 则∠BDC 的度数为( ) A. 85° B. 80° C. 75° D. 70°7.如图,AB =AD ,要说明△ABC ≌△ADE ,需添加的条件不能是( )A .∠E ∠= CB .AC =AE C .∠ADE ∠=ABCD .DE =BC8.已知1112a b -=,则ab a b -的值为( ) A. 12 B. 12- C.-2 D.29.若分式方程233x mx x +=++无解,则m 的值为 ( ) A .-1 B .0 C .1 D .310.如图, AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(共10小题,每小题3分,满分27分) 11.计算:()214520163π-⎛⎫--+-- ⎪⎝⎭=__________ 12.若分式242x x -+的值为零,则x _______ _13.已知32=x ,则32x +的值为14.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m.这个数用 科学记数法表示为 m.15.已知一个多边形的内角和等于1260°,则这个多边形是 边形. 16.一个三角形等腰三角形的两边长分别为13和7,则周长为___ ___ 17.如图,在Rt △ABC 中,∠C=90°,∠BAC= 60°,∠BAC 的平分线AD 长为8cm ,则BC=18.如图,△ABC 中,AB=AC=13cm ,AB 的垂直平分线交AB 于D,交AC 于E,若△EBC 的周长为21cm,则BC=19.如图,是我国古代数学家杨辉最早发现的,称为“杨辉三角”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温州市育英学校等五校2013-2014学年第一学期期末联考
八年级数学试卷
一选择题(每题4分共32分)
1. 如果|x-2 |+x-2=O ,那么x 的取值范围是( ).
A .x>2
B .x<2
C .x ≥2
D .x ≤2
2. 把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形.如果将图l 中标有字母A 的一个小正方体搬去.这时外表含有的小正方形个数与搬动前相比( ). A .不增不减 B .减少1个 C .减少2个 D .减少3个
3. 若3x 3-x=1 ,则9x 4+12x 3-3x 2
-7x+2001的值等于( ) A.1999 B.2001 C.2003 D.2005
4. 设a 是一个无理数,且a ,b 满足ab-a-b+1=0,则b 是一个( ) )
A.小于0的有理数
B.大于0的有理数
C.小于0的无理数
D.大于0的无理数 5. 已知抛物线
c bx x y ++=2的系数满足52=-c b ,则这条抛物线一定经过点( )
A .)2,1(--
B . )1,2(--
C .)1,2(-
D .)1,2(-
6. 已知b 2
-4ac 是一元二次方程ax 2
+bx+c=0(a ≠0)的一个实数根,则ab 的取值范围为( )
A . 18ab ≥
B .14ab ≥
C .18ab ≤
D . 1
4
ab ≤
7, 设S =
2221111++
+2231211+++2
24
1311+++ …
S 的最大整数[S]等于( )
A. 98
B.99
C.100
D. 101 8. 已知关于x 的方程2
6(2)3920x
x a x a -+--+-=有且仅有两个不相等的实根,则实数
a 的取值范围为( )
A . 2 a =-
B . 0a >
C .2 0a a =->或
D .2 0a a ≤->或 一. 填空题(每题5分共40分) 9. 若
1212-++x x >a 对任意实数x 恒成立,则a 的取值范围是 。
10. 已知直线y=b (b 为实数)与函数 y=2
43x x -+ 的图像至少有三个公共点,则实数b 的取值范围
11. 小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t >0)的P 1点开始,按点的横坐标依次增加1的规律,在抛物线
a ax y (2=>0)上向右跳动,得到点P 2、P 3,这时△P 1P 2P 3的面积
为 。
12.如图,点C 在线段AB 上,DA ⊥AB ,EB ⊥AB ,FC ⊥AB ,且DA=BC ,EB=AC ,FC=AB ,∠AFB=51°,则∠DFE= .
1000002221111554510141616
13. 若a 、b 均为正数,且 2
2
b a + ,2
2
4b a +, 2
2
4b a + 是一个三角形的三条边的长,那么这个三角形的面积等于 .
14. 右图是由数字组成的三角形,除最顶端的1以外,以下出现的数字都有一定的规律.根据它的规律,则最下排数字x 的值是_____________.
15..设a ,b,,c 满足a+b+c=1,a 2+b 2+c 2=2,a 3+b 3+c 3
=3 则abc= .
16x y +=
三.解答题(共78分) 17.(10分)因式分解 323232
)()()(y x z x z y z y x
-+-+-
18,.(10分))△ABC 中,AB=AC=2,BC 边上有100个不同的点p 1,p 2,…p 100;
19. (13分)设a,b,c,d 是正整数,,a b 是方程2
()0x d c x cd --+=的两个根.证明:存在
边长是整数且面积为ab 的直角三角形.
20.(15分) 设,,,321x x x …2006,x 是整数,且满足下列条件:① 1≤n x ≤2,n =1,2,3,…,
2006;
②+++321
x x x ...2002006=+x ;③+++232221x x x (20062)
2006=+x . 求 +++33323
1
x x x (3)
2006
x + 的最小值和最大值.
21.(15分)已知抛物线q px x y ++=2上有一点M(x 0,0y )位于x 轴下方. (1)求证:此抛物线与轴交于两点;
(2)设此抛物线与x 轴的交点为A(1x ,0),B(,0),且1x <2x ,求证:1x <0x <2x .
22. (15分)A ,B ,C 三个村庄在一条东西走向的公路沿线,如图所示,AB=2km,BC=3km,在B 村的正
北方向有一个D 村,测得∠ADC=450今将⊿ACD 区域规划为开发区,除其中4 km 2
的水塘外,均作为建筑或绿化用地,试求这个开发区的建筑及绿化用地的面积是多少?
17. 注意到 当y x =时,原式等于0,故原式含有因子y x - 又原式是关于z y x ,,的轮换对称式,故原式还含因子x z z y --, 又原式为z y x ,,的五次式,故可设
323232)()()(y x z x z y z y x -+-+-
=)]()()[)()((2
22zx yz xy B z y x A x z z y y x +++++--- 令1,0,1==-=z y x 得12-=-B A
令2,1,0===z y x 得225=+B A 解得1,0==B A
所以323232
)()()(y x z x z y z y x
-+-+-=))()()((zx yz xy x z z y y x ++---
18解:作AD ⊥BC 于D ,则BC=2BD=2CD . 根据勾股定理,得 AP i 2=AD 2+DP i 2=AD 2+(BD-BP i )2=AD 2+BD 2-2BD•BP i +BP i 2
,
又P i B•P i C=P i B•(BC-P i B )=2BD•BP i-BP i 2
,
∴M i =AD 2+BD 2=AB 2
=4,
∴M 1+M 2+…+M 10+M 100=4×100=400.
19.
20. 设,,,321x x x …2006,x 中有r 个-1、s 个1、t 个2,则
⎩⎨
⎧=++=++-.2006
4,
2002t s r t s r 两式相加,得s +3t =1103,故0367t ≤≤.
∵ +++33323
1
x x x …t s r x 83
2006++-=+
=2006+t .
∴ 200≤+++33323
1
x x x (3)
2006
x +≤6×367+200=2402. 当0,1103,903t s r ===时,+++33323
1x x x (3)
2006
x +取最小值200, 当367,2,536t s r ===时,+++33323
1x x x (3)
2006
x +取最大值2402.
21.
22. 将⊿ABD,,⊿BCD 关于BD 作轴对称变换, 得⊿AFD,⊿ECD,延长EC,,FA 交于点G, 易证四边形DFGE 是正方形,设BD=x,
在RT ⊿AGC 中有AC 2=AG 2+CG 2
即25=(x-2)2+(x-3)2
解得x,=6
从而求得开发区的建筑及绿化用地的面积是15-4=11 km2。