初一数学上册有理数的认识及计算练习题精编108
初一数学上册 有理数及其运算
有理数及其运算(复习)一、正负数有理数的分类:_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
正确理解非负数和非正数。
练习:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …} 负整数集{ …};自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、数轴规定了 、 、 的直线,叫数轴练习:1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 03、下列语句中正确的是( )A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-26、画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:⑴ 1,-2,3,-4 ⑵31,0,3,-0.2三、相反数1、像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a2、相反数的相关性质:a 、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
初一数学有理数加减乘除混合运算练习题
初一数学有理数加减乘除混合运算练习题有理数加减乘除混合运算练习题37734(-1620512)×(-15×4)187(-2.4)341121 2÷(-7)×7÷(-51]÷(-117)[152-(14÷15+32)8)1531121×(-5)÷(-1 5)×5-(3-21+14-7)÷(-42)521-13×23-0.34×7+3×(-13)-7×0.348-(-25)÷(-5)11111(-13)×(-134)×13×(-67)(-478)-(-52)+(-44)-3821(-16-50+35)÷(-2)(-0.5)-(-314)+6.75-522178-87.21+4321+531921-12.79(-6)×(-4)+(-32)÷(-8)-321-7-(-12)+|-12|(-9)×(-4)+(-60)÷12[(-149)-157+218]÷(-421)-34×(8-213-0.04)(213-312+11718)÷(-116)×(-7)|-3|÷10-(-15)×13-1315×(327-165)÷22-有理数加减乘除混合运算练习题(-167337420512)×(-15×4)187(-2.4)2÷(-7)×7÷(-57)[152-(14÷15+32)]÷(-18)2113111×(-5)÷(-)×5-(-+-)÷(-)5-13×3-0.34×7+3×(-13)-7×0.34 8-(-25)÷(-5)(-13)×(-134)×(-16-50+35)÷(-2)(-0.5)-(-34)+6.75-5 ×(-1677111)(-48)-(-52)+(-44)-381178-87.21+4321+5321-12.79(-6)×(-4)+(-32)÷(-8)-3-7-(-2)+|-12|(-9)×(-4)+(-60)÷1219158 [(-14)-17+21]÷(-42)-|-3|÷10-(-15)×3 22191131-4×(8-23-0.04)3157-15×(32-16)÷22(23-32+118)÷(-16)×(-7)每日一练(一)一、计算。
七年级数学课程上册有理数计算题
初一数学有理数计算题分类及混合运算练习题有理数加法 1、(-9)+(-13) 2、(-12)+27 3、(-28)+(-34)4、67+(-92)5、 (-27.8)+43.96、(-23)+7+(-152)+657、|52+(-31)| 8、(-52)+|―31| 9、 38+(-22)+(+62)+(-78)10、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21)12、(-8)+47+18+(-27) 13、(-5)+21+(-95)+29 14、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5) 15、 6+(-7)+(-9)+216、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77)18、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26)20、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+1222、 553+(-532)+452+(-31) 23、(-6.37)+(-343)+6.37+2.75有理数减法7-9 ―7―9 0-(-9) (-25)-(-13)8.2―(―6.3) (-321)-541(-12.5)-(-7.5)(-26)―(-12)―12―18 ―1―(-21)―(+23) (-41)―(-85)―81(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5)(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73(-0.5)-(-341)+6.75-521(+6.1)―(-4.3)―(-2.1)―5.1(-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)-843-597+461-392 -443+61+(-32)―250.5+(-41)-(-2.75)+21(+4.3)-(-4)+(-2.3)-(+4)有理数乘法(-9)×32 (-132)×(-0.26) (-2)×31×(-0.5)31×(-5)+31×(-13) (-4)×(-10)×0.5×(-3) (-83)×34×(-1.8)(-0.25)×(-74)×4×(-7) (-73)×(-54)×(-127)(-8)×4×(-21)×(-0.75) 4×(-96)×(-0.25)×481(74-181+143)×56 (65―43―97)×36(-43)×(8-34-0.4) (-66)×〔12221-(-31)+(-115)〕25×43-(-25)×21+25×41 (-36)×(94+65-127)(187+43-65+97)×7231×(2143-72)×(-58)×(-165)有理数除法18÷(-3) (-24)÷6 (-57)÷(-3) (-53)÷52(-42)÷(-6)(+215)÷(-73) (-139)÷9 0.25÷(-81) -36÷(-131)÷(-32)(-1)÷(-4)÷74 3÷(-76)×(-97) 0÷[(-341)×(-7)]-3÷(31-41) (-2476)÷(-6) 2÷(5-18)×181131÷(-3)×(-31) -87×(-143)÷(-83) (43-87)÷(-65)(29-83+43)÷(-43) -3.5 ×(61-0.5)×73÷21 -172÷(-165)×183×(-7)56×(-31-21)÷4575÷(-252)-75×125-35÷40.8×112+4.8×(-72)-2.2÷73+0.8×119有理数混合运算(-1275420361-+-)×(-15×4) ()⨯⨯-73187(-2.4)2÷(-73)×74÷(-571) [1521-(141÷152+321)]÷(-181)51×(-5)÷(-51)×5 -(31-211+143-72)÷(-421)-13×32-0.34×72+31×(-13)-75×0.34 8-(-25)÷(-5)(-13)×(-134)×131×(-671) (-487)-(-521)+(-441)-381(-16-50+352)÷(-2) (-0.5)-(-341)+6.75-521178-87.21+43212+532119-12.79 (-6)×(-4)+(-32)÷(-8)-3-72-(-21)+|-121| (-9)×(-4)+ (-60)÷12[(-149)-175+218]÷(-421) -|-3|÷10-(-15)×31 -43×(8-231-0.04)-153×(327-165)÷221(231-321+11817)÷(-161)×(-7)有乘方的运算:-2×23 -22-()31- 43-34 31--2×()31- ()23-÷()24-2-×()22- 232- +()34- ()32-×()42-×()52- 2-×23-()232⨯-()22-2-+()32-+3222--3)3(-×()31--()31- -()[]221--+()221-0-()23-÷3×()32- 22-×()221-÷()38.0- -23×()231--()32-÷()221-()243-×(-32+1) ×0 6+22×()51- -10+8÷()22--4×3-51-()()[]55.24.0-⨯- ()251--(1-0.5)×31 ()32-×()232-×()323-4×()23-+6 ()1321-×83×()122-×()731- -27+2×()23-+(-6)÷()231-()42-÷(-8)-()321-×(-22) ()()[]222345----×(11587÷)×()47-()22--2[ -3×43]÷51 ()26-÷9÷()296÷- 36×()23121--{()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛-⨯+--)2(2114.0333} -41+(1-0.5)×31×[2×()23-]-4×()[]3671÷-+()[]()33235-÷-- -33-()[]1283--÷+()23-×()32-÷25.01过关测试:一1. 2(3)2--⨯2. 12411()()()23523+-++-+-3. 11( 1.5)4 2.75(5)42-+++- 4. 8(5)63-⨯--5. 3145()2-⨯-6. 25()()( 4.9)0.656-+----7.22(10)5()5-÷⨯- 8. 323(5)()5-⨯-9. 25(6)(4)(8)⨯---÷- 10. 1612()(2)472⨯-÷-11.2(16503)(2)5--+÷- 12. 32(6)8(2)(4)5-⨯----⨯13. 21122()(2)2233-+⨯-- 14. 199711(10.5)3---⨯15. 2232[3()2]23-⨯-⨯-- 16. 232()(1)043-+-+⨯17. 4211(10.5)[2(3)]3---⨯⨯-- 18. 4(81)( 2.25)()169-÷+⨯-÷19. 215[4(10.2)(2)]5---+-⨯÷- 20. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-21. 235()(4)0.25(5)(4)8-⨯--⨯-⨯- 22. 23122(3)(1)6293--⨯-÷-过关测试:二1、 111117(113)(2)92844⨯-+⨯-2、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦3、33221121(5533)22⎡⎤⎛⎫⎛⎫--÷+⨯+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦4、2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦5、(—315)÷(—16)÷(—2) 6、 –4 + 2 ×(-3) –6÷0.257、(—5)÷[1.85—(2—431)×7] 8、 18÷{1-[0.4+ (1-0.4)]×0.49、1÷( 61-31)×61 10、 –3-[4-(4-3.5×31)]×[-2+(-3) ]11、 8+(-41)- 5- (- 0.25) 15、13611754136227231++-;16、20012002200336353⨯+⨯- 17、()5.5-+()2.3-()5.2---4.818、()8-)02.0()25(-⨯-⨯ 19、21+()23-⎪⎭⎫ ⎝⎛-⨯21 20、81)4(2833--÷-21、100()()222---÷⎪⎭⎫ ⎝⎛-÷32 22、(-371)÷(461-1221)÷(-2511)×(-143)23、(-2)14×(-3)15×(-61)1427、()()4+×733×250)-(.-24、-42+5×(-4)2-(-1)51×(-61)+(-221)÷(-241)25、-11312×3152-11513×41312-3×(-11513) 26、41+3265+2131--55、)61(41)31()412(213+---+-- 56、2111943+-+-- 60、=⨯(-4)357、31211+- 62、=⨯0(-6) 58、)]18()21(26[13-+--- 69、)8(45)201(-⨯⨯-59、2111)43(412--+--- 70、53)8()92()4()52(8⨯-+-⨯---⨯66、)25()7()4(-⨯-⨯- 67、)34(8)53(-⨯⨯- 68、)1514348(43--⨯71、)8(12)11(9-⨯-+⨯- 121、111117(113)(2)92844⨯-+⨯-78、)412()21()43(-÷-⨯- 79、2411)25.0(6⨯-÷- 81、)2(48-÷+-80、)21(31)32(-÷÷- 82、)51(250-⨯÷- 83、)3(4)2(817-⨯+-÷-84、1)101(250322-⨯÷+ 85、911)325.0(321÷-⨯- 89、6)3(5)3(42+-⨯--⨯86、1)51(25032--⨯÷+ 87、])3(2[)]215.01(1[2--⨯⨯-- 88、)145()2(52825-⨯-÷+-90、)25.0(5)41(8----+ 91、)48()1214361(-⨯-+- 92、31)321()1(⨯-÷-93、)199(41212+-÷⨯ 94、)16(94412)81(-÷+÷- 95、)]21541(43[21----96、13+(+7)-(-20)-(-40)-(+6) 97、)2(9449344-÷+÷- 102、 )1279543(+--÷36198、22)36()33(24)12581(÷-÷---⨯- 99、13)18()14(20----+- 107、()1-⎪⎭⎫ ⎝⎛-÷2131100、 8+(―41)―5―(―0.25) 101、 (-12)÷4×(-6)÷2 103、2)5()2(10-⨯-+104、 (7)(5)90-⨯--÷(15)- 120、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--105、 721×143÷(-9+19) 106 、25×43―(―25)×21+25×(-41) 109、2(x-3)-3(-x+1)108、(-81)÷241+94÷(-16) 121、111117(113)(2)92844⨯-+⨯- 112、 47÷)6(3287-⨯-111、3223121213+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+ 113、48245834132⨯⎪⎭⎫ ⎝⎛+-- 119、―22+41×(-2)2118、 100()()222---÷3)2(32-+⎪⎭⎫ ⎝⎛-÷ 125、(-0.4)÷0.02×(-5)122、419932(4)(1416)41313⎡⎤--⨯-÷-⎢⎥⎣⎦124、 (+3.74)-[(-5.91)-(-2.74)+(-2.78)126、)—()—)+(—(25.0433242÷⨯127、 75)21(212)75(75211⨯-+⨯--⨯128、11)()+(2532.015[3-÷⨯----]129 、12(4)4⎡⎤-|-16|-⨯-⎢⎥⎣⎦÷⎥⎦⎤⎢⎣⎡--)813(41130、 2335(2)(10.8)114⎡⎤---+-⨯÷--⎢⎥⎣⎦赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。
初一数学《有理数及其运算》例题加练习(北师大版)
第二章:有理数及其运算知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
知识点:一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:(3)两个负数比较大小,绝对值大的反而小。
二、有理数的运算 1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
(2)有理数加法的运算律:加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)
北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。
(word完整版)初一数学上册完全辅导——第一章有理数精讲
初一数学上册重点知识学习参考第一章 有理数一、知识结构有理数: 按定义分 按符号分正整数 正整数 正有理数0 整数 有 正分数(含正有限小数负整数 理 0 和循环小数)有限小数 正分数 数 负整数分数 负有理数无限循环小数 负分数 负分数(含负有限小数和循环小数)注意:常见的不是有理数的数有π和有规律的但不循环的小数。
如:0.0100100010001000010000010000001……二、掌握要点1、了解有理数的概念(什么是有理数、有理数包含的范围有哪些、有理数之间的大小比较)。
(1)大于0的数叫做正数,如3、1.8、5%等。
(2)在正数前面加上负号“—”的数叫负数,即小于0的数,如-3、-2.5、-5%等。
(3)数0既不是正数,也不是负数。
0除了表示一个也没有以外,是正数和负数的分界,是基准。
(4)在同一个问题中,分别用正数与负数表示的量具有相反的意义。
强调:用正数、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是他们的意义相反,如向东与向西、收入与支出;二是他们都是数量,而且是同类的量。
(5)正整数、0、负整数统称整数。
整数可以看作分母为1的分数。
(6)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
(7)把一些数放在一起,就组成了一个数的集合,简称“数集”。
所有有理数组成的数集叫“有理数集”,所有整数组成的数集叫“整数集”,所有负数组成的数集叫“负数集”……数集一般用圆圈或大括号表示,因为集合中的数是无限的。
(8)有理数可以按不同的标准进行分类,标准不同,分类结果也不同。
问:有理数可分为正数和负数两大类,对吗?为什么?有理数可分为整数和分数两大类,对吗?为什么?2、有理数与数轴上的点一一对应(数轴的三要素、怎样看数轴、掌握应用数轴来进行去绝对值符号的简单运算)。
(1)通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、正方向、单位长度原点——在直线上任取一点表示数0,这个点叫原点。
初一上册数学练习题
初一上册数学练习题第一章有理数1.1 正数和负数1、在数学中,正数有无穷多个,负数也有无穷多个。
2、如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作-3m,水位不升不降时水位变化记作0m。
3、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
4、下列说法正确的是(B)零既不是正数也不是负数。
5、向东行进-30米表示的意义是(D)向西行进30米。
6、零上13℃记作+13℃,零下2℃可记作(B)-2℃。
7、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高10℃。
1.2 有理数1.整数和分数统称为有理数。
2.零和负数统称为非正数,零和正数统称为非负数。
3.下列说法中正确的是(D)整数和分数统称为有理数。
4.下列说法中不正确的是(C)-2000既是负数,也是整数,但不是有理数。
5.把下列各数分别填在相应集合中:正数集合:{1.325.0.618}负数集合:{-0.20.-789.-23.13.-2004}非正数集合:{-0.20.-789.-23.13.-2004}非负数集合:{0.1.325.0.618}6.把下列各数分别填在相应的大括号里:正数集合:{5.3.7}负数集合:{-2.-3.4.-21}整数集合:{-2.5.-3.-21}有理数集合:{-2.5.-3.4.-21.3.7}1.2.2 数轴1.(2012江苏泰州市,10,3分)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P’,则点P’表示的数是2.2.(2012山东莱芜,1,3分)如图,在数轴上点M表示的数可能是负数。
3.数轴上点A表示数a,那么A到原点的距离是什么?4.数轴上距离原点为3的数是什么?1.3 相反数、绝对值和倒数1.-2的相反数是什么?A。
B。
-。
C。
-2.D。
22.3的相反数是什么?A。
-3.B。
C。
3.D。
3.-2012的相反数是什么?A。
人教版七年级上册数学有理数计算题分类及混合运算练习题(200题)
七年级数学有理数计算题练习题(200题)有理数加法 1、(-9)+(-13) 2、(-12)+27 3、(-28)+(-34)4、67+(-92)5、 (-27.8)+43.96、(-23)+7+(-152)+65原则一:所有正数求和,所有负数求和,最后计算两个数的差,取绝对值较大的数的符号。
7、|52+(-31)| = 8、(-52)+|―31| =9、 38+(-22)+(+62)+(-78)=10、(-8)+(-10)+2+(-1) 11、(-32)+0+(+41)+(-61)+(-21)12、(-8)+47+18+(-27) 13、(-5)+21+(-95)+29 14、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5) 15、 6+(-7)+(-9)+216、 72+65+(-105)+(-28) 17、(-23)+|-63|+|-37|+(-77)18、19+(-195)+47 18、(+18)+(-32)+(-16)+(+26)20、(-0.8)+(-1.2)+(-0.6)+(-2.4) 21、(-8)+(-321)+2+(-21)+1222、 553+(-532)+452+(-31) 23、(-6.37)+(-343)+6.37+2.75原则二:凑整,0.25+0.75=141+43=1 0.25+43=1 抵消:和为零有理数减法7-9 = ―7―9 = 0-(-9) = (-25)-(-13) =8.2―(―6.3) (-321)-541(-12.5)-(-7.5)= = =(-26)―(-12)―12―18 ―1―(-21)―(+23) (-41)―(-85)―81=-44 =-2 =41(-20)-(+5)-(-5)-(-12) (-23)―(-59)―(-3.5) |-32|―(-12)―72―(-5) =-8 =39.5 =-23(+103)―(-74)―(-52)―710 (-516)―3―(-3.2)―7 (+71)―(-72)―73=―7011 =-10 =0(-0.5)-(-31)+6.75-51(+6.1)―(-4.3)―(-2.1)―5.1=4 =7.4(-32)―(-143)―(-132)―(+1.75) (-332)―(-243)―(-132)―(-1.75)=1 =2.5-843-597+461-392 -443+61+(-32)―25 =-13127 =-7430.5+(-41)-(-2.75)+21(+4.3)-(-4)+(-2.3)-(+4)=3.5 =2原则三:结果的形式要与题目中数的形式保持一致。
七年级数学上册有理数科学计数法知识点及习题
知识点:1、科学计数法:把一个大于10的数表示成aX10n的形式(其中a大于或等于1 且小于10, n是正整数)。
例如0=X1082、(1)近似数:接近准确数但与准确数有区别。
例如学校约有200名同学参加了数学辅导班,而实际参加数学辅导班的有213人。
(2)近似数与准确数的接近程度,可以用精确度表示。
按四舍五入法对圆周率n取近似数时,有n^3 (精确到个位)冗^ (精确到,或叫做精确到十分位)冗^ (精确到,或叫做精确到百分位)兀^ (精确到,或叫做精确到)^^ (精确到,或叫做精确到)(3)一般地,一个近似数,四舍五入到哪一位,就说这个近似数到哪一位;科学记数法1.填空(1)一般地,一个大于10的数可以表示成aX10n的形式,其中1W|a|<10, n 是正整数,这种记数方法叫做.(2)a与n的取法:在aX 10n形式中,n是原数整数位数减1, a的范围是.2.我省各级人民政府非常关注“三农问题”。
截止到年底,我省农村居民年人均纯收入已连续二十一年位居全国各省区首位,据统计局公布的数据,年我省农村居民年人均纯收入约7660元用科学记数法应记为()0X104元元元元3.用科学记数法表示下列各数.(1)503 000;(2) 200 000;(3);(4)X109.4.2002年5月15日,我国发射的海洋1号气象卫星进入预定轨道后,若绕地球运行的速度为X103米/秒,则运行2X102秒走过的路程是(用科学记数法表示)()A. 15.8X105米B. X105米C. X107 米D. X106米5.地球绕太阳转动每小时通过的路程约是X 105千米,用科学记数法表示地球转动一天(24小时)通过的路程约是()千米千米千米X104千米6.用科学记数法表示下列各数:(1) 1 000 000;(2) 57 000 000;(3)—851 340;(4)-12 300.7.下列用科学记数法表示出来的数,原数是多少?(1)X105;(2)—X104;(3)X102.8. (1)用科学记数法表示1 080 000 000 000;(2)用科学记数法表示数X 106的原数是什么?近似数和有效数字1.台湾是我国最大的岛屿,总面积为35平方千米.用科学记数法应表示为(保留三个有效数字)( )A.3.59 X 106平方千米平方千米平方千米平方千米2.填空(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数到哪一位;(2)一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都叫做这个数的;(3)除了四舍五入法,常用的近似数的取法还有两种,和.3.判断下列各题中哪些是精确数,哪些是近似数.(1)某班有32人;⑵半径为10 cm的圆的面积约为314 cm2;⑶张明的身高约为1.62米;⑷取n为.4.用四舍五入法取近似值,49精确到的近似数是,保留三个有效数字的近似数是.5.用四舍五入法得到的近似值精确到位,万精确到位.百度文库-让每个人平等地提升自我6.用四舍五入法取近似值,精确到十位的近似数是;保留两个有效数字的近似数是.7.下列由四舍五入得到的数各精确到哪一位?各有哪几个有效数字?(1);(2) 8;(3)万;(4)X1068.用四舍五入法,求出下列各数的近似数.(1)8 (精确到);(2) 2 (精确到个位);(3) 47 155 (精确到百位);(4)(保留4个有效数字);(5) 460 215 (保留3个有效数字);(6) 0 (精确到百分位).9.有玉米吨,用5吨的卡车一次运完,需要多少辆卡车?10.计算:一 ,2、,9、(1) X (-12) XX (+ —) X32;9 113 34 5(2)(-105) X [ - - 4- (--) ]-178X【巩固练习】5 7 31.填空:(1)地球上的海洋面积为36 100 000千米2,用科学记数法表示为;⑵光速约3X108米/秒,用科学记数法表示的数的原数是.2.据测算,我国每天因土地沙漠化造成的经济损失为亿元.若一年按365天计算,用科学记数法表示我国一年因沙漠化造成的经济损失为( )(元) 5X1010 (元)5X1011 (元) 475X 108 (元)3.设n为正整数,则10八是( )个n相乘后面有n个零=0 D.是一个(n+1)位整数百度文库-让每个人平等地提升自我4.分别用科学记数法表示下列各数:(1)100 万;(2) 10 000;(3)44;(4)679 000;(5) 30 000;(6).5.已知 a=2,b=3,求(a b—b a)(b a—a b).7.少林武术节开幕式上有一个大型团体操的节目,表演要求在队伍变成10行、15行、18行、24行时,队形都能成为矩形.教练最少要挑选多少演员?8.聪明一休萌发了个奇怪的念头,他想造一个巨形图书馆,这个图书馆大约有 1 0001 000 000本书就够了.这些书中包含了过去的、现在的和未来的所有著作,包括地球上的,也包括许多星球上住着的能说话、会印刷和学习数学的居民们所用的各种书籍.你能想象一下1 0001 000 000这个数有多大吗?能用科学记数法把这个数表示出来吗?9.近似数有个有效数字,4精确到的近似值是.10.地球上陆地的面积为149 000 000平方千米,用科学记数法表示为.11.若有理数a, b满足|3a—1|+b2=0,则a(b+1)的值为.12.年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为亿美元(四舍五入保留三个有效数字).13.下列由四舍五入得到的近似数,各精确到哪一位?(1);(2) 402;(3)万;百度文库-让每个人平等地提升自我(4)4 000;(5)4X104;(6)X102.14.下列各近似数有几个有效数字?分别是哪些?(1); (2) 800;⑶万;⑷X10315.按四舍五入法,按括号里的要求对下列各数求近似值.(1) 2(精确到;⑵(精确到;⑶X105(精确到千位).16.把一个准确数四舍五入就可得到一个近似数,这个准确数就是这个近似数的真值.试说明近似数和有什么不同,其真值有何不同?17.求近似数,,4, 8的和(结果保留三个有效数字).18.甲、乙两学生的身高都是X102 cm,但甲学生说他比乙高9 cm.问有这种可能吗.若有,请举例说明.。
北师大版七年级数学上册第二章有理数及其运算练习题及答案全套
北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米B.+50米C.可能是+50米,也可能是-50米D.以上都不对3.下面的说法错误的是().A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数B.负数C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧B.右侧C.左侧或者右侧D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数B.大于另一个数的相反数C.等于另一个数的相反数D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05(2)(3)(4)-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则()A.B.C.D.2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.和的大小由两个加数的符号而定D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A.B.(-2)+(+2)=4C.D.(-71)+0=-713.如图,下列结论中错误的是()A.B.C.D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数差是正数D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23)D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加(1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0B.小于0C.大于或等于0D.小于或等于03.若,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________.987×(-9)+3=_________.__________________________.__________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30(2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B.C.D.2.已知,当时,,当时,的值是( ) .A.B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系..3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化..。
人教版七年级数学上册第一章1.4有理数的乘除法-中考试题汇编含精讲解析
人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(X•珠海)的倒数是()A.B.C.2 D.﹣23.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣35.(X•自贡)的倒数是()A.﹣2 B.2 C.D.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣29.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.310.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2 11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2 14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣216.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±117.(X•黔东南州)的倒数是()A.B.C.D.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2 20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.222.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.324.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.二.填空题(共1小题)27.(X•湘潭)的倒数是.人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析参考答案与试题解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(X•珠海)的倒数是()A.B.C.2 D.﹣2考点:倒数.分析:根据倒数的定义求解.解答:解:∵×2=1,∴的倒数是2.故选C.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.考点:倒数.分析:乘积是1的两数互为倒数,所以﹣5的倒数是﹣.解答:解:﹣5与﹣的乘积是1,所以﹣5的倒数是﹣.故选D.点评:本题主要考查倒数的概念:乘积是1的两数互为倒数.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣3考点:倒数.专题:存在型.分析:根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.(X•自贡)的倒数是()A.﹣2 B.2 C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.3考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.10.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.解答:解:的倒数是5.故选A.点评:此题主要考查倒数的意义,关键是求一个数的倒数的方法.12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.故选:A.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2考点:倒数;相反数.分析:根据倒数和相反数的定义分别解答即可.解答:解:﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选;D.点评:此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣2考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣2的倒数是,故选C.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.(X•黔东南州)的倒数是()A.B.C.D.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1即可解答.解答:解:根据倒数的定义得:﹣×(﹣)=1,因此倒数是﹣.故选D.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:X的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣X×(﹣)=1,∴﹣X的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.22.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.24.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.考点:有理数的乘法;有理数大小比较;有理数的减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.考点:有理数的乘法.分析:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.解答:解:原式=××=,故选:D.点评:本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(﹣18)÷6=﹣3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.二.填空题(共1小题)27.(X•湘潭)的倒数是 2 .考点:倒数.分析:根据倒数的定义,的倒数是2.解答:解:的倒数是2,故答案为:2.点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.。
2020年初一数学有理数计算练习题 100 道 附答案
初一数学有理数计算100题学好数学的前提就是计算能⼒非常强。
计算能⼒体现在对于加、减、乘、除四则运算及乘⽅运算非常的熟练,算的准确、算的快速。
⽽计算能⼒的提升除了掌握⼀定的⽅法和技巧之外,还需要进⾏⼀定量的训练,从笔算到⼝算到⼼算。
最后达到“⽆他,唯⼿熟尔”的境界。
本⽂档包括了100道有理数计算题,可以将其划分成20个部分,每个部分5个题目。
建议你连续20天、每天拿出10分钟来练习这些题目,在规定时间内⼀⽓呵成。
如果做错了,就把错题标注出来,并搞清楚错在哪里、为什么会错。
过⼀段时间,再将上述过程重复⼀次。
坚持不懈总是举步维艰的,半途⽽废总是轻⽽易举的。
⼀定要持之以恒!(1)(-13)+25=;(2)(-52)+(-7)=;(3) 4.5+(-4.5)=;(4)(-11)+8+(-14)=;(5)(-4)+(-3)+(-4)+3=;(6)(-6)-6=;(7)=+++)(((32(41-32-43-;(8)=+++)()((2-61-3121-;21(10)-26+43-24+13-46=;(11)-21-12+33+12-67=;(12)(-2)+(-7)-(-2)=;99(13)-(-18)+12-15+(-17)=;(14)-7.5+4.7-(-8.9)+(-6)=;(15)-32+(-61)-(--)=;4132431(16)-24+(-40)-28-(-19)-(-32)=;(17)3+2.258-12=;(18) 3.5÷×|-43|=;(21)(19)-24×(-1+3-1)=;(19)--+=;43831258745212390152=212()6(23)(-23)-(-18)-1+(-15)+23=;(24)(-56)-48-(-48)-(-56)=;(25)(-6)-(-0.2)+1=;(26)1+5+-7122+7;(27)(-3)+(-5)5(-7)=;212+2+12(28)(1+5-7)×(-36)=;31425(29)3×5-(-5)×5+(-1)×5=;(30)3×(-2)÷(—6)(31)(-6)÷2×(-1)=;(32)(-5)÷(-1)×5=;(33)(-13)×(-15)×0×(-901)=;(34)0.1×(-0.001)×(-10)=;(35)(-5)×7+13×7=;(37)(-2)÷(-10)×(-(38)(-2)×6÷(-3)(39)(-84)÷2×(-3)÷(-6)(40)1÷(-)×1(41)100÷8×(-8)(42)(7-7-7)×(-8)48167(43)-32-(-3)3+(-2)2-233107271413︱-(45)(-5)×(-11)+13×(-11)-3×(-11)55513(46)3924×(-12)(47)-1.2×4÷(-3 15)(48)︱-45︱+(-71)+︱-5︱+(-9)(49)-14-4×(-1)÷(-1)42×(51)(-1)2+6÷(-1+1)-4×(1-1)2324(52)-18÷(-3)2(53)(-3)3÷(6-32)(54)(5+13÷3)÷(-2)+(-3)2(55)24+16÷(-2)2÷(-10)(56)18-6÷(-3)×(-2)65154)6322(58)(1-1)×(-6)+(-1)2÷(-1)33222(59)(1-5+1+3)÷(-12(60)-14-[2-(-3)2](61)(-8)÷[(-0.2)2-(-3.96)]+(-2)×(-3.25)(62)[8.5-(-4.5)+(-3)3]×0.5÷(0.2)3(63)(-4)×(-2)×(-0.5)33(64)(2+1)÷(-1)×(-12)3212(65)122÷(-3)2×(-2)3-(-9)2÷33(66)2÷(-2)+0÷7-(-8)×(-2)(67)-5+(-2)4-24÷(-2)3(68)(-1)3×(-5)÷[(-3)2+2×(-5)](69)(-2)4(70)-(-0.4)212918-4)÷(-3)34(72)(-5)×(-11-6+0.6)65(73)0.7×3-6.6×3-1.1×3+0.7×8117711(74)78×(-2)+(-11)×(-2)+(+34)×233315(75)(3-6+7)÷(-1(76)-9÷(+0.25)×(-11)(77)2-3-(1-0.5÷3)×[2-(-3)2])5(78)(-)2×(-7)×(-2)2(79)(-6427)÷6(80)0.5+(-15)-(-17)-︱-12︱(81)(-1)2+(-1)2020+(82)(-2)2-20÷22×12131(84)-5÷(-5)×3-(-1)6422(85)(-1)+(-1)3-(-1)4+0.1(86)[-32-(-4)3]÷[(-9)-(-4)](87)(-1)2001-(-1)2000(88)1÷(-1)2+0÷5-5×︱-1︱569(89)-︱-3︱2+(-3)2(90)(-5)3×(-3)-32÷(-2)2×(-114)(91)(-)2×0.62+(-0.8)2×(-)2+(-)(92)[(-3)2-22-(-5)2]×(5÷4)×(-2)4(93)(-2)×(-3)3+(-27)×212121(94)42×[-3×(-3)-0.8]÷(-54)23234924217179(96)52-3×[-32+(-2)×(-3)]+(-5)2(97)(-151)÷(3-11-3)×6(98)-11÷(6-227+3-3)14(99)-0.85×8-182×7+(18÷7-9×0.85)312212322)-364673)-252参考答案(1)12(2)-59(3)0(4)-17(5)-8(6)-12(7)-1(8)-7(9)-5.4(10)-40(11)-55(12)1(13)-2(14)0.1(15)-13(16)-41191(17)-1424(18)3(19)2(20)-2()-29901)-14(23)2(24)0(25)0(26)1(27)0(28)-27(29)35(30)1(31)3(32)125(33)0(34)0.001(35)56(36)0(37)-2(38)4(39)-21(40)-1(41)-6400(42)-1(43)14(44)-2(45)-11(46)-474.5(47)3(48)-30(49)-3(505(51)391(52)-2(53)9(54)2(55)15.6(56)14(57)-57(58)-1(59)5(60)6(61)4.5(62)-875(63)-1(64)168(65)-131(66)-17(67)13(68)-5(69)(70)-0.16(71)(72)5.5(73)-2.6(74)-22(75)-5(76)33(77)-7(78)31(79)-71(80)-9.5(81)21(82)3(832(84)3(85)-2.9(86)-11(87)-2(88)-4(89)0(90)85(91)0(92)-600(93)0(94)(95)-20(96)59(97)53(98)(99)17.42(100)(228116916543514137333。
人教版初一数学上册知识点归纳总结及练习题
人教版七年级数学上册总复习(学生)第一章有理数1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ; (3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 . (5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; 6.倒数:乘积为1的两个数互为倒数;注意: 没有倒数; 若ab=1⇔ a 、b 互为 ; 若ab=-1⇔ a 、b 互为 .等于本身的数汇总:相反数等于本身的数:倒数等于本身的数:绝对值等于本身的数: 平方等于本身的数: 立方等于本身的数: 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1.5 ,-2.75 ,6 ,-4.5 ,9二、-11.5的绝对值是( ),-4.1的相反数是( )。
三、-37.5的绝对值是( ),-6.4的相反数是( ),2的倒数是( )。
四、|11.5|=( ),(-2)2=( )。
五、计算。
6 3(-—)-(-—)+(-3) 14÷[(-1)2-(-4)]7 71 1 10—-(-—)-(-—)11-(-18)+7-(-16)3 2 91(-0.7)×—÷(-10) (-2)3+42(-1)237921 1 1(-—)×(-—+—)×0 18÷[(-1)3÷(-2)]9 2 7(—+—)-(-—) 3-(-28)+6-(-11)6 4 61 4(—-—)×(-10) (-2)2+52(-1)24992 5(-20)+(-19) 2-(-12) -7+(-7.5)1 1(-—)-(-—) -7-[5-(-10-10)] (-2)3+337 7-36+12+(-30)-(-25) 7.8-(-3.2)-(-1.9)+8.42 1 1 1 8 2 (—+—)-(—-—) 1.5-(-—)-(-8.2)-—3 945 5 5-3 ,-2.25 ,3 ,4 ,6二、-12.5的绝对值是( ),7.1的相反数是( )。
三、-12的绝对值是( ),-8.7的相反数是( ),-6.5的倒数是( )。
四、|43|=( ),(-3)3=( )。
五、计算。
6 6(-—)+(-—)-(-2) 23+[(-1)3+(-3)]7 71 1 2—-(-—)+(-—)16+(-15)+3-(-13)8 4 31(-0.4)×—×(-90) (-2)4+52(-1)261891 1 1(-—)÷(-—+—)×0 25×[(-2)3×(-4)]9 5 4(—+—)÷(-—) 15+(-21)+2-(-13)5 3 46 6(—+—)×(-10) (-1)3+53(-1)19135 7(-3)÷(-6) 11+(-1) 10.5-(-7)1 1(-—)-(-—) -10-[1-(-12-1)] (-4)4+536 411-19+(-28)+(-27) -4.2+(-6.4)+(-3.7)+3.62 1 13 6 3 (—-—)+(—+—) 2.6+(-—)-(-5.7)-—5 86 5 5 5-2.5 ,-2.25 ,2 ,2.5 ,2二、-42的绝对值是( ),-4.2的相反数是( )。
三、40的绝对值是( ),-0.9的相反数是( ),6.5的倒数是( )。
四、|-29.5|=( ),(3)3=( )。
五、计算。
6 1(-—)-(-—)-(-6) 9+[(-4)2÷(-5)]7 71 1 8—-(-—)+(-—)1+(-27)-6+(-17)7 8 91(-0.1)÷—÷(-30) (-2)4+43(-1)294171 1 1(-—)÷(-—-—)×0 24-[(-4)2+(-5)]3 4 5(—-—)+(-—) 10-(-12)-2-(-16)3 5 54 4(—+—)×(-100) (-4)4+12(-1)18165 5(-17)-(-13) 7÷(-5) 5+(-14.5)1 1(-—)+(-—) -20-[-2-(-12+8)] (-2)3-436 3-15-20-(-22)+(-5) 8+(-6.4)-(-0.3)-72 1 1 2 1 8 (—+—)-(—+—) 3.5-(-—)+(-4.9)+—5 9 8 7 5 5-0.5 ,-3 ,2 ,3.5 ,-7二、-20的绝对值是( ),-6.5的相反数是( )。
三、2.5的绝对值是( ),4.7的相反数是( ),4的倒数是( )。
四、|-40|=( ),(-3)2=( )。
五、计算。
6 1(-—)+(-—)-(-9) 6×[(-4)3÷(-1)]7 75 1 1—-(-—)-(-—)11-(-19)+10×(-16)6 4 51(-0.6)×—×(-90) (-2)4-22(-1)169241 1 1(-—)×(-—+—)×0 10÷[(-4)2×(-2)]5 7 4(—+—)+(-—) 26-(-11)+10-(-17)6 4 55 1(—-—)×(-20) (-5)4-43(-1)29556 7(-8)÷(-18) 17+(-13) 0-(-5)1 1(-—)÷(-—) -11-[1-(-13+1)] (-5)4+538 3-35+6+(-28)+(-4) -1.6+(-7.4)-(-2.4)-6.32 1 1 2 4 4 (—-—)+(—+—) 7.5-(-—)+(-3.5)+—5 3 2 7 5 5-3 ,-2.5 ,1 ,-5 ,10二、16的绝对值是( ),-7.7的相反数是( )。
三、-5的绝对值是( ),-0.9的相反数是( ),-4.5的倒数是( )。
四、|9|=( ),(0)2=( )。
五、计算。
1 6(-—)+(-—)-(-9) 15×[(-1)3÷(-5)]7 77 1 6—-(-—)-(-—)13-(-14)-6×(-20)8 4 71(-0.8)×—×(-600) (-1)4-13(-1)294861 1 1(-—)÷(-—+—)×0 6-[(-2)3×(-3)]3 8 2(—-—)÷(-—) 21+(-11)+10-(-20)7 2 31 6(—+—)×(-10) (-4)2+43(-1)20672 7(-4)÷(-17) 11+(-5) -14-(-21.5)1 1(-—)÷(-—) -11+[1-(-3+10)] (-4)3+332 9-28+5+(-17)-(-4) 0.5+(-5.8)-(-4.8)+8.32 1 1 1 4 2 (—+—)-(—+—) 7.3+(-—)+(-7.9)-—3 745 5 5-3 ,-2.5 ,1 ,0 ,9二、7.5的绝对值是( ),-9.5的相反数是( )。
三、-19的绝对值是( ),-3.5的相反数是( ),1.5的倒数是( )。
四、|-14.5|=( ),(3)2=( )。
五、计算。
5 4(-—)-(-—)+(-5) 20-[(-2)2+(-3)]7 71 1 4—+(-—)-(-—)27+(-14)+8+(-20)6 8 51(-0.1)÷—÷(-1) (-4)2+43(-1)298821 1 1(-—)÷(-—+—)×0 9+[(-1)2÷(-3)]2 9 2(—+—)×(-—) 13-(-25)-8-(-18)3 4 81 9(—-—)×(-10) (-3)4-22(-1)26554 8(-1)×(-4) 17+(-8) -14+(-19)1 1(-—)÷(-—) -16-[0-(-15+2)] (-1)4-435 6-26+3-(-15)+(-2) -9.1-(-1.7)+(-2.2)+0.72 1 13 7 3 (—+—)+(—-—) 4.6+(-—)+(-7.3)+—3 5 2 7 5 5-2 ,-2.25 ,6 ,-4 ,0二、-45.5的绝对值是( ),0.1的相反数是( )。
三、23.5的绝对值是( ),-4.5的相反数是( ),3的倒数是( )。
四、|-47|=( ),(-1)4=( )。
五、计算。
5 1(-—)-(-—)-(-2) 14-[(-3)3-(-2)]7 71 1 1—+(-—)+(-—)23+(-30)+5×(-13)8 2 91(-0.1)×—×(-60) (-1)3+43(-1)260441 1 1(-—)×(-—+—)×0 24+[(-1)3-(-4)]3 4 2(—+—)÷(-—) 22-(-29)+9-(-10)3 2 54 6(—-—)×(-60) (-1)3+13(-1)19703 7(-16)×(-17) 4÷(-17) 10-(-22.5)1 1(-—)×(-—) 15-[4+(-4-3)] (-4)3-447 2-6-8+(-16)+(-3) 4.8-(-3.9)+(-0.4)-0.42 1 1 4 6 1 (—+—)-(—+—) 2.3-(-—)+(-5.7)-—9 4 6 5 5 5-1 ,-4.5 ,9 ,1 ,-5二、-7.5的绝对值是( ),-8.6的相反数是( )。
三、43.5的绝对值是( ),-4.5的相反数是( ),0.5的倒数是( )。
四、|-45|=( ),(1)4=( )。
五、计算。
4 3(-—)-(-—)-(-8) 4×[(-4)2+(-2)]7 78 1 8—+(-—)+(-—)7-(-13)-10×(-13)9 8 71(-0.4)×—÷(-30) (-3)4+23(-1)171341 1 1(-—)×(-—+—)×0 21÷[(-4)2-(-2)]3 7 6(—+—)-(-—) 3-(-20)+9+(-20)4 5 77 4(—-—)×(-20) (-2)3-22(-1)22038 5(-10)×(-18) 18÷(-7) 11.5-(-0.5)1 1(-—)×(-—) 16+[-2+(-17-10)] (-5)4-348 7-12-10-(-14)+(-6) -1.4-(-1.4)-(-4.8)-1.42 1 1 2 9 8(—-—)+(—-—) 5.2-(-—)+(-3.5)+—9 3 8 5 5 5-1.5 ,-1.25 ,4 ,-3.5 ,-6二、-12的绝对值是( ),-4.9的相反数是( )。
三、5的绝对值是( ),-5的相反数是( ),-9的倒数是( )。
四、|-17.5|=( ),(-3)2=( )。
五、计算。
6 2(-—)+(-—)-(-5) 15÷[(-3)2×(-5)]7 71 1 8—-(-—)-(-—)14-(-15)-3×(-19)2 2 91(-0.1)×—÷(-1) (-4)3-43(-1)179951 1 1(-—)×(-—-—)×0 11+[(-4)3+(-5)]3 4 9(—-—)-(-—) 13+(-26)-9+(-19)8 7 84 1(—-—)×(-30) (-2)2-42(-1)29545 2(-11)×(-8) 2÷(-9) 12.5-(-11)1 1(-—)-(-—) 7-[1-(-13+9)] (-5)2-132 65-4-(-5)-(-10) -0.1+(-5.8)-(-1.3)-3.32 1 13 14 (—+—)+(—-—) 3.3-(-—)-(-2.4)-—9 8 9 7 5 5-1 ,-3.25 ,2 ,-4 ,0二、23的绝对值是( ),-9.2的相反数是( )。