高中数学:解析几何中求最值的几种方法

合集下载

求最值方法 -高考数学复习

求最值方法 -高考数学复习

一问一答--------最值问题方法总论1高中数学求最值有哪些方法答:有9种方法:1)配方法 2)判别式法;3)不等式法;4)换元法;5)函数单调性法;6)三角函数性质法;7)导数法;8)数形结合发 ;9)向量法2 如何将恒成立问题转化为最值问题答:1) ()a f x ≥恒成立,则max ()a f x ≥ 2)()a f x ≤恒成立,则min ()a f x ≤一元整式函数最值1、二次函数开口方向、对称轴、所给区间均确定,如何求最值答:1)确定对称轴与x 轴交点的横坐标是否在所给区间。

2)如果在所给区间,一个最值在顶点处取得,另一个最值在与顶点横坐标较远的端点处取得。

3)若不在所给区间,利用函数的单调性确定其最值。

2、二次函数所给区间确定,对称轴位置变化,如何求最值答:1)移动对称轴,将对称轴平移到定区间的左侧、右侧及区间内讨论,2)在区间内,只考虑对称轴与区间端点的距离即可。

3、二次函数所给区间变化,对称轴位置确定,如何求最值答:分类讨论,分为四种情况:1)对称轴在闭区间左侧;2)对称轴在闭区间右侧3)对称轴在闭区间内且在中点的左侧;4)对称轴在闭区间内且在中点的右侧(或过中点);4、二次函数所给区间、对称轴位置都不确定,如何求最值答:将其中一个看作是“定”的,另一个看作是“动”的,然后如上分四种情况进行讨论。

5、什么情况下运用基本不等式求最值答:当两个变量的和或积为定值时运用,有时需要变形。

即两个正数的积为定值时,它们的和有最小值,两个正数的和为定值时,它们的积有最大值。

6、对于多项式乘积的最值问题,如何求解答:可以考虑展开后,利用基本不等式求解7、如何求复合型函数的最值答:若函数(),()f x g x 在[.]m n 上单调性相同,则()()()h x f x g x =+在[.]m n 上与(),()f x g x 有相同的单调性,可利用单调性求()h x 在[.]m n 上的最值。

三角函数最值的特征解法

三角函数最值的特征解法

三角函数最值的特征解法三角函数是高中数学中非常重要的内容之一,涉及到三角函数的最值问题是解析几何中非常经典的问题,也是数学中的一个重要研究方向之一、三角函数的最值问题可以用几何方法解决,也可以通过数学分析的方法解决。

几何方法解决三角函数最值问题:一、用三角形的面积求解:对于给定的三角形ABC,若要求最大值或最小值,则把三角形的三个顶点坐标x,y表示成已知直角边x与角度的函数形式(坐标x=af(θ),坐标y=bg(θ)),作直角坐标中的参数方程,然后求它的面积。

一般地,对于三角形的最大或最小面积问题,以到形如y=af(x)与y=bg(x)的直线为直角边的直角三角形的面积最小或最大。

这只是抛物线和双曲线的纵坐标当作已知直角边进行求解的特例。

二、利用三角形的性质求解:对于给定的三角形ABC,已知ΔABC正弦的值,即sinA, sinB, sinC,则根据三角形的面积公式Δ=1/2ABSinc,我们可以求出最大或最小的三角形的面积,进而求出三角形的最值。

通过数学分析的方法解决三角函数最值问题:一、利用函数导数的零点求解:对于给定的三角函数f(x),我们可以通过求f(x)的导数,然后求导数的零点来求解函数的极值点。

对于一个周期函数,我们只需关注一个周期内的导数的零点。

通过求解导数的零点,可以找到函数的极值点。

二、利用函数的变化趋势求解:通过观察函数的图像或者利用函数的性质,可以确定函数的最值点。

例如,对于周期函数,我们只需关注一个周期内的函数变化趋势即可。

通过观察函数的周期、周期内的对称性等特点,可以推测出函数的最值点。

三、利用辅助角的方法求解:对于给定的三角函数f(x),复杂的问题可以通过引入辅助角来简化。

通过引入辅助角,可以将原问题转化为一个更简单的三角函数问题,从而求解函数的最值。

四、利用三角函数的周期性求解:对于三角函数的最值问题,我们可以利用函数的周期性来求解。

通过观察函数的周期,可以确定函数的最值点。

高中数学专题---最值或取值范围问题

高中数学专题---最值或取值范围问题

高中数学专题--- 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围; ④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围. 最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).求当AB <λ的取值x范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.x3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.。

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法

成一个无盖的方盒,问截去多少方能使盒子容积最大?
解:设截的小正方形边长为 x,则做成方盒容积为 y=(x-2a) x(0≤x≤a/2)
于是问题就归结为求函数在区间内极值问题。运用引理可知在 x=a/6 是盒子容积
最大。
五、利用平面几何图形求最值
例 11 求函数
的最小值。
分析:本题要求无理函数最值。用代数方法比较困难,若将函数表达变形为; 则函数表达式显现为坐标平面上
条件求出自变量的范围,最终将问题为一元二次函数区间内最值问题。但这样解
决此题,计算量较大。我们仔细分析约束条件,将约束条件可以整理为
,它表示以 x、y 为坐标的动点必须在椭圆
内或边界。而函数 f(x、y)=x-3y 可以约束区域内有点在
直线上的情况下,直线系中哪条直线在 y 轴截距最大或最小。显然在与椭圆相切
y x 3
y x3
x o
根据图像我们可以判断:当 x=0,
;当 x=3,
,对此类型问题的
思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图
像来求解极值,那么过程就非常复杂。那么是否有更简单的方法呢?经过对问题
的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图
就转化为在图像上找一点使得该点的横纵坐标之和最大或最小。此后就可采用椭
圆的参数方程解决。 例 5 若 2x+4y=1 求 x2+y2 的最小值 分析 函数 f(x、y)= x2+y2 我们理解为点(x、y)到原点的距离的平方,而
动点(x、y)在直线 2x+4y=1 上移动,那么我们就将问题转化为在直线上找一点,
于:能深刻理解函数解析式的内涵,且计算简单。

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法对于一个给定的函解析式,我们如果能大致作出其对应的函数图像,那么函数的许多性质都可以通过图像客观地反应出来。

因此,只要我们做出了函数图像,那么我们就可以根据图像找到极值点,从而求出函数的极值。

下面,我就从几个方面讨论一下,函数图象在求极值问题中的应用。

一、函数解析式中含有绝对值的极值问题。

我们给出问题的一般形式,设a≤x≤b,求函数的极值。

很容易判断该函数为分段函数,其对应的图像是折线,因此只要做出函数的图像那么就可以准确的找出函数的极值点。

例1设-2≤x≤3,求函数的最值。

解:若将函数示为分段函数形式。

作出函数图像根据图像我们可以判断:当x=0,;当x=3,,对此类型问题的思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图像来求解极值,那么过程就非常复杂。

那么是否有更简单的方法呢?经过对问题的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图像的拐点(使函数中某一个绝对值部分为零的点)因此我们只需将这些点求出来并代入函数解析式求出其所对应的值。

经过比较就得出了极值例如上题:f(-2)=7、f(-1)=4、f(0)=3、f(2)=5、f(3)=8、、=8,据此我们下面给出解决这一类问题更一般的方法。

=max {f(bi)、i=1、2、3……n },=min {f(-bi),i=1、2、3……n }.二、将极值问题转化为几何问题。

运用此方法解决极值问题关键在于深刻理解,挖掘解析式所蕴含的几何意义。

1.转化为求直线斜率的最值。

例2求函数的最值分析函数解析式非我们常见的函数模型。

通过分析我们发现该函数可以看做过点A (3、2)与B (sin 、-cos )两点直线的斜率。

而动点B的轨迹是y xo 3+=x y 3+-=x y 13+-=x y 13-=x y圆x2+y2=1。

因此我们就将问题转化为了求定点(3、2)与圆x2+y2=10上一点连线的斜率的最大值与最小值。

求的最大值与最小值

求的最大值与最小值

例2、当点 ( x, y ) 在圆
2 2
x y 25 上时,
2 2
求 k 3x 4xy 6 y 的最大值与最小 值。
三、 用曲线定义或几何性质求最值 此种题型以选择题或填空题为多数,关键 要对曲线定义及曲线几何性质等概念理解透, 用得活。 例3、已知A(4,0),B(2,2)是
圆的方程.
(97年全国高考题)
例9、已知抛物线的对称轴为y轴,顶点
A的坐标是(0,-1),并且抛物线在x 轴上截得的BC(左B)的长为2,在此 抛物线上取两点P(异于B)、Q,若能 使BP⊥PQ,试求点Q存在范围.
(95上海高考题)
n
五、用二次方程根的判别式求最值 若函数式可变形为要求最值的变量作为另 一个变量二次方程的系数时,一般采用判别 式法求最值.
例8、设圆满足:①截y轴所得弦长为 2;②被x轴分成两段圆弧,其弧长的比 为3:1,在满足条件①、②的所有圆中, 求圆心到直线l:x-2y=0的距离最小的
x2 y2 1 25 9
椭圆内的两个点,M是椭圆上
MA MB
的动点,求
的最大值和最小值。
x y 例4、已知双曲线 1的右焦点为 9 16
2
2
F,点A(9,2),试在这个双曲线上求
3 一点M,使 MA 5 MF
的值最小,并求出
这个最小值。
Y M N
B
A
F X
例5、已知直线l:x+y=8,点F1 (4,0) ,
四、利用不等式求最值
x2 y2 2 1(m n 0) 2 m n
例7、设椭圆的方程为 过原点且倾斜角为 和 (0 2 ) 的 两条直线分别交椭圆于A、C和B、D 四点。 (1)用θ,m,n表示四边形ABCD的面积S; (2)若m,n为定值,当θ在 0, 上变化 4 时,求S的最大值u; m (3)如果u>mn,求 的取值范围。

浅谈如何有效地解决解析几何中的最值问题

浅谈如何有效地解决解析几何中的最值问题
我们应大胆地 尝试此做法.本题主要考查直 线、圆和椭 圆参数方 程的理解以及 化参数方程为普通方程的方法,椭圆方程 的应用、
由双 曲线的第二定义 知
:, 。
Il d 1 I Nl = ,  ̄
所以I 4 I =I + =I +I I P I P I P I d P I . M F M M

C:{ 2
【 =3i y sn0
( 为参数) 0 .
( ) C,C 的方 程为普通 方程 ,并说 明它们 分别表 示什 1化
么 曲线 ;

半 =, } }则y , 直 径r1设 j 当 ,
线 Y= 与圆 c相切 时 ,卫 取最值 .
所 以
Байду номын сангаас0
( ) C 上的点 P对应 的参数为 £ ,Q为 C 上 的动点 , 2若 = 2
( ) —Y: 2设 m,
均为参数 方程 ,两 问相 互关联 ,可 以化 参数方程 为熟 悉的普通
方 程 ,于是 问题 获 得 如 下 解 法 .
则 , —m与圆 C相切 时 , — , = Y有最值 ,
所 以
、2 /
解 ( C ( 4+ 一) 1C 昔 ・ :1 - ) ( 3=,z ): + : 手 1
分 析 : 本 题 与 例 3有 类 似 之 处 , 利 用 定 义 及 几 何 特 征 可 买
现 问题 的转 化 .
故 (+刚, 手i) 一 4 2 s . 2c n
C 为 直 线 一2 , y一7=0 , 到 G 的距 离 d=T - ・ V3
解 由 曲音一 =知 =,= :双 线 手 1 1b9 6 2,
所 以 c =2 , 5 ) 5 ,0 ,

高中数学函数、数列、不等式、几何求【最值问题】通解法分享!

高中数学函数、数列、不等式、几何求【最值问题】通解法分享!

通解法就是把数列、不等式、解析几何等最值问题通通转化为函数问题,然后根据函数的属性来求最值。

高中数学最值问题
【基础方法介绍】
1、求函数最值常见的方法主要有这7种:
配方法,单调性法,均值不等式法,导数法,判别式法,三角函数有界性,数形结合图象法。

2、求几类重要函数的最值方法;
3、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法 (线性规划,曲函数的最值 )
【各类最值题型通解方法】
【函数求最值常用10法例题解析】
方法1:利用一次函数的单调性
方法2:利用二次函数的性质
方法3:利用二次方程的判别式
方法4:利用一些重要不等式求最值
方法5:利用三角函数的有界性求最值
方法6:利用参数换元求最值
方法7:利用图形对称性求最值
方法8:利用圆锥曲线的切线求最值
方法9:利用复数的性质求最值
方法10:利用数形结合方法求最值
【最值问题练习】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:解析几何中求最值的几种方法
解析几何中的求最值问题在中学数学中占有一席之地,近几年的高考也经常出现。

最值问题涉及的知识面宽,解题方法较灵活,学生时常感到无从下手。

为了解决这个问题,现举例说明求最值的几种方法,请大家指正。

一、利用定义
圆锥曲线的定义,是曲线上的动点本质属性的反映。

研究圆锥曲线的最值,巧妙地应用定义,可把问题简化,速达目的。

例1、若使双曲线上一点M到定点A(7,)的距离与M到右焦点F的距离之半的和有最小值,求M点的坐标。

解析:如图1所示,由双曲线定义2可知,,所以
|MF|=2|MP|。

令,即。

此问题转化为折线AMP的最短问题。

显然当A、M、P同在一条与x轴平行的直线上时,折线AMP最短,故M点的纵坐标为,代入双曲线方程得M(,)。

图1
二、利用对称
对称思想是研究数学问题常用的思想方法,利用几何图形的对称性去分析思考最值问题,常可获得简捷明快的解法。

例2、已知点A(2,1),在直线和上分别求B点和C点,使△ABC的周长最小。

分析:这里的主要理论依据是:轴对称的几何性质以及两点间的
距离以直线段为最短。

解析:先找A(2,1)关于直线、的对称点分别记为和,如图2所示,若在、上分别任取点和,则△ABC周长=
周长。

故当且仅当、、、四点共线时取等号,直线方程为:,与、的交点分别为B(,)、C(,0)。

图2
三、利用几何
利用参数的几何意义,把它转化为几何图形中某些确定的几何量(如角度、长度、斜率)的最大值、最小值问题,这样可以化难为易,提高解题速度。

例3、椭圆内有两点A(4,0),B(2,2),M是椭圆上一动点,求|MA|+|MB|的最大值与最小值。

分析:若直接利用两点的距离公式,难度较大,本题通过椭圆定义转化后,利用几何性质帮助我们解决问题。

解析:|MA|+|MB|=2a-|MC|+|MB|=10+|MB|-|MC|,根据平面几何性质:||MB|-|MC||,当且仅当M、B、C共线时取等号,故|MA|+|MB|的最大值是
,最小值是。

四、利用代数
将问题里某些变化的几何量(长度、点的坐标、斜率、公比)设为自变量,并将问题里的约束条件和目标表示为自变量的解析式,
然后利用代数性质(如配方法、不等式法、判别式法等)进行解决,使问题简单化。

例4、过抛物线的焦点作两条互相垂直的弦AC、BD,求四边形ABCD面积的最小值。

分析:四边形的形状无法确定,但AC⊥BD,把四边形的面积转化为两三角形的面积之和,进而利用基本不等式求最值。

解析:设AC的直线方程,,由消去x得△=。

故|AC|=
,由AC⊥BD,故BD的斜率为,。


,所以。

图3
五、利用三角
适用适当的角作为自变量,把所求的问题表达成三角函数式,然后利用三角函数的性质去解决问题。

例5、A为椭圆上任一点,B为圆上任一点,求|AB|的最短距离。

分析:|AB|+|BC|,且|BC|=1,故要求|AB|的最小值,只要求|AC|的最小值,而要求|AC|最值,只需利用椭圆的参数方程求解。

图4
解析:设,C(1,0),故
|AC|==,于是,即|AB|
=。

总之,当我们在解析几何问题中求最值时,要深入思考、善于分析,利用最合理、最恰当的方法去解决,这样有利于我们能快速地达到目的,使问题解决的正确率大大提高。

相关文档
最新文档