23.1 图形的旋转

合集下载

23.1 图形的旋转(9大题型)

23.1 图形的旋转(9大题型)

23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。

【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

23.1 图形的旋转 第2课时 旋转作图

23.1  图形的旋转 第2课时 旋转作图
a.旋转中心不变,旋转角改变,产生不同的旋转效果.b.旋转角不变,旋转中心改变,产生不同的旋转效果.
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

九年级上册23.1图形的旋转(共19张PPT)

九年级上册23.1图形的旋转(共19张PPT)

知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.

23.1图形的旋转教学课件(共35张PPT)

23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第23.1节的内容。

本节内容是在学生已经掌握了图形的平移、翻转的基础上,引入图形的旋转概念,让学生进一步理解图形的变换,提高学生的空间想象力。

教材通过丰富的实例,引导学生探究图形的旋转性质,培养学生的观察能力、操作能力和推理能力。

二. 学情分析九年级的学生已经掌握了图形的平移、翻转知识,具备一定的学习基础。

但是,对于图形的旋转,学生可能在生活中接触较少,对其理解和掌握可能存在一定的困难。

因此,在教学过程中,教师需要通过生动的实例,让学生感受图形的旋转,帮助学生建立直观的空间观念。

三. 说教学目标1.知识与技能目标:让学生理解图形的旋转概念,掌握图形旋转的性质,能够运用旋转知识解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象力,提高学生的观察能力和操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:图形的旋转概念及其性质。

2.教学难点:图形的旋转在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受,帮助学生理解和掌握知识。

六. 说教学过程1.导入新课:通过一个生活中的实例,如风车的旋转,引导学生思考图形的旋转现象,激发学生的学习兴趣。

2.探究新知:引导学生观察和操作实物模型,让学生亲身体验图形的旋转,从而引导学生总结出图形的旋转性质。

3.深化理解:通过几何画板演示图形的旋转过程,让学生更直观地理解旋转性质,帮助学生建立空间观念。

4.应用拓展:设计一些实际问题,让学生运用旋转知识解决,巩固所学知识,提高学生的应用能力。

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

2024年人教版九年级上册教学设计第23章 23.1 图形的旋转

第1课时旋转的概念及性质课时目标1.通过引入具体实例,让学生在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.2.通过对图形旋转的基本性质的探究,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过让学生经历实验探究、知识应用等数学活动,进一步体会旋转的内涵,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点旋转的概念及图形旋转的性质.学习难点旋转概念的形成过程及性质的探究过程.课时活动设计情境引入同学们都见过风车吧,小小的风车在风的吹动下不停的转动,生活中能够转动的物体还有很多,如风力发电机、飞机的螺旋桨、时钟的指针等,同学们知道它们所做的这种运动叫什么吗?设计意图:通过多媒体播放视频和图片,感受旋转现象,给学生产生视觉上的强烈冲击,产生强烈的求知欲,为下面探究新知识打下基础.让学生感悟数学来源于生活并应用于生活的辨证思想,初步感受旋转的概念.我们在前面的章节中已经学习了平移和轴对称两种图形的变化方式,分别研究了它们的定义、性质以及坐标表示等,类比它们的研究方式,你能获得旋转的有关知识吗?设计意图:通过设问使学生明确旋转和平移、轴对称一样都属于图形的变化,因此可以类比平移和轴对称去研究旋转,向学生渗透类比是发现解决问题方法的重要途径.另外一方面渗透获得定义的一种思想方法——从具体实例中归纳概括本质特征.探究新知如图1,钟表的指针在不停的转动,从3时到5时,时针转动了多少度?如图2,风车风轮的每个叶片在风的吹动下转动到新的位置.以上这些现象有什么共同特点呢?设计意图:让学生从具体实例中发现旋转现象,抽象出旋转的本质属性,类比图形平移的概念,给出旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.在此过程中培养学生的表达能力和总结能力,学会用数学语言表达现实世界,同时发展学生的抽象概括能力.新知讲解如图所示,在硬纸板上,挖一个三角形洞,再另挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A'B'C'),移开硬纸板.△A'B'C'是由△ABC绕点O旋转得到的.线段OA与OA'有什么关系?△AOA'与△BOB'有什么关系?△ABC与△A'B'C'的形状和大小有什么关系?设计意图:通过教师引导或者学生独立思考后小组交流,共同探究并归纳出旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.通过问题的形式展示知识的形成过程,让学生亲身经历性质的发现、猜想、验证、归纳概括的过程,发展学生的合情推理能力,归纳概括能力,培养学生的数学应用意识.典例精讲例1如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:因为点A是旋转中心,所以它的对应点是它本身.正方形ABCD中,AD=AB,△DAB=90°,所以旋转后点D与点B重合.设点E的对应点E'.因为旋转后的图形与旋转前的图形全等,所以△ABE'=△ADE=90°,BE'=DE.因此,在CB的延长线上取点E',使BE'=DE,则△ABE'为旋转后的图形.设计意图:通过在较为复杂的背景下,运用旋转的性质画出旋转后的图形,提高学生运用旋转性质的灵活性,进一步加深学生对旋转性质的理解.在解本题时,通过师生共同探讨,确定△ADE三个顶点的对应点,画出旋转后的图形,在活动中培养学生合作、交流、归纳的能力.课堂8分钟.1.教材第61页练习第2题,第62页习题23.1第2,10题.2.七彩作业.第1课时旋转的概念与性质一、旋转的概念.二、旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.三、例题讲解.教学反思第2课时旋转作图课时目标1.通过使学生亲身经历旋转的作图,感受旋转性质的内涵,促使学生由感性认识到理性思考的升华,提升学生学习数学的兴趣,发展学生的抽象思维能力.2.通过让学生从事自主学习、合作交流等数学活动,进一步体会旋转作图的依据,在动手实践中培养学生的空间观念,发展学生的数学思维.3.通过使学生经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光观察实际生活,感受数学与现实生活的密切联系,培养学生的应用意识.学习重点利用旋转的性质设计简单的图案.学习难点利用旋转性质进行旋转作图.课时活动设计回顾引入问题:如图,△AOB绕点O旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.设计意图:通过学生回顾前面所学过知识,并完成画图,既巩固了对旋转的性质的理解,又为新知学习作铺垫.教学时,教师应引导学生正确解读旋转性质,即按同一方向作出△AOA'=△BOG,且OA'=OA,这样达到由感性认识到理性思考,为利用旋转设计图案埋下伏笔.探究新知如图1,这是一片月牙形图案,把图1绕点O旋转,就会慢慢出现两片(图2、图3)、三片,……,最终形成图4中的图案,请同学们仔细观察,感受图案的形成过程,回答如下问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识,与同伴交流.设计意图:通过观察这些美丽的图案,可激发学生的学习兴趣,增强动手画出类似美丽图案的欲望,发展学生的想象力、创造力,提高审美能力.同时通过思考,感受由旋转而得到美丽图案的形成过程,加深对旋转性质的理解,掌握利用旋转来设计美丽图案的方法.教学时,应让学生进行充分交流,并让学生自主画图感受新知,最终形成共识:选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.新知讲解下图中的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图中图形绕点P顺时针依次旋转90°,180°,270°,依次画出旋转后得到的图形,你会得到一个美丽的图案,涂阴影时不要涂错位置,否则不能出现理想的效果,你来试一试吧!(注:方格纸中小正方形的边长为1个单位长度)设计意图:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.设置这道问题的目的是进一步加深学生对旋转性质的内涵的准确把握,同时又为解决新问题寻求解题思路,既锻炼学生分析问题、解决问题的能力,又培养学生的应用意识.新知应用把一个三角形旋转.(1)选择某一固定点为旋转中心,旋转角分别为45°,90°和135°,请画出旋转后的图形,并观察旋转效果;(2)选取两个不同点为旋转中心,旋转角均为30°,请画出旋转后的图形,观察旋转效果;(3)改变三角形的形状,看看旋转的效果.设计意图:让学生动手操作,进一步理解旋转中心不变,改变旋转角,与旋转角不变,改变旋转中心产生不同效果的合理性,进而可激发学生利用旋转进行图案设计的欲望,锻炼学生的艺术创作力.典例精讲利用所学,请同学们思考如何将甲图案变成乙图案:设计意图:设置此题的目的在于让学生认识到已知两个全等图形,其中一个图形可由另一个图形经过一定的全等变换而得到,拓宽了学生的视野,加深了对旋转作图的理解及应用.拓展应用请以下列图形为基本图形,利用旋转进行图案设计,并与同伴交流效果.学生自主交流.设计意图:设置这道题目,一方面让学生通过画图感受数学的应用价值,另一方面由于学生各自审美观点不同,创造力不同,学生所画出的图案也各不相同.教学中,引导学生在动手操作,设计图案过程中深化对旋转性质的认知,培养学生的数学应用意识.课堂8分钟.1.教材第62页习题23.1第3,4,7,8题.2.七彩作业.第2课时旋转作图一、旋转的性质.二、旋转作图.选择不同的旋转中心,不同的旋转角旋转同一个图案,会出现不同的效果.三、例题讲解.教学反思。

(完整版)第二十三章旋转知识点

(完整版)第二十三章旋转知识点

第二十三章旋转23.1 图形的旋转1.旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。

2.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.3.旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.23.2 中心对称图形1.中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.2.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.3.关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.4.坐标与图形变化--旋转(1)关于原点对称的点的坐标P(x,y)⇒P(-x,-y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.23.3课题学习图案设计1.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.作图--旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.4.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.5.几何变换的类型(1)平移变换:在平移变换下,对应线段平行且相等.两对应点连线段与给定的有向线段平行(共线)且相等.(2)轴对称变换:在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.(3)旋转变换:在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.(4)位似变换:在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心.。

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:引导学生回顾本节课的学习内容,进行自我评价,总结学习收获和不足。
2.同伴互评:组织学生相互评价,提出改进建议,促进相互学习。
3.教师评价:教师针对学生的课堂表现、作业完成情况进行评价,给予有效的反馈和建议。
(五)作业布置
课后作业布置如下:
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)了解旋转在实际生活中的应用,体会数学与现实生活的联系,增强数学应用意识。
(三)教学重难点
1.教学重点:
(1)旋转的定义及三要素。
(2)旋转的性质及其应用。
(3)旋转作图的基本方法。
2.教学难点:
(1)理解旋转的性质,尤其是旋转前后图形的全等关系。
九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第23章第1节,主题为“图形的旋转”。该章节在整个课程体系中具有承上启下的作用,既是对以往所学平面几何知识的巩固与拓展,也为后续学习立体几何打下基础。本节课的主要知识点包括:旋转的定义、旋转的性质、旋转作图以及旋转在实际中的应用。
(2)灵活运用旋转作图,正确绘制旋转后的图形。
二、学情分析导
(一)学生特点
本节课面向的是九年级学生,这个年龄段的学生具有较强的逻辑思维能力,好奇心旺盛,喜欢探索新知识。在认知水平上,他们已经具备了一定的几何知识基础,能够理解抽象的几何概念。学习兴趣方面,学生对具有趣味性和挑战性的内容更感兴趣,喜欢通过动手操作来解决问题。然而,部分学生的学习习惯仍需改进,如自主学习能力较弱,对教师的依赖性较强。

23.1 图形的旋转(解析版)

23.1 图形的旋转(解析版)

23.1 图形的旋转建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.(2020•上蔡县模拟)下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西【答案】C【解析】A、火箭升空的运动,是平移,故此选项错误;B、足球在草地上滚动,不是旋转,故此选项错误;C、大风车运动的过程,是旋转,故此选项正确;D、传输带运输的东西,是平移,故此选项错误;故选:C.2.(2020•桥西区模拟)如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD【答案】A【解析】∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选:A.3.(2020•无为县期末)下列图形中,绕某个点旋转72度后能与自身重合的是()A.B.C.D.【答案】B【解析】A.旋转90°后能与自身重合,不合题意;B.旋转72°后能与自身重合,符合题意;C.旋转60°后能与自身重合,不合题意;D.旋转45°后能与自身重合,不合题意;故选:B.4.(2020 •宜宾期末)如图,△ABC绕顶点A顺时针旋转43°至△ADE,∠BAE=17°,∠D=45°,则∠C的度数是()A.60°B.62°C.75°D.88°【答案】C【解析】∵△ABC绕顶点A顺时针旋转43°至△ADE,∴∠B=∠D=45°,∠DAB=∠CAE=43°,∵∠BAE=17°,∴∠BAC=∠BAE+∠CAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣45°﹣60°=75°,故选:C.5.(2020•郓城县模拟)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)【答案】C【解析】如图,观察图形可知B′(1,0),故选:C .6.(2020 •郑州期中)如图,Rt △AOB 中,∠AOB =90°,OA =3,OB =4,将△AOB 沿x 轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )A .(28,4)B .(36,0)C .(39,0)D .(912,32√3)【答案】B【解析】∵∠AOB =90°,OA =3,OB =4,∴AB =2+OB 2=√32+42=5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x 轴上,横坐标为12×3=36,所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).故选:B .二、填空题(每小题3分,共15分)7.(2020•建邺区一模)若一个正六边形旋转一定的角度后,与原图形完全重合,则旋转的度数至少是 °.【答案】60【解析】正六边形旋转最小的度数为360°÷6=60°.故答案为:60.8.(2020 •浦东新区期末)如图,矩形ABCD 中,AC 与BD 相交于点O ,AC =3cm ,∠ACD=30°.将矩形ABCD 绕点O 旋转后,点A 与点B 重合,点D 落在点E 处,那么此时AE 的长为 cm .【答案】32 【解析】∵∠ADC =90°,AC =3cm ,∠ACD =30°,∴AD =12AC =32cm ,∵将矩形ABCD 绕点O 旋转后,点A 与点B 重合,点D 落在点E 处,∴AE =AD =32cm ,故答案为32. 9.(2020•姜堰区二模)如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),线段AB 绕着某点旋转一个角度与线段CD 重合(C 、D 均为格点),若点A 的对应点是点C ,且C 点的坐标为(5,3),则这个旋转中心的坐标是 .【答案】(1,1).【解析】平面直角坐标系如图所示,旋转中心是J 点,J (1,1).故答案为(1,1).三、解答题(7分+8分+8分=23分)10.(2020•石城县模拟)如图,在△ABC 中,已知∠ABC =30°,将△ABC 绕点B 逆时针旋转50°后得到△A1BC1,若∠A=100°,求证:A1C1∥BC.证明:∵∠ABC=30°,∠A=100°,∴∠C=50°,∵将△ABC绕点B逆时针旋转50°后得到△A1BC1,∴∠CBC1=50°,∠C=∠C1=50°,∴∠C1=∠C1BC,∴A1C1∥BC.11.(2020•莱州市期末)在平面直角坐标系中,有两个点A(x1,﹣5),B(2,y2).(1)若A、B关于x轴对称,则x1=,y2=.(2)若A、B关于y轴对称,则x1=,y2=.(3)若A、B两点重合,将重合后的点绕原点顺时针旋转90°,此时点的坐标为.解:(1)若A、B关于x轴对称,则x1=2,y2=5.(2)若A、B关于y轴对称,则x1=﹣2,y2=﹣5.(3)若A、B两点重合,则x1=2,y2=﹣5,则将重合后的点绕原点顺时针旋转90°,此时点的坐标为(﹣5,﹣2).故答案为:2;5;﹣2,﹣5;(﹣5,﹣2).12.(2020•武清区期中)在平面直角坐标系中,已知点A的坐标为(﹣2,0),点B在y轴的正半轴上,且OB=2OA,将线AB绕着A点顺时针旋转90°,点B落在点C处.(Ⅰ)在图中描出点A,B,C,并写出点B,点C的坐标;(Ⅱ)在x轴上有一点D,使得△ACD的面积为3,求点D的坐标.解:(Ⅰ)如图点A ,B ,C 即为所求,点B (0,4),点C 的坐标(2,﹣2);(Ⅱ)设D (m ,0).由题意;12•|m +2|•2=3,解得m =1或﹣5,∴D (1,0)或(﹣5,0).。

人教版九年级数学上册第23章 旋转 旋转及其性质

人教版九年级数学上册第23章 旋转 旋转及其性质
∠OAB=120°, ∠AOB绕点O逆时针旋转, 每次旋转90°,则第2 024 次旋转后,
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入平移、轴对称的意义是怎样的?(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转,点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 分别移动到什么位置? 解:(1)旋转中心是O ,∠AOE 、∠BOF 等都是旋转角.(2)经过旋转,点A 和点B 分别移动到点E 和点F 的位置. 例2.(学生活动)如图,四边形ABCD 、四边形EFGH 都是边长为1的正方形. (1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A 、B 、C 、D 分别移到什么位置? (老师点评) (1)可以看做是由正方形ABCD 的基本图案通过旋转而得到的.(2)•画图略.(3)点A 、点B 、点C 、点D 移到的位置是点E 、点F 、点G 、点H .最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S △OEE`=S △ODD`,那么只要说明△OEF ′≌△ODD ′. 解:面积不变.理由:设任转一角度,如图所示. 在Rt △ODD ′和Rt △OEE ′中 ∠ODD ′=∠OEE ′=90°∠DOD ′=∠EOE ′=90°-∠BOE OD=OD∴△ODD ′≌△OEE ′ ∴S △ODD`=S △OE E`∴S 四边形OE`BD`=S 正方形OEBD =14五、归纳小结(学生总结,老师点评) 本节课要掌握:1.旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及其它们的应用.六、布置作业1.教材复习巩固1、2、3.2.同步练习一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个2.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°(1) (2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(4) (5) (6) (7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12 AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=•DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.(教师制作教具并演示)请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3∴AE==4F是E的对应点∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材复习巩固4 综合运用5、6.2.作业设计.作业设计一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB 的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 CE 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB 、AC 的中点旋转180°,可以得到一个半圆,∴面积之和=12.3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案. 教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案. 重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案. 教具、学具准备 小黑板 教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系? (3)两个图形是旋转前后的图形,它们全等吗? 2.请同学独立完成下面的作图题.如图,△AOB 绕O 点旋转后,G 点是B点的对应点,作出△AOB 旋转后的三角形.(老师点评)分析:要作出△AOB 旋转后的三角形,应找出三方面:第一,旋转中心:O ;第二,旋转角:∠BOG ;第三,A 点旋转后的对应点:A ′. 二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究. 1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD 以O 点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD 分别为O 、O 为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O 为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA ,按菊花叶的形状画出即可. 解:(1)连结OA(2)以O 点为圆心,OA 长为半径旋转45°,得A . (3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A 、A 、A 、A 、A 、A . (4)按菊花一叶图案画出各菊花一叶. 那么所画的图案就是绕O 点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O ′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习 教材P65 练习. 四、应用拓展例3.如图,如何作出该图案绕O 点按逆时针旋转90°的图形. 分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA ,过O 点沿OA 逆时针作∠AOA ′=90°,在射线OA ′上截取OA ′=OA ;(2)用同样的方法分别求出B 、C 、D 、E 、F 、G 、H 的对应点B ′、C ′、D ′、E ′、F ′、G ′、H ′;(3)作出对应线段A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′F ′、F ′A ′、A•′G ′、G ′D ′、D ′H ′、H ′A ′;(4)所作出的图案就是所求的图案. 五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等. 六、布置作业1.教材 综合运用7、8、9. 2.选作课时作业设计.第三课时作业设计 一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( •) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图23-•33是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以A 为中心( ) A .顺时针旋转60°得到的 B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形23-34,绕着一个点旋转120°后,能与原来的位置重合的是( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、综合提高题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,•将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,•你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72° 2.旋转 3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴PP′=22教后反思:图形的旋转与平移、轴对称是图形的变换,通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.教学中要注重旋转、平移、轴对称的联系与区别,要引导学生归纳总结学习它们的联系与区别。

相关文档
最新文档