第2章 时域离散信号和系统的频域分析
数字信号处理第三版第2章.ppt
| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)
A1 1 2z 1
1
A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)
4 3
2n
1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2
z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1
数字信号处理:时域离散信号和系统的频域分析
2. 线性
设: 则:
FXFXTF1XT1([T(1e[ae(a[jexjax1j)1x()(1n)n()n)FF)TFTbb[Tx[bxx2x[1x2(1x((2n(1nn(n()n))n])]])]),],]XX,aaX2X2aX((2eX1e1((j(e1eje(j)je)j)j))F)FbTFbTX[bTX[xX2x[22(x2(2(e(2en(n(jej)n)]j)])),,]),
1 2
[x(n)
x(n)]
xo
(n)
1 2
[x(n)
x(n)]
将上FT面[x两xe(on式()n]分=) 1别/21进2[X[行x(e(FjnωT)),+X得x*(到(ejωn)])=] Re[X(ejω)]=XR(ejω)
FT[xo(n)]=1/2[X(ejω)-X*(ejω)]=jIm[X(ejω)]=jXI(ejω)
xxr (rxn(nr)XX(e)ne(()eejejjjnnj))n
n nn
FFXXTT(e[(e[xexjrjr()()nn))]]F12T[nX[nx(er(jxnxr))(r]n(n)Xe)
o (XeXojo((e)ejj)F)TF[FTjTx[i[j(xjnix()in]()n])]jnjnjnxxrXXir(x(noonr(()()eeenjj)ejj))njXnFXFTooT(([ee[jjjjxxi))i((nn)12)]F][TX[(jejnjxnji()nx)xr]X(r
2.2 序列的傅里叶变换的定义和性质
实因果序列h(n)与其共轭对称部分he(n)和共轭反对称部分 ho(n)的关系
h(n) = he(n) + ho(n) he(n)=1/2[h(n) + h(-n)] ho(n)=1/2[h(n) - h(-n)] 因为h(n)是实因果序列,he(n)和ho(n)可以用h(n)表示为:
第二章 时域离散信号和系统(数字信号处理)
第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4
上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非
令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统
数字信号处理(西电版第三版)ch02_2时域离散信号和系统的频域分析PPT
数字信号处理(西电版第三版) ch02_2时域离散信号和系统的频
域分析PPT
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
Digital Signal Processing
2.3 时域离散信号的Z变换
在模拟系统中,用傅里叶变换进行频域分析,而拉普拉 斯变换是傅里叶变换的推广,用于对信号在复频域的分 析。在数字域中,用序列傅里叶变换进行频域分析,Z 变换是其推广,用于对信号在复频域中的分析。
n
n 1
n 1
如果X(z)存在,则要求 a 1,z 得1 到收敛域为 。z在收a
敛域中,该Z变换为
X(z)1aa 11zz11 a z1
za
我们将例2.2和例2.3进行比较,两者Z 变换的函数表达式一样,但收敛域却 不相同,对应的原序列也不同,因此 正确地确定收敛域是很重要。
返回
Digital Signal Processing
回到本节
上式右边: 第一项是有限序列的Z变换,收敛域为0 ≤|z|<∞。 第二项为因果序列的Z变换,其收敛域为Rx-<|z|≤∞。
将两个收敛域相与,得到它的收敛域为Rx-<|z|<∞。
如果x(n)是因果序列,即设n1≥0,它的收敛域为 Rx-<|z|≤∞。
返回
Digital Signal Processing
A0 ResXz(z),0 AmResXz(z),zm
回到本节
这样,将上面的两式带入由X(z)展开得到的部分分式中 去,在通过查表(书中表)就能够得到原序列。
但我们知道收敛域不同,即使同一个z函数也可以有 不同的原序列对应,因此根据给定的收敛域,应正确地 确定每个分式的收敛域,这样才能得到正确的原序列。
第2章2 Z域分析讲解
a 1 z z 1 X ( z) 1 1 a z z a 1 az 1
| z || a |
z 1 另外,由于函数 1 只在z=a处有一极点, z a 1 az
整个收敛域应该在极点所在的圆内。
李建勋--- ljx088@
10
jIm[z]
单边Z变换的定义:
本书中均用双边Z变换对信号进行分析和变换。
李建勋--- ljx088@
2. Z变换的收敛域与零极点
只有当的幂级数收敛时,Z变换才有意义。 收敛域:对任意x(n),使其Z变换收敛的所有z值的集合。
jIm[z]
一般收敛域用环状域表示,即
Rx-<|z|<Rx+
|z|=Rx-
n 0
a no
n n n x ( n ) z a z
1 1 az 1 az 1 az
1/a Re[z]
n 0
n
n n a z
1
| z || a | | z | 1 / | a |
X 2 ( z)
n
a
1
n n
Re[ z ]
6
(4) 双边序列:
一个双边序列可看作一个右边序列和一个左边序列之和
X ( z)
n
x ( n) z n x ( n) z n
n 0
n
n x ( n ) z
1
收敛域为|z|>Rx-;
收敛域为|z|<RX+
如果Rx-<Rx+,则存在公共收敛区域:Rx-<|z|<Rx+
X ( z)
第2章 时域离散信号和系统的频域分析
3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
时域离散信号和系统的频域分析
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
数字信号处理第2章 时域离散信号和系统的频率分析实验报告
成绩:《数字信号处理》作业与上机实验(第二章)班级:学号:姓名:任课老师:完成时间:信息与通信工程学院2014—2015学年第1 学期第2章 时域离散信号和系统的频率分析1、设计两个数学信号处理系统:系统初始状态为零。
分别用这两个系统对数字信号:1.020.5cos(2/8/4)0140()0n n n x n ππ++≤≤⎧=⎨⎩其它 进行处理。
该信号为缓慢变化的指数信号(1.02n )上叠加了一个正弦干扰噪声序列,我们希望通过该系统对()x n 进行处理来消除这个正弦干扰噪声。
1).应用dtft 子程序分析信号()x n 的频谱,并用MATLAB 工具画出0π频率范围的频谱图,并在图中标记噪声的频谱。
(1)matlab 代码如下: %dtft 函数function [ X,w ] = dtft( x,n,dw,k )X=x*(exp(-1j*dw)).^(n'*k); w=dw*k; end%应用dtft 子程序分析信号x(n)的频谱 n=0:140;x=1.02.^n+0.5*cos(2*pi*n/8+pi/4); dw=pi/500; k=-1500:1500;[ X,w ] = dtft( x,n,dw,k ); %调用dtft 函数 magX=abs(X); %信号x(n)的幅度谱 angX=angle(X); %信号x(n)的相位谱701()()8() 1.3576(1)0.9216(2)() 1.4142(-1)(2)i y n x n i y n y n y n x n x n x n ==---+-=-+-∑系统一:系统二:subplot(2,1,1); plot(w/pi,magX); axis([0,1,0,800]); title('信号x(n)幅频特性'); xlabel('w'); ylabel('幅度'); subplot(2,1,2); plot(w/pi,angX); axis([0,1,-4,4]);title('信号x(n)相频特性'); xlabel('w'); ylabel('相位');(2)信号()x n 的频谱图见图一:图一 信号()x n 的频谱图2). 应用Hmp 子程序分析系统一与系统二的频谱特性,画出频谱图(0ωπ=)。
21-22序列的傅里叶变换的定义及性质
图2.2.2 cosωm 的波形
第二章 时域离散信号和系统的频域分析
2. FT的线性
2.2 序列傅里叶变换 的定义及性质
设X1 (e j ) FT[x1 (n)], X2 (e j ) FT[x 2 (n)]
则有
FT[ax1 (n) bx2 (n)] aX 1 (e j ) bX 2 (e j )
j * j j j FT [ xo (n)] 1 [ X ( e ) X ( e )] j Im[ X ( e )] jX ( e ) I 2
结论:序列x(n)共轭对称部分对应FT的实部,反对称部分对应FT 的虚部。和(a)的结论比较?
第二章 时域离散信号和系统的频域分析
5. 时域卷积定理 设
2.2 序列傅里叶变换 的定义及性质
n
| x (n ) |
2
1 2
| X(e j ) | 2 d
(2.2.35)
证明
n
| x (n ) |
2
n
x (n ) x
*
(n )
n
x
*
1 (n )[ 2 X(e j )e jn d
(2.2.19)
X e (e j )与X o (e j )分别为FT的共轭对称项和反对称 项,满足 :
j X e (e j ) X * ( e ) e
j X o (e j ) X * ( e ) o
(2.2.20)
(2.2.21)
同样有如下公式:
j * j X e (e j ) 1 [ X ( e ) X ( e )] 2
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
数字信号处理课后答案西安电子
第2章 时域离散信号和系统的频域分析 解: 假设输入信号x(n)=ejω0n,系统单位脉冲响应为h(n) 则系统,输出为
上式说明当输入信号为复指数序列时, 输出序列仍是复 指数序列, 且频率相同, 但幅度和相位取决于网络传 输函数。 利用该性质解此题:
第2章 时域离散信号和系统的频域分析
第2章 时域离散信号和系统的频域分析
上式中|H(ejω)|是ω的偶函数, 相位函数是ω的奇函数
|H(ej,ω)|=|H(e-
θ(ω)=-θ(-ω), 故
jω)|,
4. 设
第2章 时域离散信号和系统的频域分析
将x(n)以4为周期进行周期延拓, 形成周期序列
,
画出x(n)和
的波形, 求出
的离散傅里叶级数
和傅里叶变换。
解: 画出x(n) 和
由z3(z-1)=0, 得极点为 z1, 2=0, 1 零极点图和收敛域如题15解图(a)所示, 点相互对消。
图中, z=1处的零极
第2章 时域离散信号和系统的频域分析 题15解图
第2章 时域离散信号和系统的频域分析 (2)
第2章 时域离散信号和系统ຫໍສະໝຸດ 频域分析零点为极点 为
极零点分布图如题15解图(b)所示。 (3) 令y(n)=R4(n), 则
(4) δ(n)
(6) 2-n[u(n)-u(n-10)]
第2章 时域离散信号和系统的频域分析 解 (1)
(2)
第2章 时域离散信号和系统的频域分析 (3)
(4) ZT[δ(n)]=10≤|z|≤∞ (5) ZT[δ(n-1)]=z-10<|z|≤∞
(6)
≤
第2章 时域离散信号和系统的频域分析
16. 已 知
离散时间信号和系统的频域分析
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
第2章 时域离散信号和系统的频域分析
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
第2章 时域离散信号和系统的频域分析
X (z)
n
x ( n) z n x ( n) z n
n0
n
x ( n) z n
因而其收敛域应该是右边序列与左边序列收敛域的重叠部分。 等式右边第一项为右边序列,其收敛域为|z|>Rx-; 第二项为左边序 列,其收敛域为|z|<Rx+。如果Rx-<Rx+,则存在公共收敛区域,X(z)
n 0
n n
1 (az ) 1 az 1 n 0
1 n
|z|>|a|
这是一个无穷项的等比级数求和,只有在 |az-1|<1即|z|>|a|处收敛如图所示。故得到以上
1 z 闭合形式的表达式,由于 ,故 1 az 1 z a
jIm[z]
|a|
a
o
在z=a处有一极点(用“×”表示),在z=0处有
4
第2章
时域离散信号和系统的频域分析
2.5 序列的Z 变换
2.5.1
ˇ
Z变换的定义 一个离散序列x(n)的Z变换定义为
X (z)
‵ 式中,z是一个复变量,它所在的复平面称为Z平 面。我们常用Z[x(n)]表示对序列x(n)进行Z 变换,也即
n
x ( n) z
n
(2.5.1)
Z[ x(n)] X ( z )
Re[z]
一个零点(用“○”表示),收敛域为极点所
在圆|z|=|a|的外部。
18
第2章
时域离散信号和系统的频域分析
收敛域上函数必须是解析的,因此收敛域内不允许有极点存在。 所以,右边序列的Z变换如果有N个有限极点{z1,z2,…,zN}存在,
数字信号处理—原理、实现及应用(第4版)第2章 时域离散信号和系统的频域分析 学习要点及习题答案
·22· 第2章 时域离散信号和系统的频域分析2.1 引 言数字信号处理中有三个重要的数学变换工具,即傅里叶变换、Z 变换和离散傅里叶变换,利用它们可以将信号和系统在时域空间和频域空间相互转换,这大大方便了对信号和系统的分析和处理。
三种变换互有联系,但又不同。
表征一个信号和系统的频域特性用傅里叶变换;Z 变换是傅里叶变换的一种扩展,在Z 域对系统进行分析与设计更加既灵活方便。
单位圆上的Z 变换就是傅里叶变换,因此用Z 变换分析频域特性也很方便。
离散傅里叶变换是离散化的傅里叶变换,因此用计算机分析和处理信号时,全用离散傅里叶变换进行。
离散傅里叶变换具有快速算法FFT ,使离散傅里叶变换在应用中更加重要。
但是离散傅里叶变换不同于傅里叶变换和Z 变换,其优点是将信号的时域和频域都进行了离散化,便于计算机处理。
但实际使用中,一定要注意它的特点,例如对模拟信号进行频域分析,只能是近似的,如果使用不当,会引起较大的误差。
因此掌握好这三种变换是学习好数字信号处理的关键。
本章只学习前两种变换,离散傅里叶变换及其FFT 在下一章中讲述。
2.2 本章学习要点(1) 求序列的傅里叶变换—序列频率特性。
(2) 求周期序列的傅里叶级数和傅里叶变换—周期序列频率特性。
(3) 0(),(),(),1,cos()n N n a u n R n n δω,0sin()n ω和0j e n ω的傅里叶变换,02/ωπ为有理数。
(4) 傅里叶变换的性质和定理:傅里叶变换的周期性、移位与频移性质、时域卷积定理、巴塞伐尔定理、频域卷积定理、频域微分性质、实序列和一般序列的傅里叶变换的共轭对称性。
(5) 求序列的Z 变换及其收敛域。
(6) 序列Z 变换收敛域与序列特性之间的关系。
(7) 求逆Z 变换:部分分式法和围线积分法。
(8) Z 变换的定理和性质:移位、反转、Z 域微分、共轭序列的Z 变换、时域卷积定理、初值定理、终值定理、巴塞伐尔定理。
精品课件-数字信号处理(第四版)-第2章 时域离散信号和系统的频域分析-3
【例2.6.3】 设一阶系统的差分方程为y(n)=by(n-1)+x(n)
解
由系统差分方程得到系统函H数(为z)
1 1 bz1
z
z b
| z || b |
式中,0<b<1。系统极点z=b,零点z=0,当B点从ω=0逆时针 旋转时,在ω=0点,由于极点向量长度最短,形成波峰;在 ω=π点形成波谷;z=0处零点不影响幅频响应。极零点分布 及幅度特性如图所示。
如果-1<b<0,则峰值点出现在ω=π处,形成高通滤波 器。
20
【例2.6.4】已知H(z)=1-z-N,试定性画出系统的幅频特性。
H(z) 1 zN z N 1 zN
H(z)的极点为z=0,这是一个N阶极点,它不影响系统的幅频响 应。零点有N个,由分子多项式的根决定
z N 1 0 即 z N e j2πk
小结 单位圆附近的零点位置对幅度响应波谷的位置和深度有明
显的影响,零点可在单位圆外。 在单位圆内且靠近单位圆附近的极点对幅度响应的波峰的
位置和高度则有明显的影响,极点在单位圆上,则不稳定。 利用直观的几何确定法,适当地控制零、极点的分布,就
能改变系统频率响应的特性,达到预期的要求,因此它是 一种非常有用的分析系统的方法。
根据其形状,称之为梳状滤波器。
例2.6.4的梳状滤波器的极零点分布及幅频、相频特性
22
2.6.4 几种特殊系统的系统函数及其特点 全通滤波器 梳状滤波器 最小相位系统
23
1 全通系统(全通网络,全通滤波器)
定义:如果滤波器的幅频特性对所有频率均等于常数或1.
| H (ej ) | 1 0 2π
数字信号处理习题答案
y(n)=(2-0.5n)R5(n)+31×0.5nu(n-5)
第1章 时域离散信号与时域离散系统
13. 有一连续信号xa(t)=cos(2πft+j), 式中, f=20 Hz, j=π/2
(1) 求出xa(t)
(2) 用采样间隔T=0.02 s对xa(t)进行采样, 试写出采样信号xˆa (t)
(2) 写出 xˆa (t) 和x(n)的表达式;
(3) 分别求出 xˆa (t) 的傅里叶变换和x(n)序列的傅里叶变换。
解:(1)X a ( j)
xa (t)ejtdt
2
c
os(0t
)e
jt
dt
[e j0t e j0t ]e jtdt
=y′(n)
故该系统是非时变系统
第1章 时域离散信号与时域离散系统
因为
y(n)=T[ax1(n)+bx2(n)
=ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)]+3[ax1(n-2)+bx2(n-2)]
a T[x1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2)
所以
xo
(n)
1 2
(R4
(n)
R4
(n))
第2章 时域离散信号和系统的频域分析
xe(n)和xo(n)的波形如题8解图所示。
题8解图
第2章 时域离散信号和系统的频域分析
13. 已知xa(t)=2 cos(2πf0t), 式中f0=100 Hz, 以采样频率fs=400 Hz对xa(t)进行
采样, 得到采样信号 xˆa (t和) 时域离散信号x(n), 试完成下面各题: (1) 写出 xa (t) 的傅里叶变换表示式Xa(jΩ);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. DTFT的线性
设
X 1 (e
那么
j
) FT [ x1 (n)]
X 2 (e j ) FT [ x2 (n)]
FT [ax1 (n) bx2 (n)] aX 1 (e j ) bX 2 (e j )
式中a和b为常数。 —— 满足比例叠加性
3. DTFT 的时移和频移特性
和的条件,即满足式:
n
x(n)e jn
FT[x(n)]存在的充分必要条件是序列x(n)满足绝对可
n
| x(n) |
序列x(n)的傅里叶变换- X(ejω)是 x(n)的频谱函数。 可以用FT(Fourier Transform)缩写字母表示。 频谱函数可用下式表示:
在时间域中,时域
离散信号(序列)x(n)是
序数n的函数,这里n 可看成时间参量。时
域离散系统的单位脉
冲响应是系统在时间
域的描述,线性常系
数差分方程是时域离 散系统输入输出之间
关系的描述
2.2 序列的傅立叶变换(DTFT)的定义及性质 2.2.1 序列的傅立叶变换的定义
正变换 FT或DTFT:
X (e j ) FT[ x(n)]
[例 ] 已知x(n)=δ(n),利用傅立叶变换求它的频谱 函数。 X (e j ) (n)e jn 解 按照频谱函数式 n 因为只有在n=0时,δ(n)=1,而对其他的n,δ(n)=0,因此
将n=0带入上式中,可得到 X (e j )
n
(n)e jn n0 1
y(n)=jejωn,取共轭则得到y*(n)=-je-jωn。 对称:
序列x(n)如果服从公式: 一个对称序列 x(n)=x(-n),则称x(n)是
2)共轭对称序列与共轭反对称序列 (1)定义
如果序列满足
xe (n)
xe (n)
为共轭对称序列——用xe(n) 表示。
如果序列满足
xo (n) xo (n)
X (e ) | X (e ) | e
j
j
j arg[ X ( e j )]
反变换IFT(Inverse Fourier Transform):
1 π j j n x(n) IFT[ X (e )] π X (e )e d 2π 推导:
j
用e jωn乘FT式两边, 并在-π~π内对ω进行积分
X (e )e
j
j m
d [ x(n)e j n ]e j m d
n
式中
n
x (n )
e j ( m n ) d
e j ( m n ) d 2 (n m)
X (e j )e j n d 2 x(n)
% 计算离散序列的 Fourier变换,并画 出幅频特性和相频 特性图 % 调用格 式:[X,magX,angX] = FourierTran(n,x) % 其中 % n -- x(n)的序号 向量 % x --时域序列x(n) % definiton -- 图像 分辨率(默认值每周 期600点) % X --x(n)的 Fourier变换X(ejw) % magX -- X(ejw) 的模 % angX -- X(ejw)的 幅角
设 那么
X (e
j
) FT [ x (n)]
j n0
FT [ x (n n0 )] e FT [e
j n0
X (e ) )
j
x (n)] X (e
j ( 0 )
傅立叶变换的时移性: 如果信号延时n0,那么它的傅立叶变换相应地增加相位移 -ωn0; 傅立叶变换的频移性: 如果信号的傅立叶变换在频率轴上位移ω0,那么时间域信号相应 地增加相角ω0n。
j n
1 e e (e e ) j / 2 j / 2 j / 2 j 1 e e (e e ) j ( N 1) / 2 sin( N / 2) e sin / 2
j N
j N / 2
j N / 2
j N / 2
x(n)=RN(n) X (e ) e
j
ห้องสมุดไป่ตู้
j n0
X (e )
j
4. DTFT 的对称性
1)概念 共轭:
复数x=a+jb, 式中a、 b是实常数,如果取它的共轭, 则得到x*= a-jb 。 复序列x(n)=ejωn=cos(ωn)+jsin (ωn),取它的共轭,则 得到x*(n)=e -jωn=cos (ωn)-j sin (ωn)。
说明: δ(n)的频谱函数在整个频率轴上保持一个常数1。 所有的频率分量均相等,相位函数在整个频率轴上为0。
X(ej)
δ(n)的幅度特性:
0
2
例 2.2.1 设x(n)=RN(n), 求x(n)的FT
解:
N 1 n 0
X (e )
j
n
R
N
(n)e
j n
e
为共轭反对称序列——用xo(n) 表示。
(2)性质 A 共轭对称序列的实部是偶函数,虚部是奇函数
证明:将xe(n)用实部和虚部表示:
xe (n) xer (n) jxei (n)
将上式两边n用-n代替,并取共轭,得到:
xe (n) xer (n) jx ei (n)
对比上面两式,因为左边相等,故可以得到:
RN (n n0 )e jn
令 n′=n-n0, 即 n=n′+n0 则 Y (e j ) R (n ')e j ( n 'n )
n '
0
N
n '
RN (n ')e jn 'e jn0
按照傅立叶变换的基本定义,可以得到:
Y (e ) e
2M
X (e j )
n
时域的离散导致频 域的周期延拓
x(n)e jn
n
x(n)e j ( 2M ) n
因此序列的傅里叶变换是频率ω的周期函数, 周期是2π。 X(ejω)可以展成傅里叶级数, x(n)是其傅里叶级数系数。 由于FT的周期性,一般只分析之间或0~2 之间的FT
j
j ( N 1) / 2
sin( N / 2) sin / 2
N=4时, 幅度与相位随ω变化曲线:
X (e ) e
j
j 3/ 2
sin(2 ) sin( / 2)
图 2.2.1 R4(n)的幅度与相位曲线
序列Fourier变换的MATLAB实现
function [X,magX,angX] = FourierTran(n,x,definition) if nargin<3 definition = 600; end k = -definition:definition; w = (pi/definition)*k; X = x*(exp(-j).^(n'*w)); magX = abs(X); angX =angle(X); figure(1) subplot(211) plot(w/pi,magX,'r','LineWidth',2) xlabel('频率(单位π )'); ylabel('|X(e^{ j\omega})|') title('幅频特性') subplot(212) plot(w/pi,angX/pi,'r','LineWidth',2) xlabel('频率(单位π )'); ylabel('弧度/π ') title('相频特性')
1 x ( n) 2
X (e j )e j n d
x(n)和X(ej)是一对傅立叶变换对
X (e j )
1 x ( n) 2
n
x(n)e jn
X (e j )e j n d
FT存在的充分必要条件是:
x(n)
如果引入冲激函数,一些绝对不可和的序列, 其傅立叶变换可用冲激函数的形式表示出来,如 周期序列。
jx oi (n)
对比上面两式,因为左边相等,故可以得到:
xo (n) xo (n)
xor (n) xor (n) xoi (n) xoi (n)
例 2.2.2 试分析x(n)=ejωn的对称性。
解 这是一个复序列。先分析是否具有对称性, 将x(n)的n用-n代替,得到: x(-n)=e-jωn 由于x(n)≠x(-n),因此它不具有对称性。 但对上式再取共轭,得到: x*(-n)=ejωn 将上式和原信号对比,得到x(n)=x*(-n), 因此该信号具有共轭对称性。 将信号用欧拉公式展开,则得到: x(n)=ejωn=cos (ωn)+j sin (ωn)
co s n
cos n
2π M
1 „ -1 0 1 2 3 4 „ n 1 „ -1 0
(2 M 1)π
„ 1 2 3 4 5 6 n
=2M, M为整数,序列 的直流分量
(a )
=(2M+1) ,一个时间波形变化 (b ) 愈快,意味着它包含的频率愈高, 对于序列变化最快的波形
2.2.2 序列的傅立叶变换的性质
1、FT的周期性