级数学物理方法试题

合集下载

数学物理方法试题(卷)

数学物理方法试题(卷)

数理方法概论试题及参考答案一、简答题(每小题5分,共20分)1. 写出高斯定理⎰⎰⋅∇=⋅SVdV d A S A2. 在斯托克斯定理()⎰⎰⋅⨯∇=⋅SLd A d S l A中, L 是式中那个量的边界线? 3. 定解问题包含那两部分?在数学上,边界条件和初始条件合称为定解条件,数学物理方程本身(不连带定解条件)叫做泛定方程.定解条件提出具体问题,泛定方程提供解决问题的依据,作为一个整体,叫做定解问题. 4. 边界条件有那几类?1) 直接规定边界上的值.这叫做第一类边界条件.()()t ,z ,y ,x f t ,z ,y ,x u S 000=2) 直接规定梯度在边界上的值.这叫做第二类边界条件.()t ,z ,y ,x f nu S000=∂∂3) 规定了边界上的数值与(外)法向导数在边界上的数值之间的一个线性关系.()t ,z ,y ,x f n u H u S 000=⎪⎭⎫ ⎝⎛∂∂+4) 除上述的边界条件外,在求解物理问题时,一般还会遇到所谓的自然边界条件.自然边界条件一般由物理问题本身提出,由于真实的物理量应该是有限的,而在无穷远或坐标原点处的数学的解往往会包含无穷大的解在内,这时从物理上考虑应该舍去这些解,这就构成了上述的自然边界条件.除此之外还有周期性自然边界条件.二、证明题(每小题20分,共40分)1. 证明 ϕϕ2∇≡∇⋅∇ 证: 2222222x y z x y z x y z ϕϕϕϕ⎛⎫⎛⎫∂∂∂∂∂∂∇⋅∇=++⋅++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫∂∂∂=++≡∇ ⎪∂∂∂⎝⎭xy z x y z e e e e e e 2. 证明不同阶的勒让德多项式在区间()11+-,上正交.()()()l k dx x P x P lk≠=⎰+-011证明:设本征函数k P 和l P 分别满足勒让德方程()()()()01101122=++⎥⎦⎤⎢⎣⎡-=++⎥⎦⎤⎢⎣⎡-l l k k P l l dx dP x dx d P k k dx dP x dx d前一式乘以l P ,后一式乘以k P ,然后相减得()()()()[]0111122=+-++⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-l k l k k lP P l l k k dx dP x dx d P dx dP x dx d P 从1-到1+积分得()()()()11221101111k l l k k l dP dP d d P x P x dx k k l l P Pdx dx dx dx dx ++--⎧⎫⎡⎤⎡⎤=---++-+⎡⎤⎨⎬⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭⎰⎰ ()()()()1122111111k l l k k l dP dP d x P x P dx k k l l P Pdx dx dx dx ++--⎧⎫=---++-+⎡⎤⎨⎬⎣⎦⎩⎭⎰⎰()()()()()()()()222211111111111111k l k l l k l k x x k l k l dP dP dP dP x P x P x P x P dx dx dx dx k k l l P Pdxk k l l P Pdx==-+-+-⎡⎤⎡⎤=-------⎢⎥⎢⎥⎣⎦⎣⎦++-+⎡⎤⎣⎦=+-+⎡⎤⎣⎦⎰⎰当l k ≠时即有:()110k lP Pdx k l +-=≠⎰三、计算题(每小题20分,共40分)1. 研究矩形波(见图1)1(0,)(2,(21))()1(,0)((21),2)m m f x m m ππππππ++⎧=⎨---⎩于以及于以及的频谱.解:根据()01cos sin k k k k x k x f x a a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑及()1cosln ln n a f d l lπξξξδ-=⎰ ()1sin l n l n b f d l lπξξξ-=⎰这里l π=可以求得:x()()000111(1)10222111cos (cos )cos 0n a f d d d a f n d n d n d ππππππππξξξξπππξξξξξξξπππ----==-+===-+=⎰⎰⎰⎰⎰⎰()[][]00122sin sin cos 22cos 1(1)1n nb f n d n d n n n n n ππππξξξξξξππππππ-===-⎡⎤=-+=--+⎣⎦⎰⎰当 220k n kb == 当 21421(21)k n k b k π+=+=+因此得到该函数的展开式为:04sin(21)()21k k xf x k π∞=+=+∑ 需要注意的是:由于所给函数是奇函数,所以展开式中只有sin 项而没有cos .如果所给函数是偶函数,那么展开式中就只有cos 项而没有sin 项.2. 求0=+''y y λ (0=+''ΦλΦ)满足自然周期条件()()x y x y =+π2 [()()φΦπφΦ=+2]的解.解:方程的系数()()λ==x q ,x p 0在指定的展开中心00=x ,单值函数(),x p 00=和()λ=0x q 是有限的,它们必然是有限的,它们必然在00=x 为解析的.因此,点00=x 是方程的常点.可设() +++++=k k x a x a x a a x y 2210从而()() ++++++='+k k x a k x a x a a x y 123211321()()() +++++⋅+⋅+⋅=''+k k x a k k x a x a a x y 2243212342312把以上的级数代入微分方程.至于()()λ==x q ,x p 0都是只有常数项的泰勒级数,无需再作展开.现在把各个幂次的项分别集合如下令上表各个幂次合并后的系数分别为零,得一系列方程01202=+⋅a a λ 02313=+⋅a a λ03424=+⋅a a λ 04534=+⋅a a λ............... ...............()()0122=++++kk a a k k λ最后一个式子是一般的.所有这些式子指出从kx 项的系数k a 可以推算出2+k x 项的系数2+k a ,因而叫做系数的递推公式.按照递推公式具体进行系数的递推.()()()()()()20312242053122120021112!3!434!545!11112!2!21!kk kkkkkkk k a a a a a a a a a a a a a a a k k k λλλλλλλλ++=-=-=-=+=-=+⋅⋅-=-=-=-=+这样,我们得到方程的解()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡++-+-+-+⎥⎦⎤⎢⎣⎡-+-+-=+ 125312420!1211!51!31!211!41!211k k k kxk x x x a x k x x a x y λλλλλλλλ还需要确定这个级数的收敛半径.其实,上面两个[ ]正是cos θ和sin θ,其收敛半径为无穷大.于是()0y x a =既然1a 是任意常数,λ1a 当然还是任意常数,将λ1a 写成B ,0a 写成A ,则有()y x A B =+这个常微分方程和它的解实际早已知道,这里用级数方法只是为了了解级数解法的步骤.考虑到要满足自然周期条件()()x y x y =+π2则m =λ, 3210,,,m =.所以有解()cos sin y x A mx B mx =+。

数学物理方法

数学物理方法

《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。

1.z 为复数,则( )。

A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。

2.下列积分不为零的是( )。

A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。

3.下列方程是波动方程的是( )。

A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。

4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。

A 1个;B 2个;C 3个;D 4个。

5.二维拉普拉斯方程的定解问题是( )。

A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。

6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。

A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。

7.傅里叶变换在物理学和信息学中能实现( )。

A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。

8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。

A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。

9.下列表述中不正确的是( )。

A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。

数学物理方法(4)--期末考试试卷(1)答案

数学物理方法(4)--期末考试试卷(1)答案

￲ w(z) = ck zk k =0
(2)系数递推公式。将 w(z) 代入方程,得:
� � ￲

k (k - 1)ck zk-2 - ck zk+1 = 0
k =2
k =0

￲ 2c2 + [(k + 2)(k + 1)ck+2 - ck-1]zk = 0
k =1
c2 = 0,
ck +2
=
(k
+
-
4)L6 �5 �3 �2 c0
(b) 用 c1 表示 c3k+1
c3k +1
=
c3k -2 3k(3k + 1)
=
1 3k (3k+ Nhomakorabea1)￲(3k
-
c3k -5 2)(3k
-
3)
=
(3k
+ 1)3k(3k
-
1 2)(3k
-
3)L7
�6 �4 �3 c1
因 c2 = 0 ,故 c5 = c8 = L = 0
=
-d
'(x)
第 1 页(共 3 页)
得分 评阅人 三、计算题:(共 2 题,每题 10 分,共 20 分)
1.试用级数解法求解在 z0 = 0 邻域内 w''-zw = 0 的解,其初始条件为 w(0) = 1, w'(0) = 0 。 解:(1)解的形式。系数 p(z) = 0, q(z) = -z 在 z0 = 0 解析, z0 是方程的常点,所以解的形式为:
(1)
l=0
￲ 两边对 x 求导,得t(1 -
2xt
+

物理数学方法试题及答案

物理数学方法试题及答案

物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。

答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。

答案:复频域3. 线性微分方程的解可以表示为______的线性组合。

答案:特解4. 复数z = a + bi的共轭复数是______。

答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。

答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。

2. 什么是波动方程?请给出其一般形式。

答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。

3. 请解释什么是特征值和特征向量,并给出一个例子。

答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。

特征向量则是对应的非零向量。

例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。

数学物理方法期末考试卷与解答

数学物理方法期末考试卷与解答

《数学物理方法》试卷(A 卷)参考答案姓名: 学号:题号 一 二 三 四 五 六 七八 总分 得分注:本试卷共一页,共八大题。

答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废!可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f eF xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。

(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。

解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。

二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件x y x v yy x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)高数帮帮数帮高数帮高f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。

数学物理方法复习题

数学物理方法复习题

第一部分:填空题1复变函数f(z) u(x,y) i v(x,y)在点z x i y可导的必要条件是____ 2 柯西黎曼方程在极坐标系中的表达式为_______ 3 复变函数f(z) zz在z ____处可导4复变函数f(z) xy i y在z ____处可导5 ln( 1) _____6 指数函数f(z) ez的周期为______ 21dz _____ 7 1z 2(z )2zezdz _____ 8 z 3z 3 19 dz _____ 2 z 4z 2 1cos zd z _________ 5(z 1)z 111 z10 11 在z0 1的邻域上将函数f(z) e展开成洛朗级数为__________12 将e1/z在z0 0的邻域上展开成洛朗级数为_____________1在z0 1的邻域上展开成洛朗级数为________________ z 1sinz14 z0 0为函数的________________ 2z115 z0 0为函数sin的________________ z13 将sin16 z0 1为函数e17 z0 0为函数11 z的____________________ cosz的______阶极点4zsinz18 z0 0为函数4的______阶极点z1 e2z19 函数f(z) 在z0 0的留数Resf(0) ________ z320 函数f(z) e11 z在z0 1的留数Resf(1) ________,在无限远点的留数Resf( ) ________21 函数f(z) e1/z2在z0 0的留数Resf(0) ________22 函数f(z) cosz在z0 0的留数Resf(0) ________ 3zsinz23 函数f(z) 3在z0 0的留数Resf(0) ________ z24 积分 f( ) (t0 )d ______ (t (a,b) )ab25 两端固定的弦在线密度为 f(x,t) (x)sin t的横向力作用下振动,泛定方程为_______________.26 两端固定的弦在点x0受变力 f(x,t) f0sin t的横向力的作用,其泛定方程为_________________.27 弦在阻尼介质中振动,单位长度的弦所受的阻力F R ut(R为阻力系数),弦在阻尼介质中的振动方程为_______________。

数学物理方法试卷

数学物理方法试卷

数学物理方法试卷数学物理方法是一门重要的学科,它将数学和物理学相结合,以求解物理问题为目标。

本文档旨在提供一份针对数学物理方法的试卷,帮助学生加深对该学科的理解和应用能力。

一、选择题(共10题,每题2分)1. 下列哪个是四位数?A. 123B. 12345C. 123456D. 12342. 如何计算三角形的面积?A. 底乘高除以2B. 长乘宽C. 半径的平方乘以πD. 无法计算3. 下列哪个是速度的单位?A. 米/秒B. 千克C. 焦耳D. 牛顿4. 什么是牛顿第三定律?A. 物体的加速度和作用力成正比B. 物体的质量和加速度成正比C. 在力的作用下,物体会产生加速度D. 任何作用力都有一个相等且方向相反的反作用力5. 单位矩阵是什么?A. 所有元素都为1的矩阵B. 所有元素都为0的矩阵C. 对角线上元素都为1,其他元素为0的矩阵D. 所有元素都相等的矩阵6. 下列哪个是圆的面积公式?A. πr^2B. 2πrC. πd^2D. 0.5πr^27. 加速度的单位是什么?A. 米/秒^2B. 米/秒C. 十米/秒^2D. 千米/小时8. 下列哪个公式用于计算动能?A. F = maB. W = FdC. E = mc^2D. KE = 1/2mv^29. 如何计算两个向量的点积?A. 向量相乘再求和B. 向量相除C. 向量相减D. 无法计算10. 下列哪个没被广义相对论所解释?A. 引力B. 黑洞C. 宇宙膨胀D. 电磁力二、解答题(共3题,每题10分)1. 请用泰勒级数展开sin(x),并计算在x=π/6时的近似值。

2. 请用微分方程求解y'' + 4y = 0,并给出其特解。

3. 请解释质心是什么,并说明为什么在某些问题中质心坐标系非常有用。

本试卷针对数学物理方法的知识进行了全面的考察。

选择题部分测试了学生的基础知识和概念理解能力,而解答题则要求学生能够运用所学的数学物理方法进行实际问题的求解和解释。

数学物理方法试卷5答案

数学物理方法试卷5答案

物理系 20 —20 学年第 学期期末考试《数学物理方法》试卷(A )考试时间:120分钟 考试方式:闭卷班级 专业 姓名 学号一、填空题(本大题共9题,每空2分,共24分) 1、写出复数1+3i 的三角式)3sin3(cos2ππi +,指数式e i32π。

2、z a z b -=-中z 代表复平面上位于ab 线段中垂线上点。

3、幂级数∑∞=⎪⎭⎫⎝⎛1k kk z 的收敛半径为 ∞。

4、复变函数),(),()(y x i y x z f υμ+=可导的充分必要条件yv x v y u x u ∂∂∂∂∂∂∂∂,,,存在,并且满足柯西-黎曼方程 。

5、e z在Z=0的邻域上的泰勒级数是(至少写出前三项)e z=......!3!2!1132++++z z z 。

6、若周期函数f (x )是奇函数,则可展为傅立叶正弦级数f (x )= lxk b k k πsin1∑∞=展开系数为ξπξξd lk f l b l k ⎰=0sin )(2 。

7、就奇点的类型而言,Z=∞是函数f(z)=ZZcos 的 可去 奇点,Z=0是函数的 单极 点。

8、三维波动方程形式2()0tt xx yy zz a μμμμ-++=。

9、拉普拉斯方程0u ∆=在球坐标系中的表达式为:2222222111sin 0.sin sin u u ur r r r r r θθθθθφ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭。

二、简答题(本大题共3题,每题8分,共24分)1、 分别简述单通区域和复通区域下的柯西定理。

单通区域柯西定理:如果函数)(z f 在闭单通区域B 上解析,则沿B 上任一段光滑闭合曲线 ,有⎰=0)(dz z f ; (4分)复通区域柯西定理:如果函数)(z f 是闭复通区域上的单值解析函数,则⎰∑⎰==+ni idz z f dz z f 10)()(,式中 为区域外界境线,诸i为区域内界境线,积分均沿界境线正方向进行。

试题一-数学物理方法-西北师范大学

试题一-数学物理方法-西北师范大学

西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A 卷)系别:专业:级别:班级:学号:姓名:任课教师:题号一二三四五六七八总分得分一、(10分)在经典数学物理方程中,以二阶线性偏微分方程为主要研究对象.请问二阶线性偏微分方程从数学上分为哪几类?在物理上分别对应于什么过程?并写出各类方程的标准形式.二、(10分)数学物理方程有两大基本任务:导出定解问题和求解相应的定解问题.请问什么是定解问题?定解问题包括哪些要素?我们学习了哪些定解问题?以及求解这些定解问题的主要方法有哪些?三、(10分)定解问题的适定性对于导出定解问题和求解定解问题具有重要的指导意义.请问什么是定解问题的适定性?适定性包括哪些方面?并从物理角度分析如下定解问题是不适定的(提示:可以从温度场或静电场出发,解可能不存在).∆u =f (f =0)(在区域D 内)∂u ∂n S =0(S 为区域D 的边界,n 为边界S 的外法线方向)四、(5分)一根长为l 的均匀细杆,其温度分布满足如下定解问题:u t −a 2u xx =0(0<x <l,t >0)u (0,t )=0,u x (l,t )=0(t ≥0)u (x,0)=200(0≤x ≤l )《数学物理方法》试卷(A 卷)第1页(共3页)不求解定解问题,从物理角度直观分析细杆上温度随时间的变化情况,并考察t →+∞时细杆上的温度.五、(30分)分离变量法是求解定解问题的重要方法之一.请问分离变量法对定解问题有什么要求?分离变量法有哪些基本步骤?关键的步骤是什么?请用分离变量法求解如下弦振动方程的混合问题(要求写出完整的求解过程),并分析解的物理意义.u tt =a 2u xx (0<x <l,t >0)u (0,t )=0,u (l,t )=0(t ≥0)u (x,0)=sin 2πx l ,u t (x,0)=0(0≤x ≥l )六、(15分)一根无限长的均匀细杆,其振动满足如下定解问题:u tt =a 2(u xx +2x u x )(−∞<x <∞,t >0)u (x,0)=ϕ(x )(−∞<x <∞)u t (x,0)=ψ(x )(−∞<x <∞)其中ϕ(x ),ψ(x )为充分光滑的已知函数.请求解该定解问题,并说明解的物理意义(提示:令v (x,t )=xu (x,t )).七、(10分)格林函数又称点源影响函数,请用镜像法求出Laplace 方程上半空间Dirichlet 问题的格林函数,并说明其物理意义.同时请写出Laplace 方程上半空间Dirichlet 问题∆u =0(z >0,−∞<x <∞,−∞<y <∞)u (x,y,0)=f (x,y )(−∞<x <∞,−∞<y <∞)解的积分公式.八、(10分)求解常微分方程的本征值问题时,会得到各种各样的特殊函数,诸如Legendre(勒让德)多项式、Bessel(贝塞耳)函数、Hermite(厄密)多项式《数学物理方法》试卷(A 卷)第2页(共3页)和Laguerre(拉盖尔)多项式等.对连带Legendre多项式,请填空(每空2分):l阶连带Legendre微分方程的一般形式为,其中有两个本征值l(l+1)和m.l的取值范围为,相应m的取值范围为.l阶连带Legendre微分方程的解为l阶连带Legendre多项式,连带Legendre多项式的性、性和完备性是使它成为一个坐标函数系的三个重要性质.《数学物理方法》试卷(A卷)第3页(共3页)西北师范大学物理与电子工程学院2006-2007学年度第一学期《数学物理方法》期末试卷(A卷)参考答案一、(10分)二阶线性偏微分方程从数学上分为双曲型、抛物型、椭圆型三类,在物理上,双曲型方程对应于波动过程,抛物型方程对应于传输和扩散过程,椭圆型方程对应于稳定场过程.双曲型方程的标准形式为u tt−a2∆u=f,抛物型方程的标准形式为u t−a2∆u=f,椭圆型方程的标准形式为∆u=f.二、(10分)物理问题在数学上的完整提法是:在给定的定解条件下,求解数学物理方程.数学物理方程加上相应的定解条件就构成定解问题.定解问题包括泛定方程和定解条件.物理规律用偏微分方程表达出来,叫作数学物理方程.数学物理方程,作为同一类物理现象的共性,反映的是矛盾的普遍性,与具体条件无关,是解决问题的依据,所以又称为泛定方程.定解条件包括边界条件和初始条件,有时还需要衔接条件.边界条件和初始条件反映了具体问题特定的环境和历史,即矛盾的特殊性.泛定方程提供解决问题的依据,定解条件提出具体的物理问题,泛定方程和定解条件作为一个整体,合称为定解问题.学习的定解问题有:对波动过程:针对有界弦,提出了弦振动方程的混合问题;针对无界弦,提出了弦振动方程的初值问题(或Cauchy问题).对传输和扩散过程:针对有界杆,提出了热传导方程的混合问题;针对无界杆,提出了热传导方程的初值问题;针对一端有界的杆,提出了热传导方程的半无限问题.对稳定场过程:提出了Laplace方程圆、球、半空间、半平面的Dirichlet问题.求解这些定解问题的主要方法有:分离变量法(有界空间、无界空间、极坐标系、球坐标系)、Fourier级数法(齐次泛定方程、非齐次泛定方程)、行《数学物理方法》试卷(A卷)参考答案第1页(共4页)波解法(或D’Alembert解法)、冲量定理法、格林函数法(波动、热传导、镜像法)等.三、(10分)定解问题是对真实的物理问题经过一定的近似后得到的,近似就涉及到是否合理的问题,即定解问题是否提的正确,这一问题称为定解问题的适定性.定解问题的适定性包括解的存在性、解的唯一性和解的稳定性三个方面.该定解问题如果从温度场来考虑,反映的是这样一种温度场:区域D内存在热源,而边界上是绝热的.热源不停的放出热量,而热量又不能经由边界散发出去,D内的温度必然要不停的升高,其温度分布不可能是稳定的,故该问题不能由Possion方程来描述,因此该定解问题的解是不存在的.从而该定解问题是不适定的.(注:从静电场分析类似,只不过内部有电荷分布,而电场的法向分量为零.)四、(5分)从该定解问题可以看出:杆的左端温度为0,右端绝热,杆内部没有热源,杆上初始时刻各处温度均为常数200.根据热传导规律,杆上的温度将随时间降低,越靠近左端,温度降得越快,最后当t→+∞时细杆的温度将和左端的温度相等,即杆上各处的温度均为0.五、(30分)分离变量法要求定解问题的泛定方程与边界条件必须是齐次的.分离变量法其基本步骤为:1、变量分离;2、求解本征值问题;3、求解另外的常微分方程;4、特解的叠加;5、利用定解条件确定叠加系数.分离变量法关键的步骤是求解本征值问题.1.变量分离设u(x,t)=X(x)T(t),代入泛定方程得X +λX=0T +λa2T=0,其中λ为分离常数.将u(x,t)=X(x)T(t)代入边界条件得X(0)=0,X(l)=0.《数学物理方法》试卷(A卷)参考答案第2页(共4页)2.求解本征值问题X +λX =0X (0)=0,X (l )=0本征值λn =n 2π2l 2,本征函数X n (x )=sin nπxl ,n =1,2,···.3.求解常微分方程T+n 2π2a 2l 2T =0,n =1,2,···T n (t )=C n cos nπa l t +D n sin nπalt ,n =1,2,···.其中C n ,D n 为任意常数.得一系列特解u n (x,t )=X n (x )T n (t )=C n cos nπa l t +D n sin nπa l t sin nπxl,n =1,2,···.4.特解的叠加u (x,t )=∞ n =1u n (x,t )=∞ n =1C n cos nπal t +D n sin nπa l t sin nπx l.5.利用初始条件确定叠加系数C n ,D nu (x,0)=∞ n =1C n sinnπx l =sin 2πxl =⇒C 2=1C n =0,n =2.u t (x,0)=∞ n =1D n nπa l sin nπxl=0=⇒D n =0,n =1,2,···.所以该定解问题的解为u (x,t )=cos2πa l t sin 2πxl.解的物理意义:该Fourier 级数解在物理上表示驻波.六、(15分)令v (x,t )=xu (x,t ).化原定解问题为:v tt =a 2v xx (−∞<x <∞,t >0)v (x,0)=xϕ(x )(−∞<x <∞)v t (x,0)=xψ(x )(−∞<x <∞)利用D’Alembert 公式,有《数学物理方法》试卷(A 卷)参考答案第3页(共4页)v(x,t)=(x−at)ϕ(x−at)+(x+at)ϕ(x+at)2+12ax+atx−atαψ(α)dα.所以,u(x,t)=1xv(x,t)=12x(x−at)ϕ(x−at)+(x+at)ϕ(x+at)+1ax+atx−atαψ(α)dα.解的物理意义:f(x−at)表示右行波(或右传播波、正行波),f(x+at)表示左行波(或左传播波、逆行波),u(x,t)表示沿x轴正、负方向传播的行波,其中前一项来源于初始位移ϕ(x),后一项来源于初始速度ψ(x).七、(10分)Laplace方程上半空间Dirichlet问题的格林函数为:G(M,M0)=1r MM−g(M,M0)=1r MM−1r MM1=1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2,其中1r MM=1(x−x0)2+(y−y0)2+(z−z0)2在静电学上表示M0(x0,y0,z0)处单位正电荷在M(x,y,z)处产生的电势,−g(M,M0)表示接地导体平面z=0上感应负电荷在M(x,y,z)处产生的电势,其可以用镜像点M1(x0,y0,−z0)处单位负电荷产生的电势−1(x−x0)2+(y−y0)2+(z+z0)2来代替.Laplace方程上半空间Dirichlet问题解的积分公式为:u(x0,y0,z0)=−14πf∂G(M,M0)∂ndS=14π∞−∞∞−∞f(x,y)·∂∂z1(x−x0)2+(y−y0)2+(z−z0)2−1(x−x0)2+(y−y0)2+(z+z0)2z=0dx dy=z02π∞−∞∞−∞f(x,y)(x−x0)2+(y−y0)2+z203/2dxdy八、(10分)(1−x2)d2ydx2−2xdydx+l(l+1)−m21−x2y=0.l=0,1,2,3,···,m=0,1,2,···,l.正交、归一.《数学物理方法》试卷(A卷)参考答案第4页(共4页)。

山东大学物理学院 数学物理方法 2022-2023期末试题及解析

山东大学物理学院 数学物理方法 2022-2023期末试题及解析

《数学物理方法》课程考试大纲2022-2023山东大学物理学院 数学物理方法期末试题一、 填空题(每题3分,共27分)1. 已知zz =cos (aa +iibb ),z 的代数表达式为________________2. 指出多值函数�(zz −aa )(zz −bb )的支点和阶数___________3. 已知级数∑aa nn xx nn ∞nn=0的收敛半径为A ,试问级数∑aa nn √1+bb nn nnxx nn ∞nn=0(|bb |<1)的收敛半径为_____________4.ssss nn 2zz zz 3的极点为_____,且为______ 阶极点5. 利用柯西公式计算∮zz 2−zz+1zz 2(zz−1)ddzz |zz |=2_______________6. 连带勒让德多项式的正交代数表达式为_______________7. 计算留数1(zz 2+1)2_________________________8. 从t=a 持续作用到t=b 的作用力ff (tt ),可以看作许多前后相继的瞬时力的总和,其数学表达形式为__________9. ∫3δδ(xx −ππ)[ee 2xx +cccccc xx ]ddxx 10−10=_________________ 二、 简算题(每题5分,共15分)1. 将函数ff (zz )=1zz 2−3zz+2,在区域0<|zz −1|<1上展开为洛朗级数 2. �cos mmxx(xx 2+aa 2)2d xx ∞−∞,m>03. 已知解析函数ff =uu +iiνν,而uu =xx 3−3xxyy 2,试求ff三、 (8分)用级数法解微分方程yy ′′+xxyy ′+yy =0四、 (10分)在圆域ρρ<ρρ0上求解泊松方程的边值问题�ΔΔuu =aa +bb (xx 2−yy 2)uu ρρ=pp 0=cc五、 (15分)设有一均匀球体,在球面上的温度为cos 2θθ,试在稳定状态下求球内的温度分布(已知,PP 0(xx )=1,PP 1(xx )=xx , PP 2(xx )=12(3xx 2−1))六、 (10分)利用拉普拉斯变换解RC 电路方程:�RRRR +1CC �RR dd tt tt=EE 0sin ωωttRR (0)=0七、 (15分)计算:⎩⎨⎧ðð2uu ððtt 2−aa 2ðð2uuððxx2=AA cos ππxx ll sin ωωttuu |xx=0=0, uu |xx=ll =0uu |tt=0=φφ(xx ), uu tt |tt=0=ψψ(xx )2022-2023 数学物理方法期末试题 参考答案一、 填空题(每题3分,共27分)1.【正解】 12(ee bb +ee −bb )cos aa +i2(ee −bb −ee bb )sin aa 【解析】cos (aa +i bb )=ee ss (aa+ss bb )+ee −ss (aa+ss bb )2=12(ee −bb ee ss aa+ee bb ee −ss aa )=12[e −bb(cos aa +isin aa )+e bb (cos aa −isin aa )]=12[(e bb+e −bb )cos aa +i(e −bb −e bb )sin aa ]=12(ee bb +ee −bb)cos aa +i 2(ee −bb−ee bb )sin aa 2.【正解】支点:z=a 、b 、∞;皆为一阶支点【解析】注意到函数为12次,且当z=a 、b 时函数置零,z=∞为熟知的支点,阶数皆为2−1=1 3.【正解】A【解析】由根值判别法,幂级数的收敛区间为ll ii ll nn→∞�aa nn ⋅(1+bb nn )nn⋅xxxx (−1,1)而|bb |<1⇒ll ii ll nn→∞√1+bb nn nn=1故收敛半径保持不变,仍为A 4.【正解】zz =0;一阶 【解析】ll ii llzz→0ssss nn 2zz zz 3→∞,且ll ii ll zz→0zz ⋅ssss nn 2zz zz 3=1故zz =0为一阶极点5.【正解】2πi注意到原函数的极点为zz =0和zz =1,且分别为2阶与一阶极点,故上述积分即为II =2ππii �Re cc�ff (zz ),0]+Re cc [ff (zz ),1]��而Re cc [ff (zz ),0]=ll ii ll zz→0dd �zz 2−zz +1zz −1�ddzz=0Re cc [ff (zz ),1]=ll ii ll zz→1zz 2−zz +1zz 2=1因此II =2ππii6.【正解】�PP ll mm (xx )⋅PP kk mm (xx )ddxx =01−1(ll ≠kk ) 7. 【正解】Re cc [ff (zz ),ii ]=ll ii ll zz→ss dd �1(zz +ii )2�ddzz=−2[2ii ]−3Re cc [ff (zz ),−ii ]=ll ii ll zz→−ss dd �1(zz −ii )2�ddzz=−2[−2ii ]−38.【正解】∫ff (ττ)1−1δδ(tt −ττ)ddττ 9.【正解】ee 2ππ−1【解析】由δδ函数的挑选性,上述积分即为 (ee 2xx +cccccc xx )|xx=ππ=ee 2ππ−1 二、 简算题(每题5分,共15分)1.【解析】在区域0<|zz −1|<1内ff (zz )=1zz 2−3zz +2=−12⋅11−zz 2−1zz −1=−12⋅11−zz 2−1zz ⋅11−1zzff (zz )=−�12kk+1zz kk ∞kk=0−�zz −(kk+1)∞kk=0 =−�zz kk−1kk=−∞−�12kk+1zz kk∞kk=02.【解析】由约旦引理,从上半平面的半圆弧补全围道,上半平面有一个二阶极点zz 0=iiaa ,该点的留数为RReeccff (zz 0) =limzz→zz 0d d zz e immzz(zz +aa i)2=lim zz→zz 0[i ll e immzz (zz +aa i)2−2e ss nn zz (zz +aa i)3] =−llaa +14aa 3ie −mmaaII =ππi ⋅(−llaa +14aa 3ie −mmaa )=llaa +14aa3ππe −mmaa 3.【解析】根据C-R 条件,有∂uu ∂xx =3xx 2−3yy 2=∂νν∂yy−∂uu ∂yy =6xxyy =∂νν∂xxddνν=−(−6xxyy )d xx +3(xx 2−yy 2)d yy =d(3xx 2yy −yy 3) 有νν=3xx 2yy −yy 3+CC ,代入得ff (zz )=xx 3−3xxyy 2+i(3xx 2yy −yy 3+CC ) =(xx +i yy )3+i CC =zz 3+i CC 0三、(8分)【解析】设 yy =�aa nn xx nn ∞nn=0 是方程的解,其中 aa 0,aa 1 是任意常数,则yy ′=�nnaa nn xx nn−1∞nn=1yy ′′=�nn (nn −1)aa nn xx nn−2∞nn=2=�(nn +2)(nn +1)aa nn+2xx nn ∞nn=0方程 yy ′′+xxyy ′+yy =0,得�[(nn +2)(nn +1)aa nn+2+nnaa nn +aa nn ]xx nn ∞nn=0=0故必有(nn +2)(nn +1)aa nn+2+(nn +1)aa nn =0即aa nn+2=−aa nnnn +2(nn =0,1,2,⋯ ) 可见,当 nn =2(kk −1) 时aa 2kk=(−12kk )aa 2kk−2=(−12kk )(−12kk −2)⋯(−12)aa 0=aa 0(−1)kkkk !2kk当nn =2kk −1时aa 2kk+1=(−12kk +1)aa 2kk−1=(−12kk +1)(−12kk −1)⋯(−13)aa 1=aa 1(−1)kk (2kk +1)!�aa 2nn xx 2nn ∞nn=0与�aa 2nn+1xx 2nn+1∞nn=0的收敛域均为(−∞,+∞) 故yy =�aa κκxx κκ∞κκ=0=�aa 2κκxx 2κκ∞κκ=0+�aa 2κκ+1xx 2κκ+1∞κκ=0=�aa 0(−1)nn nn !2nn xx 2nn∞nn=0+�aa 1(−1)nn (2nn +1)!xx 2nn+1∞ss=0即yy =aa 0e −xx 22+aa 1�(−1)nn (2nn +1)!xx 2nn+1∞nn=0,xx ∈(−∞,+∞)四、 (10分)【解析】 首先找到满足方程的特解vv =aa 4(xx 2+yy 2)+bb 12(xx 4−yy 4)=aa 4ρρ2+bb 12(xx 2+yy 2)(xx 2−yy 2) =aa 4ρρ2+bb 12ρρ4cos 2φφ 令uu =vv +ww =aa 4ρρ2+bb 12ρρ4cos 2φφ+ww对于齐次方程,且满足球心为有限值的泊松方程通解为ww (ρρ,φφ)=�ρρnn (AA mm cos ll φφ+BB nn sin llφφ)∞mm=0代入边界条件,有 �ρρ0nn (AA mmcos ll φφ+BB nn sin llφφ)∞mm=0=cc −aa 4ρρ02−bb 12ρρ04cos 2φφ比较系数解得uu =vv +ww =cc +aa 4(ρρ2−ρρ02)+bb 12ρρ2(ρρ2−ρρ02)cos 2φφ 五、(15分)【解析】对于满足球心处为有限值的拉普拉斯方程通解为uu (rr ,θθ)=�AA ll rr l P ll (cos θθ)∞ll=0代入边界条件有�AA ll rr 0l P ll (cos θθ)∞ll=0=cos 2θθ=xx 2由于P 2(xx ) =12(3xx 2−1) ,有xx 2=13[1+2P 2(xx )]=13P 0(xx )+23P 2(xx )即�AA ll rr 0lP ll (cos θθ)∞ll=0=cos 2θθ=xx 2=13P 0(xx )+23P 2(xx )对比系数可得uu (rr ,θθ)=13+23⋅1rr 02⋅rr 2P 2(cos θθ)六、(10分)【解析】对方程进行拉普拉斯变换,有jj ‾RR +jj ‾ppCC =EE 0ωωpp 2+ωω2 解得jj ‾=ωωEE 0(RR +1ppCC )(pp 2+ωω2)再进行反演RR (tt )=EE 0ωωRR (−RRCC e llRRRRωω2RR 2CC 2+1+RRCC cos ωωtt +ωωRR 2CC 2sin ωωtt ωω2RR 2CC 2+1) =EE 0RR 2+1/CC 2ωω2(RR sin ωωtt +1CCωωcos ωωtt )−EE 0/CCωωRR 2+1/CC 2ωω2e −tt /RRRR七、(15分)【解析】应用冲量定理法,先求解vv uu −aa 2vv xxxx =0ννxx ∣x=0=0,vv x ∣x=l =0vv ∣tt=ττ+0=0,vv t ∣t=ττ+0=AA cos ππxxllsin ωωττ根据通解的一般形式并代入边界条件,可得vv (xx ,tt ;ττ)=AAllππaasin ωωττsin ππaa (tt −ττ)ll cos ππxx ll uu (xx ,tt )=�vv (xx ,tt ;ττ)tt=AAll ππaa cos ππxx ll �sin ωωττsin ππaa (tt −ττ)ll d ττtt 0=AAll ππaa 1ωω2−ππ2aa 2/ll 2(ωωsin ππaa ll tt −ππaa ll sin ωωtt )cos ππxx ll。

数学物理方法题目

数学物理方法题目

2 5
3 5
51、求解 ⎪ ⎨
⎧ ∇ 2u = 0
2
( r < a, 0 < θ < π )
⎪ ⎩u r = a = cos θ , u r →0 = 有限值
(0 < θ < π )

⎧ ∇ 2u = 0 ( r > a, 0 < θ < π ) ⎪ 52、求解 ⎨ 。 2 ⎪ ⎩u r = a = cos θ , u r →0 = 有限值 ( 0 < θ < π )
i
b.证明 ∫i
2+i
dz ≤ 2 积分路径是直线段。 z2
10、不用计算,证明下列积分之值均为零,其中 c 均为圆心在原点, 半径为 1的单位圆周。 a. v ∫c
e z dz dz ; b. v ∫c z 2 + 5z + 6 。 cos z 2z2 − z +1 v ∫ c z − 1 dz ez z
z ( z + 1)
2
z −1
2
; (2) cos
1 1 ; (3) 。 z +i sin z + cos z
1 − ez 在孤立奇点处的留数。 23、求 f ( z ) = 1 + ez
24、求下列函数在指定点处的留数。
3
1 − e2 z (1) 在 z = ±1, ∞ ; (2) 4 在 z = 0, ∞ 。 2 z ( z − 1)( z + 1)
u t =0 = ρ 2 − R 2 ,求此物体的温度分布随时间的变化规律。 (无限长
→ u 与 ϕ 无关)
58、圆柱体半径为 R 而高为 H ,上底面保持温度 u1 ,下底面保持温度

数学物理方法考试试题1

数学物理方法考试试题1

课程试卷库测试试题(编号:1 )一、判断题(对的打“√”,错的打“×”,共5题,每题4分)1、在复数领域,i z e 的周期是2i π。

( × )2、柯西一黎曼方程是复变函数可导的充分条件。

( × )3、设()f x 的傅里叶变换的像函数是()F ω,则'()f x 的傅里叶变换的像函数是()i F ωω。

( √ ) 4、在推导均匀弦的微小横振动方程时,如果我们假定弦是柔软的,那么弦中张力必沿弦的切线方向。

( √ )5、在波动方程的定解条件中,初始条件只有一个。

( × )二、填空题(共5题,每题4分)1、s ()in a ib +的模为22221()s ()c 2b b b b e e in a e e os a --++- 2、在00Z =的领域,函数1z e 的洛朗展开式为:23101111111111!2!3!!kz k e z z z k z ∞=⎛⎫⎛⎫⎛⎫=++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 3、s t e in t λω-的拉普拉斯变换函数为()22ωρλω++ 4、若()f x 的傅里叶变换为()F ω,则()f x α的傅里叶变换为1F ωαα⎛⎫ ⎪⎝⎭ 5、均匀弦的微小横振动的波动方程可写为20tt xx u a u -=三、选择题(共5题,每题4分) 1、关于1()1n f z z =-函数的极点和留数问题,正确的说法是( 4 ) ⑴ n 阶极点00z =,留数为1。

(2)n 阶极点00z =,留数为1n。

(3)单极点00z =,留数为1n 。

(4)单极点01z =,留数为1n 。

2、回路积分212z z e dz =⎰ 的值为( 4 )⑴ π, ⑵ 2i π, ⑶ 2π, ⑷ 0。

3、函数n t 的拉普拉斯变换像函数为( 4 )⑴ 11n p +, ⑵ !n p , ⑶ !n n p , ⑷ 1!n n p +。

4、拉普拉斯像函数为46(1)p +,则原函数为( 1 ) ⑴ 3t t e -, ⑵ 3t , ⑶ t e - ⑷ 3t t e 。

物理数学考试试题及答案

物理数学考试试题及答案

物理数学考试试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 m/minD. 299,792,458 km/min答案:A2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是?A. F = maB. F = ma^2C. F = m/aD. F = a/m答案:A3. 一个物体从静止开始做匀加速直线运动,经过时间t后的速度为v,则加速度a为?A. a = v/tB. a = v^2/tC. a = v^2/t^2D. a = v*t答案:A4. 一个物体在水平面上受到一个恒定的力F作用,若物体的质量为m,摩擦力为f,则物体的加速度a为?A. a = (F - f)/mB. a = (F + f)/mC. a = F/m - fD. a = F/m + f答案:A5. 一个物体的质量为m,从高度h自由下落,忽略空气阻力,落地时的速度v是多少?A. v = √(2gh)B. v = √(2gh)/2C. v = 2ghD. v = 2gh/2答案:A6. 根据欧姆定律,电阻R、电流I和电压V之间的关系是?A. V = IRB. V = I/RC. V = R/ID. I = V/R答案:A7. 一个电路中,电阻R1和R2串联,总电阻Rt为?A. Rt = R1 + R2B. Rt = R1 * R2C. Rt = R1/R2D. Rt = R1 * R2/(R1 + R2)答案:A8. 一个电路中,电阻R1和R2并联,总电阻Rt为?A. Rt = R1 + R2B. Rt = R1 * R2C. Rt = R1/R2D. Rt = 1/(1/R1 + 1/R2)答案:D9. 一个电容器的电容C、电荷量Q和电压V之间的关系是?A. C = Q/VB. C = QVC. C = V/QD. C = V*Q答案:A10. 根据法拉第电磁感应定律,感应电动势E和磁通量变化率ΔΦ/Δt之间的关系是?A. E = ΔΦ/ΔtB. E = Δt/ΔΦC. E = ΔΦ * ΔtD. E = ΔΦ^2/Δt答案:A二、填空题(每题4分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等,方向________,作用在不同的物体上。

数学物理方法期末考试大题

数学物理方法期末考试大题
2
2、 求解热传导问题
ut a 2u xx A sin t u x |x 0 0, u |x l 0 u | x t 0
3、 两端固定弦在点 x0 受谐变力 f t f0 sin t 作用而振动,求解振动情况。[提示: 外加力的线密度可表示为 f x, t f 0 sin t x x0 ]
4、 均匀的薄板占据区域 0 x a , 0 y b 。边界上的温度

u |x 0 0 , u |x a 0 , u | y 0 u0 , lim u 0
y
求解板的稳定温度分布。
三、非齐次方程的分离变数法(15 分) 1、 长为 l 的均匀细杆两端固定,杆上单位长度受有纵向外力 f 0 sin 2 x l cos t ,初始位 移为 sin x l ,初始速度为零,求解杆的纵振动。
4、 求解细杆导热问题。杆长 l ,初始温度均匀为 u0 ,两端分别保持温度 u1 和 u2 。
四、球函数(12 分) 1、一空心圆球区域,内半径为 r1 ,外半径为 r2 ,内球面上有恒定电势 u0 ,外球面上电势保 持为 u1 cos 2 , u0 、 u1 均为常数,试求内外球面之间空心圆球区域的电势分布。
数学物理方法期末考试大题数学物理方法判断题数学物理方法数学物理方法复习数学物理方法教材数学物理方法试卷数学物理方法课件数学物理方法pdf数学物理方法试题数学物理方法答案
一、拉普拉斯变换(8 分) 1、求积分 I t


0
cos tx dx x2 a2
二、齐次方程的分离变数法(15 分) 1、 求解细杆导热问题,杆长 l ,b 为常数,两端保持为零度,初始温度分布

数学物理方法考试试题

数学物理方法考试试题

数学物理方法考试试题一、选择题1. 在坐标系中,以下哪个曲线表示了函数 y = e^x 的图像?A. y = x^2B. y = eC. y = e^(-x)D. y = ln(x)2. 一个小球从地面上方以速度 v0 抛下,忽略空气阻力。

以下哪个公式正确地描述了小球的下降高度 h(t) 随时间变化的关系?A. h(t) = v0 * t - 0.5 * g * t^2B. h(t) = v0 * t + 0.5 * g * t^2C. h(t) = v0 * t + g * t^2D. h(t) = v0 * t - g * t^23. 空间中有一个电场 E = 2x i + 3y j + 4z k。

一个电子从点 (1, 2, 3) 处开始沿电场方向运动,电子的加速度大小是多少?A. 7B. 5C. 6D. 44. 一个质点在平面上做匀速圆周运动,其角速度大小为 2 rad/s。

质点的速度大小和圆周半径分别是多少?A. v = 2rB. v = 4rC. v = 6rD. v = 8r5. 一辆汽车以匀加速度 a 行驶,在时刻 t1 时起动,时刻 t2 时速度为 v2。

以下哪个公式可以用于计算汽车在时间区间 [t1, t2] 内行驶的距离?A. s = v2 - v1B. s = a * (t2 - t1)C. s = v1 * (t2 - t1) + 0.5 * a * (t2 - t1)^2D. s = v1 * (t2 + t1) + 0.5 * a * (t2 - t1)^2二、计算题1. 计算下列函数的导数:(1) f(x) = x^3 - 2x^2 + 3x - 4(2) g(x) = e^x * sin(x)2. 一个弹簧的劲度系数为 k,质量为 m 的物体悬挂在弹簧上。

当物体受到外力 F(t) = 2cos(t) 作用时,确定物体的运动方程并解释物体的运动特性。

3. 一个半径为 R 的圆形铁环在匀强磁场 B 的作用下,磁通量在时间区间 [0, t] 内以恒定速率增大。

(物理)物理数学物理法各地方试卷集合含解析

(物理)物理数学物理法各地方试卷集合含解析

(物理)物理数学物理法各地方试卷集合含解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。

两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。

已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。

高中物理数学物理法试题(有答案和解析)及解析

高中物理数学物理法试题(有答案和解析)及解析

高中物理数学物理法试题(有答案和解析)及解析一、数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。

已知磁场的磁感应强度大小为,不计带电粒子的重力。

求: (1)带电粒子的比荷; (2)C 点的坐标。

【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。

2.如图所示,质量为m=1kg 的物块与竖直墙面间动摩擦因数为=0.5,从t=0的时刻开始用恒力F 斜向上推物块,F 与墙面间夹角=37°,在t=0的时刻物块速度为0.(1)若F=12.5N ,墙面对物块的静摩擦力多大? (2)若F=30N ,物块沿墙面向上滑动的加速度多大?(3)若要物块保持静止,F 至少应为多大?(假设最大静摩擦力等于同样正压力时的滑动摩擦力,F 的计算结果保留两位有效数字)【答案】(1)0f =(2)25/a m s =(3)9.1F N = 【解析】试题分析:(1)设f 向上,37Fcos f mg ︒+=得0f =(2)根据牛顿第二定律可得cos37sin 37F F mg ma μ︒-︒-=,得25/a m s = (3)当物块即将下滑时,静摩擦最大且向上,cos37sin 37F F mg μ︒+︒=,得9.1F N =考点:考查了摩擦力,牛顿第二定律【名师点睛】在计算摩擦力时,首先需要弄清楚物体受到的是静摩擦力还是滑动摩擦力,如果是静摩擦力,其大小取决于与它反方向上的平衡力大小,与接触面间的正压力大小无关,如果是滑动摩擦力,则根据公式F N μ=去计算3.角反射器是由三个互相垂直的反射平面所组成,入射光束被它反射后,总能沿原方向返回,自行车尾灯也用到了这一装置。

数学物理方法试卷与答案

数学物理方法试卷与答案

数学物理方法试卷与答案《数学物理方法》试卷一、选择题(每题4分,共20分)1.柯西问题指的是()A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有()A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是()nfA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是()nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的()A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是_______________ut00,utt02co某,0某______________________.2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为________________________________________________________.3.二阶常微分方程y''(某)1'13y(某)(2)y(某)0的任一特解y__________某44某_______________________________________________.4.二维拉普拉斯方程的基本解为________________________________________,三维拉普拉斯方程的基本解为__________________________________________.5.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某2J3(某)_______________________________________.2三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某l某某0u某,utt00,0某l.t02四、(10分)用行波法求解下列问题2u2u2u320,y0,某,22某yy某u2u3某,0,某.y0yy0五、(10分)用Laplace变换法求解定解问题:u2u2,0某2,t0,t某u某0u某20,t0,ut0in某,0某2.3六、(15分)用格林函数法求解下定解问题2u2u某2y20,y0,uf(某),某.y0七、(10分)将函数f某某在区间[0,1]上展成Beel函数系{J1(m(1)某)}m1的级数,其中m(1)为Beel函数J1(某)的正零点,m1,2,.42022—2022学年第二学期《数学物理方法》试卷B答案一、选择题(每题4分,共20分)1.柯西问题指的是(B)A.微分方程和边界条件.B.微分方程和初始条件.C.微分方程和初始边界条件.D.以上都不正确.2.定解问题的适定性指定解问题的解具有(D)A.存在性和唯一性.B.唯一性和稳定性.C.存在性和稳定性.D.存在性、唯一性和稳定性.2u0,3.牛曼内问题u有解的必要条件是(C)fnA.f0.B.u0.C.fdS0.D.udS0.某''(某)某(某)0,0某l4.用分离变量法求解偏微分方程中,特征值问题某(0)某(l)0的解是(B)nnnn某).B.(某).A.(,co,inllll(2n1)(2n1)(2n1)(2n1)某).D.(某).C.(,co,in2l2l2l2l22225.指出下列微分方程哪个是双曲型的(D)A.u某某4u某y5uyyu某2uy0.B.u某某4u某y4uyy0.C.某2u某某2某yu某yy2uyy某yu某y2uy0.5D.u某某3u某y2uyy0.二、填空题(每题4分,共20分)2u2u220,0某,t0t某1.求定解问题u某02int,u某2int,t0的解是(2intco某).ut00,utt02co某,0某2.对于如下的二阶线性偏微分方程a(某,y)u某某2b(某,y)u某yc(某,y)uyydu某euyfu0其特征方程为(a(某,y)(dy)22b(某,y)d某dyc(某,y)(d某)20).3.二阶常微分方程y''(某)或0).4.二维拉普拉斯方程的基本解为(ln1().r1),三维拉普拉斯方程的基本解为r1'13y(某)(2)y(某)0的任一特解y(J某44某1(某)3225.已知J1(某)222in某,J1(某)co某,利用Beel函数递推公式求某某23J3(某)(221221din某(in某co某)某()()).某某某d某某三、(15分)用分离变量法求解如下定解问题22u2ut2a某20,0某l,t0uu0,0,t0某某某l某0u某,utt00,0某l.t06解:第一步:分离变量(4分)设u(某,t)某(某)T(t),代入方程可得某''(某)T''(某)某(某)T(t)a某(某)T(t)某(某)a2T(某)''2''此式中,左端是关于某的函数,右端是关于t的函数。

高中物理数学物理法试题(有答案和解析)及解析

高中物理数学物理法试题(有答案和解析)及解析

高中物理数学物理法试题(有答案和解析)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。

两极板间电势差U AB 随时间变化规律如右图所示。

现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。

求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。

【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。

水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。

粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。

如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法试题A (100分)2005级光电子专业一、填空题 (40分)1. 表示复数 z 的代数式是 ,指数式是。

2. 设(),u u x y =,20ux y∂=∂∂则 (),uu x y = 满足一个方程,可解出 u = 。

3. 设()w f z =,w u iv =+,iyx z +=。

则方程 ⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂x v yu yvx u 称为 。

如在D 区域,x u ∂∂、y u ∂∂、x v ∂∂、yv∂∂ 连续,且上述方程成立,则称复变函数()fz 为D区域上的 。

4.11i i i i -+=- ,()()()()3232i i i i +-=-+ 。

5. 设解析函数()222f z x y xyi =-+,其共轭函数()f z *= ,其导数()f z '= 。

6.42112z z dz z iz=+=-⎰, 7. 复幂级数 k k k z c ∑∞=1的收敛区域通常为 ,圆的半径称为 。

8. δ函数的主要定义是:, 。

9. 周期函数的定义是 ,付里叶级数的常见形式是。

10. 现有两函数()1=x f∞≤≤∞-x()1=x f b x b ≤≤-则二者的付里叶变换()F ω分别为, 。

二、简答题 (20分)1. 设复变函数2w z=,试将z 平面上的曲线(以原点为圆心,以2为半径,位于0y ≥区域的半圆)表示为w 平面上的曲线。

2. 对于复幂级数 k k k z c ∑∞=1, 收敛半径 R的取值共有几种情况?分别列出。

3. 求复幂级数 1kk z k∞=∑、12k kk z ∞=∑的收敛半径R 。

4. 试举出2个常见的数学物理方程,写出数学形式,简述其所代表的物理意义。

三、计算题 (40分)1. 将()()2fz z a =- 沿圆心为z a =,半径为r 的圆周 C 积分。

2. 试将()1121f z z z =--- 在1z 的区域内分别展开为复幂级数。

3. 现有函数()fx x =l x l -+经平移后延拓为一个周期为2l 的锯齿波。

试将其展开为付里叶级数。

4. 已知静电场的电势()z y x u u ,,= 满足拉普拉斯方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z u y u x u 今设带电体是一个位于Y —Z 平面上的无限大均匀带电平面。

当取0x x = 处为电势零点时,此面的电势为 0u 。

试求 0x +∞区间的电势分布。

数学物理方法试题B (100分)2005级光电子专业一、填空题 (40分)1. 表示复数 z 的代数式是 ,指数式是。

2. 在复变函数中,正弦函数的定义是 ,余弦函数的定义是 。

3. 柯西积分公式的形式是 ,其中Γ表示 。

4.11i i i i -+=- ,()()()()3232i i i i +-=-+ 。

5. 设解析函数()222f z x y xyi =-+, 其共轭函数()fz *= ,其导数()f z '= 。

6.()4221z z zdz z =+=-⎰ 。

7. 复幂级数 kk k z c ∑∞=1的收敛区域通常为 ,圆的半径称为 。

8. δ函数的主要定义是:, 。

9. 周期函数的定义是 ,付里叶级数的常见形式是。

10. 现有两函数()1=x f∞≤≤∞-x()1=x f b x b ≤≤-则二者的付里叶变换()F ω分别为, 。

二、简答题(20分)1. 设复变函数2w z=,试将z平面上的曲线(以原点为圆心,以2为半径,位于,0x y≥区域的圆弧)表示为w平面上的曲线。

2.波动方程和传导方程是2个常见的数学物理方程,试分别写出数学形式,并简述其所代表的物理意义。

三、计算题(40分)1. 将()()f z z a=-沿圆心为z a=,半径为r的圆周C积分。

2. 试将()1121f z z z =--- 在1z 的区域内分别展开为复幂级数。

3. 现有函数 ()101x lf x l x ++⎧=⎨--⎩经平移后延拓为一个周期为2l 的矩形波。

试将其展开为付里叶级数。

4. 已知静电场的电势()z y x u u ,,= 满足拉普拉斯方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z u y u x u 今设带电体是一个位于Y —Z 平面上的无限大均匀带电平面。

当取0x x = 处为电势零点时,此面的电势为 0u 。

试求 0x +∞区间的电势分布。

5. 设一长为 l 的弹性弦两端固定,则弦的横向振动满足波动方程222220u u a t x∂∂=∂∂其中,(),u u x t = 表示弦作横向振动时的位移。

试在区间0x l ≤≤ 上求解该方程。

设 02sin t u A x lπ==,00tt u ==数学物理方法试题A 答案 (100分)2005级光电子专业一、填空题 (30分)1. 表示复数z的代数式是 ,指数式是 。

iyx z +=ϕρi ez =2. 在复变函数中,正弦函数的定义是 ,余弦函数的定义是 。

3. 设()w fz =,w u iv=+,iy x z +=。

如在D区域,x u ∂∂,y u ∂∂,x v ∂∂,y v ∂∂ 连续,且方程⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂x v yu y vx u 成立,则称复变函数()fz 为D区域上的 ,上述方程称为 。

柯西---黎曼方程 解析函数4. 11i i i i -+=- ,()()()()3232i i i i +-=-+ 。

5. 解析函数()()223223f z x y x i x y =--++-,其共轭函数()f z *= ,其导数()f z '= 。

6.42112z z dz z iz=+=-⎰,()4221z z zdz z =+=-⎰ 。

7. 复幂级数 kk kz c ∑∞=1的收敛区域通常为 , 圆的半径称为 。

一圆周, 收敛半径。

8. δ函数的主要定义是, 。

(){000≠=∞+=x x x δ()1=⎰+∞∞-dx x δ9. 周期函数的定义是 ,付里叶级数的常见形式是。

10. 现有两函数()1=x f∞≤≤∞-x和()1=x f b x b ≤≤-则二者的付里叶变换()F ω分别为, 。

2 常数函数()1=x f ∞≤≤∞-x3框形函数()1=x f b x b ≤≤-一质点从静止出发,沿半径m R 10=的圆周运动,角加速度t t 6122-=β。

则质点的角速度=ω二、简答题 (20分)1. 设复变函数2w z=,试将z 平面上的曲线(以原点为圆心,以2为半径,位于0y ≥区域的半圆)表示为w 平面上的曲线。

以原点为圆心,以4为半径,位于w 平面上的的圆。

2. 关于复幂级数 k k k z c ∑∞=1, 收敛半径 R的取值共有几种情况,分别列出。

3. 求复幂级数 1kk z k∞=∑、12k kk z ∞=∑、()121!k kk z k ∞=+∑ 的收敛半径 R 。

4. 试举出2个常见的数学物理方程,写出数学形式,简述其所代表的物理意义。

5. 在分析力学中,αq 表示 ,αq表示 。

三、计算题 (40分) 1. 已知静电场的电势()z y x u u ,,= 满足拉普拉斯方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z u y u x u 今设带电体是一个位于Y —Z 平面上的无限大均匀带电平面。

当取 0x x = 处为电势零点时,此面的电势为0u 。

试求 0x +∞ 区间的电势分布。

2. 设一长为l 的弹性弦两端固定,则弦的横向振动满足波动方程222220uu a t x∂∂=∂∂其中,(),u u x t = 表示弦作横向振动时的位移。

试在区间0x l ≤≤ 上求解该方程。

设 02sin t u A x lπ==,00tt u ==()00n T '=3. 将()()2fz x a =- 沿圆心为a ,半径为r 的圆周C积分。

4. 试将()1121f z z z =--- 在区域 1z 、2z +∞ 内分别展开为复幂级数。

5. 现有函数()fx x =l x l -+经平移后延拓为一个周期为2l 的锯齿波。

试将其展开为付里叶级数。

5. 设一长为 l 的弹性弦两端固定,则弦的横向振动满足波动方程222220u u a tx∂∂=∂∂其中,(),u u x t = 表示弦作横向振动时的位移。

试在区间0x l ≤≤ 上求解该方程。

设 02sin t u A x lπ==,00tt u ==数学物理方法试题B 答案 (100分)2005级光电子专业一、填空题 (30分)1. 表示复数z的代数式是 ,指数式是 。

iyx z +=ϕρi ez =2. 在复变函数中,正弦函数的定义是 ,余弦函数的定义是 。

3. 设()w fz =,w u iv=+,iy x z +=。

如在D区域,x u ∂∂,y u ∂∂,x v ∂∂,y v ∂∂ 连续,且方程⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂x v yu y vx u 成立,则称复变函数()fz 为D区域上的 ,上述方程称为 。

柯西---黎曼方程 解析函数4. 11i i i i -+=- ,()()()()3232i i i i +-=-+ 。

5. 复变函数()()223223f z x y x i x y =--++-,其共轭函数()f z *= ,其导数()f z '= 。

6.42112z z dz z iz =+=-⎰, ()4221z z zdz z =+=-⎰ 。

7. 复幂级数 kk kz c ∑∞=1的收敛区域通常为 , 圆的半径称为 。

一圆周, 收敛半径。

8. δ函数的主要定义是, 。

(){000≠=∞+=x x x δ()1=⎰+∞∞-dx x δ9. 周期函数的定义是 ,付里叶级数的常见形式是。

10. 现有两函数()1=x f∞≤≤∞-x和()1=x f b x b ≤≤-则二者的付里叶变换()F ω分别为,。

4常数函数()1=xf∞≤≤∞-x5框形函数()1=xf bxb≤≤-二、简答题(20分)1. 设复变函数2w z=,试将z平面上的曲线(以原点为圆心,以2为半径,位于y≥区域的半圆)表示为w平面上的曲线。

以原点为圆心,以4为半径,位于w平面上的的圆。

2.关于复幂级数kkkzc∑∞=1,收敛半径R的取值共有几种情况,分别列出。

3. 求复幂级数 1kk z k∞=∑、12k kk z ∞=∑、()121!k kk z k ∞=+∑ 的收敛半径 R 。

4. 试举出2个常见的数学物理方程,写出数学形式,简述其所代表的物理意义。

5. 在分析力学中,αq 表示 ,αq表示 。

三、计算题 (40分)1. 已知静电场的电势()z y x u u ,,= 满足拉普拉斯方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z u y u x u 今设带电体是一个位于Y —Z 平面上的无限大均匀带电平面。

相关文档
最新文档