6.气体动理论
气体动理论
第十三章 气体动理论本章从理想气体的微观组成出发,假以统计性假设,推出理想气体的压强和温度公式,揭示了压强和温度的本质;提出了理想气体内能的概念,介绍了理想气体能量按自由度均分原理;阐述了理想气体的麦克斯韦速率分布率。
这称为气体动理论。
气体动理论的产生和发展凝聚了众多物理学家的智慧和心血。
早在1678年,胡克就提出了气体压强是由大量气体分子与器壁碰撞的结果的观点。
之后,在1738年,伯努利根据这一观点推导出压强公式,并且解释了玻意耳定律。
1744年,俄国的罗蒙诺索夫提出了热是分子运动表现的观点。
在19世纪中叶,气体动理论经克劳修斯、麦克斯韦和玻耳兹曼的努力而有了重大发展。
1858年,克劳修斯提出气体分子平均自由程的概念并导出相关公式。
1860年,麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。
之后,麦克斯韦又建立了输运过程的数学理论。
1868年,玻耳兹曼在麦克斯韦气体分子速率分布律中又引进重力场。
第一节理想气体状态方程一、状态参量1.状态参量概念如何描述系统的冷热变化规律,这就需要一些物理量。
假设气体的质量为 m ,其宏观状态一般可以用气体的压强p 、体积V 和温度T 三个物理量来描述。
如果在热力学过程中伴随着化学反应,还需要物质的量、摩尔质量 、物质各组分的质量等物理量来描述。
如果热力学系统处于磁场中,还需要电场强度E 、电极化矢量P 、磁场强度H 和磁化强度M 等物理量来描述。
选择几个描写系统状态的参量,称为状态参量。
2.状态参量分类按照不同的划分标准,状态参量可作如下划分:(1)按状态参量描写系统的性质划分可分为:V P E P H M几何参量:描述系统的空间广延性。
如体积 。
力学参量:描述系统的强度。
如压强 。
化学参量:描述系统的化学组分。
如各组分的质量,物质的量。
电磁参量:描述系统的电磁性质。
如电场强度 ,电极化强度 ,磁场强度 ,磁化强度 。
气体动理论
1atm = 76 cmHg =1.013×105Pa
2. 体积: 分子活动的空间 (并非分子大小的总和) 3. 温度: 物体冷热程度的量度
(反映分子热运动剧烈程度的量)
热力学温标: T= t +273.15 K
3
概念
平衡态: 一个孤立系统,宏观状态参量都不随时间 变化的状态。 (热动平衡)
宏观上各量均不变,而微观上分子热运动永不停息。
平衡过程: 在过程进行的每一时刻,系统都无限的 接近平衡态。 (准静态过程)
1 2 1 2
4
说明
(1) 平衡(准静态)过程是一个无摩擦 的、无限缓慢进行的理想化过程; (2) 除一些进行得极快的过程(如 爆炸过程)外,大多数情况下 都可以把实际过程看成是准静 态过程; (3) 准静态过程在状态图上可用一 条曲线表示, 如图: 图中每一个点代表一个平衡态, 一条曲线代表一个平衡过程。
15
§9-5 麦克斯韦速率分布律
一、速率分布
ห้องสมุดไป่ตู้
宏观上足够小 ——不计偏差,此区间内粒子速率均为 微观上足够大 ——区间内仍包含大量分子
速率 v1 ~ v2 ΔN1 ΔN1/N v2 ~ v3 ΔN2 ΔN2/N
… …
vi ~ vi +Δv ΔNi ΔNi/N
… …
分子数按速率 的分布 分子数比率 按速率的分布
结论 (1) 统计规律是大量偶然事件的总体所遵从的规律 (2) 统计规律和涨落现象是分不开的。
11
§9-4 理想气体的压强公式
一、理想气体的模型
宏观模型: 在任何情况下严格符合气体三个实验定律。
气体动理论公式总结
气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。
它主要研究气体分子的速度、能量、碰撞等方面的性质。
气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。
下面将总结一些常见的气体动理论公式。
1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。
它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。
它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。
3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。
它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。
4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。
它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。
5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。
它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。
6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。
它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。
以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。
利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。
同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。
大学物理 气体动理论
三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:
�
x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA
令
k
≡
R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3
气体动力论
aa
a
N个分子作用在S1面的压强为:
Pb F ca m bv1 2 x cv2 2x v2 Nx
Nm v1 2xv2 2x v2 Nx abc N
由于: v1 2xv2 2N x v2 Nxv2 x1 3v2
abcV
N V
n
所以:
p
1 3
nmv2
压强公式
P
2 3
n
k
k
1 2
mv2
分子平均平动动能
对于理想气体,分子间的相互作用力忽略不计,所以理想气体 分子没有相互作用的势能。因此,理想气体的内能就是所有分子的 各种运动动能的总和。
EM 2i RT2i PV
内能只是气体状态参数温度T的单值函数 气体状态变化时内能的增量:
EM 2i RT2i(PV)
第23页,本讲稿共40页
讨论题:明确下列各种表示的物理意义
2、平衡态,准静态过程
若无外界影响,系统的宏观性质将在长时间内保持不变,这种 状态称为平衡态。
系统从一个状态经过一系列中间状态变到另一个状态,这叫状 态变化过程,简称过程。如果这其中经过的所有中间状态都无限接 近平衡状态,则称这种过程为准静态过程,也叫平衡过程。平衡过 程是无限缓慢地进行的极限过程。
③、分子的平均转动动能的总和 N2 2kT 0.66 178 0J
④、分子的平均动能的总和
NkT 1.6 710J 5 2
8
第26页,本讲稿共40页
§6.5 气体分子按速率分布规律
伽尔顿板实验
粒子落入其中一 格是一个偶然事件, 大量粒子在空间的 分布服从统计规律。
.......................................................................................................................................
气体动理论公式总结
气体动理论公式总结气体动理论是研究气体运动的基本理论,涉及到气体的压力、体积、温度等性质。
在研究气态物质的行为和性质时,气体动理论公式是非常重要的工具。
本文将对一些常用的气体动理论公式进行总结和解析。
1. 状态方程公式状态方程是描述气体状态的物理方程,常见的状态方程包括理想气体状态方程和范德华方程。
理想气体状态方程:PV = nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的摩尔数,R为气体常数,T表示气体的绝对温度。
范德华方程:(P + an^2/V^2)(V - nb) = nRT其中,a和b为范德华常数,和实际气体分子之间的作用有关。
2. 理想气体状态方程的推导理想气体状态方程可以通过气体分子的平均动能推导得到。
根据气体分子的平均运动能量定理,可得到以下公式:KE = (3/2)kT其中,KE表示气体分子的平均动能,k为玻尔兹曼常数,T表示气体的绝对温度。
另外,气体分子的动能与气体分子的速度和质量有关:KE = (1/2)mv^2其中,m为气体分子的质量,v为气体分子的速度。
将上述两个公式相等,可以得到:(1/2)mv^2 = (3/2)kT由此,可以推导出理想气体状态方程:PV = (1/3)Nm<v^2>其中,N为气体分子的个数,<v^2>表示气体分子速度的平方的平均值。
3. 分子平均自由程公式分子平均自由程是指气体分子在碰撞间隔期间所飞过的平均距离。
分子平均自由程与气体分子的摩尔数、体积和气体分子直径有关。
分子平均自由程的公式为:λ = (1/√2) * (V/nπd^2)其中,λ表示分子平均自由程,V表示气体的体积,n表示气体的摩尔数,d表示气体分子的直径。
4. 均方根速度公式气体分子的运动速度可以用均方根速度来描述,均方根速度是指所有气体分子速度平方的平均值的平方根。
均方根速度的公式为:v(rms) = √(3kT/m)其中,v(rms)表示气体分子的均方根速度。
第2章 气体动理论(Kinetic theory of gases)
(3)分子之间的碰撞以及分子与器壁的碰撞都是弹性的,即在碰 撞前后气体分子的动量守恒,动能守恒。
(4)气体分子的运动服从经典力学规律。 注意:这个假设的实质是,在一般条件下,对所有气体分子,经典 描述有效,不必采用量子论。 总之,气体被看作是自由地 无规则运动着的弹性球分子的集合。 5 鞍山科技大学 姜丽娜
鞍山科技大学 姜丽娜 14
该分子碰撞器壁一次所受的冲量:
由牛顿第三定律知,器壁受分子碰撞一次所受的冲量: ni vix dt dA 在 dt 时间内与dA碰撞的分子数(即斜柱体内的分子): 这些分子在 dt 时间内对 dA 的总冲量为: 所有分子在 dt 时间内对 dA 的总冲量为: dA
x
气体对器壁的宏观压强为:
鞍山科技大学 姜丽娜
2
1. 气体所占的体积V: 气体分子活动所能达到的空间范围。 注意: (1)若忽略分子本身的大小时,储存气体的容器的容积即为 气体的体积。
(2)它与气体分子本身体积的总和完全不同;
(3)气体体积的单位是m3; 2. 气体的压强P: 压强是气体作用在容器壁单位面积上的指向器壁的平均正 压力,是气体分子对器壁碰撞的宏观表现。 注意:气体压强单位的关系是1Pa=1N/m2;1atm=101325Pa。 3. 气体的温度T: 从宏观上来讲,温度表示物体的冷热程度;从微观上讲, 温度反映物质内部分子运动的剧烈程度。
鞍山科技大学 姜丽娜
21
(3)按照上式,热力学温度零度将是理想气体分子热运动停止 时的温度,然而实际上分子运动是永远不会停息的。热力学温 度零度也是永远不可能达到的,而且近代理论指出,即使在热力 学温度零度时,组成固体点阵的粒子也还保持着某种振动的能 量,叫做零点能量。对于气体,在温度未达到热力学温度零度以 前,已变成液体或固体,理想气体温度公式早已不适用了。 2.气体分子的方均根速率:
06气体动理论习题解答
第六章 气体动理论一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
第6章 气体动理论习题解答
第6章习题解答6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ]A. /pV m .B. /pV kT . C . /pV RT . D. /pV mT .6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等.6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ]A .压强相等,温度相等.B .温度相等,压强不相等.C .压强相等,温度不相等.D .压强不相等,温度不相等.6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C .ε和k ε都相等.D.ε和k ε都不相等.6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ]A. 2x =v B. 2x =v C . 23x kT m =v . D. 2x kT m =v .6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则2121()d 2m Nf υυ⎰v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.C . 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之和. D. 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之差.6-7在A 、B 、C 三个容器中装有同种理想气体,其分子数密度n 相同,方均根速率之比为1:2:4=,则其压强之比::A B C p p p 为[ C ]A. 1:2:4B. 4:2:1 C . 1:4:16 D. 1:4:86-8 题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H pv 分别表示氧气和氢气的最概然速率,则[ B ]A .图中a表示氧气分子的速率分布曲线,()()22O H/4p p =v v .B .图中a表示氧气分子的速率分布曲线,()()22O H1/4p p =v v . 题6-8图 C .图中b表示氧气分子的速率分布曲线,()()22O H1/4pp =v v . D .图中b表示氧气分子的速率分布曲线,()()22O H/4pp =v v .6-9 题6-9图是在一定的温度下,理想气体分子速率分布函数曲线。
6.气体动理论
6.气体动理论复习题一、选择题1. 容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论) ( )m (A)x V =m kT π831; (B)x V =mkT π38; (C)x V =mkT 23; (D)x V =0。
2.设想在理想气体内部取一小截面,则两边气体通过互施压力。
从分子运动论的观点来看,这个压力施于的压强为( )dA dA dA (A)k n p ε32= (B)k n p ε34= (C)kT p 23= (D) kT p 3=3.阿佛伽德罗常数为,某理想气体的摩尔质量为A N μ,则该气体在压强为,气体质量为p M 、体积为V 时的平均平动动能为 (A)M pV 23μ (B)M N pV A 23μ (C)M N pV A 25μ (D)MN pV A 27μ 4.根据气体动理论,单原子理想气体的温度正比于 ( )(A)气体的体积;(B)气体分子的平均转动动能;(C)气体分子的平均动量;(D)气体分子的平均平动动能。
5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 ( )(A)氧气的温度比氢气的高;(B)氢气的温度比氧气的高;(C)两种气体的温度相同;(D)两种气体的压强相同。
6.如果在一固定容器内,理想气体分子速率都提高为原来的二倍,那么 ( )(A)温度和压强都升高为原来的二倍;(B)温度升高为原来的二倍,压强升高为原来的四倍;(C)温度升高为原来的四倍,压强升高为原来的二倍;7. 在℃时,单原子理想气体的内能为 ( )20(A)部分势能和部分动能; (B)全部势能; (C)全部转动动能;(D)全部平动动能; (E)全部振动动能。
8. 1摩尔双原子刚性分子理想气体,在1atm 下从0℃上升到100℃时,内能的增量为 ( )(A )23J ; (B )46J ; (C )2077.5J ; (D )1246.5J ; (E )12500J 。
第6章 气体动理论
第六章 气体动理论问题6-1 你能从理想气体物态方程出发,得出玻意耳定律、查理定律和盖吕萨克定律吗?解 对于一定质量的理想气体气体物态方程m pv RT M = 得 pV C T=(C 为常数)当气体温度保持不变,有pv =恒量,即温度不变,压强与体积成反比,即玻意耳定律。
当气体体积保持不变,有p T =恒量,即查理定律。
当气体压强保持不变时,有V T =恒量,即盖吕萨克定律。
6-2 道尔顿分压定律指出:在一个容器中,有几种不发生化学反应的气体,当它们处于平衡态时,气体的总压强等于各种气体的压强之和,你能用气体动理论对该定律予以说明吗?证明 设容器中所装的几种不同的气体分子数密度分别为11N n V =,22Nn V=,……,则单位体积中总分子数为 1212N N n n n V++⋅⋅⋅==++⋅⋅⋅处于平衡态时,气体温度一定,分子的平均平动动能也一定,并且有2k 1322mv kT ε== 由气体压强的统计公式可得气体总压强为()k 1212223332p n n n kT p p =ε=++⋅⋅⋅=++其中1p 、2p 、…是各个气体的压强。
6-3 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关,你能用气体动理论予以说明吗?解 由气体动理论可知 p nkT =,即分子数密度只与气体的温度和压强有关,与气体种类并无关系。
6-4 为什么说温度具有统计意义?讲一个分子具有多少温度,行吗?解 气体的温度是气体分子平均平动动能的量度,气体温度越高,分子平均平动动能越大;分子的平均平动动能越大,分子热运动的程度越激烈。
因此,可以说温度是表征大量分子热运动激烈程度的宏观物理量,是对大量分子热运动的统计平均结果。
对于个别分子而言,它的动能可能大于气体分子平均平动动能,也可能小于平均平动动能,对于个别分子,说它的温度是多少是没有意义的。
6-5 速率分布函数()f v 的物理意义是什么?试说明下列各式的物理意义:(1)()f v dv ;(2)()Nf v dv ;(3)()21v v f v dv ⎰;(4)()21v v N f v dv ⎰ 解 速率分布函数()f v 表示气体分子速率处于v 附近单位速率区间的概率。
大学物理气体动理论
v v+dv
v
在平衡态下, 设分子总数为N, 速率在v~v+dv区间的 分子数为dN个, 那么 表dN示:
N
——速率在v~v+dv区间的分子数占总分子数的比率。
或一个分子速率处于v~v+dv区间的概率。
dN ~ dv N ~ v f (v)
即 dN f (v)dv N
由 dN f (v)dv N
总之, 理想气体可看作是一群彼此间无相互作用 的无规运动的弹性质点的集合。
二、平衡态的统计假设——等几率原理
1、理想气体处于平衡态时, 分子出现在容器内 各处的几率相等。即分子数密度处处相等, 具 有分布的空间均匀性。
2、分子朝各个方向运动的几率相等, 具有运动 的各向同性。
v 0, vx vy vz 0
(4)粒子的平均速率、方均根速率和最概然速率。
解 (1) 按图所示的速率分布曲线形状, 应有
kv
f
(v)
0
(v v0 ) (v v0 )
由速率分布函数的归一化条件, 可得
f (v)dv
0
v0 0
kvdv
1 2
kv 02
1
故速率分布函数为
2v
f
(v)
v02 0
(v v0 ) (v v0 )
f(v)
得
f (v) dN
Ndv
v v+dv
v
f (v) 称为分子的速率分布函数。
其物理意义是:在速率v附近, 单位速率区间内的分子 数占总分子数的比率。
或一个分子速率出现在v附近单位速率区间内的概率。
所以 f (v) 也称为分子速率分布的概率密度。
3、关于速率分布函数的几点重要讨论:
气体动理论
率最大.
2020/9Leabharlann 2218气体动理论
五、平均自由程
1
kT
2 π d 2n
2 πd2p
平均碰撞频率
Z 2d 2n
六、气体内的迁移现象
粘滞现象 扩散现象 热传导现象
动量迁移 质量迁移 能量迁移
Z
2020/9/22
19
气体动理论
例1 (理想气体物态方程)容器中有密封的某种理
想气体,分别经历两次加热过程,获得两条过程 曲线,如图(a)(b)所示。试分析(1)图a中气体 的压强如何变化;(2)图b中气体的V体积如何变 化。
v
0
v
f
v
dv
v 8kT 8RT m M
平方平均速率
v2 v2 f v dv 0
方均根速率
vrms
v2
3kT m
3RT M
3.麦氏分布函数
f
v
4
m 2kT
3/2
mv2
e 2kT
v2
f (v)
fmax
o vp
v
4.三种统计速率
最概然速率 v p
2kT m
2RT M
2020/9/22
2
分子的平均平动动能
—— 3 kT
2
理想气体的内能——
i
RT
2
分子 单原子 双原子 多原子
自由度i
3
56
分子的平均 3
3
3
平动动能
kT kT
2
2
kT 2
分子的平均 转动动能
0
2 kT 3 kT
2
2
分子的 平均动能
3 kT 2
气体动理论
3
统计规律有以下几个特点: 2、统计规律有以下几个特点:
(1)只对大量偶然的事件才有意义。 只对大量偶然的事件才有意义。 (2)它是不同于个体规律的整体规律。 它是不同于个体规律的整体规律。 (3)总是伴随着涨落。 总是伴随着涨落。 但就前面其中的每一次实验来看, 但就前面其中的每一次实验来看,所得的分布曲线只能 近似重合,不能完全一致,由此说明,在统计规律中一 近似重合,不能完全一致,由此说明, 定出现起伏或涨落现象。 定出现起伏或涨落现象。
p,V ,T
2、气体压强 :作用于容器壁上单位 面积的正压力 压强-----帕斯卡 压强---帕斯卡 1 a =1 ⋅ m 2 P N −
1 atm= 760 m g = 1.013×105 P m H a
气体冷热程度的量度. 3、温度 : 气体冷热程度的量度. 温度---开尔文 温度---开尔文 --T ) = 273.15+ t(0C (K )
(N、V、M)
l3
l2 B
A
O
l1
X
设一个分子的质量为 m
Z
仅讨论大量分子与一面A的碰撞产生的压强 压 强
23
个分子与A面发生碰撞时 面发生碰撞时, 第i个分子与 面发生碰撞时,由于碰撞为完全弹性的 并且分子的质量远远小于器壁的质量。 ,并且分子的质量远远小于器壁的质量。 Y 面所受到的冲量为: 所以A面所受到的冲量为:
T1 = T2
p1 = p 2
M PV= R T M mol
(D) 那种的密度较大是无法判断的 那种的密度较大是无法判断的.
[A ]
M ρ= V
1
M mol 1 ρ1 = ρ 2 M mol 2
H2 O2
2
气体动理论ppt课件
一 自由度
kt
1 mv2 2
3 kT 2
v
2 x
v
2 y
v2z
1 v2 3
z
oy
x
1 2
m
v
2 x
1 2
mv2y
1 2
mv2z
1 kT 2
28
第六章 气体动理论
单原子分子平均能量
3 1 kT
2
刚性双原子分子
分子平均平动动能
kt
1 2
mvC2 x
1 2
mvC2 y
1 2
mvC2 z
29
第六章 气体动理论
摩尔热容比
E m i RT M2
dE m i RdT M2
CV ,m
i 2
R
C p,m
i
2 2
R
Cp,m i 2
CV ,m i
36
第六章 气体动理论
7-6 麦克斯韦气体分子速率分布律
一 测定气体分子速率分布的实验
实验装置
接抽气泵
2
l v vl
Hg
金属蒸汽 狭缝
l
显 示
屏
37
第六章 气体动理论 分子速率分布图
12
第六章 气体动理论
二 分子力
现主为要当斥表力 现r; 为当 引r力0r时.,r分0时子,力分主子要力表
F
o
r 109 m, F 0
r0 ~ 1010 m
r0
r
分子力
三 分子热运动的无序性及统计规律
热运动:大量实验事实表明分子都在作永不停止的
无规运动 . 例 : 常温和常压下的氧分子
v 450m/s ~ 107 m; z ~ 1010次 / s
气体动理论
第四章气体动理论一、基本要求1. 理解理想气体微观模型。
理解理想气体压强、温度的概念及其微观本质。
掌握理想气体压强、温度的公式并会做相应计算。
通过推导气体压强公式,了解气体动理论的基本研究思想和方法。
2. 理解能量均分定理,掌握理想气体内能的概念、公式及有关计算。
3. 了解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,了解气体分子热运动三种统计速率。
4. 了解玻耳兹曼能量分布律。
二、内容概要(一)统计概念1.理想气体压强(1)压强概念 垂直作用于器壁单位面积上的压力。
(2)压强公式 p=n 32ε=231_v nm 为分子平均平动动能。
(4-1) (3)适用条件 理想气体(大量分子组成),处于平衡态。
(4)微观本质①由大量气体分子对器壁的碰撞所产生,表示单位时间内气体分子作用于器壁单位面积上的平均冲量。
②一定温度的平衡态下,单位体积内的气体分子数(分子数密度n)越多,或分子平均平动动能(-ε)越大,压强就越高。
-n 、-ε为气体分子微观量的统计平均值。
2. 理想气体温度(1) 温度概念 表征系统处于热平衡态的物理量。
(2) 温度公式 -ε=kT 23 (3) 适用条件 理想气体(由大量分子组成)处于平衡态。
(4) 微观本质 反映了大量分子热运动的剧烈程度,是分子平均平动动能的量度。
(二)统计规律1. 能量均分定理(1) 内容要点物质分子每个自由度的平均动能kT 21 每个分子的平均动能 -k ε=kT i 2vmol 理想气体内能 E=v RT i 2 气体自由度 i=()()()⎪⎩⎪⎨⎧刚性多原子分子刚性双原子分子单原子分子653(2) 适用条件. 式 (4-2) (4-3)----任何物质分子,温度为 T 的平衡态。
式 (4-4)----理想气体,温度为 T (室温附近)的平衡态。
2. 麦克斯韦速率分布律(1) 气体速率分布函数f(v)=Ndv dN (4-6) 表示速率v 在附近单位速率区间内的分子分布概率(即分子数占总分子数的比率)。
第6章 气体动理论
6-1 物质的微观模型 统计规律性
物质结构的微观模型 :
1、宏观物体是由大量微观粒子—分子(或原子 )组成的,分子之间有空隙;
2、分子在不停地作无规则的运动,其剧烈程度与 温度有关;
3、分子之间存在相互作用力。
这些观点就是气体动理论的基本出发点。统计物 理学的任务就是从上述物质分子运动论的基本观点 出发,研究和说明宏观物体的各种现象和性质。
1.理想气体分子的微观模型
(1)由于气体分子间距较大,分子的大小可以忽 略不计,即可把分子视为质点。
(2)气体分子间的相互作用力很弱,可忽略不计 。即认为除碰撞的瞬间外,分子之间以及分子与容 器壁之间都没有相互作用力。
(3)分子之间以及分子与器壁之间的碰撞可视为 完全弹性碰撞。
2.统计假设
(1)容器中各处的分子数密度相同。
123
2.55 1021 J
v2
3RT
3 8.31123 28 103
331m
s 1
6-3 气体分子速率分布定律 玻耳兹曼分布
一个分子在某一时刻的速度完全是随机的,但 是这并不是说气体分子的运动速度就无规律可循。 实验表明,在一定条件下,大量分子的整体的速度 分布服从统计规律。
一、速率分布函数与平均速率
由上式得
v2 3kT 3RT
m
M
例1 一容器内贮有气体, 温度是27C,(1)压强为1.013 105Pa时,在1m3中有多少个分子;(2)在高真空时压强 为1.33 10 -5Pa,在1m3中有多少个分子?
解:按公式 p=nkT,可知
(1)
n
p kT
1.013 105 1.38 1023 300
f
气体动理论
思考题
• 既然分子运动得如此之快,为什么当有人 打开一瓶香水后需要1min左右才能在房子 的另一边闻到香味?
• 例:一定质量的气体,当温度不变时,压 强随体积的减小而增大;当体积不变时, 压强随温度的升高而增大,从微观的角度 看,这两种使压强增大的过程有何不同?
p nkT
V减小,n增大,单位时间内分子碰撞 器壁的次数增加,则P增大
二 理想气体压强公式
气体对器壁的压强是大量分子对容器不断碰撞 的统计平均效果。 理想气体的压强公式
F p S
每个分子对器壁的单次作用
f t
t 0
所有分子对器壁的作用
F
f t
t
一、理想气体的分子模型
1、分子可以看作质点
本身的大小比起它们之间的平均距离可忽略不计
2、除碰撞外,分子之间的作用可忽略不计 3、分子间的碰撞是完全弹性的
气体分子的方均根速率
k
1 3 2 mv kT 2 2
v
2
3kT m
3 RT M mol
说明:
1、 v 2是大量分子统计平均值(某一分子的v是 不断变化的,方向也杂乱无章的) 2、氢气分子在室温下的方均根速率为 1920m/s——比子弹还快! 3、方均根速率只是一种平均速率,有些分子比 它快,有些又比它慢
0.010 1.33 10 p a 1.33p a
2
V 1 10 m
求:N=?EK=?
6
3
T 27 C 300K
0
P 解: P nkT n kT
3.21 10 个
16
P 1.33 6 N nV V 10 23 kT 1.38 10 300