2018-2019年东莞市数学押题试卷训练试题(2套)附答案

合集下载

2018-2019学年广东省东莞市八年级(下)期末数学试卷

2018-2019学年广东省东莞市八年级(下)期末数学试卷

2018-2019学年广东省东莞市八年级(下)期末数学试卷一、选择题:每小题2分,共20分1.(2分)若式子有意义,则x的取值范围是()A.x≥B.x>C.x≤D.x<2.(2分)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)衡量一组数据波动大小的统计量是()A.平均数B.众数C.中位数D.方差4.(2分)的结果是()A.B.C.D.25.(2分)某篮球队5名主力队员的身高(单位:cm)分别是174,179,180,174,178,则这5名队员身高的中位数是()A.174 B.177 C.178 D.1806.(2分)在Rt△ABC中,∠B=90°,∠C=30°,AC=2,则AB的长为()A.1 B.2 C.D.7.(2分)下列各组线段中,能够组成直角三角形的一组是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.4cm,5cm,6cm D.1cm,cm,cm8.(2分)如图,在△ABC中,点E、F分别是AB、AC的中点,则下列结论不正确的是()A.EF∥BC B.BC=2EF C.∠AEF=∠B D.AE=AF9.(2分)在▱ABCD中,对角线AC、BD相交于点O,若AC=8,BD=6,AB=5,则△AOB 的周长为()A.11 B.12 C.13 D.1410.(2分)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B.C.D.二、填空题:每小题3分,共15分11.(3分)已知数据:5,7,9,10,7,9,7,这组数据的众数是.12.(3分)一次函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是.13.(3分)已知a=,b=,则ab= .14.(3分)如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A的面积为.15.(3分)如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD 的度数是.三、解答题(一):每小题5分,共25分16.(5分)计算:(+3)÷2﹣3.17.(5分)为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.(1)求出以上表格中a= ,b= ;(2)计算该2路公共汽车平均每班的载客量是多少?18.(5分)如图,在四边形ABCD中,∠BAD=∠BCD,∠1=∠2,求证:四边形ABCD是平行四边形.19.(5分)将直线l1:y=2x﹣3向下平移2个单位后得到直线l2.(1)写出直线l2的函数关系式;(2)判断点P(﹣1,3)是否在直线l2上?20.(5分)如图,在△ABC中,D为BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.四、解答题(二):每小题8分,共40分21.(8分)观察下列各式,发现规律:=2;=3;=4;…(1)填空:= ,= ;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.22.(8分)某商场连续5个月统计了A、B两种品牌冰箱的销售情况(单位:台).A品牌:15,16,17,13,14B品牌:10,14,15,20,16(1)求出A品牌冰箱数据的方差;(2)已知B品牌冰箱月销售量的平均数为=15,方差为S B2=10.4,你认为这两种品牌冰箱哪一种的月销量比较稳定?23.(8分)如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.24.(8分)如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4).(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P在x轴上,且点P到直线y=kx+b的距离为,直接写出符合条件的点P的坐标.25.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)求证:BE=CF;(2)当点E,F在BC,CD上滑动时,四边形AECF的面积是否发生变化?如果不变,求出这个定值,如果变化,说明理由.2015-2016学年广东省东莞市八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共20分1.(2分)若式子有意义,则x的取值范围是()A.x≥B.x>C.x≤D.x<【分析】直接利用二次根式有意义的条件,(a≥0),进而得出答案.【解答】解:∵式子有意义,∴3x﹣1≥0,解得:x≥.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(2分)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.3.(2分)衡量一组数据波动大小的统计量是()A.平均数B.众数C.中位数D.方差【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.(2分)的结果是()A.B.C.D.2【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2=.故选C.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.(2分)某篮球队5名主力队员的身高(单位:cm)分别是174,179,180,174,178,则这5名队员身高的中位数是()A.174 B.177 C.178 D.180【分析】中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).【解答】解:数据从小到大的顺序排列为174,174,178,179,180,∴这组数据的中位数是178.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(2分)在Rt△ABC中,∠B=90°,∠C=30°,AC=2,则AB的长为()A.1 B.2 C.D.【分析】根据含30°角的直角三角形性质得出AB=AC,代入求出即可.【解答】解:∵在Rt△ABC中,∠B=90°,∠C=30°,∴AB=AC=×2=1,故选:A.【点评】本题考查了含30°角的直角三角形性质的应用,能根据含30°角的直角三角形性质得出AB=AC是解此题的关键.7.(2分)下列各组线段中,能够组成直角三角形的一组是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.4cm,5cm,6cm D.1cm,cm,cm【分析】先用三角形的三边的关系两边之和大于第三边,和两边之差小于第三边判断,再用勾股定理逆定理进行判断即可.【解答】解:A:12+22≠32,所以1cm,2cm,3cm不能构成三角形,即不能组成直角三角形.B:∵2+3>4,∴2cm,3cm,4cm能构成三角形,∵22+32≠42,所以不能组成直角三角形.C:∵4+5>6,∴4cm,5cm,6能构成三角形,∵42+52≠62,所以不能组成直角三角形,D:∵1+>,∴1cm,cm,cm能构成三角形,∵12+()2=()2,所以能直故选D.【点评】此题是勾股定理逆定理题,主要考查了三角形的三边关系,勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.8.(2分)如图,在△ABC中,点E、F分别是AB、AC的中点,则下列结论不正确的是()A.EF∥BC B.BC=2EF C.∠AEF=∠B D.AE=AF【分析】根据三角形中位线定理即可判断.【解答】解:∵AE=EB,AF=FC,∴EF∥BC,EF=BC,即BC=2EF,∴∠AEF=∠B,故A、B、C正确,D错误.故选D.【点评】本题考查三角形中位线定理:三角形的中位线平行于第三边并且等于第三边的一半,解题的关键是记住三角形中位线定理,属于中考常考题型.9.(2分)在▱ABCD中,对角线AC、BD相交于点O,若AC=8,BD=6,AB=5,则△AOB的周长为()A.11 B.12 C.13 D.14【分析】根据平行四边形对角线互相平分,求出OA、OB即可解决问题.【解答】解:如图,∵四边形ABCD是平行四边形,∴AO=OC=AC=4,BO=OD=BD=3,∵AB=5,∴△AOB的周长为OA+OB+AB=4+3+5=12.故选B.【点评】本题考查平行四边形的性质,三角形周长等知识,解题的关键是记住平行四边形的性质:对角线互相平分,属于中考基础题,常考题型.10.(2分)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B.C.D.【分析】根据蚂蚁在上运动时,随着时间的变化,距离不发生变化可得正确选项.【解答】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,走另一条半径时,S随t的增大而减小.故选:C.【点评】本题主要考查动点问题的函数图象;根据随着时间的变化,距离不发生变化抓住问题的特点得到图象的特点是解决本题的关键.二、填空题:每小题3分,共15分11.(3分)已知数据:5,7,9,10,7,9,7,这组数据的众数是7 .【分析】根据众数的定义:出现次数最多的数叫做众数进行解答即可.【解答】解:7出现的次数最多,所以众数是7.故答案为7.【点评】本题考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.12.(3分)一次函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是m>﹣2 .【分析】先根据函数的增减性列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m+2)x中,y随x的增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.【点评】本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.13.(3分)已知a=,b=,则ab= ﹣2 .【分析】根据a=,b=,利用平方差公式可以求得ab的值.【解答】解:∵a=,b=,∴ab==3﹣5=﹣2,故答案为:﹣2.【点评】本题考查二次根式的化简求值,解题的关键是找出所求式子与已知式子之间的关系.14.(3分)如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A的面积为36 .【分析】要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:根据正方形的面积与边长的平方的关系得,图中面积为64和100的正方形的边长是8和10;解图中直角三角形得A正方形的边长:=6,所以A正方形的面积为36.故答案是:36.【点评】此题考查了正方形的面积公式与勾股定理,比较简单.15.(3分)如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD 的度数是22.5°.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数,进而得出∠PCD的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°﹣45°)=67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.∴∠PCD=45°﹣22.5°=22.5°,故答案为:22.5°【点评】此题主要考查了正方形的性质,关键是根据正方形的对角线平分对角的性质,平分每一组对角解答.三、解答题(一):每小题5分,共25分16.(5分)计算:(+3)÷2﹣3.【分析】首先进行二次根式的化简,然后进行同类二次根式的合并.【解答】解:原式=(4+3)÷2﹣3×=2+﹣2=.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.17.(5分)为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.(1)求出以上表格中a= 31 ,b= 51 ;(2)计算该2路公共汽车平均每班的载客量是多少?【分析】(1)利用组中值的定义写出第2、3组的组中值即可得a和b的值;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解.【解答】解:(1)a=31,b=51,故答案为31;51;(2)=43(次)答:该2路公共汽车平均每班的载客量是43次.【点评】本题考查了加权平均数:若n个数x1,x2,x3,…,x k的权分别是w1,w2,w3,…,w k,则(x1w1+x2w2+…+x k w k)叫做这n个数的加权平均数.18.(5分)如图,在四边形ABCD中,∠BAD=∠BCD,∠1=∠2,求证:四边形ABCD是平行四边形.【分析】由∠1=∠2得出AB∥CD,再证出∠CAD=∠BCA,得出AD∥BC,从而得出四边形ABCD 是平行四边形.【解答】证明:∵∠1=∠2,∴AB∥CD,∵∠BAD=∠BCD∴∠BAD﹣∠1=∠BCD﹣∠2,∴∠CAD=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定;熟练掌握平行四边形的判定方法,证出AD∥BC是解决问题的关键.19.(5分)将直线l1:y=2x﹣3向下平移2个单位后得到直线l2.(1)写出直线l2的函数关系式;(2)判断点P(﹣1,3)是否在直线l2上?【分析】(1)根据一次函数图象与几何变换得到直线y=2x﹣3向下平移2个单位得到的函数解析式为y=2x﹣3﹣2.(2)把x=﹣1代入解析式解答即可.【解答】解:(1)直线y=2x﹣3向下平移2个单位得到的函数解析式为y=2x﹣3﹣2=2x﹣5;(2)当x=﹣1时,y=2×(﹣1)﹣5=﹣7≠3,∴P(﹣1,3)不在直线l2上.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.20.(5分)如图,在△ABC中,D为BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:在Rt△ACB中,∠C=90°∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.四、解答题(二):每小题8分,共40分21.(8分)观察下列各式,发现规律:=2;=3;=4;…(1)填空:= 5,= 6;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.【分析】(1)根据已知等式得出规律,写出所求结果即可;(2)利用二次根式性质计算得到结果即可;(3)归纳总结得到一般性规律,写出即可.【解答】解:(1)根据题意得:=5;=6;故答案为:5;6;(2)====2015;(3)归纳总结得:=(n+1)(自然数n≥1).【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(8分)某商场连续5个月统计了A、B两种品牌冰箱的销售情况(单位:台).A品牌:15,16,17,13,14B品牌:10,14,15,20,16(1)求出A品牌冰箱数据的方差;(2)已知B品牌冰箱月销售量的平均数为=15,方差为S B2=10.4,你认为这两种品牌冰箱哪一种的月销量比较稳定?【分析】(1)利用方差公式计算出A品牌的方差即可;(2)根据方差的意义,判断这两种品牌冰箱月销售量的稳定性.【解答】解:(1)=(15+16+17+13+14)÷5=15(台)∴=[(15﹣15)2+(16﹣15)2+(17﹣15)2+(13﹣15)2+(14﹣15)2]=2;(2)∵B品牌冰箱月销售量的方差为S B2=10.4,A品牌冰箱月销售量的方差为2,∴<S B2,∴A品牌冰箱月销售量比较稳定,B品牌冰箱月销售量不稳定.【点评】本题主要考查了方差的计算,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示.方差越大,则数据不稳定;反之,数据较稳定.23.(8分)如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.【点评】本题考查了平行四边形的性质、矩形的判定与性质,三角形全等的判定和性质,勾股定理的应用等知识;熟练掌握平行四边形的性质,证明四边形是矩形是解决问题的关键.24.(8分)如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4).(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P在x轴上,且点P到直线y=kx+b的距离为,直接写出符合条件的点P的坐标.【分析】(1)把点M、N的坐标分别代入一次函数解析式,列出关于系数k、b的方程组,通过解方程组求得它们的值;(2)直线y=kx+b在x轴及其上方的部分对应的x的取值范围即为所求;(3)作△OMN的高OA.在Rt△OMN中利用勾股定理求出MN==5.根据三角形的面积公式求出OA===,则点P的坐标是(0,0);在x轴上作O关于M的对称点为(6,0),易得(6,0)到直线y=kx+b的距离也为.【解答】解:(1)∵直线y=kx+b与坐标轴相交于点M(3,0),N(0,4),所以,解得:,∴直线MN的解析式为:y=﹣x+4;(2)根据图形可知,当x≤3时,y=kx+b在x轴及其上方,即kx+b≥0,则不等式kx+b≥0的解集为x≤3;(3)如图,作△OMN的高OA.在Rt△OMN中,∵OM=3,ON=4,∠MON=90°,∴MN==5.∵S△OMN=MN•OA=OM•ON,∴OA===,∴点P的坐标是(0,0);在x轴上作O关于M的对称点为(6,0),易得(6,0)到直线y=kx+b的距离也为,所以点P的坐标是(0,0)或(6,0).【点评】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,三角形的面积,点到直线的距离,勾股定理.难度适中.25.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)求证:BE=CF;(2)当点E,F在BC,CD上滑动时,四边形AECF的面积是否发生变化?如果不变,求出这个定值,如果变化,说明理由.【分析】(1)利用菱形的性质和等边三角形的性质,根据SAS证明△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S得出四边形AECF的面积不会发生变化;再作AH⊥BC于点H.求出AH的值,根据S △ABC=S△ABC=BC•AH,代入计算即可求解.四边形AECF【解答】(1)证明:∵在菱形ABCD中,∠BAD=120°,∴∠B=60°,∠BAC=∠BAD=60°,∴△ABC为等边三角形,∴AB=BC=AC.∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF,∴△BAE≌△CAF,∴BE=CF;(2)解:四边形AECF的面积不会发生变化.理由如下:∵△BAE≌△CAF,∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,∵△ABC的面积是定值,∴四边形AECF的面积不会发生变化.如图,作AH⊥BC于点H.∵AB=AC=BC=4,∴BH=BC=2,AH=AB•sin∠B=4×=2,∴S四边形AECF=S△ABC=BC•AH=×4×2=4.【点评】本题考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,求证△ABE ≌△ACF是解题的关键,难度适中.。

2018至2019第二学期二年级数学试卷(含答案)

2018至2019第二学期二年级数学试卷(含答案)

2018-2019学年度二年级数学第二学期期末质量监测一、填一填(每空一分,共28分)1.5218里面有()个千、()个百、()个十和()个一。

2.一个数由7个千,3个百,6个一组成,这个数写作(),读作()。

3.用4,6,0,2组成的最大的四位数是(),组成的最小四位数是()。

4.小狗比小猫重,但是比小猪轻,小猫比小兔重,它们中()最重,()最轻。

5.30个)个6.爸爸在笔直的马路上开车,车体向前行是()现象,车轮的运动是()现象。

5=8……最大是(),这时是()。

8.36÷(3×3),应先算()法,再算()法。

9.一个西瓜重5(),一个苹果重25()。

10.从45里连续减去5,减()次还剩5。

11.按规律填一填。

(1)697,698,699,(),();(2)2200,2100,2000,(),()。

12.括号里最大能填几?()×7<36 9×()<4073>8×()7()5<784二、我是小法官。

(对的打“√”,错的打“×”)5分1.3050读作三千零五。

()2.1千克铁比1千克棉花重。

()3.最小的三位数与最小的四位数相差900。

()4.6×6÷9与87+24-9的运算顺序是一样的。

()5.把15块饼干分成3份,每份一定是5。

()三、我会选。

(将正确答案的序号填在括号里)(10分)1.用一堆小方块拼最多能拼成6个,还剩3个小方块,这堆小方块共有()个。

A.27B.45C.512.一个足球48元,一个篮球45元,李老师拿100元买了一个足球和一个篮球,应找回多少元?列式正确的是()。

A.100-(48-45)B.100-(48+45)C.100-48+453.678最接近()。

A.800B.600C.7004.......,那么第35个图形是()。

A. B. C.5.图形可以由下面的图形()旋转得到。

东莞市2018-2019学年八年级下期末考试数学试题及答案

东莞市2018-2019学年八年级下期末考试数学试题及答案

东莞市2018-2019学年度第二学期教学质量自查八年级数学参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 DA B CD BD ADA二、填空题题号 11 121314 15 答案 ≠2335°,145°,35°,145°540三、解答题16. 解:原式=y x xx y xy x -⨯+-222-----------------------------------------2分=yx xx y x -⨯-2)(----------------------------------------------------------3分 =y x ---------------------------------------------------------------------5分 17. 解:依题意有:⎩⎨⎧⨯=+⨯+=++102.89287102y x y x --------------------------------2分解得:⎩⎨⎧==53y x -------------------------------------------------------------4分答:x 的值为3,y 的值为5. --- ---------------------------------------------5分 18. 解:(1)xy 6-=-------------------------------------------------------2分 (2)当1=x 时,6-=y ----------------------------------------------------3分 当3=x 时,2-=y ---------------------------------------------------------4分 ∴当31<<x 时,26-<<-x -----------------------------------------------5分 19. 解:在梯形ABCD 中,AD//BC∴∠AEB =∠CBE --------------------------------------------------------------------------------------------1分 ∵BE 平分∠ABC∴∠ABE =∠CBE --------------------------------------------------------------------------------------------2分 ∴∠ABE =∠AEB --------------------------------------------------------------------------------------------3分 ∴AB=AE -------------------------------------------------------------------------------------------------------4分 ∵E 为AD 中点,且AD=10∴AB=AE=5----------------------------------------------------------------------------------------------------5分20. 解:∵CD ⊥AB∴∠ADC=∠BDC=90° ------------------------------------------1分 在Rt △BCD 中,DB=59, BC=3 222BC CD DB =+∴512=CD -----------------------------------------------------------------3分在Rt △ACD 中,512=CD , AC=4222AC CD AD =+---------------------------------------------------------4分∴516=AD ----------------------------------------------------------------5分四、解答题21.解:(1)500×(8%+18%+28%)=270(人)答:这一天的零花钱不超过7元的有270人 -------------------------------------4分 (2)5×8%+6×18%+7×28%+8×26%+9×14%+10×6%=7.38(元)答:这一天500名同学的零花钱的平均数是7.38元. ----------------------------8分22.解:设甲单独完成这项工程需要x 天,依题意有,---------------------1分121112=⎪⎭⎫ ⎝⎛+⨯x x ---------------------------------------------4分解得:18x = ---------------------------------------------------5分经检验,18x =是方程的解且符合题意-----------------------------------6分 这时,236x =-------------------------------------------------------7分 答:甲单独完成这项工程需要18天,乙单独完成这项工程需要36天. ----------8分 23.解:(1))∵DE ⊥AB ,AE=BE∴△ABD 是等腰三角形---------------------------------------------------1分 ∴AD=BD------------------------------------------------------------2分 ∵四边形ABCD 是菱形∴AD=AB-------------------------------------------------------------3分 ∴AD=AB=BD∴△ABD 是等边三角形∴∠ABD=60°-------------------------------------------------------4分 (2) )∵AD=AB=2,E 是中点∴AE=1 -------------------------------------------------------------5分 在Rt △AED 中,222AD DE AE =+∴3=DE -----------------------------------------------------7分∴32=⋅=DE AB S ABCD 菱形 ------------------------------------------8分24.解:(1)由题意得:n + 7<0------------------------------------------1分 解得:n <-7∴常数n 的取值范围是n <-7--------------------------------------------- 3分(2)在3432+-=x y 中,令y = 0,得x = 2∴OB = 2------------------------------------------------4分过A 作x 轴的垂线,垂足为C ,如图. ∵ S △AOB = 2 ∴21OB · AC = 2 即 21×2×AC = 2 解得AC = 2∴A 点的纵坐标为2--------------------------------------------------5分把y = 2代入3432+-=x y 中得x =-1∴点A 的坐标为(-1,2)-----------------------------------------------6分 将A (-1,2)代入xn y 7+=,得: 172-+=n ∴n =-9---------------------------------------------------------8分25.(1)△BEC 是直角三角形---------------------------------------------1分 理由是:∵四边形ABCD 是矩形∴∠ADC=∠BAD =90°,AD=BC=5,AB=CD=2---------------------------2分 在Rt △CDE 中,51222222=+=+=DE CD CE在Rt △ABE 中,AEAD-DE=1∴20222=+=AE AB BE ------------------------------------3分 又25522==BC∴222BC CE BE =+ ∴∠BEC=90°∴△BEC 是直角三角形--------------------------------------4分(2)四边形EFPH 为矩形----------------------------------------5分 证明:∵四边形ABCD 是矩形 ∴AD=BC ,AD ∥BC ∵DE=BP∴四边形DEBP 是平行四边形---------------------------------------6分 ∴BE ∥DP∵AD=BC ,AD ∥BC ,DE=BP∴AE=CP∴四边形AECP是平行四边形-------------------------------------7分∴AP∥CE∴四边形EFPH是平行四边形∵∠BEC=90°∴平行四边形EFPH是矩形------------------------------------8分。

2018-2019学年广东省东莞市东华小学六年级(上)期中数学试卷

2018-2019学年广东省东莞市东华小学六年级(上)期中数学试卷

2018-2019学年广东省东莞市东华小学六年级(上)期中数学试卷试题数:30,满分:1001.(填空题,2分)一袋饼干重 25 千克,4袋重___ 千克;这袋饼干的 14 重___ 千克. 2.(填空题,2分)72吨的 18 是___ 吨,72吨比___ 吨重 18 . 3.(问答题,2分)9÷20= ( )( ) =45:___ =___ ÷80=___ :160.4.(问答题,2分)一块 58公顷的菜地,在这块地里平均种上5种菜,每种菜的面积是这块地的 ( )( ) ,每种菜的面积是 ( )( ) 公顷.5.(填空题,2分)在横线上填上“>”“<”或“=”.712 ×9___ 712÷9 58 × 56 ___ 58 ÷ 5612÷ 34 ___ 34 ÷1245 ÷ 23 ___ 32 ÷ 546.(填空题,2分)一根15m 长的水管,第一次用去全长的 45 ,第二次用去 45m ,两次一共用去___ m ,这时还剩___ m .7.(填空题,2分)一种什锦糖是由水果糖与奶糖按5:3的质量比混合成的,现有水果糖40千克,需要___ 千克奶糖才能合成这种什锦糖;如果要合成这种什锦糖40千克,需要水果糖___ 千克.8.(填空题,2分)从东莞到武汉,汽车要15小时,火车要12小时.汽车和火车所用时间的最简比是___ ;速度的最简比是___ .9.(填空题,2分)如图,公园位于学校的东偏南35°方向800m 处,从公园回学校要往___ 偏___ °方向走___ m .10.(填空题,2分)一辆自行车,原价800元,现在降价18出售.说明这辆自行车的现价是原价的___ .如果提价18出售,那现价是原价的___ .11.(单选题,1分)一个直角三角形的两个锐角度数的比是1:4,这个三角形最小的角是()A.144°B.72°C.36°D.18°12.(单选题,1分)下面各组数,互为倒数的是()A. 67与47B.0.2与5C.36与536D. 89与1913.(单选题,1分)修一条公路,甲队单独修,8天修完;乙队单独修,12天修完,甲队的工作效率是乙队的()A. 25B. 35C. 32D. 2314.(单选题,1分)把45千克:0.45吨化成最简比是()A.1:10B.1:100C.100:1D.10:115.(单选题,1分)一件衣服,进货价350元,先按进货价提价110出售,由于换季,又降价110出售.最后的售价()A.比350元高B.比350元低C.是350元D.无法确定16.(单选题,1分)一杯300克的糖水中,含糖60克,糖与水的质量比是()A.4:1B.1:5C.1:417.(单选题,1分)甲、乙两队同时从两端合挖一条隧道,挖通时,甲队挖了 45 千米,乙队挖了隧道全长的 35.甲、乙两队挖的长度相比较,( ) A.甲队多 B.乙队多 C.一样多 D.无法比较18.(单选题,1分)一根 34m 长的电线,平均剪成3段,每段是全长的( ) A. 14 B. 34 C. 13 D. 13 m19.(单选题,1分)甲、乙两个正方形的边长比是4:5,甲、乙正方形的面积比是( ) A.4:5 B.5:4 C.25:16 D.16:2520.(问答题,4分)直接写得数. 12÷ 34 =15× 45 =67 × 49 = 58 ÷ 1516= 815 × 56= 59÷25= 1532 ÷ 116 = 3.6× 56 =21.(问答题,4分)求下面各比的比值. 36:54= 0.75:1.2=712 : 516= 0.8: 58=22.(问答题,4分)解下列方程.(1)13 x+ 25x= 2225(2)x÷ 56 = 815÷ 2923.(问答题,18分)计算下面各题,能用简便方法的要用简便方法算.(78 - 512)÷ 1116(25+ 18)÷(910- 34) 3.7× 67+3.3÷ 765- 56 ÷5- 562425÷[ 712÷(34- 59)] 3.6×(56+ 49)24.(问答题,8分)画一画,填一填.(1)公园位于体育馆的东偏南40°方向800m处,请在图上标出来.(2)根据上面的路线图完成下表.方向路程方向路程农场→少年宫公园→体育馆少年宫→体育馆体育馆→少年宫体育馆→公园少年宫→农场25.(问答题,5分)爸爸每月存入银行2000元,正好是爸爸工资的49.爸爸每个月工资是多少元?26.(问答题,5分)停车场里有大汽车75辆,小汽车比大汽车多15.小汽车有多少辆?27.(问答题,5分)五年级植树240棵,五年级植树的棵数比六年级少1,六年级植树多少6棵?.桃树和28.(问答题,5分)开心果园的桃树和梨树一共有720棵.桃树的棵数是梨树的78梨树各有多少棵?来种花.剩下的打29.(问答题,5分)李大爷家有一块600m2的地,李大爷打算用其中的15算按3:5的面积比来种玉米和黄豆.种玉米和黄豆的面积各是多少平方米?30.(问答题,5分)从甲城市到乙城市,客车要12小时,货车要15小时.现在客车和货车分别在甲乙两城市同时出发,多少小时后两车在途中相遇?2018-2019学年广东省东莞市东华小学六年级(上)期中数学试卷参考答案与试题解析试题数:30,满分:1001.(填空题,2分)一袋饼干重25千克,4袋重___ 千克;这袋饼干的14重___ 千克.【正确答案】:[1] 85 ; [2] 110【解析】:一袋面粉重25千克,4袋这样的面粉重4个25千克,用乘法解答;一袋面粉重25千克,求它的14用乘法进行解答即可.【解答】:解:25 ×4= 85(千克)2 5 × 14= 110(千克)答:一袋饼干重25千克,4袋重85千克;这袋饼干的14重110千克.故答案为:85,110.【点评】:此题主要考查了分数乘法的实际应用,要熟练掌握.2.(填空题,2分)72吨的18是___ 吨,72吨比___ 吨重18.【正确答案】:[1]9; [2]64【解析】:要求72吨的18是多少吨,用72× 18即可;把要求的数看成单位“1”,它的(1+ 18)对应的数量是72吨,由此用除法求出要求的数量.【解答】:解:72× 18=9(吨)72÷(1+ 18)=72÷ 98=64(吨)答:72吨的18是 9吨,72吨比 64吨重18.故答案为:9,64.【点评】:此题考查了分数问题的两种基本类型:① 已知一个数,求它的几分之几是多少,用乘法计算;② 已知一个数的几分之几是多少,求这个数,用除法计算.3.(问答题,2分)9÷20= ( )( )=45:___ =___ ÷80=___ :160.【正确答案】:100; 36; 72【解析】:根据商不变的性质9÷20的前、后项都乘4就是36:80;根据分数与除法的关系9÷20= 920;根据比与除法的关系9÷20=9:20,再根据比的基本性质比的前、后项都乘5就是45:100;都乘8就是72:160.【解答】:解:9÷20= 920=45:100=36÷80=72:160.故答案为:920,100,36,72.【点评】:此题主要是考查除法、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.4.(问答题,2分)一块58公顷的菜地,在这块地里平均种上5种菜,每种菜的面积是这块地的( )( ),每种菜的面积是( )( )公顷.【正确答案】:【解析】:根据分数的意义,58公顷的菜地,平均分成5小块,分别种上5种不同的菜,则每份占全部的1÷5= 15,求每份的公顷数,平均分的是具体的数量58公顷,求的是具体的数量,用除法计算.【解答】:解:1÷5= 155 8÷5 = 18(公顷)答:每种菜的面积是这块地的15,每种菜的面积是18公顷.故答案为: 15 ; 18 .【点评】:解决此题关键是弄清求得是具体的数量还是分率,求具体的数量平均分的是具体的数量;求分率平均分的是单位“1”.5.(填空题,2分)在横线上填上“>”“<”或“=”.712 ×9___ 712÷9 58 × 56 ___ 58 ÷ 5612÷ 34 ___ 34 ÷1245 ÷ 23 ___ 32 ÷ 54【正确答案】:[1]>; [2]<; [3]>; [4]=【解析】: ① 一个数(0除外)乘大于1的数,积大于这个数;一个数(0除外)除以大于1的数,商小于这个数;② 一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)除以小于1的数,商大于这个数;③ 一个数(0除外)除以小于1的数,商大于这个数;一个数(0除外)除以大于1的数,商小于这个数;④ 计算出得数再比较大小; 据此解答.【解答】:解: ① 712 ×9> 712 ÷9 ② 58× 56< 58÷ 56③ 12÷ 34 > 34 ÷12 ④ 45÷ 23= 32÷ 54故答案为:>,<,>,=.【点评】:此题考查了不用计算判断因数与积之间大小关系、商与被除数之间大小关系的方法. 6.(填空题,2分)一根15m 长的水管,第一次用去全长的 45 ,第二次用去 45 m ,两次一共用去___ m ,这时还剩___ m . 【正确答案】:[1]12 45 ; [2]2 15【解析】:先把钢管长度看作单位“1”,根据分数乘法意义,求出第一次用去长度,再根据用去长度=第一次用去长度+第二次用去长度,进一步解答即可解答.【解答】:解:15× 45 +45 =12 +45=12 45(米)15-12 45 =2 15(米)答:两次一共用去12 45米,这时还剩2 15米.故答案为:12 45,2 15.【点评】:解答本题的关键是明确题干中两个45的区别,依据是分数乘法意义.7.(填空题,2分)一种什锦糖是由水果糖与奶糖按5:3的质量比混合成的,现有水果糖40千克,需要___ 千克奶糖才能合成这种什锦糖;如果要合成这种什锦糖40千克,需要水果糖___ 千克.【正确答案】:[1]24; [2]25【解析】:由题意可知,这种什锦糖中水果糖占55+3,奶糖占35+3.根据分数除法的意义,用40千克除以55+3就是用40千克水果糖可以合成什锦糖的千克数,再根据分数乘法的意义,用合成什锦糖的千克数乘35+3就是需要奶糖的千克数;用40千克乘55+3就是合成40千克什锦糖需要水果糖的千克数.【解答】:解:5+3=840÷ 58 × 38=64× 38=24(千克)40× 58=25(千克)答:现有水果糖40千克,需要24千克奶糖才能合成这种什锦糖;如果要合成这种什锦糖40千克,需要水果糖15千克.故答案为:24,25.【点评】:此题主要是考查分数乘、除法的意义及应用.求一个数的几分之几是多少,用这个数乘它所占的分率;已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率.8.(填空题,2分)从东莞到武汉,汽车要15小时,火车要12小时.汽车和火车所用时间的最简比是___ ;速度的最简比是___ .【正确答案】:[1]5:4; [2]4:5【解析】:(1)用汽车的时间比火车的时间,再根据比的基本性质化成最简比即可;(2)把路程看做单位“1”,分别求出汽车和火车的速度,根据比的意义,写出比化简即可解答.【解答】:解:(1)15:12=(15÷3):(12÷3)=5:4;(2)(1÷15):(1÷12)= 115:112=4:5;答:汽车和火车所用时间的最简比是 5:4;速度的最简比是 4:5.故答案为:5:4,4:5.【点评】:解答此题的关键是,根据题意找出对应量,再根据比的基本性质,化成最简整数比即可.9.(填空题,2分)如图,公园位于学校的东偏南35°方向800m处,从公园回学校要往___ 偏___ °方向走___ m.【正确答案】:[1]西; [2]北35; [3]800【解析】:由物体位置的相对性可知:它们的方向相反,角度相同,据此解答即可.【解答】:解:如图,公园位于学校的东偏南35°方向800m处,从公园回学校要往西偏北35°方向走 800m.故答案为:西,北35,800.【点评】:本题是考查方向的辨别,注意方向是相对的,相对的方向完全相反.10.(填空题,2分)一辆自行车,原价800元,现在降价18出售.说明这辆自行车的现价是原价的___ .如果提价18出售,那现价是原价的___ .【正确答案】:[1] 78 ; [2] 98【解析】:把原价看作单位“1”,现在降价18出售.说明这辆自行车的现价是原价的1- 18.如果提价18出售,那现价是原价1+ 18,由此解答即可.【解答】:解:1- 18 = 781+ 18 = 98答:说明这辆自行车的现价是原价的78.如果提价18出售,那现价是原价的98.故答案为:78,98.【点评】:解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.11.(单选题,1分)一个直角三角形的两个锐角度数的比是1:4,这个三角形最小的角是()A.144°B.72°C.36°D.18°【正确答案】:D【解析】:根据三角形的内角和定理,三角形三个内角度数的和是180°,由此得出直角三角形两个锐角之和是90°.把90°平均分成(1+4)份,根据除法求出1份的度数,也就是最小的角是多少度.【解答】:解:90°÷(1+4)=90°÷5=18°答:这个三角形最小的角是18°.故选:D.【点评】:此题是按比例分配应用题.关键是根据三角形内角和定理,推出直角三角形两个锐角度数之和是90°.12.(单选题,1分)下面各组数,互为倒数的是()A. 67与47B.0.2与5C.36与536D. 89与19【正确答案】:B【解析】:乘积是1的两个数互为倒数,据此判断即可.【解答】:解:A、67×47=2449B、0.2×5=1C、36× 536=5D、89×19=881故选:B.【点评】:此题考查倒数的意义和判断:乘积是1的两个数互为倒数.13.(单选题,1分)修一条公路,甲队单独修,8天修完;乙队单独修,12天修完,甲队的工作效率是乙队的()A. 25B. 35C. 32D. 23【正确答案】:C【解析】:根据工作效率=工作量÷工作时间,可分别求出甲队和乙队的工作效率,再相除即可得解.【解答】:解:1÷8= 181÷12= 1121 8 ÷ 112= 32答:甲队的工作效率是乙队的32.故选:C.【点评】:本题的重点是求出甲队和乙队的工作效率,求一个数是另一个数的几分之几,用除法计算.14.(单选题,1分)把45千克:0.45吨化成最简比是()A.1:10B.1:100C.100:1D.10:1【正确答案】:A【解析】:根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.【解答】:解:45千克:0.45吨=45千克:450千克=(45÷45):(450÷45)=1:10;故选:A.【点评】:注意无论是化简比还是求比值都要先把比的两项的单位统一;化简比的结果是一个比,它的前项和后项都是整数,并且是互质数.15.(单选题,1分)一件衣服,进货价350元,先按进货价提价110出售,由于换季,又降价110出售.最后的售价()A.比350元高B.比350元低C.是350元D.无法确定【正确答案】:B【解析】:根据题意先把进货看作是单位“1”,先提价110,提价后的价格是进货的(1+ 110),用乘法可求出提价后的价格,再把提价后的价格看作是单位“1”,降价110,降价后的价格是提价后的(1- 110)用乘法可求出现在的价格,据此解答.【解答】:解:350×(1+ 110)×(1- 110)=350×1.1×0.9 =346.5(元)346.5<350所以最后的售价比350元低答:最后的售价是346.5元.故选:B.【点评】:本题的重点是确定题目中的单位“1”,再根据求一个数的几分之几是多少用乘法计算列式解答,注意两次单位“1”不同.16.(单选题,1分)一杯300克的糖水中,含糖60克,糖与水的质量比是()A.4:1B.1:5C.1:4【正确答案】:C【解析】:先用“300-60”求出糖水中水的质量,进而根据题意,进行比即可.【解答】:解:60:(300-60)=60:240=1:4故选:C.【点评】:此题考查了比的意义,应明确:糖+水=糖水.17.(单选题,1分)甲、乙两队同时从两端合挖一条隧道,挖通时,甲队挖了45千米,乙队挖了隧道全长的35.甲、乙两队挖的长度相比较,()A.甲队多B.乙队多C.一样多D.无法比较【正确答案】:B【解析】:把这条隧道的全长看成单位“1”,乙队挖了隧道全长的35,那么甲队就挖了全长的1- 35 = 25,比较两队挖的分率即可求解.【解答】:解:1- 35 = 253 5>25,答:乙队挖的长度多.故选:B.【点评】:乙队挖了隧道全长的35,从而求出甲队挖的长度占全长的几分之几,再比较.18.(单选题,1分)一根34m长的电线,平均剪成3段,每段是全长的()A. 14B. 34C. 13D. 13m【正确答案】:C【解析】:把这根电线的长度看作单位“1”,把它平均剪成3段,求每段是全长的几分之几,用“1”除以3,即每段是全长的13.【解答】:解:1÷3= 13即一根34 m长的电线,平均剪成3段,每段是全长的13.故选:C.【点评】:此题是考查分数的意义.把单位“1”平均分成若干份,用分数表示,分母是分成的份数,分子是要表示的份数.19.(单选题,1分)甲、乙两个正方形的边长比是4:5,甲、乙正方形的面积比是()A.4:5B.5:4C.25:16D.16:25【正确答案】:D【解析】:正方形的面积=边长×边长,据此先分别求出两个正方形的面积,进而写出对应的面积比.【解答】:解:42:52=16:25.答:两个正方形的边长比是4:5,面积比是16:25.故选:D.【点评】:先求出两个两个正方形的面积是解决此题的关键. 20.(问答题,4分)直接写得数. 12÷ 34 = 15× 45 =67 × 49 = 58 ÷ 1516= 815 × 56= 59÷25= 1532 ÷ 116 = 3.6× 56=【正确答案】:【解析】:根据分数乘除法的计算方法直接进行口算即可.【解答】:解: 12÷ 34 =16 15× 45 =1267 × 49 = 821 58 ÷ 1516 = 23815 × 56 = 4959 ÷25= 1451532 ÷ 116 = 152 3.6× 56 =3【点评】:直接写得数时,注意数据特点和运算符号,再进一步计算即可. 21.(问答题,4分)求下面各比的比值. 36:54= 0.75:1.2=712 : 516= 0.8: 58 =【正确答案】:【解析】:根据求比值的方法,就用比的前项除以比的后项即得比值.【解答】:解:(1)36:54 =36÷54 = 23 ;(2)0.75:1.2 =0.75÷1.2 = 58 ;(3) 712 : 516 = 712 ÷ 516 = 2815 ;(4)0.8: 58 =0.8÷ 58=1.28.【点评】:此题考查求比值的方法,要注意求比值的结果是一个数,可以是整数、小数或分数. 22.(问答题,4分)解下列方程. (1) 13 x+ 25 x= 2225 (2)x÷ 56 = 815 ÷ 29【正确答案】:【解析】:(1)先化简方程为 1115 x ,再方程两边同时除以 1115 即可; (2)先化简方程为x÷ 56 = 125 ,再方程两边同时乘 56 即可.【解答】:解:(1) 13x+ 25x= 22251115 x= 22251115 x÷ 1115 = 2225 ÷ 1115x= 65(2)x÷ 56= 815÷ 29x÷ 56 = 125 x÷ 56 × 56 = 125 × 56x=2【点评】:此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐.23.(问答题,18分)计算下面各题,能用简便方法的要用简便方法算. ( 78 - 512 )÷ 1116 ( 25+ 18 )÷( 910 - 34)3.7× 67 +3.3÷ 765- 56 ÷5- 562425 ÷[ 712 ÷( 34 - 59)] 3.6×( 56 + 49 )【正确答案】:【解析】:(1)先算减法,再算除法; (2)先算加减法,再算除法; (3)按照乘法分配律简算;(4)先算除法,再按照减法的性质计算;(5)先算减法,再算小括号里的除法,最后算括号外面的除法; (6)按照乘法分配律简算.【解答】:解:(1)( 78 - 512 )÷ 1116 = 1124 × 1611 = 23(2)( 25 + 18 )÷( 910 - 34 ) = 2140 ÷ 640 = 72(3)3.7× 67+3.3÷ 76=3.7× 67 +3.3× 67 =(3.7+3.3)× 67 =7× 67(4)5- 56÷5- 56=5- 16- 56 =5-( 16 + 56 ) =5-1 =4(5) 2425 ÷[ 712 ÷( 34 - 59 )] = 2425 ÷[ 712 ÷ 736 ] = 2425 ÷3 = 825(6)3.6×( 56+ 49) =3.6× 56+3.6× 49 =3+1.6 =4.6【点评】:本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.24.(问答题,8分)画一画,填一填.(1)公园位于体育馆的东偏南40°方向800m 处,请在图上标出来.(2)根据上面的路线图完成下表.方向 路程 方向 路程 农场→少年宫 公园→体育馆 少年宫→体育馆 体育馆→少年宫 体育馆→公园少年宫→农场【正确答案】:【解析】:(1)根据实际距离和比例尺,求出公园距离体育馆的图上距离:800÷200=4(厘米),然后根据图上确定方向的方法,标出公园的位置.(2)根据线图完成表格即可.【解答】:解:(1)800÷200=4(厘米)公园位置如图所示:(2)3×200=600(米)2×200=400(米)方向路程方向路程农场→少年宫东偏南45°600 公园→体育馆西偏北40°800少年宫→体育馆东偏北20°400 体育馆→少年宫西偏南20°400 体育馆→公园东偏南40°800 少年宫→农场西偏北45°600【点评】:本题主要考查路线图,注意找准观察点掌握基本方位..爸爸每个月工资是多25.(问答题,5分)爸爸每月存入银行2000元,正好是爸爸工资的49少元?【正确答案】:,求爸爸的工【解析】:把爸爸工资数看作单位“1”,存入银行2000元,正好是爸爸工资的49资数,根据已知一个数的几分之几是多少,求这个数,用除法解答.=4500(元)【解答】:解:2000÷ 49答:爸爸每个月工资是4500元.【点评】:解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.26.(问答题,5分)停车场里有大汽车75辆,小汽车比大汽车多1.小汽车有多少辆?5【正确答案】:,即小汽车的数量是大汽车数【解析】:把大汽车的数量看作单位“1”,小汽车比大汽车多15),进而根据一个数乘分数的意义,用乘法解答.量的(1+ 15)【解答】:解:75×(1+ 15=75× 65=90(辆)答:小汽车有90辆.【点评】:解答此题的关键是:判断出单位“1”,进而根据一个数乘分数的意义,用乘法解答.,六年级植树多少27.(问答题,5分)五年级植树240棵,五年级植树的棵数比六年级少16棵?【正确答案】:【解析】:把六年级植树棵数看作单位“1”,有关系式:五年级植树棵数=六年级植树棵数×(1- 16),求单位“1”,用除法计算.把数代入得:240÷(1- 16)=288(棵).【解答】:解:240÷(1- 16)=240 ÷56=288(棵)答:六年级植树288棵.【点评】:本题主要考查分数除法的应用,关键根据题意,找对单位“1”,利用关系式做题.28.(问答题,5分)开心果园的桃树和梨树一共有720棵.桃树的棵数是梨树的78.桃树和梨树各有多少棵?【正确答案】:【解析】:把梨数棵数看作单位“1”,则桃树棵数=梨数棵数× 78,有梨数棵数+桃树棵数=720棵,求单位“1”,用除法计算,把数代入计算得:720÷(1+ 78)=384(棵),再求桃树棵数.【解答】:解:720÷(1+ 78)=720 ÷158=384(棵)720-384=336(棵)答:桃树有336棵,梨数有384棵.【点评】:本题主要考查分数除法的应用,关键根据题意,找对单位“1”,利用关系式做题.29.(问答题,5分)李大爷家有一块600m2的地,李大爷打算用其中的15来种花.剩下的打算按3:5的面积比来种玉米和黄豆.种玉米和黄豆的面积各是多少平方米?【正确答案】:【解析】:把这块地的面积看作单位“1”,根据分数乘法的意义,用这块地的面积(600平方米)乘(1- 15 )就是种花剩下的面积.再把剩下的面积看作单位“1”,其中 33+5 种平方米, 53+5 种黄豆,根据分数乘法的意义,用剩下的面积分别乘种平方米、黄豆的面积所占的分率就是种平方米、黄豆的面积.【解答】:解:600×(1- 15 )=600× 45=480(m 2)3+5=8480× 38 =180(m 2)480× 58 =300(m 2)答:种玉米的面积是180m 2,种黄豆的面积是300m 2.【点评】:此题也可分别求出种玉米、黄豆的面积分别占总面积的几分之几,再根据分数乘法的意义解答,30.(问答题,5分)从甲城市到乙城市,客车要12小时,货车要15小时.现在客车和货车分别在甲乙两城市同时出发,多少小时后两车在途中相遇?【正确答案】:【解析】:把两地间的距离看作单位“1”,先依据速度=路程÷时间,分别求出客车和货车的速度,再求出两车的速度和,最后运用时间=路程÷速度即可解答.【解答】:解:1÷( 112 + 115 )=1÷ 960=6 23 (小时)小时后两车在途中相遇答:6 23【点评】:此题考查了行程问题中时间、路程、速度关系的运用.。

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷(含答案)

2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

最新2018-2019年七年级上期末数学试卷含答案解析

最新2018-2019年七年级上期末数学试卷含答案解析

七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。

2018-2019学年八 年级上学期期中考试数学试题(含答案)

2018-2019学年八 年级上学期期中考试数学试题(含答案)

2018-2019学年度第一学期阶段联考八年级数学试卷一.选择题(本大题共10小题,每小题3分,共30分)点P在第二象限内,P到x轴的距离是2,到y轴的距离是3,那么点P的坐标为()A. (-2,3)B. (-3,-2)C. (-3,2)D. (3,-2)如图所反映的两个量中,其中y是x的函数的个数有()A. 4个B. 3个C. 2个D. 1个下列语句中,是命题的是()A. ∠α和∠β相等吗?B. 两个锐角的和大于直角C. 作∠A的平分线MND. 在线段AB上任取一点在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,下列表述正确的是()A. 若x1<x2,则y1<y2B. 若x1<x2,则y1>y2C. 若x1>x2,则y1<y2D. y1与y2大小关系不确定在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A. k=-2,b≠3B. k=-2,b=3C. k≠-2,b≠3D. k≠-2,b=3如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A. x≥4B. x≤4C. x≥1D. x≤17.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.8.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的大致图象是()A. B. C. D.9如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B. 3C.(m-1)D.()2 23-m10. 如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A2017的坐标是( ) A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008) 填空题(本大题共8小题,每小题3分,共24分)11.在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 ______ .12.函数31-=x y 的自变量x 的取值范围是 ______ .13.已知a <b <0,则点A(a-b ,b)在第____________象限.14.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的____________15.等腰三角形的三边长为3,a ,7,则它的周长是 ______ .16.当k= ______ 时,函数y=()532-++k x k 是关于x 的一次函数.17.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于 .18.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 ______ .三.解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A (1,2),图书馆的位置坐标为B (-2,-1),解答以下问题: (1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C (1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置; (3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.20.已知y与x+1.5成正比例,且x=2时,y=7.(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.21.如图,在平面直角坐标系中直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标(2)求三角形OAC的面积.22.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)23.一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)西宁到西安两地相距_________千米,两车出发后___________小时相遇;普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.(2)求动车的速度;(3)普通列车行驶t小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?24.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ; 【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=36°,∠ADC=16°, 求∠P 的度数; 【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)在图4中,若设∠C =α,∠B =β,∠CAP=31∠CAB ,∠CDP=31∠CDB ,试问∠P 与∠C 、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)八年级数学答案一.选择题(共10小题,每小题3分,满分30分)题号 1234567 8 9 10 答案C C B A A DCDBB二.填空题(共8小题,每小题3分,满分24分)11.(1,-1) ,12.3x ≠,13.三,14.稳定性15.17 16.-1,17.4 ,18.67.5°或22.5° 三.解答题(共6小题,满分66分)19.(1) 略…3分(2)体育馆C (1,-3),食堂D (2,0)…6分 (3)四边形ABCD 的面积=10.…8分20.(1)y=2x+3,……5分(2)1-=a …10分21.解:(1) ∴点C 的坐标为(4,4). ……………5分(2)点A 的坐标为(6,0),∴OA=6,∴S △OAC=21OA •yC=21×6×4=12.…10分22.(1)∵CD 为高,∴∠CDB=90°,∴∠BCD=90°-∠B ,∵CE 为角平分线,∴∠BCE=∠ACB ,而∠ACB=180°-∠A-∠B ,∴∠BCE=(180°-∠A-∠B )=90°-(∠A+∠B ),∴∠ECD=∠BCE-∠BCD =90°-(∠A+∠B )-(90°-∠B )=(∠B-∠A ), 当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°; ………………………8分 (2)由(1)得∠ECD=(∠B-∠A ).………………………12分23.(1)1000,3,12,,3250…………4分(2)250……8分(3)32000……12分24.(1)证明:在△AOB 中,∠A+∠B+∠AOB=180°,在△COD 中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD ,∴∠A+∠B=∠C+∠D ;…………3分 (2)26°.…………7分 (3)如图3,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D ,∴∠P=(∠B+∠D )=×(36°+16°)=26°;……………11分(4)∠P=α+β; …………………………14分。

2018-2019学年新人教版五年级数学第一学期期末检测试卷含有参考答案(附详细解析)

2018-2019学年新人教版五年级数学第一学期期末检测试卷含有参考答案(附详细解析)

2018-2019学年新人教版五年级数学第一学期期检测试卷一、选择题1、把平行四边形转化成三角形采用的方法是( ) A .割补法 B .折叠法2、一副扑克牌,摸到红桃A 的可能性是( ) A . B .C .3、下面式子中,( )是方程.A .x ﹣14>72B .35+65=100C .5x+3=234、观察正方体时,在同一个观察点一次最多可以看到它的( )个面. A .1 B .3 C .45、我国现行的身份证号码是由( )位数字组成. A .15位 B .18位 C .13位6、下面各题中,无限小数是( )A .0.5757B .2.3636…C .0.314二、填空题7、23、17、20、34、26这组数据的平均数是 ,中位数是 。

8、小明捡到一张身份证,身份证号是“230921************”,这个人的出生年月日是 年 月 日,是 性。

(填“男”或“女”)9、两个完全一样的三角形可以拼成一个 形,如果每个三角形的面积为3.2平方米,拼成图形的面积是 平方米。

10、正方形的边长为m 米,它的周长是 米,面积是 平方米。

11、在含有字母的式子里,字母中间的乘号可以记作 ,也可以 ,在省略乘号时,应当把 写在 的前面。

12、在计算5.67÷0.7时,应看作 ÷ 来计算。

13、3.5×0.5的积是 .2.8×0.2的积是 位小数。

14、一个数的小数部分,从某一位起, 数字或几个 依次不断地 出现,这样的小数叫 。

三、判断题15、等底等高的两个三角形,面积一定相等。

( )16、方程3x ﹣6=12的解是6。

( )17、中位数和平均数表示的意义相同。

( )18、㎡>2m 。

( )19、含有未知数的式子叫方程。

( )四、计算题20、直接写出得数7.4﹣0.4= 0.5×60= 0÷32.7= 5.6+2.1= 4.8÷0.6= 2.5×2×0.8= 21、简便运算0.5×1060.25×4.6×4…装…………○……__姓名:___________班级:____…装…………○……22、计算,得数保留两位小数。

广东省东莞市2018-2019学年八年级下学期期末考试数学试题及参考答案

广东省东莞市2018-2019学年八年级下学期期末考试数学试题及参考答案

2018-2019学年度第二学期教学质量自查八年级数学参考答案一、选择题(每小题2分,共20分)1-5ACBBC 6-10DBBAC二、填空题(每小题3分,共15分)11.15.12.18.13.m<0.14.12.15.44°.三、解答题(一)(每小题5分,共25分)16.解:原式=33+(4-23)-3--------3分=4.--------------------------5分17.解:(1)由题意得:355231=++++x ,-----------------------2分得:4=x ;-----------------------------------------------3分(2)])34()35()32()33()31[(51222222-+-+-+-+-=S -----4分=2.--------------------------------------------------518.证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,---------------------1分∴∠1=∠EAF ,------------------2分∵∠1=∠2,∴∠EAF=∠2,------------------3分∴AE ∥CF ,------------------4分∴四边形AECF 是平行四边形.-----5分19.(1)证明:∵AB=AC=13cm,BD=8cm,∴AD=5cm,------------------1分∵CD=12cm,∴AC 2=AD 2+CD 2,--------------2分∴∠ADC=90°,∴△ADC 是直角三角形;-------3分(2)解:∵∠ADC=90°∴∠BDC=90°,∵BD=8cm,CD=12cm,∴BC=22CD BD +=134cm,---------5分20.解:(1)y=7000-3.5x,--------------------------------2分取值范围:100≤x≤2000;------------------------3分(2)当x=800时,y=7000-3.5×800=4200(元);答:当采购苹果800千克时,小王还剩余4200元.-----5分四、解答题(二)(每小题8分,共40分)21.解:(1)x 2+2xy +y 2=2)(y x +,---------------------2分当32,32+=-=y x 时,4=+y x ,--------------------------3分∴原式1642==;-----------------------4分(2)xyxy y x xy x y y x x y 2)(222-+=+=+,--------5分当32,32+=-=y x 时,1)3232(=+-=xy ,---------------7分∴原式1411216=⨯-=---------------------8分22.(1)---------------------6分(每空2分)(2)如果A 店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万元合适.因为中位数为8.5万元,所以月销售额定为8.5万元,有一半以上的营业员能达到销售目标.--------------------8分23.(1)证明:∵CA 平分∠DCB ,∴∠DCA=∠BCA ,----------------1分∵AD ∥BC ,∴∠DAC=∠BCA ,∴∠DAC=∠DCA ,∴AD=CD ,--------------------2分同理:CD=BC ,∴AD=BC ,∴四边形ABCD 是平行四边形,-----3分又∵AB=CD ,∴四边形ABCD 是菱形;-----------4分(2)解:过D 作DH ⊥AB 于H ,-------------5分∵四边形ABCD 是菱形,∴OA =AC ,OB =BD ,AC ⊥BD ,--------------------6分∵AC =8,BD =6,∴OA =×8=4,OB =×6=3,在Rt △AOB 中,AB ===5,--------7分菱形ABCD 的面积=AC •BD =AB •DH ,即×8×6=5DH ,∴DH =.-----------------------------------------8分24.解:(1)∵点C (m ,4)在正比例函数的y =x 图象上,∴m =4,∴m =3,--------------------------------1分即点C 坐标为(3,4);∵一次函数y =kx+b 经过A (﹣3,0)、点C (3,4)∴,---------------------------2分解得:,---------------------------3分∴一次函数的表达式为:y =x+2;---------4分(2)x ≤3;--------------------------------6分(3)(0,322)或(0,310 ).---------------8分25.(1)解:在正方形ABCD 中,∠DAE =90°,AD=2,DE=334,∴AE=3322)334(2222=-=-AD DE ;-------2分(2)证明:∵四边形ABCD 是正方形,∴∠DAB =90°,AH//BF ,∵AB//BH ,∴四边形ABFH 是平行四边形,-----------------3分又∠DAB =90°,∴四边形ABFH 是矩形;∴FH =AB =DA ,∠GHF =90°,∵DE ⊥FG ,∴∠G+∠ADE =∠DEA+∠ADE ,∴∠G =∠DEA ,------------------------------4分又∠DAE =∠GHF =90°,∴△DAE ≌△FHG ,---------------------------5分∴DE =GF .----------------------------------6分(3)解:在RtDAE 中,AD=2,AE=x ,DE=2224x AE AD +=+,∴FG =DE=24x +--------------------------------7分∵S △DGF =FG •DE ,∴y =,∴y =.--------------------------------------8分。

2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析

2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析

高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。

2018-2019年人教版五年级上册数学期末试卷(精选3套有答案)

2018-2019年人教版五年级上册数学期末试卷(精选3套有答案)

五年级第一学期数学期末测试卷(1)一、填一填。

(每题2分,共24分)1.0.45公顷=()平方米85平方厘米=()平方分米2.根据17×72=1224,可知1.7×0.72=(),12.24÷7.2=()。

3.32.6÷33的商用简便形式表示是(),保留一位小数约是()。

4.东东从家去学校,每分钟走x米,走了5分钟后还剩120米到学校,东东家距离学校()米。

5.在6.74,6.74•,6.74•0•,6.7•40•中,最大的数是(),最小的数是()。

6.一根木头长6米,要把它平均分成4段。

每锯下一段需5分钟,锯完一共需()分钟。

7.一个三角形的底是4分米,高是3.4分米,它的面积是()平方分米。

8.当x=3时,2x2的值为()。

9.王师傅加工一批零件,6分钟加工了15个零件,平均加工一个零件需要()分钟,平均一分钟可以加工()个零件。

10.在里填上“>”“<”或“=”。

578×0.3578 1.02÷0.75 1.020.5×0.50.52 1.43÷0.9 1.43×0.911.食堂有一堆煤,如果每天烧3.5吨,可以烧15天,如果每天烧2.5吨,可以烧()天。

12.一个梯形的面积是87平方米,高是6米,则梯形上、下底的和是()米。

二、辨一辨。

(对的画“√”,错的画“×”)(每题1分,共5分)1.足球比赛通过掷硬币确定哪队先开球。

甲队选正面,乙队选反面,甲队一定先开球。

()2.一个大于0的数除以比1大的数,商一定比原来的数小。

() 3.两个小数相乘积一定小于1。

()4.两个直角梯形一定能拼成一个长方形。

()5.如果3a-8=4,那么2a-3=5。

()三、选一选。

(把正确答案的字母填在括号里)(每题1分,共5分) 1.下面的算式中,商的最高位在十位上的是()。

A.1.6÷1.1 B.1.6÷0.11C.1.6÷11 D.16÷0.112.当a的值为()时,5a=a+20。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

2018-2019学年广东省东莞市虎门外语学校七年级(上)期中数学试卷-附答案详解

2018-2019学年广东省东莞市虎门外语学校七年级(上)期中数学试卷-附答案详解

2018-2019学年广东省东莞市虎门外语学校七年级(上)期中数学试卷1.−12的绝对值是()A. −12B. 12C. −2D. 22.在0.5,−2,0,−110这四个有理数中,最小的数是()A. 0.5B. −2C. 0D. −1103.下列方程中,是一元一次方程的为()A. x=0B. x+2y=1C. 5x=1 D. x2−x=04.某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为()A. 2.58×107元B. 0.258×107元C. 2.58×106元D. 25.8×106元5.下面的计算正确的是()A. 6a−5a=1B. a+2a2=3a3C. −(a−b)=−a+bD. 2(a+b)=2a+b6.若−3x2m y3与2x4y n是同类项,那么m−n=()A. 0B. 1C. −1D. −27.如果(2x−4)2+|y−3|=0,那么2x−y的值为()A. 1B. −1C. 7D. −78.近似数4.50×103精确到()A. 百分位B. 十分位C. 百位D. 十位9.下列等式变形中,结果正确的是()A. 如果a=b,那么a−m=b+mB. 由−3x=2得x=−32C. 如果|a|=|b|,那么a=bD. 如果ac =bc,那么a=b10.如图给出的是某月份的日历表,任意圈出一竖列上相邻的三个数,这三个数的和不可能是()A. 27B. 40C. 54D. 6911.单项式−x2y5的次数是______.12.已知方程(m−2)x|m|−1+3=0是关于x的一元一次方程,则m的值是______ .13.若x=2是关于x的方程2x+a=1的解,则a=______.14.在数轴上,与表示−1的点的距离是4数为______.15.已知x−2y=1,则5−2x+4y的值为______.16.若a、b互为相反数(a、b≠0),c、d互为倒数,m的绝对值为2,则代数式m−cd+ba 的值为______.17.计算:(1)(−36)×(12−23−34);(2)−14+(1−0.5)×13×|2−(−3)2|.18.解方程:(1)3x+7=2(16−x);(2)2x+13−5x−16=1.19.先化简再求值:3(x2−2xy)−(2x2−xy),其中x=−1,y=2.20.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行驶记录(单位:千米)如下:+10,−2,+3,−1,+9,−3,−2,+11,+3,−4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每100千米耗油15升,求从出发到收工共耗油多少升.21.已知a,b,c在数轴上的位置如图所示.(1)用“>”或“<”填空:a−b______0;b+c______0;c−a______0;(2)化简|a−b|+|b+c|−|c−a|.22.某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?23.如图,小婉在手工课上做了如图所示的长方体纸盒(尺寸见图,单位:厘米).(1)做小纸盒比做大纸盒少用料多少平方厘米?(2)当a=2cm,b=4cm,c=1.5cm时,两个纸盒共用料多少?24.观察下列几组数列:①1,4,9,16,25,36,…②−4,9,−16,25,−36,49,…③1,3,7,15,31,63,…(1)第①组数的第n个数用式子表示为______,第②组数的第n个数用式子表示为______,第③组数的第n个数用式子表示为______;(2)取第①组的第100个数、第②组的第99个数、第③组的第10个数,计算这三个数的和.25.一群驴友排成一列去野外旅游,队长在队伍中,数了一下他前后的人数,发现前面人数是后面人数的两倍,他往前超了6位驴友,发现前面的人数和后面的人数一样.(1)这群驴友一共有多少人?(2)这群驴友要过一座300米长的独木桥,为安全起见,相邻两个驴友间保持固定的距离,行走速度为6米/分,从第一位驴友刚上桥到全体通过独木桥用了80分钟时间,请问相邻两个驴友间的距离是多少米?答案和解析1.【答案】B【解析】解:−12的绝对值为12. 故选:B .根据绝对值的定义直接计算即可解答.本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【解析】解:∵|−2|=2,|−110|=110,2>110, ∴−2<−110<0<0.5,∴在0.5,−2,0,−110这四个有理数中,最小的数是−2. 故选:B .有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,熟记有理数大小比较法则是解答本题的关键.3.【答案】A【解析】解:A 、该方程符合一元一次方程的定义,故本选项正确; B 、该方程中含有2个未知数,不是一元一次方程,故本选项错误; C 、该方程不是整式方程,故本选项错误;D 、该方程中的未知数的最高次数是2,不是一元一次方程,故本选项错误; 故选:A .根据一元一次方程的定义进行解答.本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.【答案】C【解析】解:2580000=2.58×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2580000有7位,所以可以确定n=7−1=6.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.【答案】C【解析】解:A.6a−5a=a,故此选项错误;B.a与2a2不是同类项,不能合并,故此选项错误;C.−(a−b)=−a+b,故此选项正确;D.2(a+b)=2a+2b,故此选项错误。

2018-2019学年广东省东莞市虎门外语学校七年级(上)月考数学试卷(解析版)

2018-2019学年广东省东莞市虎门外语学校七年级(上)月考数学试卷(解析版)

2018-2019学年广东省东莞市虎门外语学校七年级(上)月考数学试卷一、选择题(每小题2分共20分)1.(2分)﹣7的相反数是()A.﹣7B.7C.D.2.(2分)下列算式正确的是()A.(﹣14)﹣3=﹣11B.0﹣(﹣3)=3C.(﹣4)﹣(﹣4)=﹣8D.|5﹣2|=﹣(5﹣2)3.(2分)下列几组数中,不相等的是()A.﹣(+3)和+(﹣3)B.﹣5和﹣(+5)C.+(﹣7)和﹣(﹣7)D.﹣(﹣2)和|﹣2|4.(2分)在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个5.(2分)在数轴上,到表示﹣1的点的距离等于6的点表示的数是()A.5B.﹣7C.7或﹣5D.5或﹣76.(2分)下列各组算式中,其值最小的是()A.﹣(﹣3﹣2)2B.(﹣3)×(﹣2)C.(﹣3)2×(﹣2)D.(﹣3)2÷(﹣2)7.(2分)有理数a,b在数轴上对应的位置如图所示,则()A.|a|=|b|B.ab>0C.a+b<0D.a﹣b>08.(2分)已知|x|=4,|y|=5,则|x+y|的值为()A.1B.9C.9或1D.±9或±1 9.(2分)①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小.⑤符号不同的两个数是互为相反数.⑥绝对值等于本身的数是0和1.其中正确的有()A.2个B.3个C.4个D.5个10.(2分)如果a+b+c=0,且|a|>|b|>|c|,则下列说法中可能成立的是()A.a、b为正数,c为负数B.a、c为正数,b为负数C.b、c为正数,a为负数D.a、c为负数,b为正数二、填空题(每小题4分共24分)11.的倒数是,﹣3的绝对值是.12.如果收入10元记作“+10”,那么支出5元记作.13.若|x﹣1|+(y+2)2=0,则x﹣y=.14.气象资料表明:高度每增加1000米,气温就要下降6℃.现在山脚下的气温是18℃.那么比它高出1500米的山顶的气温是℃.15.下列5个数:﹣3,﹣2,1,4,5中取出三个不同的数,其和最大是,其积最大是.16.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=3,求a2=,a2019=.三、解答题(-)(17题12分,18,19各6分,共24分)17.计算(1)2﹣5(2)(﹣5.5)+(﹣3.2)﹣(﹣2.5)﹣4.8(3)()×(﹣48)(4)()×()÷(﹣2)18.计算(1)8÷(﹣2)+4×(﹣3)(2)19.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?四、解答题(二)(每题7分,共21分)20.(7分)在数轴上表示数:﹣|﹣1.5|,22,0,﹣(﹣2),并按从小到大的顺序用“<“连接起来.(在给出的直线上把数轴补充完整)21.(7分)某儿童服装店老板以35元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以50元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:请问:该服装店售完这30件连衣裙后,赚了多少钱?22.(7分)已知a是最大的负整数,b的相反数是它的本身,c的平方等于4,计算:(a﹣b ﹣c)2的值.五、解答题(三)(23,24题9分,25题8分,共26分)23.国庆假期到海战博物馆的人数剧增,虎门临时增加公交车线路,从黄河(起点)到海战博物馆(终点)共有六个站,一辆公交车由黄河站开往海战博物馆,在黄河(起点)站出发时上了部分乘客,从第二站开始下车、上车的乘客数如表:(1)求本趟公交车出发后在第几站新增的人数最多,是多少人?(2)求本趟公交车在黄河站上车的人数?(3)若公交车的收费标准是上车每人3元,计算此趟公交车从黄河站到海战博物馆站的总收入?24.寻找规律:连续的奇数相加,它们的和的情况如下表:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+11=;(2)请用上述规律计算1+3+5+7+9+…+59(3)请用上述规律计算:62+66+70+74+……+194+19825.(11分)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣5,将点A向右移动6个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数a,将A点向左移动10个单位长度,再向右移动70个单位长度,终点B表示的数是50,那么a=;A、B两点中间的点表示的数为;(3)在(2)的条件下,若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为10个单位长度?2018-2019学年广东省东莞市虎门外语学校七年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题2分共20分)1.(2分)﹣7的相反数是()A.﹣7B.7C.D.【解答】解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选:B.2.(2分)下列算式正确的是()A.(﹣14)﹣3=﹣11B.0﹣(﹣3)=3C.(﹣4)﹣(﹣4)=﹣8D.|5﹣2|=﹣(5﹣2)【解答】解:A、(﹣14)﹣3=﹣17,故此选项不合题意;B、0﹣(﹣3)=3,正确,符合题意;C、(﹣4)﹣(﹣4)=0,故此选项不合题意;D、|5﹣2|=(5﹣2),故此选项不合题意;故选:B.3.(2分)下列几组数中,不相等的是()A.﹣(+3)和+(﹣3)B.﹣5和﹣(+5)C.+(﹣7)和﹣(﹣7)D.﹣(﹣2)和|﹣2|【解答】解:A、﹣(+3)=﹣3,+(﹣3)=﹣3,故A选项不符合题意;B、﹣(+5)=﹣5,故B选项不符合题意;C、+(﹣7)=﹣7,﹣(﹣7)=7,+(﹣7)≠﹣(﹣7),故C选项符合题意;D、﹣(﹣2)=2,|﹣2|=2,故D选项不符合题意.故选:C.4.(2分)在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.l个B.2个C.3个D.4个【解答】解:负分数是,﹣0.7,共2个.故选:B.5.(2分)在数轴上,到表示﹣1的点的距离等于6的点表示的数是()A.5B.﹣7C.7或﹣5D.5或﹣7【解答】解:到表示﹣1的点的距离等于6的点表示的数是5或﹣7,故选:D.6.(2分)下列各组算式中,其值最小的是()A.﹣(﹣3﹣2)2B.(﹣3)×(﹣2)C.(﹣3)2×(﹣2)D.(﹣3)2÷(﹣2)【解答】解:﹣(﹣3﹣2)2=﹣52=﹣25,(﹣3)×(﹣2)=6,(﹣3)2×(﹣2)=9×(﹣2)=﹣18,(﹣3)2÷(﹣2)=9÷(﹣2),则其值最小的为﹣25,故选:A.7.(2分)有理数a,b在数轴上对应的位置如图所示,则()A.|a|=|b|B.ab>0C.a+b<0D.a﹣b>0【解答】解:由数轴可得﹣2<a<﹣1,0<b<1,∴|a|>|b|,ab<0,a+b<0,a﹣b<0,∴C正确,故选:C.8.(2分)已知|x|=4,|y|=5,则|x+y|的值为()A.1B.9C.9或1D.±9或±1【解答】解:|x|=4,|y|=5,x=±4,y=±5,当x=﹣4,y=﹣5时,|x+y|=9当x=﹣4,y=5时,|x+y|=1,当x=4,y=﹣5时,|x+y|=1,当x=4,y=5时,|x+y|=9,故选:C.9.(2分)①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小.⑤符号不同的两个数是互为相反数.⑥绝对值等于本身的数是0和1.其中正确的有()A.2个B.3个C.4个D.5个【解答】解:①0是绝对值最小的有理数,故①符合题意;②相反数大于自身的数是负数,若﹣a>a,则a<0,即a是负数,故②符合题意;③任何一个有理数的绝对值都是非负数,故③符合题意;④两个负数相互比较,绝对值大的反而小;故④不符合题意;⑤只有符号不同的两个数是互为相反数的,故⑤不符合题意;⑥绝对值等于本身的数是0和正数,故⑥不符合题意.所以正确的结论是①②③,共有3个.故选:B.10.(2分)如果a+b+c=0,且|a|>|b|>|c|,则下列说法中可能成立的是()A.a、b为正数,c为负数B.a、c为正数,b为负数C.b、c为正数,a为负数D.a、c为负数,b为正数【解答】解:a+b+c=0,且|a|>|b|>|c|,|a|=|b|+|c|,故选:C.二、填空题(每小题4分共24分)11.的倒数是,﹣3的绝对值是3.【解答】解:的倒数是:,﹣3的绝对值是:3.故答案为:,3.12.如果收入10元记作“+10”,那么支出5元记作﹣5元.【解答】解:如果收入10元记作“+10”,那么支出5元记作﹣5元.故答案为:﹣5元.13.若|x﹣1|+(y+2)2=0,则x﹣y=3.【解答】解:∵|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.∴x﹣y=1﹣(﹣2)=1+2=3.14.气象资料表明:高度每增加1000米,气温就要下降6℃.现在山脚下的气温是18℃.那么比它高出1500米的山顶的气温是9℃.【解答】解:18+1500÷1000×(﹣6)=18+(﹣9)=9(℃),故答案为:9.15.下列5个数:﹣3,﹣2,1,4,5中取出三个不同的数,其和最大是10,其积最大是30.【解答】下列5个数:﹣3,﹣2,1,4,5中取出三个不同的数,其和最大是1+4+5=10,其积最大是(﹣3)×(﹣2)×5=30;故答案为:10;3016.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=3,求a2=,a2019=.【解答】解:∵a1=3,a2=11,a3=11,a4=113=a1,∴a3n+1=a1,a3n+2=a2,a3n+3=a3,(n∈N),由此发现,该数列每3个一循环,∵2019÷3=673,∴a2016=a3.故答案为:,.三、解答题(-)(17题12分,18,19各6分,共24分)17.计算(1)2﹣5(2)(﹣5.5)+(﹣3.2)﹣(﹣2.5)﹣4.8(3)()×(﹣48)(4)()×()÷(﹣2)【解答】解:(1)2﹣5=2+(﹣5)=﹣3;(2)(﹣5.5)+(﹣3.2)﹣(﹣2.5)﹣4.8=(﹣5.5)+(﹣3.2)+2.5+(﹣4.8)=﹣11;(3)()×(﹣48)=8+(﹣36)+4=﹣24;(4)()×()÷(﹣2).18.计算(1)8÷(﹣2)+4×(﹣3)(2)【解答】解:(1)8÷(﹣2)+4×(﹣3)=(﹣4)+(﹣12)=﹣16;(2)=﹣1+[(﹣8)×()﹣1]﹣(﹣9)×2=﹣1+(1)+18=﹣118=17.19.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?【解答】解:(1)10﹣3+4+2﹣8+13﹣2﹣12+8+5=17(千米).答:收工时距O地17千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|﹣12|+|+8|+|+5|=67,67×0.2=13.4(升).答:从O地出发到收工时共耗油13.4升.四、解答题(二)(每题7分,共21分)20.(7分)在数轴上表示数:﹣|﹣1.5|,22,0,﹣(﹣2),并按从小到大的顺序用“<“连接起来.(在给出的直线上把数轴补充完整)【解答】解:<|﹣1.5|<0<﹣(﹣2)<22.21.(7分)某儿童服装店老板以35元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以50元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:请问:该服装店售完这30件连衣裙后,赚了多少钱?【解答】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(50﹣35)×30+[7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)]=15×30+[21+12+3+(﹣4)+(﹣10)]=450+22=472(元),即该服装店在售完这30件连衣裙后,赚了472元.22.(7分)已知a是最大的负整数,b的相反数是它的本身,c的平方等于4,计算:(a﹣b ﹣c)2的值.【解答】解:∵a是最大的负整数,b的相反数是它的本身,c的平方等于4,∴a=﹣1,b=0,c=±2,(1)c=2时,(a﹣b﹣c)2的=(﹣1﹣0﹣2)2=9(2)c=﹣2时,(a﹣b﹣c)2的=[﹣1﹣0﹣(﹣2)]2=1∴(a﹣b﹣c)2=9或1.五、解答题(三)(23,24题9分,25题8分,共26分)23.国庆假期到海战博物馆的人数剧增,虎门临时增加公交车线路,从黄河(起点)到海战博物馆(终点)共有六个站,一辆公交车由黄河站开往海战博物馆,在黄河(起点)站出发时上了部分乘客,从第二站开始下车、上车的乘客数如表:(1)求本趟公交车出发后在第几站新增的人数最多,是多少人?(2)求本趟公交车在黄河站上车的人数?(3)若公交车的收费标准是上车每人3元,计算此趟公交车从黄河站到海战博物馆站的总收入?【解答】解:(1)由表中数据可得:本趟公交车出发后在第2站新增的人数最多,是12人.(2)(3+6+10+7+19)﹣(12+10+9+4+0)=45﹣35=10(人)∴本趟公交车在黄河站上车的人数是10人.(3)3×(3+6+10+7+19)=3×45=135(元)∴此趟公交车从黄河站到海战博物馆站的总收入是135元.24.寻找规律:连续的奇数相加,它们的和的情况如下表:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+11=62;(2)请用上述规律计算1+3+5+7+9+…+59(3)请用上述规律计算:62+66+70+74+……+194+198【解答】解:∵1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,依此类推:第n个所代表的算式为:1+3+5+…+(2n﹣1)=n2;(1)当2n﹣1=11,即n=6时,1+3+5+7+9+11=62,故答案为:62;(2)当2n﹣1=59,即n=30时,1+3+5+7+9+…+59=302;(3)62+66+70+74+……+194+198=2(1+3+5+…+69)+60×35=2×352+60×35=35×(2×35+60)=35×130=4550.25.(11分)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣5,将点A向右移动6个单位长度,那么终点B表示的数是1,A、B两点间的距离是﹣6;(2)如果点A表示数a,将A点向左移动10个单位长度,再向右移动70个单位长度,终点B表示的数是50,那么a=﹣10;A、B两点中间的点表示的数为20;(3)在(2)的条件下,若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为10个单位长度?【解答】解:(1)终点B表示的数是﹣5+6=1,A、B两点间的距离是1﹣(﹣5)=6;(2)依题意有a﹣10+70=50,解得a=﹣10;A、B两点中间的点表示的数为(﹣10+50)÷2=20;(3)设当它们运动x秒时间时,两只蚂蚁间的距离为10个单位长度,电子蚂蚁Q向左运动,依题意有6t﹣4t=50﹣(﹣10)﹣10,解得t=25;或6t﹣4t=50﹣(﹣10)+10,解得t=35;电子蚂蚁Q向右运动,依题意有6t+4t=50﹣(﹣10)﹣10,解得t=5;或6t+4t=50﹣(﹣10)+10,解得t=7.故当它们运动25秒或35秒或5秒或7秒时间时,两只蚂蚁间的距离为10个单位长度.故答案为:1,6;﹣10,20.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学靠前押题试卷一、选择题(本大题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.(4分)若a与1互为相反数,则|a+1|等于()A .﹣1 B.0 C.1 D.22.(4分)如图是某几何体的三视图,该几何体是()A 圆柱B 圆锥C正三棱柱 D 正三棱锥3.(4分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A .6.7×10﹣5B.6.7×10﹣6C.0.67×10﹣5D.6.7×10﹣64.(4分)在天水市汉字听写大赛中,10名学生得分情况如表人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的中位数和众数分别是()A .85和82.5 B.85.5和85 C.85和85 D.85.5和805.(4分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A .﹣3 B.﹣1 C.2 D.36.(4分)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A .B.C.或D.或7.(4分)如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A .65°B . 55°C . 50°D .25°8.(4分)如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P 在四边形ABCD 的边上.若点P 到BD 的距离为,则点P 的个数为( )A . 2B . 3C . 4D .59.(4分)如图,AB 为半圆所在⊙O 的直径,弦CD 为定长且小于⊙O 的半径(C 点与A 点不重合),CF ⊥CD 交AB 于点F ,DE ⊥CD 交AB 于点E ,G 为半圆弧上的中点.当点C 在上运动时,设的长为x ,CF+DE=y .则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B .C .D .10.(4分)定义运算:a ⊗b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2⊗(﹣2)=6,②a ⊗b=b ⊗a ,③若a+b=0,则(a ⊗a )+(b ⊗b )=2ab ,④若a ⊗b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④B . ①③C . ②③④D .①②④二、填空题(本大题共8小题,每小题4分,共32分。

只要求填写最简结果)11.(4分)相切两圆的半径分别是5和3,则该两圆的圆心距是 .12.(4分)不等式组的所有整数解是.13.(4分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED 的正切值为.14.(4分)一元二次方程x2+3﹣2x=0的解是.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.16.(4分)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.17.(4分)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.18.(4分)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.三、解答题(本大题共3小题,共28分。

解答时写出必要的文字说明及演算过程。

)19.(9分)计算:(1)(π﹣3)0+﹣2cos45°﹣(2)若x+=3,求的值.20.(9分)2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)21.(10分)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。

)22.(8分)钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)23.(8分)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?24.(10分)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x 轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.25.(12分)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB 于点E,连结AC,与DE交于点P.求证:(1)AC•PD=AP•BC;(2)PE=PD.26.(12分)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1.B 2.B 3.A 4.C 5.D 6.C 7.C 8.A 9.B 10.A二、填空题(本大题共8小题,每小题4分,共32分。

只要求填写最简结果)11.2或8 12.0 13.14.x1=x2=15.8 16.4π17.3 18.(,0)三、解答题(本大题共3小题,共28分。

解答时写出必要的文字说明及演算过程。

)19.20.21.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理证明过程。

)22.636420 23.24.25.26.2018中考数学押题试卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>13.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b24.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,147.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣28.(3分)如图,正三棱柱的主视图为()A.B.C.D.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y210.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=度.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?24.(9分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作A B的平行线EF交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.六、解答题(本大题共2道小题,每小题10分,满分20分)25.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.26.(10分)如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.2018中考数学押题试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)2015的倒数为()A.﹣2015 B.2015 C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:2015的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.2.(3分)若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1 B.a≤1 C.a<1 D.a>1考点:绝对值.分析:根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.解答:解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A点评:此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.3.(3分)下列运算正确的是()A.a6÷a3=a2 B.5a2﹣3a2=2a C.(a3)3=a9 D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式合并同类项得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=a3,错误;B、原式=2a2,错误;C、原式=a9,正确;D、原式=a2+b2﹣2ab,错误,故选C.点评:此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握运算法则是解本题的关键.4.(3分)一元一次不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≤1;由②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,表示在数轴上,如图所示:,故选B.点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)某中学女子足球队15名队员的年龄情况如下表:年龄(岁)13 14 15 16队员(人)2 3 6 4这支球队队员的年龄的众数和中位数分别是()A.14,15 B.14,14.5 C.15,15 D.15,14考点:众数;中位数.分析:根据众数与中位数的意义分别进行解答即可.解答:解:15出现了6次,出现的次数最多,则众数是15,把这组数据从小到大排列,最中间的数是15;故选C.点评:本题考查了众数与中位数的意义,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.(3分)已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B. 1 C.﹣1 D.﹣2考点:代数式求值.专题:计算题.分析:原式前两项提取变形后,将已知等式代入计算即可求出值.解答:解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.8.(3分)如图,正三棱柱的主视图为()A.B.C.D.考点:简单几何体的三视图.分析:根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.解答:解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.9.(3分)反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2 C.y1>y2>0 D.y1>0>y2考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数y=﹣中k=﹣2<0可判断出此函数图象在二、四象限,再根据x1<0<x2,可判断出A、B两点所在的象限,根据各象限内点的坐标特点即可判断出y1与y2的大小关系.解答:解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.点评:本题考查的是反比例函数图象上点的坐标特点及各象限内点的坐标特点,先根据k <0判断出该函数图象所在象限是解答此题的关键.10.(3分)如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的函数图象大致是()A.B.C.D.考点:函数的图象.分析:开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.解答:解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.点评:本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.二、填空题(本大题共8小题,每小题3分,满分24分)11.(3分)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为 1.08×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数解答:解:10.8万=1.08×105.故答案为:1.08×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为.考点:概率公式.分析:由从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的有2种情况,即:、π;∴抽取到无理数的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.14.(3分)已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1.考点:根的判别式.专题:探究型.分析:先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.解答:解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.点评:本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.15.(3分)下列数据是按一定规律排列的,则第7行的第一个数为22.考点:规律型:数字的变化类.分析:先找到数的排列规律,求出第n﹣1行结束的时候一共出现的数的个数,再求第n行的第1个数,即可求出第7行的第1个数.解答:解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个数.所以第n行的第1个数n(n﹣1)+1.所以n=7时,第7行的第1个数为22.故答案为:22.点评:此题主要考查了数字的变化规律,找出数字排列的规律是解决问题的关键.16.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.17.(3分)如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=50度.考点:圆周角定理.分析:由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由圆周角定理,可求得∠B=∠ACD=40°,继而求得答案.解答:解:∵在⊙O中,AB为直径,∴∠ADB=90°,∵∠B=∠ACD=40°,∴∠BAD=90°﹣∠B=50°.故答案为:50.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.18.(3分)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为(﹣3﹣,3).考点:相似三角形的判定与性质;坐标与图形性质.分析:过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B 坐标为(x,y),根据相似三角形的性质即可求解.解答:解:过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴∠BCD+∠CAO=90°,∴△BCD∽△COA,∴=,设点B坐标为(x,y),则=,y=﹣3x﹣9,∴BC==,AC==,∵∠B=30°,∴==,解得:x=﹣3﹣,则y=3.即点B的坐标为(﹣3﹣,3).故答案为:(﹣3﹣,3).点评:本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.三、解答题(本大题共2个小题,每小题6分,满分12分)19.(6分)计算:(﹣1.414)0+()﹣1﹣+2cos30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+3﹣+2×=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.考点:分式的化简求值.专题:计算题.分析:先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.解答:解:原式=•+=+==,当x=0时,原式==﹣.点评:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.四、解答题(本大题共2小题,每小题8分,满分16分)21.(8分)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由B等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、B、D的人数求得C等的人数,再画直方图;(3)用样本估计总体,先计算出D等学生所占的百分比,再乘以1000即可解答.解答:解:(1)∵B等人数为100人,所占比例为50%,∴抽取的学生数=100÷50%=200(名);(2)C等的人数=200﹣100﹣40﹣10=50(人);如图所示:(3)D等学生所占的百分比为:=5%,故该校今年有九年级学生1000人,其中D等学生的人数为:1000×5%=50(人).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.22.(8分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.五、解答题(本大题共2小题,每小题9分,满分18分)23.(9分)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?。

相关文档
最新文档