【K12教育学习资料】新版高中数学北师大版必修1习题:第二章函数 2.2.3

合集下载

推荐学习K12高中数学2.2直线的方程2.2.3两条直线的位置关系课堂探究新人教B版必修2

推荐学习K12高中数学2.2直线的方程2.2.3两条直线的位置关系课堂探究新人教B版必修2

2.2.3 两条直线的位置关系课堂探究探究一判断两条直线的位置关系1.(1)判断两条直线平行,需要判断其斜率相等(斜率存在时),即k1=k2.两条直线斜率相等,则两条直线可能平行也可能重合,还需要再进一步判断截距不相等,即b1≠b2.如果两条直线的斜率不存在,两条直线的方程为x=a1,x=a2,只需a1≠a2即可;(2)判断两条直线平行,也可用系数比.2.判断两条直线垂直:(1)如果斜率都存在,只判断k1k2=-1,如果一条直线的斜率不存在,则另一条直线的斜率必等于零,从斜率的角度判断,应注意上面的两种情况;(2)利用A1A2+B1B2=0判断.【典型例题1】判断下列各组直线的位置关系,若相交,求出交点的坐标.(1)l1:4x+3y-2=0与l2:x+2y+2=0;(2)l1:x+2y-12=0与l2:2x+4y-1=0;(3)l1:x-3y=0与l2:y=13x+1.思路分析:判断两直线位置关系的解法有三种:一是根据方程组的解的个数判定;二是根据方程的系数间的关系判定;三是化成斜截式方程判定.解法一:(1)解方程组4320,220,x yx y+-=⎧⎨++=⎩ ① ②①×2-②×3得5x-10=0,所以x=2.将x=2代入①得y=-2,所以两直线相交,交点坐标为(2,-2).(2)解方程组120,22410,x yx y⎧+-=⎪⎨⎪+-=⎩ ① ②①×2-②得0=0,即此方程组有无数多个解,所以两直线重合.(3)解方程组30,110,3x yx-=⎧⎪⎨+=⎪⎩ ① ②由①得x=3y,代入②得y=y+1,即0=1不成立,所以方程组无解,所以两直线平行.解法二:(1)由于A1=4,B1=3,C1=-2,A2=1,B2=2,C2=2,所以D1=A1B2-A2B1=4×2-1×3=5≠0,所以两直线相交.解方程组4320,220x yx y+-=⎧⎨++=⎩得2,2,xy=⎧⎨=-⎩所以两直线的交点为(2,-2).(2)由于A1=1,B1=2,C1=-12,A2=2,B2=4,C2=-1,所以D1=A1B2-A2B1=1×4-2×2=0,D2=A1C2-A2C1=1×(-1)-2×12⎛⎫- ⎪⎝⎭=-1+1=0,所以两直线重合.(3)由于A1=1,B1=-3,C1=0,A2=13,B2=-1,C2=1,所以D1=A1B2-A2B1=1×(-1)-13×(-3)=-1+1=0,D2=A1C2-A2C1=1×1-13×0=1-0=1≠0,所以两直线平行.解法三:(1)l1:y=-43x+23,l2:y=-12x-1.因为k1≠k2,所以两直线相交.(2)l1:y=-12x+14,l2:y=-12x+14.因为k1=k2且b1=b2,所以两直线重合.(3)l1:y=13x,l2:y=13x+1.因为k1=k2且b1≠b2,所以两直线平行.点评根据方程组解的个数判断两直线位置关系,当x,y的系数是未知数时不好用;利用方程的系数间的关系判定难记忆;化成斜截式易操作.探究二利用两条直线的位置关系确定参数利用两直线的位置关系求字母参数取值时,提倡直接根据两直线平行、相交或垂直的系数整式条件列方程或不等关系,这样不易丢解或增解;若用比例式求解,一定要对特殊情况单独讨论.【典型例题2】 (1)直线l1:(m+2)x+(m2-3m)y+4=0,l2:2x+4(m-3)y-1=0,如果l1∥l2,求m的值;(2)直线l1:ax+(1-a)y=3与l2:(a-1)x+(2a+3)y=2互相垂直,求a的值.思路分析:既可以用直线一般式方程形式判断,也可以用斜率的关系求解,但需考虑斜率不存在的情况.(1)解法一:当l1,l2的斜率都存在时,由l1∥l2,得22m+=4m,解得m=-4;当l1,l2的斜率不存在时,l1与l2的方程分别为x=-45,x=12,显然l1∥l2,m=3.故m =-4或m =3即为所求.解法二:若l 1∥l 2,则有22(2)4(3)(3)20,(3)(1)44(3)0,m m m m m m m ⎧+⨯---⨯=⎪⎨-⨯--⨯-≠⎪⎩解得m =-4. 当m =3时,直线l 1与l 2的方程分别为x =-45,x =12,显然l 1∥l 2,综上所述m =-4或m =3. (2)解法一:当a =1时,l 1为x =3,l 2为y =25,故l 1⊥l 2; 当a =-32时,l 1的方程为-32x +52y =3,l 2的方程为-52x =2,显然l 1,l 2不垂直; 当a≠1,且a≠-32时,由k 1·k 2=-1,得1a a -×123a a -+=-1,解得a =-3. 综上所述,当a =1或a =-3时,l 1⊥l 2.解法二:利用A 1A 2+B 1B 2=0,即a(a -1)+(1-a)(2a +3)=0,解得a =1或a =-3. 探究三 求与已知直线平行或垂直的直线方程1.求与直线y =kx +b 平行的直线的方程时,根据两直线平行的条件可设为y =kx +m(m≠b),然后通过待定系数法,求参数m 的值.2.求与直线Ax +By +C =0平行的直线方程时,可设方程为Ax +By +m =0(m≠C),代入已知条件求出m 即可.3.求与直线y =kx +b(k≠0)垂直的直线方程时,根据两直线垂直的条件可设为y =-1kx +m(k≠0),然后通过待定系数法,求参数m 的值. 4.求与直线Ax +By +C =0(A ,B 不同时为零)垂直的直线时,可巧设为Bx -Ay +m =0(A ,B 不同时为零),然后用待定系数法,求出m.【典型例题3】 已知点A(2,2)和直线l :3x +4y -20=0.求:(1)过点A 和直线l 平行的直线方程;(2)过点A 和直线l 垂直的直线方程.思路分析:本题可根据两条直线平行与垂直时斜率间的关系,求出所求直线的斜率后用点斜式求解,也可利用直线系方程来求解.(1)解法一:利用直线方程的点斜式求解.由l :3x +4y -20=0,得直线l 的斜率k l =-34. 设过点A 且平行于l 的直线为l 1,则直线l 1的斜率k l 1=k l =-34,所以l 1的方程为y -2=-34(x -2),即3x +4y -14=0. 解法二:利用直线系方程求解.设过点A 且平行于直线l 的直线l 1的方程为3x +4y +m =0(m≠-20).由点A(2,2)在直线l 1上,得3×2+4×2+m =0,解得m =-14.故直线l 1的方程为3x +4y -14=0.(2)解法一:设过点A 与l 垂直的直线为l 2,直线l 的斜率为k l ,直线l 2的斜率为2k l . 因为k l 2k l =-1,所以k l 2=43, 故直线l 2的方程为y -2=43(x -2), 即4x -3y -2=0.解法二:设过点A 且垂直于直线l 的直线l 2的方程为4x -3y +m =0.因为l 2经过点A(2,2),所以4×2-3×2+m =0,解得m =-2.故l 2的方程为4x -3y -2=0.探究四 对称问题关于对称问题,主要有中心对称和轴对称两种:(1)对于点关于点的对称,只需运用中点坐标公式即可;(2)对于直线关于点的对称,根据所求直线与已知直线平行可先设出方程,然后利用已知直线上任取一点的对称点一定在所求直线上即可求出方程.结论为l 关于点P(x 0,y 0)对称的直线方程是A(2x 0-x)+B(2y 0-y)+C =0.对于点关于直线的对称,一般按下列步骤处理.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,而且连接P 1,P 2的直线垂直于对称轴l . 由方程组11212120,22x x y y A C y y Bx x A⎧++⎛⎫⎛⎫++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎪=⎪-⎩2B可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A≠0,x 1≠x 2).【典型例题4】 (1)求点A(3,2)关于点B(-3,4)的对称点C 的坐标;(2)求直线3x -y -4=0关于点P(2,-1)对称的直线l 的方程;(3)求点A(2,2)关于直线2x -4y +9=0的对称点B 的坐标.思路分析:(1)利用中点坐标公式列方程求解;(2)根据所求直线上任意一点关于点P(2,-1)的对称点的坐标均满足已知直线方程来求解;(3)利用中点坐标公式及垂直关系联合列式求解.解:(1)设C(x ,y),由中点坐标公式得33,224,2x y +⎧=-⎪⎪⎨+⎪=⎪⎩解得9,6.x y =-⎧⎨=⎩ 故所求的对称点的坐标为C(-9,6).(2)取直线l 上任一点(x ,y),则它关于点P(2,-1)的对称点(4-x ,-2-y)在直线3x -y -4=0上.所以3(4-x)-(-2-y)-4=0.所以3x -y -10=0.所以所求直线l 的方程为3x -y -10=0.(3)设B(a ,b)是A(2,2)关于直线2x -4y +9=0的对称点,根据直线AB 与已知直线垂直,且线段AB 的中点在已知直线2x -4y +9=0上,则有121,22222490,22b a a b -⎧⋅=-⎪⎪-⎨++⎪⋅-⋅+=⎪⎩解得1,4.a b =⎧⎨=⎩ 所以所求的对称点的坐标为B(1,4).探究五 易错辨析易错点:忽视了两条直线垂直的特殊情况而致误【典型例题5】 求经过点A(2,1)且与直线2x +ay -10=0垂直的直线l 的方程. 错解:因为所求直线与2x +ay -10=0垂直,所以根据l 1⊥l 2⇔k 1k 2=-1,得所求直线的斜率为2a , 所以根据点斜式得l :y -1=2a (x -2), 整理得ax -2y -2a +2=0.错因分析:漏掉了当a =0时这一特殊情况的讨论,其实斜率为0的直线与斜率不存在的直线也是相互垂直的,但却不能用k 1k 2=-1来求.正解:①当a =0时,已知直线化为x =5,此时直线斜率不存在,则所求直线l 的斜率为0,因为直线l 过点A(2,1),所以直线l 的方程为y -1=0(x -2),即y =1.②当a≠0时,已知直线2x +ay -10=0的斜率为-2a,因为直线l 与已知直线垂直,设直线l 的斜率为k ,所以k·2a ⎛⎫- ⎪⎝⎭=-1,所以k =2a . 因为直线l 过点A(2,1),所以所求直线l 的方程为y -1=2a (x -2),即ax -2y -2a +2=0.所求直线l 的方程为y =1或ax -2y -2a +2=0.又y =1是ax -2y -2a +2=0的一个特例,故所求直线l 的方程为ax -2y -2a +2=0.。

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

最新北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

一、选择题1.已知函数()21f x mx mx =++的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x 的最大值为27-,无最小值C .()F x 的最大值为727-,无最小值D .()F x 的最大值为3,最小值为-1 3.以下说法正确的有( ) (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}3,1AB =;(2)若()f x 是定义在R 上的奇函数,则()00f =; (3)函数1y x=的单调区间是()(),00,-∞⋃+∞; (4)在映射:f A B →的作用下,A 中元素(),x y 与B 中元素()1,3x y --对应,则与B 中元素()0,1对应的A 中元素是()1,2 A .1个B .2个C .3个D .4个4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .66.函数sin y x x =的图象可能是( )A .B .C .D .7.函数()21xf x x =-的图象大致是( ) A .B .C .D .8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞D .(][),43,-∞-⋃+∞10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.函数f (x )=x 2+2ln||2x x 的图象大致为( ) A . B .C .D .12.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃二、填空题13.若函数()y f x =的定义域是[0,2],则函数()1g x x =-______. 14.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.15.已知定义在 +R 上的函数 ()f x 同时满足下列三个条件:① ()31f =-;②对任意x y +∈R , 都有 ()()()f xy f x f y =+;③ 1x > 时 ()0f x <,则不等式()()612f x f x <-- 的解集为___________.16.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.17.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________. 19.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.20.若y =y 的取值范围是________三、解答题21.已知函数()()210f x x x a=-+>. (1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 23.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值.24.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k . 25.已知二次函数2()1(,)f x ax bx a b R =++∈,x ∈R .(1)若函数()f x 的最小值为(1)0f -=,求()f x 的解析式,并写出单调区间; (2)在(1)的条件下,()f x x k >+在区间[-3,-1]上恒成立,试求k 的取值范围.26.已知函数()()20,,f x ax bx c a b c R =++>∈满足1(0)()1f f a==.(1)求()f x 表达式及其单调区间(不出现b ,c );(2)设对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意; 当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩; ③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 2.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值, 所以由232||2x x x -=-得27x =+或27x =-.结合函数图象可知当27x =-时,函数()F x 有最大值727-,无最小值. 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-.3.B解析:B 【分析】 根据AB 为点集,可判断(1)的正误;根据奇函数的性质,可判断(2)的正误;分解反比例函数的单调性,可判断(3)的正误;根据映射的概念,可判断(4)的正误. 【详解】 (1)若(){},4A x y x y =+=,(){},21B x y x y =-=,则{}(3,1)AB =,所以(1)错误;(2)若()f x 是定义在R 上的奇函数,则()00f =,所以(2)正确; (3)函数1y x=的单调区间是(),0-∞和()0,∞+,所以(3)错误; (4)设A 中元素为(,)x y ,由题意可知1031x y -=⎧⎨-=⎩,解得12x y =⎧⎨=⎩,所以A 中元素是()1,2,所以(4)正确;所以正确命题的个数是2个, 故选:B. 【点睛】关键点点睛:该题考查的是有关命题的真假判断,在解题的过程中,关键点是要熟练掌握基础知识,此类题目综合性较强,属于中档题目.4.A解析:A 【分析】先求出函数()f x 的定义域(0,3),再求出函数(13)f x -的定义域. 【详解】函数(2)f x 的定义域为3(0,)2,则302x <<,所以023x << 所以函数()f x 的定义域为(0,3),则0133x <-<解得2133x -<< 函数(13)f x -的定义域为21(,)33- 故选:A 【点睛】对于抽象函数定义域的求解方法:(1)若已知函数()f x 的定义域为[]a b ,,则复合函数()()f g x 的定义域由不等式()a g x b ≤≤求出;(2)若已知函数()()f g x 的定义域为[]a b ,,则()f x 的定义域为()g x 在[]x a b ∈,上的值域.5.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.6.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.7.C解析:C 【分析】由1x >时,()0f x <,排除B 、D ;由函数()f x 在区间(0,1)上的单调性,排除A ,即可求解. 【详解】由题意,函数()21xf x x =-有意义,满足210x -≠,解得1x ≠±, 又由当1x >时,()0f x <,排除B ,D ; 当01x <<时,()21xf x x=-, 设1201x x ,则2112212122222121(1)()()()11(1)(1)x x x x x x f x f x x x x x +--=-=----, 因为2221122110,10,10,0x x x x x x ->->+>->,所以21()()0f x f x ->,即12()()f x f x <,所以函数()f x 在(0,1)上单调递增,所以A 不符合,C 符合. 故选:C. 【点睛】知式选图问题的解答方法:从函数的定义域,判定函数图象的左右位置,从函数的值域判断图象的上下位置; 从函数的单调性(有时借助导数),判断函数的图象的变换趋势; 从函数的奇偶性,判断图象的对称性; 从函数的周期性,判断函数的循环往复;从函数的特殊点(与坐标轴的交点,经过的定点,极值点等),排除不和要求的图象.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.C解析:C 【分析】根据已知条件可知()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增,由不等式在[]1,0x ∈-恒成立,结合()f x 的单调性、对称性即可求m 的取值范围.【详解】对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,知:()f x 在[2,)x ∈+∞上单调递增,()2f x +是偶函数,知:()f x 关于2x =对称,∴()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增;∵不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,且3211x -≤-≤-, ∴max (1)(21)(3)f m f x f +≥-=-即可,而根据对称性有(1)(7)f m f +≥, ∴综上知:13m +≤-或17m +≥,解得(][),46,x ∈-∞-+∞,故选:C 【点睛】结论点睛:注意抽象函数单调性、对称性判断 对任意的()1212,x x x x ≠:()()21210f x f x x x ->-有()f x 单调递增;()()21210f x f x x x -<-有()f x 单调递减;当()f x n +是偶函数,则()f x 关于x n =对称;思路点睛:对称型函数不等式在一个闭区间上恒成立:在对称轴两边取大于或小于该闭区间最值即可,结合函数区间单调性求解.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.B解析:B 【分析】利用奇偶性排除选项C 、D ;利用x →+∞时,()f x →+∞,排除A,从而可得结论. 【详解】 ∵f (-x )=( -x )2+2ln||2()x x --=x 2+2ln||2x x =f (x ),∴f (x )是偶函数,其图象关于y 轴对称,排除C,D ; 又x →+∞时,()f x →+∞,排除A, 故选B . 【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.二、填空题13.【分析】根据抽象函数的定义域的求法结合函数列出不等式组即可求解【详解】由题意函数的定义域是即则函数满足解得即函数的定义域是故答案为:【点睛】求抽象函数定义域的方法:已知函数的定义域为求复合函数的定义解析:31,2⎛⎤⎥⎝⎦【分析】根据抽象函数的定义域的求法,结合函数()g x =. 【详解】由题意,函数()y f x =的定义域是[0,2],即02x ≤≤,则函数()g x =021210x x ≤-≤⎧⎨->⎩,解得312x <≤,即函数()g x =31,2⎛⎤⎥⎝⎦. 故答案为:31,2⎛⎤ ⎥⎝⎦. 【点睛】求抽象函数定义域的方法:已知函数()f x 的定义域为[],a b ,求复合函数()[]f g x 的定义域时:可根据不等式()a g x b ≤≤解得x ,则x 的取值范围即为所求定义域;已知复合函数()[]f g x 的定义域为[],a b ,求函数()f x 的定义域,求出函数()y g x =([,])x a b ∈的值域,即为()y f x =的定义域.14.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x =-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.15.【分析】用赋值法由已知得到把转化为即再用定义法证明在上为减函数利用单调性可得答案【详解】因为对任意有令得所以令则所以可等价转化为即设当时则所以所以在上为减函数故由得得又所以原不等式的解集为故答案为:解析:()13, 【分析】用赋值法由已知得到()()()9332f f f =+=-,把()()612f x f x <--转化为()()61(9)f x f x f <-+,即()()699f x f x <-,再用定义法证明()f x 在(0,)+∞上为减函数,利用单调性可得答案. 【详解】因为对任意12,(0,)x x ∈+∞,有()()()f xyf x f y =+,令x y ==fff =+,得()231f f ==-,所以12f =-, 令3x y ==,则()()()9332f f f =+=-,所以()()612f x f x <--可等价转化为()()61(9)f x f x f <-+,即()()699f x f x <-,设120x x <<,12,(0,)x x ∈+∞,当1x > 时 ()0f x <,则()()()22211111·x x f x f x f f x f x x x ⎛⎫⎛⎫==+< ⎪ ⎪⎝⎭⎝⎭,所以()12()f x f x >,所以()f x 在(0,)+∞上为减函数,故由()()699f x f x <-, 得699x x >-,得3x <,又1x >,所以原不等式的解集为(1,3). 故答案为:(1,3) 【点睛】 思路点睛:确定抽象函数单调性解函数不等式的基本思路: 第一步(定性)确定函数在给定区间上的单调性和奇偶性;第二步(转化)将函数不等式转化为不等式类似()()f M f N <等形式;第三步(去)运用函数的单调性“去掉”函数的抽象符号f “”,转化成一般的不等式或不等式组;第四步(求解)解不等式或不等式组确定解集.16.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.17.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--. 所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.18.2021【分析】由已知条件利用换元法求出f (x )然后代入计算即可求解【详解】已知函数f (x )在定义域(0+∞)上是单调函数且对任意x ∈(0+∞)都有ff (x )﹣=2可设f (x )﹣=c 故f (x )=+c解析:2021 【分析】由已知条件,利用换元法求出f (x ),然后代入计算即可求解. 【详解】已知函数f (x )在定义域(0,+∞)上是单调函数,且对任意x ∈(0,+∞),都有f [f (x )﹣1x]=2, 可设f (x )﹣1x =c ,故f (x )=1x +c ,且f (c )=c +1c=2(c >0),解可得c =1,f (x )=1x+1, 则f (12020)=2021. 故答案为:2021 【点睛】本题主要考查了利用函数的单调性求函数值,函数解析式的求法,注意函数性质的合理应用,属于中档题.19.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得; 【详解】解:因为y =所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果.22.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式.【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析. 23.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解; (2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =.【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k的表达式. 【详解】(1)由①可得,函数14f x ⎛⎫- ⎪⎝⎭是偶函数, 将函数14f x ⎛⎫-⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-;(2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+.当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---;当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增, 于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.25.(1)2(1)2f x x x =++;单调递增区间为[-1,+∞),单调递减区间为(-∞,-1];(2)(-∞,1). 【分析】(1)由1x =-时二次函数最小值为0,求出,a b 得函数解析式,写单调区间即可;(2)可转化为21k x x <++在区间[-3,-1]上恒成立,求出21y x x =++最小值即可.【详解】(1)由题意知12(1)10ba f ab ⎧-=-⎪⎨⎪-=-+=⎩,解得12a b =⎧⎨=⎩,∴2(1)2f x x x =++.由2()(1)f x x =+知函数()f x 的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,221x x x k ++>+在区间[-3,-1]上恒成立, 即21k x x <++在区间[-3,-1]上恒成立,令2()1g x x x =++,x ∈[-3,-1],由213()()24g x x =++知 g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1, 所以k <1,故k 的取值范围是(-∞,1). 【点睛】关键点点睛:二次函数的解析式求法,大多用到待定系数法,本题需根据当1x =-时二次函数最小值为0,建立方程组求解,即可求出函数解析式.26.(1)()21f x ax x =-+,减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭;(2)50,4⎛⎤ ⎥⎝⎦. 【分析】(1)由()101a f f ⎛⎫⎪⎝⎭==,整理得()21f x ax x =-+,结合二次函数的性质,即可求解;(2)把“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”转化为()()max min 8f x f x -≤在[]1,3上恒成立,结合二次函数的图象与性质,分类讨论,即可求解.【详解】(1)由()101a f f ⎛⎫ ⎪⎝⎭==,可得()11(0)()f x a x x a -=--, 整理得()21f x ax x =-+, 因为0a >,则函数()21f x ax x =-+开口向上,对称轴方程为12x a =, 所以()f x 单调递减区间为1,2a ⎛-∞⎫ ⎪⎝⎭,()f x 单调递增区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)因为“对任意[]12,1,3x x ∈,()()128f x f x -≤恒成立”,即()()max min 8f x f x -≤在[]1,3上恒成立,由(1)知函数()21f x ax x =-+,①当12a ≥时,函数()f x 在区间[]1,3上单调递增 可得()()()()max min 31828f x f x f f a -=-=-≤,解得54a ≤,即1524a ≤≤; ②当106a <≤时,函数()f x 在区间[]1,3上单调递减 可得()()()()max min 13288f x f x f f a -=-=-≤,解得34a ≥-,即106a <≤; ③当1162a <<时,函数()f x 在区间11,2a ⎡⎤⎢⎥⎣⎦单调递减,在区间1,32a ⎡⎤⎢⎥⎣⎦单调递增, 可得()()(){}max max 1,3f x f f =,()min 1124f x f a a ⎛⎫==- ⎪⎝⎭则()()112118243113932824f f a a a f f a a a ⎧⎛⎫-=-+≤≤ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-+≤≤ ⎪⎪⎝⎭⎩,解得1162a <<, 综上所述:实数a 的取值范围是50,4⎛⎤ ⎥⎝⎦. 【点睛】由 恒成立求参数取值范围的思路及关键:一般有两个解题思路:一时分离参数法;二是不分离参数,采用最值法;两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否能分离,两种思路的依据为:()a f x ≥恒成立max ()a f x ⇔≥,()a f x ≤恒成立max ()a f x ⇔≤.。

推荐学习K12高中数学北师大版必修2习题:第二章解析几何初步2.2.3.1

推荐学习K12高中数学北师大版必修2习题:第二章解析几何初步2.2.3.1

2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系1.直线x+2y-1=0与圆2x2+2y2-4x-2y+1=0的位置关系是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心解析:由题意知,圆心坐标为(1,12),半径r=√32,圆心到直线的距离为d=√55<r,所以直线与圆相交但直线不过圆心,故选C.答案:C2.过原点且倾斜角为60°的直线l被圆x2+y2-4y=0所截得的弦长为()A.√3B.2C.√6D.2√3解析:过原点且倾斜角为60°的直线l的方程是√3x-y=0,圆x2+y2-4y=0的圆心为C(0,2),半径r=2,则C到直线l的距离d=√3+1=1,所以截得的弦长为2√r2-d2=2√3.答案:D3.与圆(x-2)2+y2=1相切且在两坐标轴上截距相等的直线共有()A.2条B.3条C.4条D.6条解析:与圆相切且在两坐标轴上截距相等的直线可分为两类:①截距为0时,可设直线方程为y=kx ,由|2k |√k +1=1,解得k=±√33;②截距不为0时,可设直线方程为x+y=a ,由|2-a |√2=1,解得a=2±√2.因此符合题意的直线共有4条.答案:C4.对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心解析:直线y=kx+1过定点(0,1),而02+12<2,所以点(0,1)在圆x 2+y 2=2内部,则直线y=kx+1与圆x 2+y 2=2相交但直线不经过圆心,故选C .答案:C5.设点在圆x 2+y 2+2x+4y-3=0上,且到直线x+y+1=0的距离为√2,这样的点共有( )A.1个B.2个C.3个D.4个解析:圆心为(-1,-2),半径r=2√2,而圆心到直线的距离d=√2=√2,故圆上有3个点满足题意.答案:C6.已知直线x-y+a=0与圆心为C 的圆x 2+y 2+2x-4y-4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为 .解析:由题意,得圆心C 的坐标为(-1,2),半径r=3.因为AC ⊥BC ,所以圆心C 到直线x-y+a=0的距离d=√2=√22r=3√22,即|-3+a|=3,所以a=0或a=6.答案:0或6★7.若直线kx-y+1=0与圆x 2+y 2+2x-my+1=0交于M ,N 两点,且M ,N 关于直线y=-x 对称,则|MN|= .解析:由圆的几何性质可得直线kx-y+1=0与直线y=-x 垂直,且圆心(-1,m 2)在直线y=-x 上,由此可得k=1,m=2,即M ,N 所在直线的方程为x-y+1=0,圆心为(-1,1),圆的半径r=1,则圆心到直线MN 的距离d=√2=√22.故|MN|=2√r 2-d 2=2√12-(√22)2=√2.答案:√28.已知圆C 的方程为x 2+y 2-8x-2y+12=0,求过圆内一点M (3,0)的最长弦和最短弦所在直线的方程,并求这个最长弦和最短弦的长度.解圆C 的方程为(x-4)2+(y-1)2=5,∴圆心C (4,1),半径r=√5.∴最长弦所在直线的斜率k=1-04-3=1,最短弦所在直线的斜率k'=-1.∴最长弦所在的直线方程为y=x-3,最长弦长为2r=2√5;最短弦所在的直线方程为y=-x+3,圆心到最短弦所在直线的距离d=√2=√2,最短弦长为2√(√5)2-(√2)2=2√3.9.已知圆C :x 2+(y-1)2=5,直线l :mx-y+1-m=0.(1)求证:对任意m ∈R ,直线l 与圆C 总有两个不同的交点;(2)设l 与圆C 交于A ,B 两点,若|AB|=√17,求l 的倾斜角.(1)证明由已知直线l :y-1=m (x-1),知直线l 恒过定点P (1,1),因为12=1<5,所以P 点在圆C 内,所以直线l 与圆C 总有两个不同的交点.(2)解设A (x 1,y 1),B (x 2,y 2),联立方程组{x 2+(y -1)2=5,mx -y +1-m =0,消去y 得(m 2+1)x 2-2m 2x+m 2-5=0,则x 1,x 2是一元二次方程的两个实根,因为|AB|=√1+m 2|x 1-x 2|,所以√17=√1+m 2·√16m 2+201+m 2,所以m 2=3,m=±√3, 所以l 的倾斜角为π3或2π3.10.已知直线l 过点A (6,1)且与圆C :x 2+y 2-8x+6y+21=0相切.(1)求圆C 的圆心坐标及半径;(2)求直线l 的方程.解(1)∵圆C 的方程可化为(x-4)2+(y+3)2=4, ∴圆心坐标为(4,-3),半径r=2.(2)当直线l 的斜率存在时,设直线l 的方程为y-1=k (x-6),即kx-y-6k+1=0,则圆心到直线l 的距离为d=√k +1=√k +1=2.由此解得k=34,此时直线l 的方程为3x-4y-14=0; 当直线l 的斜率不存在时,方程为x=6,满足题意.故直线l 的方程为3x-4y-14=0或x=6.★11.设半径为5的圆C 满足条件:①截y 轴所得弦长为6;②圆心在第一象限,且圆心到直线l :x+2y=0的距离为6√55.(1)求这个圆的方程;(2)求经过P (-1,0)与圆C 相切的直线方程.解(1)由题意,设圆心C的坐标为(a,b)(a>0,b>0),半径r=5.因为截y轴所得弦长为6,所以a2+9=25,因为a>0,所以a=4.又由圆心C到直线l:x+2y=0的距离为6√55,所以d=√5=6√55,因为b>0,所以b=1,所以圆的方程为(x-4)2+(y-1)2=25.(2)当斜率k存在时,设切线方程为y=k(x+1),因为圆心C到直线y=k(x+1)的距离为√1+k=5.所以k=-125,所以切线方程为12x+5y+12=0.当斜率k不存在时,方程x=-1,也满足题意.综上所述,切线方程为12x+5y+12=0或x=-1.。

新版高中数学北师大版必修1课件:第二章函数 2.2.2.2 (数理化网)

新版高中数学北师大版必修1课件:第二章函数 2.2.2.2 (数理化网)
3������,������ ≥ 4, 求实数������的取值范围.
解:当a≤-2时,f(a)=a<-3,解得a<-3; 当-2<a<4时,f(a)=a+1<-3,解得a<-4,无解; 当a≥4时,f(a)=3a<-3,解得a<-1,无解. 综上所述,实数a的取值范围是(-∞,-3).
目标导航
Z D 知识梳理 HISHISHULI
=
3 2
,
解得a=2
满足条件;
当-1≤a≤1 时,f(a)=a2+1=
3 2
,
解得a=±
2 2
,
满足条件;

a<-1
时,f(a)=2a+3=
3 2
,
解得a=−
3 4
>
−1(舍去).
综上所述,a=2 或 a=± 22.
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
10,0 < ������ ≤ 4, 故所求的函数解析式为 y= 1.2������ + 5.2,4 < ������ ≤ 18,
1.8������-5.6,������ > 18.
(2)当x=20时,y=1.8×20-5.6=30.4.
所以此人要付30.4元车费.
目标导航
Z D 知识梳理 HISHISHULI
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三 题型四

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

高中数学必修1第二章《函数》单元测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.若()f x (3)f = ( )A 、2B 、4 C、、10 2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 ( )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与1()g x x=; ④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx(1)(2)(3)(4)8.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥510.设函数x x xf =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

新教材北师大版必修第一册 第二章2.2函数的表示法1函数的表示法 课件(49张)

新教材北师大版必修第一册   第二章2.2函数的表示法1函数的表示法   课件(49张)
x
所以f(x)=- 1.
x
=-
x
,
3
xx
【补偿训练】
已知f(x)满足f(x)=2f ( 1 )+x,则f(x)的解析式为________.
x
【解析】因为f(x)=2f ( 1+) x,用
x
替1 换x得f
x
=( 12)f(x)+
x
,1
x
代入上式得f(x)= 2[2f x 1 ] x,
x
解得f(x)= 2 . x
【补偿训练】 某公共汽车,行进的站数与票价关系如表:
行进的 站数
票价
123456789 111222333
此函数的关系除了列表之外,能否用其他方法表示?
类型二 函数的图象及其应用(直观想象) 【典例】1.(2020·徐州高一检测)函数y= x2 的图象的大致形状是( )
x
2.已知函数f(x)=x2-2x(-1≤x≤2). (1)画出f(x)图象的简图. (2)根据图象写出f(x)的值域. 【思路导引】1.分x>0,x<0两种情况作出判断. 2.先作出图象,再根据图象写值域.
【跟踪训练】 作出下列函数的图象并写出其值域. (1)y=-x,x∈{0,1,-2,3}. (2)y= 2 ,x∈[2,+∞).
x
【拓展延伸】关于图象变换的常见结论有哪些? 提示:(1)y=f(x)与y=f(-x)的图象关于y轴对称. (2)y=f(x)与y=-f(x)的图象关于x轴对称. (3)y=f(x)与y=-f(-x)的图象关于点(0,0)对称. (4)y=f(|x|)是保留y=f(x)的y轴右边的图象,去掉y轴左边的图象,且将右边图象 沿y轴对折而成. (5)y=|f(x)|是保留y=f(x)的x轴上方的图象,将x轴下方的图象沿x轴对折且去掉 x轴下方的图象而成.

【K12小初高学习】新版高中数学北师大版必修1习题:第二章函数 2.1-2.2.1

【K12小初高学习】新版高中数学北师大版必修1习题:第二章函数 2.1-2.2.1

§1生活中的变量关系§2对函数的进一步认识2.1函数概念课时过关·能力提升1已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}答案:D2函数f(x)=(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]解析:由x2+1≥1,得0<≤1,故函数f(x)的值域为(0,1].答案:B3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有()A.0个B.1个C.2个D.0个或多个解析:函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点个数有1个,故选B.答案:B4已知等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系为y=10-2x,则此函数的定义域为()A.RB.{x|x>0}C.{x|0<x<5}D.解析:∵等腰三角形的周长为10,∴<x<5.答案:D5已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表,则方程g(f(x))=x的解集为()A.{1}B.{2}C.{3}D.⌀解析:当x=1时,g(f(1))=g(2)=2,不符合题意;当x=2时,g(f(2))=g(3)=1,不符合题意;当x=3时,g(f(3))=g(1)=3,符合题意.故选C.答案:C★6若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的值是() A.a=-1或a=3 B.a=-1C.a=3D.a不存在解析:因为函数f(x)的定义域和值域都为R,所以函数f(x)为一次函数,即解得a=-1.故选B.答案:B7函数y=的定义域是.解析:要使该函数有意义,则x+2≥0,故x≥-2.答案:{x|x≥-2}8已知集合M={x|y=x2+1},集合N={y|y=x2+1},则M∩N=.解析:∵M=R,N={y|y≥1},∴M∩N={y|y≥1}.答案:{y|y≥1}9函数f(x)=(-2)0+的定义域是.答案:{x|x>1,且x≠5}10已知函数f(x)=.(1)求f(2);(2)求函数f(x)的值域.解(1)f(2)=.(2)f(x)==1-,又≠0,∴1-≠1,∴f(x)≠1,故函数f(x)的值域是(-∞,1)∪(1,+∞).11若f{f[f(x)]}=27x+26,求一次函数f(x)的解析式.解设f(x)=ax+b(a≠0),则f[f(x)]=a2x+ab+b,f{f[f(x)]}=a(a2x+ab+b)+b=a3x+a2b+ab+b,所以解得则f(x)=3x+2.★12已知函数f(x)=.(1)求f(2)与f,f(3)与f.(2)由(1)中求得的结果,你能发现f(x)与f的关系吗?并证明你的发现.(3)求f(1)+f(2)+f(3)+…+f(2 016)+f+f+…+f.解(1)∵f(x)=,∴f(2)=,f,f(3)=,f.(2)由(1)中的结果发现f(x)+f=1.证明如下:f(x)+f==1.(3)f(1)=.由(2)知f(2)+f=1,f(3)+f=1,…f(2 016)+f=1,∴原式==2 015+.。

北京师范大学附属中学必修一第二单元《函数》测试题(答案解析)

北京师范大学附属中学必修一第二单元《函数》测试题(答案解析)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-4.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫-⎪⎝⎭D .以上都不对5.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 6.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .77.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确8.已知定义在R 上的函数()f x 的图像关于y 轴对称,且当0x >时()f x 单调递减,若()()()1.360.5log 3,0.5,0.7,a f b f c f -===则,,a b c 的大小关系( )A .c a b >>B .b a c >>C .a c b >>D .c b a >>9.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a10.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-11.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃12.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-二、填空题13.若函数()y f x =的定义域是[0,2],则函数()1g x x =-的定义域是______. 14.函数()12x f x =-的定义域是__________.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.设奇函数()f x 的定义域为[]5,5-,若当[]0,5x ∈时,()f x 的图象如图,则不等式()0xf x <的解集是___________.17.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .18.已知函数()f x 在定义域(0,)+∞上是单调函数,若对任意(0,)x ∈+∞,都有1()2f f x x ⎡⎤-=⎢⎥⎣⎦,则12020f ⎛⎫⎪⎝⎭的值是______________.19.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.20.若函数()log (3)4,1(43)41,1a x x f x a x a x ++≥-⎧=⎨-+-<-⎩且满足对任意的实数m n ≠都有()()0f m f n m n -<-成立,则实数a 的取值范围____.三、解答题21.已知函数()21f x x=- (1)证明函数()f x 在()0,∞+上是减函数. (2)求函数()f x 在[)2,x ∈+∞时的值域. 22.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知二次函数 ()f x 的值域为[4,)-+∞,且不等式0( )f x <的解集为(1,3)-. (1)求()f x 的解析式;(2)若对于任意的[2,2]x ∈-,都有2() f x x m >+恒成立,求实数m 的取值范围. 25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式.26.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

北师版高中数学必修第一册课后习题 第2章函数 2.2 函数的表示法

北师版高中数学必修第一册课后习题 第2章函数 2.2 函数的表示法

2.2 函数的表示法课后训练巩固提升1.函数y=f(x)的图象如图所示,则函数y=f(x)的解析式为( ).A.f(x)=(x-a)2(b-x)B.f(x)=(x-a)2(x+b)C.f(x)=-(x-a)2(x+b)D.f(x)=(x-a)2(x-b),当x=b时,f(x)=0,故排除B,C;又当x>b时,f(x)<0,故排除D.2.(多选题)已知f(2x+1)=4x2,则下列结论正确的是( ).A.f(3)=36B.f(-3)=16C.f(x)=16x2+16x+4D.f(x)=x2-2x+12x+1=3时,x=1,因此f(3)=4×12=4;当2x+1=-3时,x=-2,因此f(-3)=4×(-2)2=16;令2x+1=t,则x=t -12,因此有f(t)=t 2-2t+1,即f(x)=x 2-2x+1.3.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中点A(1,3),B(2,1),C(3,2),则f(g(2))的值为( ).(第3题)A.3B.2C.1D.0y=g(x)的图象与y=f(x)的对应关系表可知g(2)=1,f(1)=2,所以f(g(2))=f(1)=2.4.已知函数g(x)=1-2x,f(g(x))=1-x 2x 2(x≠0),则f(0)等于( ).A.-3B.-32C.32D.3g(x)=1-2x=0,得x=12,则f(0)=1-(12)2(12)2=3414=3.故选D.5.已知函数f(x)满足:f(x-1x)=x 2+1x2,则f(x)的解析式为( ).A.f(x)=x 2+2B.f(x)=x 2C.f(x)=x 2+2(x≠0)D.f(x)=x 2-2(x≠0)f(x-1x)=x 2+1x2=(x-1x)2+2,∴f(x)=x 2+2,故选A.6.已知函数f(x)对任意x ∈R,且x≠0均有f(x)+2f(1024x)=3x,则f(1024)= .x=1和x=1024,得{f (1)+2f (1024)=3,f (1024)+2f (1)=3072,解得f(1024)=-1022.7.已知函数f(x-1)=x 2-4x,求函数f(x),f(2x+1)的解析式.f(x-1)=x 2-4x,令x-1=t,则x=t+1,所以f(t)=(t+1)2-4(t+1)=t 2-2t-3,即f(x)=x 2-2x-3.因此f(2x+1)=(2x+1)2-2(2x+1)-3=4x 2-4.8.(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x)的解析式; (2)已知f(x)是二次函数,且f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.∵f(x)是一次函数,∴可设f(x)=ax+b(a≠0),则f(f(x))=f(ax+b)=a(ax+b)+b=a 2x+ab+b. 又f(f(x))=4x-1,∴a 2x+ab+b=4x-1. 则{a 2=4,ab +b =-1,解得{a =2,b =-13,或{a =-2,b =1. ∴f(x)=2x-13,或f(x)=-2x+1.(2)∵f(x)是二次函数, ∴可设f(x)=ax 2+bx+c(a≠0). 由f(0)=1,知c=1. 又f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-ax 2-bx-1=2x. 整理得2ax+(a+b)=2x.∴{2a =2,a +b =0,解得{a =1,b =-1.∴f(x)=x 2-x+1.1.数学家狄利克雷曾提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数”.这个定义较清楚地说明了函数的内涵:只要有一个法则,使得x 在取值范围中的每一个值,都有一个确定的y 和它对应就行了,不管这个对应法则是公式、图象、表格,还是其他形式.已知函数f(x)由下表给出,则f (10f (12))的值为( ).A.0B.1C.2D.3解析:因为12∈(-∞,1],所以f 12=1,则10f12=10,所以f 10f12=f(10).又因为10∈[2,+∞),所以f(10)=3.2.已知f(x-1)=x 2+4x-5,则f(x)的解析式是( ). A.f(x)=x 2+6x B.f(x)=x 2+8x+7 C.f(x)=x 2+2x-3D.f(x)=x 2+6x-10x-1=t,则x=t+1,所以f(t)=(t+1)2+4(t+1)-5=t 2+6t.所以f(x)=x 2+6x.3.如图,☉O 的半径为2,点A,B,C,D 为☉O 的四等分点,在☉O 内有两条半圆弧,一质点M 自点A 开始沿弧按A-B-C-O-A-D-C 的顺序做匀速运动,则其在水平方向(向右为正)的速度v=v(t)的图象大致为( ).AB⏜=BC ⏜=CD ⏜=DA ⏜=14×π×2×2=π,CO ⏜=OA ⏜=12×π×2×1=π,所以质点M 自点A 开始沿弧按A-B-C-O-A-D-C 的顺序做匀速运动时,走每一段弧所用的时间比为1∶1∶1∶1∶1∶1.又因为在水平方向上向右的速度为正,所以在AB⏜段速度为负,BC ⏜段速度为正,CO ⏜段速度先正后负,OA ⏜段速度先负后正,AD ⏜段速度为正,DC ⏜段速度为负,所以满足条件的函数图象是B.4.(多选题)设f(x)=1+x 21-x 2,则下列结论错误的是( ).A.f(-x)=-f(x)B.f(1x)=-f(x)C.f(-1x)=f(x) D.f(-x)=f(x)f(x)=1+x 21-x 2,所以f(-x)=1+(-x )21-(-x )2=f(x),f(1x )=1+(1x ) 21-(1x)2=x 2+1x 2-1=-f(x),f(-1x )=1+(-1x ) 21-(-1x)2=x 2+1x 2-1=-f(x),所以AC 错误.5.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则y 关于x 的函数解析式为 .20,腰长为x,所以底边长y=20-2x,又20-2x>0,所以x<10,又三边长必须构成三角形,所以2x>y,即2x>20-2x,所以x>5,故y=20-2x(5<x<10).6.已知函数F(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且F (13)=16,F(1)=8,则F(x)的解析式为 .f(x)=k 1x(k 1≠0),g(x)=k2x (k 2≠0),则由F (13)=16,F(1)=8,得{13k 1+3k 2=16,k 1+k 2=8,解得{k 1=3,k 2=5,故F(x)=3x+5x .:F(x)=3x+5x7.某客运公司确定车票价格的方法是:如果行程不超过100 km,票价是每千米0.5元;如果超过100 km,超过部分按每千米0.4元定价,则客运车票价格y(元)与行程数x(km)之间的函数关系式是 .0≤x≤100时,y=0.5x;当x>100时,y=100×0.5+(x -100)×0.4=10+0.4x. 所以y={0.5x ,0≤x ≤100,10+0.4x ,x >100.{0.5x ,0≤x ≤100,10+0.4x ,x >1008.已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立. (1)求f(0)与f(1)的值; (2)求证:f (1x)=-f(x);(3)若f(2)=p,f(3)=q(p,q 均为常数),求f(36)的值.a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.a=1x ,b=x,得f(1)=f (1x )+f(x)=0,即f (1x)=-f(x).a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q. 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.。

【K12小初高学习】新版高中数学北师大版必修1习题:第二章函数 2.2.2.1

【K12小初高学习】新版高中数学北师大版必修1习题:第二章函数 2.2.2.1

2.2函数的表示法第1课时函数的三种表示方法课时过关·能力提升1已知函数f(x),g(x)分别由下表给出:则f(g(1))=()A.2B.1C.3D.不确定解析:由已知得g(1)=3,所以f(g(1))=f(3)=1.答案:B2去年国庆长假期间,某日8时至16时累计参观故宫人数的折线图如图所示,那么在8时~9时,9时~10时,…,15时~16时的八个时段中,入宫人数最多的时段是()A.8时~9时B.11时~12时C.13时~14时D.15时~16时解析:结合函数图像可知,在8时~9时,9时~10时,…,15时~16时的八个时段中,图像变化最快的,增加得最快的是11时~12时之间,故选B.答案:B3若f,则当x≠0,且x≠1时,f(x)=()A. B.C. D.-1答案:B4下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x解析:因为f(2x)=|2x|=2|x|=2f(x),所以A满足要求;因为f(2x)=2x-|2x|=2(x-|x|)=2f(x),所以B满足要求;因为f(2x)=2x+1≠2(x+1)=2f(x),所以C不满足要求;因为f(2x)=-2x=2f(x),所以D满足要求.故选C.答案:C5若函数y=f(x)的定义域是[0,2],则函数y=f(2x-1)的定义域是()A.[0,1]B.[0,2]C.D.[-1,3]解析:因为函数y=f(x)的定义域是[0,2],即0≤x≤2,所以0≤2x-1≤2,解得≤x≤.因此y=f(2x-1)的定义域是.答案:C6已知函数g(x)=1-2x,f[g(x)]=(x≠0),则f(0)等于()A.-3B.-C.D.3解析:令g(x)=1-2x=0,则x=,则f(0)==3.故选D.答案:D7函数f(n)对任意实数n满足条件f(n+3)=,若f(1)=6,则f(7)的值为.解析:由f(n+3)=得,f(7)==f(1)=6.答案:6★8若2f(x)+f=2x+(x≠0),则f(2)=.答案:9如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),那么f的值等于.解析:由函数f(x)的图像,知f(1)=2,f(3)=1,则f=f(1)=2.答案:210求下列函数的解析式:(1)已知f(x+1)=x2-3x+2,求f(x);(2)已知f(1-x)=,求f(x).解(1)∵f(x+1)=x2-3x+2=(x+1)2-5x+1=(x+1)2-5(x+1)+6,∴f(x)=x2-5x+6.(2)令1-x=t,则x=1-t.又1-x2≥0,∴-1≤x≤1,∴0≤1-x≤2,即0≤t≤2.∴f(t)=(0≤t≤2).∴f(x)=(0≤x≤2).★11已知函数f(x)=(a,b为常数,且a≠0),满足f(2)=1,且f(x)=x有唯一解,(1)求函数y=f(x)的解析式.(2)求f(f(-3))的值.解(1)∵f(2)=1,∴=1,即2a+b=2.①又f(x)=x有唯一解,即=x有唯一解,∴ax2+(b-1)x=0有两个相等的实数根,∴Δ=(b-1)2=0,∴b=1,代入①得a=,∴f(x)=.(2)由(1)知f(-3)==6,故f(f(-3))=f(6)=.★12已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0)与f(1)的值;(2)求证:f=-f(x);(3)若f(2)=p,f(3)=q(p,q均为常数),求f(36).(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)证明令a=,b=x,得f(1)=f+f(x)=0,即f=-f(x).(3)解令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q.令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.。

新版高中数学北师大版必修1习题:第2章函数 2.3.2

新版高中数学北师大版必修1习题:第2章函数 2.3.2

第2课时 函数的单调性的应用课时过关·能力提升1函数y =(a -1)x 在[1,3]上的最|大值是2,那么a =( )A.1B.53C.2D.3解析:当a -1>0时,函数y =(a -1)x 在[1,3]上是增加的,∴由y max =3(a -1) =2,得a =53.当a -1<0时,函数y =(a -1)x 在[1,3]上是减少的,∴由y max =a -1 =2,得a =3(舍去).综上所述,a =53,应选B .答案:B2函数f (x ) =1x 在[1,b ](b>1)上的最|小值是14,那么b =( ) A.2 B.3 C.4 D.5解析:由于函数f (x )在[0, +∞)上是减少的,所以f (x )在[1,b ]上是减少的,所以f (x )min =f (b ) =14,所以b =4.应选C .答案:C3假设不等式 -x +a +1≥0对一切x ∈(0,12]成立,那么a 的最|小值为( )A.0B. -2C. -52 D. -12答案:D4函数f (x )是R 上的增函数,A (0, -2),B (3,2)是其图像上的两点,那么|f (x +1)|<2的解集是() A.(1,4) B.( -1,2)C.( -∞,1)∪[4, +∞) D .( -∞, -1)∪[2, +∞)答案:B★5函数f (x ) =2 +bx 在[ -2,2]上的最|大值与最|小值的差为4,那么b 的值是( )A.1B. -1C.1或 -1D.0解析:由题意知b ≠0,当b>0时,f (x )max =2 +2b ,f (x )min =2 -2b ,∴2 +2b -(2 -2b ) =2 +2b -2 +2b =4b ,∴4b =4,∴b =1.当b<0时,f (x )max =2 -2b ,f (x )min =2 +2b ,∴2 -2b -(2 +2b ) = -4b ,∴ -4b =4,∴b = -1,综上,b =1或 -1.答案:C6函数f (x ) =a x+1在[3,5]上的最|大值为 -13,那么a = .解析:由题意知,a>0时,f (x ) =a x+1在[3,5]上的函数值为正,a =0时,f (x ) =0无最|值,所以a<0,f (x ) =a x+1在[3,5]上是增加的,f (5) =a 5+1 = -13,a = -2.答案: -27函数y =f (x )的定义域为[a ,b ],a<c<b ,当x ∈[a ,c ]时,f (x )是减少的;当x ∈[c ,b ]时,f (x )是增加的,那么以下说法正确的有 (填序号).①f (x )的最|大值为f (c );②f (x )的最|小值为f (c );③f (x )有最|小值但无最|大值;④f (x )既有最|大值,又有最|小值;⑤f (x )的最|大值为f (a ).解析:∵函数y =f (x )在区间[a ,c ]上是减少的,在区间[c ,b ]上是增加的,∴f (x )min =f (c ).由于无法比拟f (a )与f (b )的大小,故无法确定f (x )的最|大值,但函数f (x )在[a ,b ]上定存在最|大值,故②④正确.答案:②④8假设f (x ) ={x +7,x ∈[-1,1],2x +6,x ∈(1,2],求f (x )的最|大值和最|小值. 解由题意知,当x ∈[1,2]时,f (x ) =2x +6,函数是增加的,∴f (x ) =2x +6的最|大值、最|小值分别为10,8;∵x ∈[ -1,1]时,f (x ) =x +7,函数f (x )是增加的,∴f (x ) =x +7的最|大值、最|小值分别为8,6.∴f (x )的最|大值、最|小值分别为10,6.9函数f (x ) =x 2 -2ax +5(a>1),假设f (x )的定义域和值域均是[1,a ],求实数a 的值.解∵f (x )的图像开口向上,对称轴方程x =a>1,∴f (x )在[1,a ]上是减少的,∴f (x )的最|大值为f (1) =6 -2a ,f (x )的最|小值为f (a ) =5 -a 2,∴6 -2a =a ,5 -a 2 =1,解得a =2.10求函数f (x ) =x +4x 在x ∈[1,2]上的最|大值与最|小值.解设任意x 1,x 2∈[1,2],且x 1<x 2,那么f (x 1) -f (x 2) =(x 1+4x 1)−(x 2+4x 2) =(x 1 -x 2) +(4x 1-4x 2)=(x 1-x 2)(x 1x 2-4)x 1x 2. ∵1≤x 1<x 2≤2,∴x 1x 2>0,x 1 -x 2<0,x 1x 2 -4<0.∴f (x 1) -f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在区间[1,2]上是减少的.∴当x =1时,f (x )max =f (1) =5;当x =2时,f (x )min =f (2) =2 +42 =4.★11函数f (x ) =x 2 +ax +3在区间[ -1,1]上的最|小值为 -3,求实数a 的值.解∵f (x ) =x 2 +ax +3 =(x +a 2)2−a 24 +3,对称轴为直线x = -a 2,∴当 -a 2< -1,即a>2时,f (x )min =f ( -1) =4 -a = -3,得a =7. 当 -1≤ -a 2≤1,即 -2≤a ≤2时,f (x )min =f (-a 2) = -a 24+3 = -3,∴a =±2√6(舍去); 当 -a 2>1,即a< -2时,f (x )min =f (1) =4 +a = -3,∴a = -7.综上所述,a =±7.★12函数f (x )的定义域为R ,对于任意的x ,y ∈R ,都有f (x +y ) =f (x ) +f (y ),f (x ) = -f ( -x ),且当x>0时,f (x )<0,假设f ( -1) =2.(1)求证:f (x )是R 上的减函数;(2)求函数f (x )在区间[ -2,4]上的值域.(1)证明任取x 1,x 2∈R ,且x 1<x 2,那么f (x 2) -f (x 1) =f (x 2) +f ( -x 1) =f (x 2 -x 1).又x 2 -x 1>0,∴f (x 2 -x 1)<0,∴f (x 2) -f (x 1)<0,即f (x 1)>f (x 2).故f (x )是R 上的减函数.(2)解∵f ( -1) =2,∴f ( -2) =f ( -1) +f ( -1) =4.又f (x ) = -f ( -x ),∴f (2) = -f ( -2) = -4,∴f (4) =f (2) +f (2) = -8.由(1)知f (x )是R 上的减函数,∴当x = -2时,f (x )取得最|大值,最|大值为f ( -2) =4;当x =4时,f (x )取得最|小值,最|小值为f (4) = -8.∴函数f (x )在区间[ -2,4]上的值域为[ -8,4].。

【精品提分练习】新版高中数学北师大版必修1习题:第二章函数 2.2.3

【精品提分练习】新版高中数学北师大版必修1习题:第二章函数 2.2.3

2.3映射课时过关·能力提升1映射f:A→B,在f作用下A中元素(x,y)与B中元素(x-1,3-y)对应,则与B中元素(0,1)对应的A中元素是()A.(-1,2)B.(0,3)C.(1,2)D.(-1,3)答案:C2下列从集合A到集合B的对应中为映射的是()A.A=B=N+,对应关系f:x→y=|x-3|B.A=R,B={0,1},对应关系f:x→y=C.A={x|x>0},B={y|y∈R},对应关系f:x→y=±D.A=Z,B=Q,对应关系f:x→y=答案:B3集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满足f(a)+f(b)=0,那么这样的映射f:A→B的个数为()A.2B.3C.5D.8解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.答案:B4已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原像分别是5和9,则6在f下的像是() A.3 B.4 C.5 D.6解析:因为3和7的原像分别是5和9,所以解得-即f:x→y=x-2,所以当x=6时,y=6-2=4,故选B.答案:B5已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的像,且对任意的a ∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是()A.4B.5C.6D.7解析:对应关系是f:a→|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.答案:A6若A到B的映射f:x→3x-1,B到C的映射g:y→,则A到C的映射h:x→.解析:由题意,得y=3x-1,.--.故h:x→-答案:-7设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素对应B中的元素3.解析:对应关系为f:n→2n+n,根据2n+n=3,可得n=1.答案:18设a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为.解析:∵f:x→x,∴M=N,∴=0,a=1,b=0.故a+b=1.答案:19设f,g都是由A到A的映射(其中A={1,2,3}),其对应关系如下表:设a=g(f(3)),b=g(g(2)),c=f(g(f(1))).试判断a,b,c的大小关系.解∵a=g(f(3))=g(1)=2,b=g(g(2))=g(1)=2,c=f(g(f(1)))=f(g(2))=f(1)=2,∴a=b=c.10设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y).(1)求A中元素(-1,2)的像;(2)求B中元素(-1,2)的原像.解(1)A中元素(-1,2)在B中对应的元素为(-1-2,-1+2),即A中元素(-1,2)的像为(-3,1).(2)设A中元素(x,y)与B中元素(-1,2)对应,则由--解得所以B中元素(-1,2)的原像为.11已知从集合A到集合B={0,1,2,3}的映射f:x→-,试问集合A中的元素最多有几个?写出元素最多时的集合A.解∵f:x→-是从集合A到集合B的映射,∴A中每一个元素在集合B中都有像.令-=0,则该方程无解,故0没有原像.分别令-=1,2,3可得x=±2,±,±.故集合A中的元素最多为6个,即A=---.★12设映射f:A→B,其中A=B={(x,y)|x,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).(1)求A中元素(3,4)的像.(2)求B中元素(5,10)的原像.(3)A中是否存在这样的元素(a,b)使它的像仍是它本身?若有,求出这个元素;反之,说明理由.解(1)因为所以--所以集合A中元素(3,4)的像是(2,23).(2)因为--所以所以集合B中元素(5,10)的原像是(2,1).(3)因为--即--解得所以存在元素使它的像仍是它本身.。

新版高中数学北师大版必修1课件:第二章函数 2.2.2.1 (数理化网)

新版高中数学北师大版必修1课件:第二章函数 2.2.2.1 (数理化网)

.
错解:∵函数
f(x)=
������2 ������2-9
,
������(������)
=
������

3,
ℎ(������)
=
������3+������3,
∴f(x)g(x)+h(x)=
������2 ������+3
+
3������ ������+3
=
������.
答案:x
错因分析:本题错在求解析式时忽视了函数的定义域,造成结论
(2)所给函数可写成 y=
������-1,������ ≥ 1, 1-������,������ < 1,
其图像是端点为(1,0)的两条射线,如图②.
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三 题型四 题型五
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
名师点拨函数的三种表示方法的优缺点比较.
【做一做】 已知函数f(x+1)=3x+2,则f(x)的解析式是( ) A.f(x)=3x+2 B.f(x)=3x+1 C.f(x)=3x-1 D.f(x)=3x+4 解析:设x+1=t,则x=t-1,则f(t)=3(t-1)+2=3t-1,则f(x)=3x-1. 答案:C

最新北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(2)

最新北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(2)

一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=2.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个4.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .y =C .2x y =D .||y x x =-5.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)6.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .79.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]10.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f11.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-12.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1B .0C .-1D .a二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.函数222421x x y x ++=+的值域为_________. 15.函数2()2f x x x =-,()1g x ax =+(0a >),若对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =,则a 的取值范围是___________.16.已知函数2123y kx kx =++的定义域为R ,则实数k 的取值范围是__________.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.19.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.20.若函数234y x x =--的定义域为[0,]m ,值域为25[,4]4--,则m 的取值范围______.三、解答题21.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 22.已知2()4xf x x =+,(2,2)x ∈-. (1)用定义判断并证明函数()f x 在(2,2)-上的单调性; (2)若(2)(21)f a f a +>-,求实数a 的取值范围. 23.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <⋅,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围.24.已知函数()0ky x k x=+>在区间(单调递减,在区间)+∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围.25.已知函数()21ax bf x x +=+(其中a >0)为奇函数.(1)求实数b 的值;(2)证明:()f x 在()01,上是增函数,在()1+∞,上是减函数; (3)若存在实数m ,n (0<m <n ),使得m ≤()f x ≤n 的解集为[]m n ,,求a 的取值范围.26.已知二次函数2()23=-+f x x x . (Ⅰ)求函数()2log 2y f x =+,1,44x ⎛⎤∈⎥⎝⎦的值域; (Ⅱ)若对任意互不相同的21,(2,4)x x ∈,都有()()1212f x f x k x x -<-成立,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.C解析:C【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有:(1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;8.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 9.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e--⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.10.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.11.D解析:D 【分析】按0a >和0a <分类解不等式即可得. 【详解】[()()]0a f a f a -->,若0a >,则()()0f a f a -->,即1[2()1]0a a +--⨯-->,解得2a <,所以02a <<,若0a <,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为(2,0)(0,2)-.【点睛】本题考查解不等式,解题方法是分类讨论.掌握分类讨论的思想方法是解题关键.12.C解析:C 【分析】根据分段函数的解析式,代入求值即可. 【详解】因为log ,0(),0a x x x f x a x >⎧=⎨≤⎩,所以11(1)f aa --==, 所以11((1))()log 1a f f f a a--===-,故选:C 【点睛】本题主要考查了利用分段函数的解析式,求函数值,涉及指数函数与对数函数的运算,属于中档题.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++ 1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求. 【详解】因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .15.【分析】求出在上的值域再求出在上的值域由可得的范围【详解】所以又所以时因为对任意的存在使所以解得故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:一般地已知函数(1)若总解析:7,2⎡⎫+∞⎪⎢⎣⎭【分析】求出()f x 在[2,2]-上的值域A ,再求出()g x 在[2,2]-上的值域B ,由A B ⊆可得a 的范围. 【详解】2()2f x x x =-2(1)1x =--,[2,2]x ∈-,所以()[1,8]f x ∈-,又0a >,所以[2,2]x ∈-时,()1[21,21]g x ax a a =+∈-++, 因为对任意的[]12,2x ∈-,存在[]22,2x ∈-,使12()()f x g x =, 所以211218a a -+≤-⎧⎨+≥⎩,解得72a ≥.故答案为:7,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .16.【解析】解:当k=0时满足条件当时综上:点睛:定义域为分母在上都不为0注意分母不一定为二次所以先考虑二次项系数为零解析:0k ≤<3. 【解析】 解: 当k=0时,13y =,满足条件 当k 0≠时,24120k k -< 综上:0k 3≤<.点睛:定义域为R ,分母在R 上都不为0,注意分母不一定为二次,所以先考虑二次项系数为零.17.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数解析:2 【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解. 【详解】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意;当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2. 【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.18.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .19.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤.故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.20.;【分析】根据函数的函数值结合函数的图象即可求解【详解】又故由二次函数图象可知:要使函数的定义域为值域为的值最小为;最大为3的取值范围是:故【点睛】本题考查了二次函数的定义域值域特别是利用抛物线的对解析:332m ≤≤; 【分析】根据函数的函数值325()24f =-,()(0)34f f ==-,结合函数的图象即可求解.【详解】22325()34()24f x x x x =--=--,325()24f ∴=-,又()(0)34f f ==-,故由二次函数图象可知:要使函数234y x x =--的定义域为[0,]m ,值域为25[,4]4-- m 的值最小为32;最大为3.m 的取值范围是:332m . 故332m【点睛】本题考查了二次函数的定义域、值域,特别是利用抛物线的对称特点进行解题,考查了数形结合思想,属于基础题.三、解答题21.(1)奇函数;(2)证明见解析;(3)172,4-- 【分析】(1)直接利用函数的奇偶性定义判断即可;(2)利用单调性定义进行判断证明:取值、作差、定号、得结论; (3)利用(2)的结论,得到函数在区间上的单调性,进一步求得最值. 【详解】 函数1()f x x x=+的定义域为(-∞,0)(0⋃,)+∞ (1)因为对任意的0x ≠,都有11()()()()()f x x x f x x x-=+-=-+=--, 故函数()f x 为奇函数.(2)对区间[)1,+∞上的任意两个数1x 、2x ,且12x x <,则121212121212111()()()()()x x f x f x x x x x x x x x --=+-+=-. 由于1x 、[)21x ∈+∞,且12x x <,则121x x >,1210x x ->,120x x -<. 从而12())0(f x f x -<即12()()f x f x <,因此函数()f x 在区间[)1,+∞上为增函数. (3)由(2)知,函数()f x 在区间[)1,+∞上为增函数,由(1)知,函数()f x 是奇函数,所以函数()f x 在区间(],1-∞-上为增函数,则函数()f x 在区间[]41--,上为增函数, 故()min f x =()1744f -=-,()()12max f x f =-=-. 【点睛】方法点睛:判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为奇函数);(2)和差法, ()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) . 22.(1)增函数,证明见解析;(2)1,02⎛⎫- ⎪⎝⎭. 【分析】(1)()f x 在(2,2)-上为增函数,任取1x ,2(2,2)x ∈-,且12x x <,化简()()12f x f x -并判断与零的大小关系,得出结论;(2)利用函数的定义域和单调性,列出不等式组,解出实数a 的取值范围. 【详解】(1)()f x 在(2,2)-上为增函数. 证明:任取1x ,2(2,2)x ∈-,且12x x <,所以()()1212221244x x f x f x x x -=-++()()()()21122212444x x x x x x --=++. 因为1222x x -<<<, 所以210x x ->,1240x x -<则()()120f x f x -<,即()()12f x f x <, 所以函数()f x 在(2,2)-上为增函数.(2)解:由(1)知,()f x 在(2,2)-上单调递增,又(2)(21)f a f a +>-,所以222,2212,221,a a a a -<+<⎧⎪-<-<⎨⎪+>-⎩解得40,13,223,a a a -<<⎧⎪⎪-<<⎨⎪<⎪⎩即102a -<<, 所以a 的取值范围是1,02⎛⎫- ⎪⎝⎭. 【点睛】方法点睛:本题考查定义法判断函数的单调性,考查利用函数的单调性解不等式,考查学生计算能力,定义法证明单调性的步骤:取值,在定义域或者给定区间上任意取任取12,x x ,不妨设12x x <;作差,变形,对()()21f x f x -化简,通过因式分解或者配方法等,判断出差值的符号; 定号,确定差值的符号,当符号不确定时,可以分类讨论; 判断,根据定义得出结论. 23.(1)(,0)(4,)-∞+∞;(2)[1,0][2,)-⋃+∞.【分析】(1)由题意可得x R ∃∈,20x bx b -+<,所以2()40b b ∆=-->,即可求解; (2)22()1F x x mx m =-+-,然后讨论0∆≤时满足对称轴为02mx =≤,当0∆>时,讨论对称轴与区间的关系,012m <<,显然不成立,所以有212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩或202(0)10mF m ⎧≤⎪⎨⎪=-≥⎩解不等式,最后求并集即可. 【详解】(1)x R ∃∈,()()f x bg x <, 即x R ∃∈,20x bx b -+<, 所以判别式2()40b b ∆=-->, 解得:0b <或4b >. 故实数b 的取值范围为(,0)(4,)-∞+∞.(2)22()1F x x mx m =-+-,对称轴为2m x =,()F x 在[0,1]上单调递增,当()2241m m ∆=--=254m-①当0∆≤,即m ≤≤时,则有0255mm ⎧≤⎪⎪⎨⎪-≤≤⎪⎩解得:m 0≤≤②当0∆>,即m <m > 设方程()0F x =的根为1x ,()212x x x <.若12m ≥,则10x ≤,即212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩解得:2≥m若02m ≤,则20x ≤,即202(0)10m F m ⎧≤⎪⎨⎪=-≥⎩解得:10m -≤≤若012m<<,不符合题意, 综上所述,实数m 的取值范围为[1,0][2,)-⋃+∞.【点睛】结论点睛:一元二次不等式恒成立求参数(1)对于20ax bx c ++≥对于x ∈R 恒成立,等价于00a >⎧⎨∆≤⎩, (2)对于20ax bx c ++≤对于x ∈R 恒成立,等价于00a <⎧⎨∆≤⎩. 24.(1)在区间(,-∞的单调递增,在区间()的单调递减;(2)2,3⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)利用对勾函数的性质,直接写出结论即可;(2)利用不等式恒成立的关系,把问题从()5f x ≥恒成立,转化为对于任意的x N *∈,21351x ax x ++≥+恒成立,利用参变分离的方法,等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N ,然后,根据对勾函数的性质进行求解即可【详解】解:(1)因为函数ky x x=+()0k >在(单调递减,在)+∞单调递增,所以,当2k =时函数2y x x=+在(单调递减,在)+∞单调递增.易知函数2y x x=+为奇函数,所以函数y x x=+在区间(,-∞的单调递增;在区间()的单调递减.(2)由题意,对任意的x N *∈,有()5f x ≥恒成立,即对于任意的x N *∈,21351x ax x ++≥+恒成立,等价于()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N . 设()()8g x x x x*=+∈N ,易知,当且仅当8x x=,即x =()g x 取得最小值,由题设知,函数()g x 在(0,上单调递减,在()+∞上单调递增. 又因为x N *∈,且()26g =,()1733g =,而()()23g g >, 所以当3x =时,()min 173g x =. 所以81725533x x ⎛⎫-+≤-=- ⎪⎝⎭,即23a ≥-, 故所求实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭. 【点睛】关键点睛:解题的关键在于,利用参变分离法,把问题转化为证明()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 恒成立,进而利用对勾函数性质求解,属于中档题25.(1)0;(2)证明见解析;(3)(1,2). 【分析】(1)依题意可得()00f =,即可求出参数b 的值,(2)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(3)依题意结合(2)中函数的单调性,即可得到方程组,即可求出参数的取值范围; 【详解】解:(1)由题意可知函数()21ax bf x x +=+的定义域为R ,且为奇函数,所以()00f b ==,经检验满足题意,所以b =0; (2)证明:由(1)知b =0,所以()211ax af x x x x==++,则任取12x x <,则12110x x ->,因为12x x <,所以当()01x ∈,时,210x x ->,12110x x -<,所以()()120f x f x -<,即()()12f x f x <,则()f x 在()01,上是增函数;当()1x ∈+∞,时,210x x ->,()()1f x +∞,,所以()()120f x f x ->,即()()12f x f x >,[]m n ,上是减函数,综上:()f x 在()01,上是增函数,在()1+∞,上是减函数; (3)由(2)知()f x 在()01,上是增函数,在()1+∞,上是减函数,又存在实数m ,n (0<m <n ),使得m ≤()f x ≤n 的解集为()221112amm m an m n a f n ⎧=⎪+⎪⎪=⎨+⎪⎪=≤⎪⎩,则221112a m a n a n ⎧=+⎪⎪=+⎨⎪≤⎪⎩,化简得221112a m a n a n ⎧=+⎪⎪=+⎨⎪≤⎪⎩,因为0<m <n ,所以1<a <2,所以a 的取值范围为(1,2). 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.26.(Ⅰ)[]2,11;(Ⅱ)[)6,+∞.【分析】(Ⅰ)令2log 2t x =+,求出其值域;再结合二次函数的性质即可求解; (Ⅱ)设12x x <,可得()()2211f x kx f x kx -<-,令()()g x f x kx =-,()2,4x ∈, 问题转化为()g x 在()2,4上是减函数,利用二次函数的性质建立不等式,即可求解.【详解】(Ⅰ)令2log 2t x =+,因为1,44x ⎛⎤∈ ⎥⎝⎦, 所以(]2log 2,2x ∈-,(]2log 20,4t x =+∈,()()22log 223y f x f t t t =+==-+,对称轴为:1t = ,所以()223f t t t =-+在区间()0,1上单调递减,在区间()1,4上单调递增, 所以()()min 11232f t f ==-+=,()()2max 4424311f t f ==-⨯+=, 所以函数()2log 2y f x =+,1,44x ⎛⎤∈ ⎥⎝⎦的值域为[]2,11, (Ⅱ)设12x x <,易知2()23=-+f x x x 在区间(2,4)上单调递增,所以()()12f x f x <,故()()1212f x f x k x x -<-可化为()()2122f x f x kx kx -<-,即()()2211f x kx f x kx -<-,令()()()223g x f x kx x k x =-=-++,()2,4x ∈, 所以()()21g x g x <,即()g x 在()2,4上是减函数,故242k +≥, 解得:6k ≥所以实数k 的取值范围是[)6,+∞【点睛】 关键点点睛:第二问的关键点是将已知条件转化为()()2211f x kx f x kx -<-,构造函数()()g x f x kx =-,可得()()21g x g x <,问题转化为()g x 在()2,4上是减函数,利用二次函数的对称轴建立不等式,即可求解.。

北师大版高中数学必修一第二章函数2.2.3

北师大版高中数学必修一第二章函数2.2.3

(3)集合A中的每一个元素在对应关系f的作用下,在集合B
中都有唯一的一个元素与之对应,所以此对应是从A到B的映 射,又B中每一个元素在A中都有唯一的原像与之对应,故该对
应是一一映射.又A,B是非空数集,因此该对应也是从集合A
到集合B的函数.
第二章 §2 2.3
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修1
第二章 §2 2.3
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修1
1.映射的概念 非空 集合A与B之间存在着对应关系f,而且对于A 两个________ 每一个 元素x,B中总有________ 唯一 的一个元素y与它对 中的________ 映射 ,记作________ f:A→B . 应,就称这种对应为从A到B的________
第二章 §2 2.3
导学号18160262 (2)若从A到B的映射f满足f(a)+f(b)-f(c)=0,则这样的映
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修1
[规范解答] (1)因为3×3×3=27,所以从A到B的映射的
个数为27. (2)①当A中三个元素都对应0时,f(a)+f(b)=0+0=0= f(c),有一个映射. ②当A中三个元素对应B中两个元素时满足f(a)+f(b)=f(c)
[答案] A [解析] 根据映射的概念可知:A中元素必有唯一确定的 像,但在像集中一个像可以有不同的原像,故A正确.
第二章
§
2.3
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·必修1
b 4.a,b 为实数,集合 M={ ,1},N={a,0},f:x→x 表 a 示把集合 M 中的元素 x 映射到集合 N 中仍为 x,则 a+b 的值 等于________.

北师版高中数学必修第一册课后习题 第2章 函数 1-22.1 函数概念

北师版高中数学必修第一册课后习题 第2章 函数 1-22.1 函数概念

02§1 生活中的变量关系 §2 函数2.1 函数概念A 级必备知识基础练1.[探究点一](多选题)下列四个图象中是函数图象的是( )2.[探究点二]函数f(x)=√2-x ·√x +53的定义域是( ) A.{x|x≥-5} B.{x|x≤2} C.{x|-5≤x≤2}D.{x|x≥2或x≤-5}3.[探究点四]已知函数f(x)=x 21+|x -1|,则f(-2)=( )A.-1B.0C.1D.24.[探究点五·安徽合肥高一期末]下列函数中与y=x 是同一个函数的是( ) A.y=(√x )2 B.v=u C.y=√x 2D.m=n 2n5.[探究点六]函数f(x)=x 2-2x,x ∈{-2,-1,0,1,2}的值域为 .6.[探究点四]若函数f(x)满足f(2x-1)=x+1,则f(3)= .7.[探究点五]下列各对函数中是同一函数的是 (填序号). ①f(x)=2x-1与g(x)=2x-x 0;②f(x)=√(2x +1)2与g(x)=|2x+1|;③f(n)=2n+2(n ∈Z)与g(n)=2n(n ∈Z); ④f(x)=3x+2与g(t)=3t+2.8.[探究点三](1)已知f(x)的定义域为[0,2],求f(x+1)的定义域; (2)已知f(x+1)的定义域为[0,2],求f(x)的定义域;(3)已知函数f(2x-1)的定义域为[-1,1],求函数f(x-2)的定义域.B级关键能力提升练9.(多选题)下列各组函数是同一函数的是( )A.f(x)=x2-2x-1与g(s)=s2-2s-1B.f(x)=√-x3与g(x)=x√-xC.f(x)=xx 与g(x)=1x0D.f(x)=x与g(x)=√x210.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”共有( ) A.5个 B.4个C.3个D.2个11.已知函数y=f(2x+1)的定义域为[1,2],则函数y=f(2x-1)的定义域为 . 12.函数f(x)=4x 2x 2+2的值域为 .13.已知集合A={x|0≤x≤2},B={y|0≤y≤4},则下列对应关系,能够构成以A 为定义域,B 为值域的函数的是 (填写所有满足条件的函数的序号).①y=2x;②y=x 2;③y=|4-2x|;④y=x+5;⑤y=(x-2)2. 14.已知函数f(x)=x x -1(x>1),g(x)=√x(x≥2),若存在函数F(x),G(x)满足:F (x)=|f(x)|·g(x),G (x )f (x )=|g(x)|.学生甲认为函数F(x),G(x)一定是同一个函数,乙认为函数F(x),G(x)一定不是同一个函数,丙认为函数F(x),G(x)不一定是同一个函数,观点正确的学生是 . 15.已知函数f(x)=x 2x 2+1.(1)求f(1),f(2)+f (12)的值;(2)求证:f(x)+f (1x)等于定值;(3)求f(1)+f(2)+f(3)+…+f(2 024)+f (12)+f (13)+…+f (1)的值.C级学科素养创新练16.在实数的原有运算中,我们定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)-(2⊕x),x∈[-2,2],则函数f(x)的值域为.17.已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)求证:f1=-f(x);x(3)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.参考答案 第二章 函数 §1 生活中的变量关系§2 函数 2.1 函数概念1.ACD 根据函数的定义,对于任意的x 有唯一的y 与之对应,而B 中一对多.故选ACD.2.B 要使f(x)=√2-x ·√x +53有意义,需满足2-x≥0,解得x≤2,即函数f(x)=√2-x ·√x +53的定义域为{x|x≤2}.故选B. 3.C 由题意知f(-2)=(-2)21+|-2-1|=1.故选C.4.B 对于A,y=(√x )2的定义域为[0,+∞),与y=x 的定义域为R 不同,故A 错误;对于B,函数v=u,与函数y=x 为同一函数,故B 正确;对于C,y=√x 2=|x|,与y==n 2n =n(n≠0),与y=x 的定义域不同,故D 错误.故选B.5.{8,3,0,-1} 因为f(-2)=(-2)2-2×(-2)=8,f(-1)=(-1)2-2×(-1)=3,f(0)=02-2×0=0,f(1)=12-2×1=-1,f(2)=22-2×2=0,所以f(x)的值域为{8,3,0,-1}. 6.3 令2x-1=3,则x=2,故f(3)=2+1=3.7.②④①函数g(x)=2x-x0=2x-1,x≠0,两个函数的对应关系相同,定义域不相同,不是同一函数;②f(x)=√(2x+1)2=|2x+1|与g(x)=|2x+1|的定义域和对应关系相同,是同一函数;③f(n)=2n+2(n∈Z)与g(n)=2n(n∈Z)的对应关系不相同,不是同一函数;④f(x)=3x+2与g(t)=3t+2的定义域和对应关系相同,是同一函数.8.解(1)已知f(x)的定义域为[0,2],则0≤x≤2.由0≤x+1≤2,得-1≤x≤1.即f(x+1)的定义域为[-1,1].(2)已知f(x+1)的定义域为[0,2],则0≤x≤2,则1≤x+1≤3,即f(x)的定义域为[1,3].(3)已知函数f(2x-1)的定义域为[-1,1],则-1≤x≤1,则-2≤2x≤2,则-3≤2x-1≤1.由-3≤x-2≤1,得-1≤x≤3,即函数f(x-2)的定义域为[-1,3].9.AC 选项A,两个函数的定义域相同,并且对应关系完全相同,因此函数是同一函数;选项B,定义域都为{x|x≤0},但是f(x)=√-x3=-x√-x,故两个函数的对应关系不一样,所以不是同一函数;选项C,两个函数的定义域相同,对应关系一样,故两个函数是同一函数;选项D,定义域都是实数集,g(x)=√x 2=|x|,故两个函数的对应关系不一样,所以这两个函数不是同一函数.10.C 函数解析式为y=2x 2+1,值域为{1,5}的“孪生函数”分别为①y=2x 2+1,x ∈{0,√2};②y=2x 2+1,x ∈{0,-√2};③y=2x 2+1,x ∈{0,√2,-√2},共3个,故选C.11.[2,3] 因为函数y=f(2x+1)的定义域为[1,2],即1≤x≤2,所以3≤2x+1≤5,所以函数y=f(x)的定义域为[3,5].由3≤2x -1≤5,得2≤x≤3,所以函数y=f(2x-1)的定义域为[2,3]. 12.[0,4)4x 2x 2+2=4-8x 2+2,因为x 2+2≥2,所以0<8x 2+2≤4,0≤4-8x 2+2<4,故f(x)的值域为[0,4).13.①②③⑤ 判断能否构成以A 为定义域,B 为值域的函数,就是看是否符合函数的定义.对于①y=2x,当定义域为A={x|0≤x≤2}时,显然其值域为B={y|0≤y≤4},故①满足条件;同理,②③⑤也满足条件;对于④y=x+5,若其定义域为A={x|0≤x≤2},则其值域为{y|5≤y≤7},因此④不满足条件.14.甲 要使F(x)有意义,则{x >1,x ≥2,解得x≥2,即F(x)的定义域为[2,+∞),要使G (x )f (x )=|g(x)|有意义,则{x >1,f (x )≠0,x ≥2,解得x≥2,所以G(x)的定义域为[2,+∞).易得F(x)=x x -1·x -1√x =x x -1·x -1√x=x √x=√x (x≥2),由G (x )f (x )=|g(x)|得G(x)=f(x)·|g(x)|=xx -1·x -1√x=xx -1·x -1√x=x √x=√x (x≥2),则函数F(x),G(x)的定义域相同,对应关系相同,故函数F(x),G(x)是同一函数,故观点正确的是甲. 15.(1)解f(1)=1212+1=12.f(2)=2222+1=45,f (12)=(12)2(12)2+1=15,所以f(2)+f (12)=45+15=1.(2)证明f (1x)=(1x )2(1x)2+1=1x 2+1,所以f(x)+f (1x )=x 2x 2+1+1x 2+1=1,为定值.(3)解由(2)知,f(x)+f (1x)=1.所以f(1)+f(2)+f(3)+…+f()+f (12)+f (13)+…+f (1)=f(1)+f(2)+f (12)+f(3)+f (13)+…+f()+f (1)=12+=40472.16.[-1,2] 由题意知,当x ∈[-2,1]时,f(x)=-1;当x ∈(1,2]时,f(x)=x 2-2∈(-1,2].故当x ∈[-2,2]时,f(x)∈[-1,2]. 17.(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0. 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)证明因为1x ·x=1,所以f1x+f(x)=f1x·x =f(1)=0,则f1x=-f(x).(3)解(方法一)令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.(方法二)因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2 f(2)+2f(3)=2p+2q.第11页共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 映 射
课时过关·能力提升
1映射f :A →B ,在f 作用下A 中元素(x ,y )与B 中元素(x-1,3-y )对应,则与B 中元素(0,1)对应的A 中元素是( )
A.(-1,2)
B.(0,3)
C.(1,2)
D.(-1,3)
答案:C
2下列从集合A 到集合B 的对应中为映射的是( )
A.A=B=N +,对应关系f :x →y=|x-3|
B.A=R ,B={0,1},对应关系f :x →y={0,x ≥0,
1,x <0
C.A={x|x>0},B={y|y ∈R },对应关系f :x →y=±√x
D.A=Z ,B=Q ,对应关系f :x →y=1x
答案:B
3集合A={a ,b },B={-1,0,1},从A 到B 的映射f :A →B 满足f (a )+f (b )=0,那么这样的映射f :A →B 的个数为( )
A.2
B.3
C.5
D.8
解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.
答案:B
4已知A=B=R ,x ∈A ,y ∈B ,f :x →y=ax+b 是从A 到B 的映射,若3和7的原像分别是5和9,则6在f 下的像是(
) A.3 B.4 C.5 D.6
解析:因为3和7的原像分别是5和9,所以{5a +b =3,9a +b =7,解得{a =1,b =-2.
即f :x →y=x-2,所以当x=6时,y=6-2=4,故选B .
答案:B
5已知映射f :A →B ,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的像,且对任意的a ∈A ,在B 中和它对应的元素是|a|,则集合B 中的元素的个数是( )
A.4
B.5
C.6
D.7
解析:对应关系是f :a →|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.
答案:A
6若A 到B 的映射f :x →3x-1,B 到C 的映射g :y →12y+1,则A 到C 的映射h :x → . 解析:由题意,得y=3x-1,
12y+1=12×(3x -1)+1=16x -1
. 故h :x →
16x -1. 答案:16x -1
7设集合A 和B 都是自然数集,映射f :A →B 把A 中的元素n 映射到B 中的元素2n +n ,则在映射f 下,A 中的元素 对应B 中的元素3.
解析:对应关系为f :n →2n +n ,根据2n +n=3,可得n=1.
答案:1
8设a ,b 为实数,集合M={b a
,1},N={a ,0},f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a+b 的值为 .
解析:∵f :x →x ,∴M=N ,∴b a =0,a=1,b=0.
故a+b=1.
答案:1 9设f ,g 都是由A 到A 的映射(其中A={1,2,3}),其对应关系如下表:
映射f 的对应关

设a=g (f (3)),b=g (g (2)),c=f (g (f (1))).试判断a ,b ,c 的大小关系.
解∵a=g (f (3))=g (1)=2,b=g (g (2))=g (1)=2,
c=f (g (f (1)))=f (g (2))=f (1)=2,∴a=b=c.
10设f :A →B 是A 到B 的一个映射,其中A=B={(x ,y )|x ,y ∈R },f :(x ,y )→(x-y ,x+y ).
(1)求A 中元素(-1,2)的像;
(2)求B 中元素(-1,2)的原像.
解(1)A 中元素(-1,2)在B 中对应的元素为(-1-2,-1+2),即A 中元素(-1,2)的像为(-3,1).
(2)设A 中元素(x ,y )与B 中元素(-1,2)对应,
则由{x -y =-1,x +y =2,解得{x =12,y =32. 所以B 中元素(-1,2)的原像为(12,32
). 11已知从集合A 到集合B={0,1,2,3}的映射f :x →1|x |-1
,试问集合A 中的元素最多有几个?写出元素最多时的集合A. 解∵f :x →1|x |-1
是从集合A 到集合B 的映射, ∴A 中每一个元素在集合B 中都有像.

1|x |-1=0,则该方程无解,故0没有原像.
分别令1|x |-1=1,2,3可得x=±2,±32,±43
. 故集合A 中的元素最多为6个,即
A={2,-2,32,-32,43,-43
}. ★12设映射f :A →B ,其中A=B={(x ,y )|x ,y ∈R },f :(x ,y )→(3x-2y+1,4x+3y-1).
(1)求A 中元素(3,4)的像.
(2)求B 中元素(5,10)的原像.
(3)A 中是否存在这样的元素(a ,b )使它的像仍是它本身?若有,求出这个元素;反之,说明理由.
解(1)因为{x =3,y =4,所以{3x -2y +1=2,4x +3y -1=23,
所以集合A 中元素(3,4)的像是(2,23).
(2)因为{3x -2y +1=5,4x +3y -1=10,
所以{x =2,y =1, 所以集合B 中元素(5,10)的原像是(2,1).
(3)因为{a =3a -2b +1,b =4a +3b -1,即{2a -2b +1=0,4a +2b -1=0,解得{a =0,b =12
. 所以存在元素(0,12
)使它的像仍是它本身.。

相关文档
最新文档