六年级数学.3doc

合集下载

小学六年级立体图形三视图及展开图

小学六年级立体图形三视图及展开图

立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。

比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。

对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。

(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。

二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”、“你”、“前”分别表示正方体的________________________。

【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。

【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。

现在每方格内都填上相应的数字。

已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。

【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。

苏教版小学数学六年级上册《表面涂色的正方体》说课稿(附反思、板书)课件

苏教版小学数学六年级上册《表面涂色的正方体》说课稿(附反思、板书)课件

三、说教学目标
1、通过活动,找出小正方体涂色以及它所在的位置的规律,得出每 种涂色情况的小正方体的位置与数量的关系。 2、进一步培养用分类计数的方法解决问题的能力,发展空间想象力。
四、说教学重律。
教学难点
在探索规律的过程中培养学生的空间观念和空间想象能 力。
(3)操作实验,利用学具加以演示说明。 2.交流汇报。 生甲:3面涂色的小正方体在原正方体的顶点处,有8个。 生乙:2面涂色的、1面涂色的小正方体没有。 3.实物展示或课件演示。
(二)借助图形,展开想象,进一步感悟规律。(棱长3cm的正方体) 1.问题探讨。 师:如果在棱长3cm的正方体的表面也涂上红色并切成棱长1cm的小正方 体,每种情况的小正方体数量又分别是多少呢?又在原正方体的什么位置? 2.学生独立完成,集体订正。
(3)1面涂色的有(4-2)×(4-2)×6=24(个),在每个面的中心位置。 师生共同经历实物展示或课件展示的过程。 2.拓展深化。 师:如果棱长是5cm的小正方体呢?自己试着填一填下表。
学生独立完成,集体订正。 (四)归纳总结,概括规律。(不仅与位置有关,而且与棱的长度有关) 1.深入思考。 师:通过观察、想象、操作等活动,我们共同探究了棱长2cm、3cm、4cm 、5cm的正方体的涂色问题,通过对前面4种棱长的正方体涂色问题的研 究,你发现了什么规律呢?每种涂色的小正方体的个数与什么有关?(完成下 表)
表面涂色的正方体 棱长分别是:2厘米 3厘米 4厘米 5厘米
如果棱长用n来表示平均分成的份数,用a、b分别表示2面涂色 和1面涂色的小正方体的个数,用式子表示n和a、b之间的关系
。 那么有:a=12(n-2) b=6(n-2)2
总之,在整个教学过程中,我始终立足让学生在玩中学会, 在动手中提高技能,学生学得轻松愉快。我将继续努力,让 我的数学课堂教学更高效,更精彩。

6年级-6-立体图形与旋转体综合-难版

6年级-6-立体图形与旋转体综合-难版

第6讲立体图形与旋转体综合在小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下.见下图.在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。

【例1】★一个圆柱体底面周长和高相等.如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.典型例题知识梳理【解析】一个圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.解题的关键在于求出底周长.根据条件:高缩短2厘米,表面积就减少12.56平方厘米,用右图表示,从图中不难看出阴影部分就是圆柱体表面积减少部分,值是12.56平方厘米,所以底面周长C =12.56÷2=6.28(厘米).这个问题解决了,其它问题也就迎刃而解了. 解答过程:底面周长(也是圆柱体的高):12.56÷2=6.28(厘米). 侧面积:6.28×6.28=39.4384(平方厘米) 两个底面积(取π=3.14):表面积:39.4384+6.28=45.7184(平方厘米)【例2】★★如图1,ABCD 是直角梯形(单位:厘米,3π=) ,(1)以AB 为轴并将梯形绕这个轴旋转一周,得到一个旋转体,它的体积是多少? (2)如果以CD 为轴,并将梯形绕这个轴旋转一周,得到的旋转体体积是多少?【解析】(1)如图2所示,所求体积可看作BCDE 绕AB 的旋转体与△AED 绕AB 的旋转体之和,即22133361083πππ⨯+⨯⨯==(立方厘米). (2)如图3所示,所求体积可看作ABCE 绕EC 的旋转体与△ADE 绕EC 的旋转体之差,即221363451353πππ⨯⨯-⨯⨯==(立方厘米).【小试牛刀】(05年华罗庚金杯)一个直角三角形三条边的长度是3,4,5,如果以边长4为轴旋转一周,得到一个立体.求这个立体的体积.(对照例题11)【解析】 以长为4的直角边为轴旋转得到的立体也是圆锥,底面半径是3,由圆锥的体积公式得:2134123V ππ=⨯⨯=【例3】★★一个稻谷囤,上面是圆锥体,下面是圆柱体(如下图).圆柱的底面周长是9.42米,高2米,圆锥的高是0.6米.求这个粮囤的体积是多少立方米?【解析】按一般的计算方法,先分别求出锥、柱的体积再把它们合并在一起求出总体积.但我们仔细想一想,如果把圆锥形的稻谷铺平,把它变成圆柱体,这时圆柱的高等于10.60.23⨯=(米)那么原来两个形体变成一个圆柱体,高是(2+0.2)米.这样求出变化后直圆柱的体积就可以了.圆锥体化为圆柱体的高:10.60.23⨯= 底面积:体积:7.065×(2+0.2)=15.543(立方米).【例4】★★皮球掉在一个盛有水的圆柱形水桶中.皮球的直径为12厘米,水桶底面直径为 60厘米.皮球有 2/3的体积浸在水中(下图).问皮球掉进水中后,水桶的水面升高多少厘米?【解析】皮球掉进水中后排挤出一部分水,使水面升高.这部分水的体积的大小等于皮球浸在水中部分的体积,再用这个体积除以圆柱形水桶底面积,就得到水面升高的高度.球的体积:水桶的底面积:π×302=900π(平方厘米).【例5】★★下图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?(保留一位小数).【解析】直圆锥底面直径是正方体的棱长,高与棱长相等.剩下体积等于原正方体体积减去直圆锥体积.正方体体积:63=216(立方厘米)剩下体积占正方体的百分之几.(216-56.52)÷216≈0.738≈73.8%.答:剩下体积占正方体体积的73.8%【例6】★★有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?【解析】 解题时,既要注意圆柱体的外表面积,又要注意圆孔内的表面,同时还要注意到零件的底面是圆环.由于打孔的深度与柱体的长度不相同,所以在孔内还要有一个小圆的底面需要涂油漆,这一点不能忽略.但是,我们可以把小圆的底面与圆环拼成一个圆,即原圆柱体的底面. 【解析】涂漆面积:=3.14×(18+60+20)=3.14×98=307.72(平方厘米). 答:涂油漆面积是307.72平方厘米.【例7】★★有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【解析】涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米).【小试牛刀】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【解析】当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米.【例8】★★把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米? 【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2π188π25.12⨯⨯==(立方厘米).【小试牛刀】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方 厘米.求这个圆柱体的表面积是多少?【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56÷=(厘米),侧面积是:12.5612.56157.7536⨯=(平方厘米),两个底面积是:()23.1412.56 3.142225.12⨯÷÷⨯=(平方厘米).所以表面积为:157.753625.12182.8736+=(平方厘米).【例9】★★如图,圆锥形容器中装有3升水,水面高度正好是圆锥高度的一半,这个容器还能装多少水?【解析】设圆锥容器的底面半径为r ,则水面半径为2r ,容器的容积为:213r h π, 水的体积为:2221111()3222483r h r h r h πππ••==⨯ 说明容器可以装8份3升水,故还能装水:3×(8-1)=21(升).1. 在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如下图).求挖洞后木块的表面积和体积。

新课标人教版小学六年级数学上册 第5单元“圆”易错知识点解析

新课标人教版小学六年级数学上册 第5单元“圆”易错知识点解析

新课标人教版小学六年级数学上册第5单元“圆”易错知识点解析易错点1 没有理解半径和直径的概念【错例1】判断:半径是射线,直径是直线。

()【错误答案】×【错因】没有理解半径和直径的概念。

【答案】√【解析】因为半径是连接圆心和圆上任意一点的线段。

直径是通过圆心,两端都在圆上的线段。

因此,半径和直径都是线段。

错题闯关1.井盖平面轮廓采用圆形的一个原因是圆形井盖怎么都不会掉到井里,并且能恰好盖住井口,这里利用了()A.同圆内直径是半径的2倍B.同圆内所有直径都相等C.圆的周长是直径的π倍【答案】B2.圆周率是()的比值。

A.直径与周长B.周长与直径C.周长与半径D.直径与半径【答案】B3.生活中经常把井盖做成圆形的,这样井盖就不会掉进井里,这是因为()A.圆的直径是半径的2倍B.同一个圆里所有的直径都相等C.圆的周长是直径的π倍【答案】B4.下面说法错误的是()。

A.圆有无数条半径和直径B.直径是半径的2倍C.圆有无数条对称轴D.圆的大小与半径有关【答案】B5.一个环形的玉环,外直径8cm,内半径3cm,这个玉环的面积是()cm2。

A.172.7B.87.92C.21.98D.31.4【答案】C6.判断:直径总是半径的2倍。

()【答案】×易错点2 在比较圆与半圆的周长时出错。

【错例2】判断:半圆的周长比圆的周长小。

()【错误答案】√【错因】给出的条件不够,没有限定圆的直径。

【答案】×【解析】本题错在没有限定圆的直径。

直径相等的半圆和圆相比,半圆的周长比圆的周长小。

但有些半圆的直径远远大于圆的直径,尽管它的周长只有一半,半圆的周长也大于圆的周长。

错题闯关1.一个半径是r的半圆形,它的周长是()A.(2+π)r B.r+πr C.2πr÷2【答案】A2.一个车轮的周长是12.56dm,这个车轮的直径是()分米。

A.6.28B.4C.3D.2【答案】B3.在长5分米,宽4分米的长方形里画一个最大的圆,圆的周长是()分米。

六年级数学竞赛上册奥数高思第10讲立体几何(彩色)

六年级数学竞赛上册奥数高思第10讲立体几何(彩色)

六年级上册第10讲10立体几何首先,我们来复习长方体、正方体的体积与表面积的计算方法.图形体积表面积c V=abc长方体S=2×(ab+bc+c a)长方体a bV=a=3 S6a2正方体正立方体a70身体健康立体几何课本例题1将表面积为54平方厘米、96平方厘米、150平方厘米的三个实心铁质正方体熔铸成一个大正方体(不计损耗).请问:这个大正方体的体积是多少立方厘米?分析所给的每个正方体的棱长是多少?体积是多少?熔铸成一个大正方体的体积怎么求?练习1.3个相同的正方体拼成一个长方体,长方体的表面积为350平方厘米,那么每个正方体的体积是多少立方厘米?例题2一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米.请问:这个长方体的表面积是多少平方厘米?分析我们先考虑第一种情况,长增加2厘米,高和宽保持不变.如下图(1),多出的体积用虚线表示,我们就会发现,这一块的体积为2×高×宽=40(立方厘米),由此可以求出左右两个侧面的面积.当然另两对侧面也可以用类似的方法求出.?2??3 Щ?4Щ?1??2??3?71身体健康六年级上册第10讲练习2.一个长方体,如果长减少2厘米,宽和高不变,它的体积将减少48立方厘米;如果宽增加3厘米,长和高不变,它的体积将增加99立方厘米;如果高增加4厘米,长和宽都不变,它的体积则会增加352立方厘米.那么这个长方体的表面积是多少平方厘米?例题3有30个棱长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习3.把棱长为1厘米的正方体,像下图这样层层重叠放置,那么当重叠到第五时,这个立体图形的表面积是多少平方厘米?三视图众所周知,一个物体从正面看与从后面看,从左边看与从右边看、从上面看与从下面看得到的图形都是相同的,于是我们把从正面、左面、上面看过去得到的图形,分别叫做正视图、左视图、俯视图,三个图形合起来我们就称之为三视图.???????72身体健康立体几何课本那么请同学们想一想,一个圆锥的三视图是什么样子的呢?给定了三视图,它所对应的物体形状是不是唯一确定的呢?如果一个物体的三视图如下所示,它的形状又可能有哪几种呢??????例题4一个正方体被切成24个大小形状相同的小长方体(见右图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来相比,正好多出了A、B 两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习4.如图所示,有一个长方体,先后沿不同方向切了三刀.切完第一刀后得到的两个小长方体的表面积之和是472平方厘米,切完第二刀后得到的四个小长方体的表面积之和是632平方厘米,切完第三刀后得到的八个小长方体的表面积之和是752平方厘米.那么在原来长73身体健康六年级上册第10讲方体的6个面中,面积最小的面是多少平方厘米?除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.??????如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高.圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高;顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.立体图形体积侧面展开图h V圆柱= 底面积×高= r2h圆柱的侧面展开图为长方形,长为圆柱底面周长,宽为圆柱的高.r圆锥的侧面展开图为扇形,半hr V圆锥=1313×底面积×高2h径为母线(不是圆锥的高!),弧长为圆锥底面周长.(注:圆锥侧面展开只需了解,不需掌握)大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V= 底面积×高埃及金字塔金字塔是4000多年前古埃及法老的陵墓,因为其造型的雄伟和年代的久远,被誉为世界七大奇迹之首.其中最大的一座是兴建于公元前2760年的胡夫金字塔.据历史学家推测,当年建造这座金字塔一共动用了10万人的劳力,前后历时30年,才得以竣工.74身体健康立体几何课本在胡夫金字塔的东南面还有著名的狮身人面像,是法老胡夫的儿子哈佛拉的形象.两者交相辉映,甚为壮观.从形状上看,胡夫金字塔是一个正四棱锥,底座是一个正方形,侧面是4个形状一胡夫金字塔侧视图胡夫金字塔俯视图模一样的等边三角形.正方形底座每边长约230米,塔高约147米,有将近50层楼高!这么一个庞然大物,它的体积究竟是多少呢?例题5张大爷去年用长2米、宽1米的长方形苇席围成了一个容积最大的圆柱体粮囤.今年他改用长3米、宽2米的长方形苇席来围,也同样围成容积最大的圆柱囤.请问:今年粮囤的容积是去年粮囤容积的多少倍?分析用长方形苇席成圆柱体的粮囤只有两种围法,如下图所示.用去年的苇席怎样围,得到的圆柱体粮囤最大?用今年的苇席呢?练习5.有一根长为20厘米、底面直径为6厘米的圆柱体钢材,在它的两端各钻一个深为4厘米、底面直径也为6厘米的圆锥形的孔,做成一个零件(如右图).这个零件的体积为多少立方厘米?75六年级上册第10讲例题6一个底面长30分米、宽10分米、高12分米的长方形水池,存有四分之三的池水.(1)将一个高11分米,体积330立方分米的圆柱放入池中,水面的高度变为几分米?(2)如果再放入一个同样的圆柱,水面高度又变成了几分米?(3)如果再放入一个同样的圆柱,水面高度又变成了几分米?分析圆柱放入水中可能有如下几种情况:(1)水浸没了圆柱的一部分.这时的情况如图所示:????????????????????(2)水把圆柱都浸没了,但是水没有溢出池面,如图所示:?????????(3)水溢出了水池.这时水面的新高度就是水池的高度.如图所示:ē? ??? ??????因此,在一次次放入圆柱时,我们要做两次判断:先要判断放入圆柱后,水是否完全浸没圆柱;如果完全浸没,再判断水是否会溢出水池.然后才来求解.76立体几何课本练习6.一个底面长20分米、宽8分米、高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?思考题右图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?本讲知识点汇总一、长方体、正方体的表面积与体积公式.二、圆柱体、圆锥体的体积公式.三、三视图法求表面积.四、立体图形与排水问题.作业1.一个长方体的体积是120立方厘米,底面是面积为4平方厘米的正方形,求长方体的表面积.77六年级上册第10讲2.如图,同样大小的立方体木块堆放在房间的一角,一共垒了10层,那么在这10层中看不见的木块共有多少个?3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.4.求下面图形的体积:(取=3.14)1410165.一个圆柱形玻璃杯内装着水,水面高2.5厘米.从里面量,玻璃杯的底面积是72平方厘米.将一个棱长为6厘米的正方体铁块放入杯中,水面会淹没铁块吗?如果没有,这时水面高多少厘米?78。

小学的奥数几何五大模型燕尾模型

小学的奥数几何五大模型燕尾模型

燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么,上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,.通过一道例题如右图,D 是BC 1423:::S S S S BD DC ==【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =;三角形ABE 与三角形EBD 同高,12::S S ED EA =;三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =; 综上可得, 1423:::S S S S BD DC ==.【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AES EC==△△,设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标 所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABC S S =⨯⨯=△△.所以则四边形DFEC 的面积等于512.【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积. 【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30, 所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBFS AE S EC ==△△,1ABF ACF S BDS CD==△△, 所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△, 所以阴影部分面积是30107.512.5--=.例题精讲燕尾定理(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABCS S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.【巩固】如图,三角形ABC 的面积是2200cm ,E 在AC 上,点D 在BC 上,且:3:5AE EC =,:2:3BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .【解析】 连接CF ,根据燕尾定理,2639ABF ACF S BD S DC ===△△,36510ABF CBF S AE S EC ===△△, 设6ABF S =△份,则9AC FS =△份,10BCF S =△份,5459358EFC S =⨯=+△份,310623CDF S =⨯=+△份,所以24545200(6910)(6)8(6)93(cm )88DCFE S =÷++⨯+=⨯+=【巩固】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?【解析】 连接CO ,设1AEO S =△份,则其他部分的面积如图所示,所以1291830ABC S =+++=△份,所以四部分按从小到大各占ABC △面积的12 4.5139313.59,,,30306030103020+===【巩固】(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC S S =,1126BPQ BCQ ABC S S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积,所以6(1144)4 2.4ABX S =÷+++⨯=△【巩固】如图,三角形ABC 的面积是1,2BD DC =,2CE AE =,AD 与BE 相交于点F ,请写出这4部分的面积各是多少?【解析】 连接CF ,设1AEF S =△份,则其他几部分面积可以有燕尾定理标出如图所示,所以121AEF S =△,62217ABF S ==△,821BDF S =△,242217FDCE S +==【巩固】如图,E 在AC 上,D 在BC 上,且:2:3AE EC =,:1:2BD DC =,AD 与BE 交于点F .四边形DFEC 的面积等于222cm ,则三角形ABC 的面积 .【解析】 连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,23ABF CBF S AE S EC ==△△,设1BDF S =△份,则2D C F S =△份,2ABF S =△份,4AFC S =△份,24 1.623AEF S =⨯=+△ 份,34 2.423EFC S =⨯=+△份,如图所标,所以2 2.4 4.4EFDC S =+=份,2349ABC S =++=△份 所以222 4.4945(cm )ABC S =÷⨯=△【巩固】三角形ABC 中,C 是直角,已知2AC =,2CD =,3CB =,AM BM =,那么三角形AMN (阴影部分)的面积为多少?【解析】 连接BN .ABC △的面积为3223⨯÷=根据燕尾定理,::2:1ACN ABN CD BD ==△△; 同理::1:1CBN CAN BM AM ==△△设AMN △面积为1份,则MNB △的面积也是1份,所以ANB △的面积是112+=份,而ACN △的面积就是224⨯=份,CBN △也是4份,这样ABC △的面积为441110+++=份,所以AMN △的面积为31010.3÷⨯=.【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米. 【例 2】 如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.【例 3】 ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.【解析】 连接AC 、GB ,设1A G C S =△份,根据燕尾定理得1AGB S =△份,1B G C S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=【例 4】 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.【解析】 连接BH ,根据沙漏模型得:1:2BG GD =,设1BHC S =△份,根据燕尾定理2CHD S =△份,2BHD S =△份,因此122)210S =++⨯=正方形(份,127236B F H G S =+=,所以712010146BFHG S =÷⨯=(平方厘米).【例 5】 如图所示,在ABC △中,:3:1BE EC =,D 是AE 的中点,那么:AF FC = . 【解析】 连接CD .由于:1:1ABD BED S S =△△,:3:4BED BCD S S =△△,所以:3:4ABD BCD S S =△△, 根据燕尾定理,::3:4ABD BCD AF FC S S ==△△.【巩固】在ABC ∆中,:3:2BD DC =, :3:1AE EC =,求:OB OE =?【解析】 连接OC .因为:3:2BD DC =,根据燕尾定理,::3:2AOB AOC S S BD BC ∆∆==,即32AOB AOC S S ∆∆=; 又:3:1AE EC =,所以43AOC AOE S S ∆∆=.则3342223AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::2:1AOB AOE OB OE S S ∆∆==.【巩固】在ABC ∆中,:2:1BD DC =, :1:3AE EC =,求:OB OE =? 【解析】 题目求的是边的比值,一般来说可以通过分别求出每条边的值再作比值,也可以通过三角形的面积比来做桥梁,但题目没告诉我们边的长度,所以应该通过面积比而得到边长的比.本题的图形一看就联想到燕尾定理,但两个燕尾似乎少了一个,因此应该补全,所以第一步要连接OC . 连接OC .因为:2:1BD DC =,根据燕尾定理,::2:1AOB AOC S S BD BC ∆∆==,即2AOB AOC S S ∆∆=; 又:1:3AE EC =,所以4AOC AOE S S ∆∆=.则2248AOB AOC AOE AOE S S S S ∆∆∆∆==⨯=, 所以::8:1AOB AOE OB OE S S ∆∆==.【例 6】 (2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=.(法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==, 而1602ABC ABCDS S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEGABG S S ∆∆==,154CFG BCG S S ∆∆==, 所以两个三角形的面积之和为15.【例 7】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB . 【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =【解析】 根据燕尾定理有:2:310:15ABG ACG S S ==△△,:5:310:6ABG BCG S S ==△△,所以:15:65:2:ACG BCG S S AF BF ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB . 【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 8】 (2008年“学而思杯”六年级数学试题)如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______. 【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==; 根据燕尾定理,::2:3ACG ABGS S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4A C G ACHE GE H S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5E G G H H B =,同样分析可得::10:5:4AG GI ID =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI 的面积是1,求三角形ABC 的面积.【解析】 连接BG ,AGC S △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△ 得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGC ABC S S =△△, 同理连接AI 、CH 得619ABH ABC S S =△△,619BIC ABC S S =△△, 所以1966611919GHI ABC S S ---==△△ 三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】(2009年第七届“走进美妙的数学花园”初赛六年级)如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.【分析】 如图,连接AI .根据燕尾定理,::2:1BCI ACI S S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==, 所以,::1:2:4ACI BCI ABI S S S ∆∆∆=, 那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值. 【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△, 所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【巩固】如图在ABC △中,13DC EA FB DB EC FA ===,求GHI ABC △的面积△的面积的值.【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::3:1AGC BGC S S AF FB ==△△,::3:1ABG AGC S S BD DC ==△△,得3AGC S =△(份),9ABG S =△(份),则13ABC S =△(份),因此313AGC ABC S S =△△,同理连接AI 、CH 得13ABH ABC S S =△△,313BIC ABC S S =△△, 所以1333341313GHI ABC S S ---==△△ 【巩固】如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.【解析】 连接BG ,AGC S △=12份根据燕尾定理,::4:312:9AGC BGC S S AF FB ===△△,::4:316:12ABG AGC S S BD DC ===△△得9BGC S =△(份),16ABG S =△(份),则9121637ABC S =++=△(份),因此1237AGC ABC S S =△△, 同理连接AI 、CH 得1237ABH ABC S S =△△,1237BIC ABC S S =△△, 所以3712121213737GHI ABC S S ---==△△ 三角形ABC 的面积是74,所以三角形GHI 的面积是174237⨯= 【例 9】 两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=【巩固】右图的大三角形被分成5个小三角形,其中4个的面积已经标在图中,那么,阴影三角形的面积是 .【解析】 方法一:整个题目读完,我们没有发现任何与边长相关的条件,也没有任何与高或者垂直有关系的字眼,由此,我们可以推断,这道题不能依靠三角形面积公式求解.我们发现右图三角形中存在一个比例关系:()2:13:4S =+阴影,解得2S =阴影.方法二:回顾下燕尾定理,有2:41:3S +=阴影(),解得2S =阴影. 【例 10】 如图,三角形ABC 被分成6个三角形,已知其中4个三角形的面积,问三角形ABC 的面积是多少?【解析】 设BOF S x =△,由题意知:4:3BD DC =根据燕尾定理,得::4:3ABO ACO BDO CDO S S S S ==△△△△,所以33(84)6344ACO S x x =⨯+=+△,再根据::ABO BCO AOE COE S S S S =△△△△,列方程3(84):(4030)(6335):354x x ++=+-解得56x =:35(5684):(4030)AOE S =++△,所以70AOE S =△所以三角形ABC 的面积是844030355670315+++++=【例 11】 三角形ABC 的面积为15平方厘米,D 为AB 中点,E 为AC 中点,F 为BC 中点,求阴影部分的面积.【解析】 令BE 与CD 的交点为M ,CD 与EF 的交点为N ,连接AM ,BN .在ABC △中,根据燕尾定理,::1:1ABM BCM S S AE CE ==△△,::1:1ACM BCM S S AD BD ==△△, 所以13ABM ACM BCN ABC S S S S ===△△△△由于1122AEM AMC ABM S S S ==△△△S ,所以:2:1BM ME = 在EBC △中,根据燕尾定理,::1:1BEN CEN S S BF CF ==△△::1:2CEN CBN S S ME MB ==△△设1CEN S =△(份),则1BEN S =△(份),2BCN S =△(份),4BCE S =△(份), 所以1124BCN BCE ABC S S S ==△△△,1148BNE BCE ABC S S S ==△△△,因为:2:1BM ME =,F 为BC 中点,所以221133812BMN BNE ABC ABC S S S S ==⨯=△△△△,11112248BFN BNC ABC S S S ==⨯=△△△, 所以115515 3.1251282424ABC ABC S S S ⎛⎫=+==⨯= ⎪⎝⎭△△阴影(平方厘米)【例 12】 如右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBM S S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【巩固】(2007年四中分班考试题)如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.【解析】 由于点D 是边AC 的中点,点E 、F 是边BC 的三等分点,如果能求出BN 、NM 、MD 三段的比,那么所分成的六小块的面积都可以求出来,其中当然也包括四边形CDMF 的面积. 连接CM 、CN .根据燕尾定理,::2:1ABM ACM S S BF CF ∆∆==,而2AC MA D MS S ∆∆=,所以24ABM ACM ADM S S S ∆∆∆==,那么4BM DM =,即45BM BD =. 那么421453215BMF BCD BM BF S S BD BC ∆∆=⨯⨯=⨯⨯=,14721530CDMF S =-=四边形. 另解:得出24ABM ACM ADM S S S ∆∆∆==后,可得111155210ADM ABD S S ∆∆==⨯=,则11731030ACF ADM CDMF S S S ∆∆=-=-=四边形. 【例 13】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC 被分成9部分,请写出这9部分的面积各是多少?【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE 交于点N .连接CP ,CQ ,CM ,CN .根据燕尾定理,::1:2ABP CBP S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形,139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形 【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC 边的三等分点,那么四边形JKIH 的面积是多少?【解析】 连接CK 、CI 、CJ .根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==.类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJ S =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 14】 如右图,面积为1的ABC △中,::1:2:1BD DE EC =,::1:2:1CF FG GA =,::1:2:1AH HI IB =,求阴影部分面积.【解析】 设IG 交HF 于M ,IG 交HD 于N ,DF 交EI 于P .连接AM ,IF .∵:3:4AI AB =,:3:4AF AC =,916AIF ABC S S ∴=△△ ∵::2FIM AMF S S IH HA ==△△,::2FIM AIM S S FG GA ==△△,∴19464AIM AIF ABC S S S ==△△△ ∵:1:3AH AI = ∴364AHM ABC S S =△△,∵:1:4AH AB = :3:4A F A C = ∴316AHF ABC S S =△△ . 同理 316CFD BDH ABC S S S ==△△△ ∴716FDH ABC S S =△△ 33::1:46416HM HF ==,∵ :3:4,:3:4AI AB AF AC ==,∴IF BC ∥ ,又∵:3:4,:1:2IF BC DE BC ==,∴:2:3,:2:3DE IF DP PF ==,同理 :2:3HN ND =,∵:1:4HM HF =,∴:2:5HN HD =,∴17710160160HMN HDF ABC S S S ===△△△. 同理 6个小阴影三角形的面积均为7160.阴影部分面积721616080=⨯=.【例 15】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABM S =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△, 所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC △中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15ABP ABC S S =△△所以1111152121105ABP ADN BEP ABC ABC DNPQE S S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC △面积的11105所以11113133610570S =-⨯-⨯=阴影 【例 16】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△,所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△ 所以222117777RQS S =---=△同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形【例 17】 (2009年数学解题能力大赛六年级初试试题)正六边形1A ,2A ,3A ,4A ,5A ,6A 的面积是2009平方厘米,1B ,2B ,3B ,4B ,5B ,6B 分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.【解析】 (方法一)因为空白的面积等于23A A G △面积的6倍,所以关键求23A A G △的面积,根据燕尾定理可得2312333117732A A G A A A S S S ==⨯⨯△△正六边形,但在123A A A △用燕尾定理时,需要知道13,A D A D 的长度比,连接1363,A A A A ,1A G ,过6B 作12A A 的平行线,交13A A 于E ,根据沙漏模型得1A D DE =,再根据金字塔模型得13A E A E =,因此13:1:3A D A D =,在123A A A △中,设121A A G S =△份,则233A A G S =△份,313A A G S =△份,所以2312333111773214A A G A A A S S S S ==⨯⨯=△△正六边形正六边形,因此141620091148147S S =-⨯=⨯=阴影正六边形()(平方厘米)(方法二)既然给的图形是特殊的正六边形,且阴影也是正六边形我们可以用下图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为82009114814⨯=(平方厘米) 【例 18】 已知四边形ABCD ,CHFG 为正方形,:1:8S S =乙甲,a 与b 是两个正方形的边长,求:?a b =【解析】 观察图形,感觉阴影部分像蝴蝶定理,但是细细分析发现用蝴蝶定理无法继续往下走,注意到题目条件中给出了两个正方形的边长,有边长就可以利用比例,再发现在连接辅助线后可以利用燕尾,那么我们就用燕尾定理来求解 连接EO 、AF ,根据燕尾定理:::AOE AOF S S a b =△△,::AOF EOF S S a b =△△ 所以 22::AOE EOF S S a b =△△,作OM ⊥AE 、ON ⊥EF , ∵AE =EF∴22::OM ON a b = ∴33::1:8S S a b ==乙甲 ∴:1:2a b =。

小学六年级数学求阴影面积与周长(含详细的解析)道

小学六年级数学求阴影面积与周长(含详细的解析)道

1 求阴影面积的常用方法计算平面图形的面积问题是常见题型求平面阴影部分的面积是这类问题的难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的在解此类问题时要注意观察和分析图形会分解和组合图形或平移旋转或割补。

现介绍几种常用的方法。

一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形再利用规则图形的面积公式计算出所求的不规则图形的面积。

例1.如图1点C、D是以AB为直径的半圆O上的三等分点AB12则图中由弦AC、AD和CD ⌒围成的阴影部分图形的面积为_________。

分析连结CD、OC、OD如图2。

易证AB//CD则ACDOCD和的面积相等所以图中阴影部分的面积就等于扇形OCD的面积。

易得COD60故SSOCD阴影扇形60636062。

二、和差法有一些图形结构复杂通过观察分析出不规则图形的面积是由哪些规则图形组合而成的再利用这些规则图形的面积的和或差来求从而达到化繁为简的目的。

例2.如图3是一个商标的设计图案AB2BC8ADE⌒为14圆求阴影部分面积。

分析经观察图3可以分解出以下规则图形矩形ABCD、扇形ADE、RtEBC。

所以SSS SADEABCDRtEBC阴影扇形矩形9043604812412482。

2 三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。

这类题阴影一般是由几个图形叠加而成。

要准确认清其结构理顺图形间的大小关系。

例3.如图4正方形的边长为a以各边为直径在正方形内作半圆求所围成阴影部分图形的面积。

解因为4个半圆覆盖了正方形而且阴影部分重叠了两次所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。

故2221222aaaS阴影。

四、补形法将不规则图形补成特殊图形利用特殊图形的面积求出原不规则图形的面积。

例4. 如图5在四边形ABCD中AB2CD1ABD6090求四边形ABCD所在阴影部分的面积。

(2021年编)小学数学六年级数学暑假专题1—开放性问题山东教育版

(2021年编)小学数学六年级数学暑假专题1—开放性问题山东教育版

六年级数学暑假专题1—开放性问题山东教育版【本讲教育信息】一. 教学内容:暑假专题1——开放性问题二. 学习重难点:开放性问题本节课的重点也是难点三. 知识要点讲解:【相交线与平行线】探索题是培养发散思维能力的一种题型,它具有开放性,所要得出的答案一般不具有惟一性.解决探索型问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.现就有关相交线、平行线有关的探索型试题例析如下.〔一〕探索条件例1、如图,请给出一个使OE⊥OC成立的条件:_________.分析:此题是一道条件开放性试题,使OE⊥OC的条件较多,根据垂直的意义,可添∠2+∠3=90°,根据互为余角之间的关系,可以添加OD⊥AB,∠1=∠3,或OD⊥AB,∠2=∠4,也可以添加∠1+∠4=90°等.例2、如图,直线a、b与直线c相交,形成∠1、∠2、…,∠8共八个角,请你填上你认为适当的一个条件:______,使a//b.分析:此题考查平行线的三种识别方法.〔1〕从“同位角相等,两直线平行〞考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;〔2〕从“内错角相等,两直线平行〞考虑,可填∠3=∠6,∠4=∠5中的任意一个;〔3〕从“同旁内角互补,两直线平行〞考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件.〔4〕从其他方面考虑,也可填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.例3、如图,AB与CD相交于点O,并且∠C=∠1,试问∠2与∠D满足什么关系时,AC//BD?分析:此题是一道条件探索题.要使AC//BD,可根据两直线平行的条件,需要满足∠C=∠D,由于∠1=∠C,∠1=∠∠2=∠D.解:当∠2=∠D时,AC//BD.因为∠C=∠1,∠1=∠2,又∠2=∠D,所以∠C=∠D根据内错角相等,两直线平行,得AC//BD.〔二〕探索结论例3、如图,AB与CD相交于点F,EF⊥CD,那么∠AFE与∠DFB之间的关系是________.分析:由所给的条件EF⊥CD,得∠EFC=90°,也就是∠AFC+∠AFE=90°,又根据对顶角相等,得∠AFC=∠DFB,所以∠AFE+∠DFB=90°,即∠AFE与∠DFB互为余角.〔三〕探索作图方法例5、如图,过直线AB外一点C,作直线CD,使CD//AB,你能想到几种画法?分析:此题考查平行线的特征及判断.重点考查大家的动手操作能力.此题的画法较多,如:作法1. 根据“同位角相等,两直线平行〞〔1〕过点C画直线EF,交AB于G;〔2〕作∠ECD=∠EGA,那么直线DC即为所求的直线.如图.作法2. 根据“垂直于同一条直线的两条直线平行〞.〔1〕过点C作CG⊥AB,垂足为G,〔2〕过点C 作直线CD ⊥CG .那么直线CD 就是所求作的直线.如图.【全等三角形】〔一〕条件探索型 例1、〔1〕如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: 〔写一个即可〕。

六年级上册苏教版数学《表面涂色的正方体》教案与反思

六年级上册苏教版数学《表面涂色的正方体》教案与反思

六年级上册苏教版数学《表面涂色的正方体》教案与反思一. 教材分析本节课的内容是苏教版六年级上册的数学《表面涂色的正方体》。

这部分内容是在学生已经掌握了立体图形的知识的基础上进行学习的,旨在让学生通过观察、操作、思考、交流等活动,进一步理解正方体的特征,提高空间想象能力和逻辑思维能力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对立体图形有了一定的了解。

但是,对于正方体的表面涂色问题,部分学生可能还存在一定的困难。

因此,在教学过程中,我们需要关注这部分学生的学习情况,通过引导和激励,帮助他们理解和掌握正方体的表面涂色问题。

三. 教学目标1.知识与技能:让学生掌握正方体的表面涂色方法,能够独立完成正方体的表面涂色任务。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:让学生体验数学学习的乐趣,提高学生对数学学习的兴趣。

四. 教学重难点1.重点:正方体的表面涂色方法。

2.难点:理解正方体表面涂色的规律,能够灵活运用规律进行涂色。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生通过观察、操作、思考、交流等活动,理解和掌握正方体的表面涂色方法。

六. 教学准备正方体模型、正方体图片、视频资料、涂色工具等。

七. 教学过程1.导入(5分钟)利用正方体模型或图片,引导学生回顾正方体的特征,为新课的学习做好铺垫。

2.呈现(10分钟)展示正方体涂色的视频资料,让学生直观地感受正方体涂色的过程,并提出问题:“正方体有哪些面需要涂色?如何进行涂色?”3.操练(10分钟)学生分组进行正方体涂色的实践操作,教师巡回指导,帮助学生掌握正方体涂色的方法。

4.巩固(10分钟)学生独立完成正方体涂色任务,教师选取部分学生的作品进行展示和评价,让学生在评价中巩固所学知识。

5.拓展(10分钟)引导学生思考:正方体涂色问题是否只有一种解决方法?是否存在其他的涂色规律?学生分组讨论,分享自己的发现。

小学数学六年级(上)第09讲 几何综合问题(含答案)

小学数学六年级(上)第09讲 几何综合问题(含答案)

第九讲 几何综合问题这一讲我们学习几何综合题,题型是复杂而巧妙的.这种问题往往需要我们有点武侠小说中“借力打力”的能力,不要硬碰硬,而是借巧劲.比如已知一个面积为2的正方形,求边长为其两倍的正方形的面积.把边长具体数值求出来,用边长的关系来计算面积的想法是不可行的.而且事实上也是没必要的,我们可以把面积为2的正方形边长设为a ,它的两倍为2a ,则22a =,以2a 为边长的正方形面积为2224428a a a ⨯=⨯=⨯=.我们再来看几个用类似想法解决的问题.本讲知识点汇总:一、巧用面积公式,利用图形面积之间的和差关系来求解图形面积.1. 圆与直角三角形中利用勾股定理.2. 同底三角形利用“2⨯÷公共底高的和”求面积和,“2⨯÷公共底高的差”求面积差.3. 不去考虑每块图形的面积,而是将若干块图形放在一起,考虑其面积之间的和差关系.二、辅助线与几何变换.1. 通过割、补,将图形的变为规则图形,以便于分析.2. 通过几何变换(翻转、对称)等,将图形变得易于求解.三、图形运动.能够正确地画出简单几何图形(如圆等)在运动过程中所扫过区域的边界,并求解相关的长度和面积.例1.如图,阴影部分的面积是25平方厘米,求圆环的面积.(π取3.14)「分析」阴影部分等于大等腰直角三角形减去小等腰直角三角形,而圆环等于大圆减去小圆.那么阴影部分面积与圆环面积之间有什么联系呢?练习1、下图中阴影部分的面积是40平方厘米,求圆环的面积.(π取3.14)例2.如图,在长方形ABCD 中,30AB =厘米,40BC =厘米,P 为BC 上一点,PQ 垂直 OBDC AO于AC ,PR 垂直于BD .求PQ 与PR 的长度之和.「分析」如果这道题只是要尝试出一个结果的话,我们只要让P 取特殊点,例如取成B 点,所求的长度之和就是B 点到AC 边的距离.但PQ 与PR 的长度之和是否是一个固定的值呢?练习2、如图,在面积为72的正方形中,P 为CD 边上一点,PQ 与BD 垂直,PR 与AC 垂直.求PQ 与PR 的和.例3. 如图,P 为长方形ABCD 内的一点.三角形P AB 的面积为5,三角形PBC 的面积为13.请问:三角形PBD 的面积是多少?「分析」直接用面积公式或者比例关系来求三角形PBD 面积,显然不可行.那么还有什么方法可以用来求三角形PBD 面积呢?练习3、如图,P 为长方形ABCD 外的一点.三角形P AB 的面积为7,三角形C AQBDP RO ABD C PQ RO BCAPDPBC 的面积为20,三角形PCD 的面积为4.请问:三角形P AD 的面积是多少?三角形P AC 的面积又是多少?中国古代的几何学形的研究属于几何学的范畴.古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象,便是由工具的制作与测量的要求所促成的.规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具.《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”.“规”是圆规,“矩”是直角尺,“准绳”则是确定铅垂方向的器械.这些都说明了早期几何学的应用.从战国时代的著作《考工记》中也可以看到与手工业制作有关的实用几何知识.战国时期墨子所写的《墨经》中,对一系列的几何概念进行抽象概括,作出了科学的定义.《周髀算经》与刘徽的《海岛算经》则给出了用矩观测天地的一般方法与具体公式.在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题.例如求任意多边形面积的出入相补原理;求多面体体积的刘徽原理;5世纪祖暅提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;以内接正多边形逼近圆周长的极限方法(割圆术)等.例4.如图,一个六边形的6个内角都是120 ,其连续四边的长依次是1厘米、9厘米、9PA B C D厘米、5厘米.求这个六边形的周长.「分析」所给六边形各内角都是120°,这使我们联想到正六边形.在求解与正六边形有关的题目时,最常用的方法有两种:一种是“割”,一种是“补”.“割”是指把六边形分割干个边长或面积为1的正三角形;“补”是指在正六边形中取出三条互不相邻的边来延长,补成一个正三角形.这两种方法对本题适用吗?练习4、一个六边形的6个内角都是120︒,并有连续的三边长均为6厘米.如果这个六边形的周长是32厘米,那么该六边形最长的边有多长?例5.如图,在四边形ABCD 中,30AB =,48AD =,14BC =,且90ABD BDC ∠+∠=︒,90ADB DBC ∠+∠=︒.请问:四边形ABCD 的面积是多少?「分析」本题的条件让人感觉很别扭,虽然90ABD BDC ∠+∠=︒,但它们并不是紧挨着的;虽然90ADB DBC ∠+∠=︒,但它们也不是紧挨着的.那究竟对这个图形做怎样的变换,才能让那些应该紧挨着的角真正挨在一起呢?1995 6 66AB CD例6.如图,一块半径为2厘米的圆板,从位置①开始,依次沿线段AB 、BC 、CD 滚到位置②.如果AB 、BC 、CD 的长都是20厘米,那么圆板扫过区域的面积是多少平方厘米?(π取3.14,答案保留两位小数.)「分析」这道题关键是把想清楚圆板经过的区域是怎样的图形,并画出对应的轨迹图.AC2 1 120BD课堂内外中国古代的几何学形的研究属于几何学的范畴.古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象,便是由工具的制作与测量的要求所促成的.规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具.《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”.“规”是圆规,“矩”是直角尺,“准绳”则是确定铅垂方向的器械.这些都说明了早期几何学的应用.从战国时代的著作《考工记》中也可以看到与手工业制作有关的实用几何知识.战国时期墨子所写的《墨经》中,对一系列的几何概念进行抽象概括,作出了科学的定义.《周髀算经》与刘徽的《海岛算经》则给出了用矩观测天地的一般方法与具体公式.在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题.例如求任意多边形面积的出入相补原理;求多面体体积的刘徽原理;5世纪祖暅提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;以内接正多边形逼近圆周长的极限方法(割圆术)等.作业1. 如果图1中的圆环面积为12.56,阴影部分的内外两侧都是正方形,那么阴影部分的面积是多少?(π取3.14)2. 如图2,等腰三角形ABC 中,5AB AC ==,6BC =.D 为BC 边上的一点,DE 与AB 垂直,DF 与AC 垂直,那么DE 与DF 的和是多少?3. 如图3,P 为长方形ABCD 外的一点.三角形P AB 的面积为5,三角形PBC 的面积为30,三角形PCD 的面积为24.那么三角形P AD 的面积是多少;三角形P AC 的面积是多少?4. 一个六边形的6个内角都是120︒,并有四边长为5、6、5、5厘米,如图4所示.现在用一条线段把六边形分成两部分,则上、下两部分图形的面积比是多少?5. 右图中有一个上下、左右都对称的“十字型”,其各边长度如图所示(单位:厘米),一个半径为1厘米的小圆沿其外周滚动一周,那么小圆经过区域的面积等于多少?(答案保留圆周率π)图1 ABCD E F图2 PAB CD 图35655 图4 84 4 8第九讲 几何综合问题例题:例题1. 答案:157平方厘米详解:记大圆半径为R ,小圆半径为r ,那么圆环的面积为()22πR r -,我们只要能够求出22R r -即可.阴影部分是两个等腰直角三角形的面积差,等于()2212R r -,所以2222550R r -=⨯=.由此可得圆环面积等于50 3.14157⨯=. 例题2. 答案:24厘米详解:利用勾股定理可得50AC =厘米,所以25OB OC ==厘米.长方形ABCD的面积等于30401200⨯=平方厘米,所以△BOC 的面积等于112003004⨯=平方厘米.连接OP ,观察△OPB 与△OPC ,它们分别以OB 和OC 为底,是一对等底三角形,而对应的高就是PR 和PQ ,因此面积和就等于()()()225212.5OB PR OC PQ PR PQ PR PQ ⨯+⨯÷=⨯+÷=⨯+,而这个面积和就是△BOC 的面积,等于300,所以()12.5300PR PQ ⨯+=,由此可得30012.524PR PQ +=÷=厘米.例题3. 答案:8详解:图1阴影部分的面积是整个长方形的一半,而图2阴影部分的面积也是整个长方形的一半.两个阴影部分有一块公共部分,那就是△APD .去掉这块公共部分之后,剩下的阴影部分仍然应该相等,因此就有123S S S =+.由题意,113S =,25S =,所以31358S =-=.例题4. 答案:42厘米详解:为便于描述,将六边形剩余两条边的长度分别设为a 厘米和b 厘米.如右图所示,将图形补成一个等边三角形,最上方的应该是一个边长为9厘米的等边三角形,左下方则是一个边长为1厘米的等边三角形,由此可得最大的等边三角形边长为19919++=厘米.这样19955a =--=,而19113b a =--=.六边形边长就等于995151342+++++=厘米.例题5. 答案:936详解:如图所示,我们可以将图形中的△BCD 左右翻转一下,变成了△BED , 这样就和为90°的角就能拼到一起,构成完整的直角.例如∠ABE 与∠ADE 就都是直角.接着连结AE ,△ABE 与△ADE 都是直角三角形,AE 是它们公共的斜边.根据勾股定理,2222AB BE AD DE +=+,由此可得40BE =.这样就可以分别求解△ABE 与△ADE 这两个直角三角形的面积.将其相加,即可得总面积为3040481493622⨯⨯+=.例题6. 答案:228.07C AQ BDPROBCAP DBC A D8S 2 S 3S 1 图1图291 95 9 91 a baa1A C120︒B D EF G HI JK LMNOQP 304814?AB ED详解:小圆滚动时所经过的区域如右图所示.接着我们分块求解每一部分的面积.半圆FEQ 、半圆JKL 的面积之和是;长方形FGBQ 、BHIP 、IJLM 的面积之和是()1816144192++⨯=;60°的扇形BGH 的面积为218π4π63⨯⨯=;PIMNO 部分的面积为12π+;所以总面积为8π234π19212π204π228.0733++++=+≈.练习:1. 答案:125.6平方厘米简答:如右图所示,将图形从中间切开分为左、右两部分,每一部分都和例题1一模一样. 2. 答案:6简答:正方形面积等于“对角线平方的一半”,所以正方形对角线的平方就等于722144⨯=,由此可得正方形ABCD 的对角线AC 等于12,所以OC 、OD 长均为6.与例题2类似,连结OP ,然后利用△OCD 的面积等于72418÷=可得18218266PQ PR OC +=⨯÷=⨯÷=.3. 答案:9;16简答:如右侧左图所示,△P AB 与△PDC 是一对同底三角形(分别以AB 和CD 为底),他们的面积和等于“2AB ⨯÷高的和”.不难看出它们“高的和”就等于AD ,所以它们的面积和就等于长方形ABCD 面积的一半,由此可得长方形ABCD 的面积为()74222+⨯=.△P AD 的面积等于△P AB 、△PBC 及△PCD 的面积之和减去长方形ABCD 的面积,即7204229++-=.至于△P AC 的面积,只要用总面积减去△ABC 与△PCD 的面积即可,等于720411416++--=. 4. 答案:10厘米简答:如图所示,将图形补成一个完整的正三角形,其边长为66618++=.记原六边形的最短边为a ,最长边为b .那么18612a b +=-=.而由于正六边形周长为32,所以2321814a b +=-=.由此可得b 为1221410⨯-=厘米. 作业:4πPAB CD高和PAB CD高差6 b 6 6 6 6 6 6 a a b b1.答案:8简答:圆环面积为:()22π12.56R r -=,所以224R r -=,阴影部分面积等于()2228R r -=.2.答案:4.8简答:作BC 边上的高,可得高为4(利用勾3股4弦5).这样三角形ABC 的面积就等于12.接着就和例题2做法类似,连接AD 并利用等底三角形的面积和即可.3.答案:11;6简答:△PCD 与△P AB 的面积差(即24519-=)等于长方形ABCD 面积的一半,△PBC 与△P AD 的面积差等于长方形ABCD 面积的一半.所以△P AD 的面积为301911-=.△P AC 的面积等于△PBC 的面积减去△P AB 及△ABC 的面积,所以面积为305196--=.4.答案:85:96 简答:如图,在六边形的上方、左下和右下各补一个边长为6厘米的等边三角形,将图形补成一个完整的等边三角形.由此可求出六边形的中间分割线长为5611+=厘米.接着利用线段的份数关系求面积比.位于上方的梯形,其上底为6份,下底为11份,高为5份;而位于下方的梯形,其上底为5份,下底为11份,高则为6份.接着利用这些线段的份数关系,得到面积比为()()611585511696+⨯=+⨯.5.答案:1089π+简答:如图所示,利用图形的对称性,只要分析小圆经过区域的四分之一即可.图中阴影部分就是小圆经过区域面积的四分之一,只要求出图中阴影部分的面积,然后再乘以4即可得最后答案.4444 6 6 65 5 66 116 5666。

六年级上册苏教版数学《表面涂色的正方体》说课稿与反思

六年级上册苏教版数学《表面涂色的正方体》说课稿与反思

六年级上册苏教版数学《表面涂色的正方体》说课稿与反思一. 教材分析六年级上册苏教版数学《表面涂色的正方体》这一节课,主要让学生通过观察和操作,理解正方体的特征,掌握正方体的表面积和体积的计算方法,培养学生的空间想象能力和解决问题的能力。

教材通过正方体的表面涂色问题,引导学生发现正方体的特征,进一步探究正方体的表面积和体积的计算方法。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和解决问题的能力,他们可以通过观察和操作,理解正方体的特征,并能够运用这些特征来解决问题。

但是,学生的学习情况参差不齐,有的学生对正方体的理解可能还不够深入,需要老师在教学中给予更多的关注和引导。

三. 说教学目标1.知识与技能:学生能够通过观察和操作,理解正方体的特征,掌握正方体的表面积和体积的计算方法。

2.过程与方法:学生能够通过自主探究和合作交流,培养空间想象能力和解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作意识和创新精神。

四. 说教学重难点1.教学重点:学生能够理解正方体的特征,掌握正方体的表面积和体积的计算方法。

2.教学难点:学生能够通过自主探究和合作交流,解决正方体表面涂色问题。

五. 说教学方法与手段1.教学方法:采用自主探究、合作交流和引导发现的教学方法,让学生在观察和操作中,发现正方体的特征,理解正方体的表面积和体积的计算方法。

2.教学手段:利用多媒体课件和实物模型,帮助学生直观地理解正方体的特征,提高学生的空间想象能力。

六. 说教学过程1.导入:通过展示正方体的实物模型,引导学生观察和描述正方体的特征,激发学生的学习兴趣。

2.探究:学生分组进行自主探究,通过观察和操作,发现正方体的特征,并尝试计算正方体的表面积和体积。

3.交流:学生分组进行合作交流,分享自己的探究成果,解决探究过程中遇到的问题。

4.引导:老师引导学生发现正方体的特征,并讲解正方体的表面积和体积的计算方法。

小学六年级数学竞赛讲座 第6讲 几何综合之立体几何中的旋转体

小学六年级数学竞赛讲座 第6讲 几何综合之立体几何中的旋转体

平方厘米,体积是
立方厘米。(结果用 π
表示)
解:所得的几何体是一个大圆柱内挖掉一个小圆柱,
上下看的底面上 2×π×12=2π,侧面是 2π×1×1+2π× 1 × 1 =2 1 π,所以表面积=4 1 π(平方厘米);
23 3
3
体积 V=π×12×1−π×( 1 )2× 1 = 11 (立方厘米)。 2 3 12
694517.76+645948.24=1340466,整个旋转体的体积是 2×1340466=2680932.
例 5.如图:,ABCD 是矩形,BC=6cm,AB=10cm,对角线 AC、BD 相交于 O,E、F 分 别是 AD 与 BC 的中点,图中的阴影部分以 EF 为轴旋转一周,则白色部分扫出的立体 图形的体积是多少立方厘米?(π 取 3) 解:因为 BC=6cm,AB=10cm,
7.如图,ABCD 是矩形,BC=6 厘米,AB=10 厘米,对角线 AC、BD 相交于 O,图中的阴影部分以 CD 为轴 旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?(π 取 3)
解:从上下两部分看,都是一个圆台挖掉一个圆锥,
圆台体积= 1 ×π×(62+6×3+32)×5=105π=315,圆锥的体积= 1 ×π×32×5=45,
所以白色部分旋转一周得到的是一个圆柱,挖掉两个圆锥,
体积 V=π×32×10−2× 1 ×π×32×5=60×π=180. 3
例 6.如图,将图中阴影部分按照中轴 AB 旋转一周,问阴影部分扫出的立体图形的体积是多少?
解:V1= 1 ×π×(52+3×5+32)×4− 1 ×π×(32+3×1+12)×4+π×12×4=52π,

最新强化训练沪教版(上海)六年级数学第二学期第七章线段与角的画法专题练习试题(含答案及详细解析)

最新强化训练沪教版(上海)六年级数学第二学期第七章线段与角的画法专题练习试题(含答案及详细解析)

沪教版(上海)六年级数学第二学期第七章线段与角的画法专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知∠A=37°,则∠A的补角等于()A.53°B.37°C.63°D.143°2、如图,延长线段AB到点C,使BC=12AB,点D是线段AC的中点,若线段BD=2cm,则线段AC的长为()cm.A.14 B.12 C.10 D.83、如图,∠ACB可以表示为()A.∠1B.∠2C.∠3D.∠44、如图,12BC AB=,D为AC的中点,3cmDC=,则AB的长是()A .11cm 2B .5cmC .9cm 2D .4cm5、如图,O 是直线AB 上一点,OE 平分∠AOB ,∠COD =90°,则图中互余的角有( )对.A .5B .4C .3D .26、下午14时整,钟表的时针与分针构成的角度是( )A .30°B .60°C .90°D .120°7、如图,点O 在直线AB 上,OC OD ⊥,若150AOC ∠=︒,则BOD ∠的大小为( )A .30°B .40°C .50°D .60°8、如图,OE 是北偏东3040'︒方向的一条射线,将射线OE 绕点O 逆时针旋转8020'︒得到射线OF ,则OF 的方位角是( )A.北偏西5040'︒D.北偏西4920'︒︒C.北偏西4940'︒B.北偏西5020'9、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有()A.1个B.2个C.3个D.4个10、如图,从A到B有4条路径,最短的路径是③,理由是( )A .因为③是直的B .两点确定一条直线C .两点间距离的定义D .两点之间线段最短第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠1=71°,则∠1的补角等于__________度.2、如图,12BC AB =,D 为AC 的中点,DC =6,则AB 的长为_________.3、如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =70°,∠BOE =1n ∠BOC ,∠BOD =1n∠AOB ,则∠DOE =________°.(用含n 的代数式表示)4、用一根钉子钉木条时,木条会来回晃动,用数学知识说明理由:______;用两根钉子钉木条时,木条会被固定不动,用数学知识说明理由:______;“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是______.5、若α∠与β∠互余,且:2:3αβ∠∠=,则2536αβ∠+∠=______.三、解答题(5小题,每小题10分,共计50分)1、如图,O 是直线AB 上一点,∠DOB =90°,∠EOC =90°.(1)如果∠DOE =50°,求∠BOC 的度数;(2)若OE 平分∠AOD ,求∠BOE .2、已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE ,使60BOC EOD ∠-∠=︒.(1)如图①,若OD 平分BOC ∠,则AOE ∠的度数是_______;(2)如图②,将EOD ∠绕点O 按逆时针方向转动到某个位置,且OD 在BOC ∠内部时,①若:1:2COD BOD ∠∠=,求AOE ∠的度数;②若:1:COD BOD n ∠∠=(n 为正整数),直接..用含n 的代数式表示AOE ∠. 3、(1)如图1,将一副直角三角尺的直角顶点C 叠放在一起,经探究发现∠ACB 与∠DCE 的和不变.证明过程如下:由题可知∠BCE =∠ACD =90°∴∠ACB = +∠BCD .∴∠ACB =90°+∠BCD .∴∠ACB +∠DCE=90°+∠BCD +∠DCE=90°+∠BCE∵∠BCE=90°,∴∠ACB+∠DCE=.(2)如图2,若将两个含有60°的三角尺叠放在一起,使60°锐角的顶点A重合,则∠DAB与∠CAE 有怎样的数量关系,并说明理由;(3)如图3,已知∠AOB=α,∠COD=β(α,β都是锐角),若把它们的顶点O重合在一起,请直接写出∠AOD与∠BOC的数量关系.4、如图,网格中每个小格都是边长为1的正方形,点A、B、C、D都在网格的格点上.(1)过点C画直线l∥AB;(2)过点B画直线AC的垂线,垂足为点E;(3)比较大小:BA BE,理由是:;(4)若线段BC=5,则点D到直线BC的距离为.CD ,求线段5、如图,B,C两点把线段AD分成2:3:4的三部分,点M为AD的中点,若8cmMC的长.-参考答案-一、单选题1、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A =37°,∴∠A 的补角的度数为180°-∠A =143°,故选D .【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.2、B【分析】设BC xcm =,根据题意可得2AB xcm =,3AC xcm =,由D 是AC 的中点, 1.5DC xcm =,由图可得DC BC DB -=,代入求解x ,然后代入3AC xcm =求解即可.【详解】解:设BC xcm =, ∵12BC AB =, ∴2AB xcm =,∴3AC AB BC xcm =+=,∵D 是AC 的中点, ∴1 1.52DC AC xcm ==, ∵DC BC DB -=,∴1.52x x -=,解得:4x cm =,∴312AC x cm ==,故选:B .【点睛】本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关系.3、B【分析】由CA 和CB 所夹的角为角2,即可得出结果.【详解】根据图可知ACB ∠也可用2∠表示.故选B .【点睛】本题考查角的表示方法.理解角的表示方法是解答本题的关键.4、D【分析】根据题意先求得AC ,进而根据AB BC AC +=,12BC AB =就可求得AB【详解】解:如图,D 为AC 的中点,3cm DC =,26cm AC DC ∴==AB BC AC +=,12BC AB = 即162AB AB +=4cm AB ∴= 故选:D【点睛】本题考查了线段的中点相关的计算,线段的和差,数形结合是解题的关键.5、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE 平分∠AOB ,∴∠AOE =∠BOE =90°,∴互余的角有∠AOC 和∠COE ,∠AOC 和∠BOD ,∠COE 和∠DOE ,∠DOE 和∠BOD 共4对, 故选:B .【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.6、B【分析】钟表的一周360°,分成12个大格,求出每个大格的度数是30°,根据时针与分诊的格数解答即可.【详解】解:∵每个大格的度数是30°,∴2×30°=60°,故选B .【点睛】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°是解决问题的关键.7、D【分析】根据补角的定义求得∠BO C 的度数,再根据余角的定义求得∠BOD 的度数.【详解】解:∵150AOC ∠=︒,∴∠BO C =180°-150°=30°,∵OC OD ⊥,即∠COD =90°,∴∠BOD =90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.8、C【分析】∠,进根据题意求得3040∠=︒,根据方位角的表示,可得OF的方位角是DOFEOF'∠=︒,8020EOD'而可求得答案【详解】解:如图,根据题意可得3040∠=︒EOF'EOD'∠=︒,8020∴802030404940∠=∠-∠=︒-︒=︒DOF EOF DOE'''则OF的方位角是北偏西4940'︒故选C【点睛】∠是解题的关键.本题考查了角度的和差计算,方位角的计算与表示,求得DOF9、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.10、D【分析】根据两点之间,线段最短即可得到答案.【详解】解:∵两点之间,线段最短,∴从A到B有4条路径,最短的路径是③,故选D.【点睛】本题主要考查了两点之间,线段最短,熟知两点之间,线段最短是解题的关键.二、填空题1、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.2、8【分析】先根据D为AC的中点,DC=6求出AC的长,再根据BC=12AB得出AB=23AC,由此可得出结论.【详解】解:∵D为AC的中点,DC=6,∴AC=2CD=12.∵12 BC AB∴2212833AB AC==⨯=.故答案为:8.【点睛】本题考查线段中点的有关计算,能根据图形得出各线段之间的和、差及倍数关系是解答此题的关键.3、70 n【分析】根据角的和差即可得到结论.【详解】解:∵∠BOE=1n∠BOC,∴∠BOC=n∠BOE,∴∠AOB=∠AOC+∠BOC=70°+n∠BOE,∴∠BOD=1n∠AOB=70n︒+∠BOE,∴∠DOE=∠BOD-∠BOE=70n︒,故答案为:70n.【点睛】本题考查了角的计算,正确的识别图形是解题的关键.4、过一点有无数条直线过两点有且只有一条直线两点之间线段最短【分析】根据直线和线段的性质进行解答即可.【详解】解:用一根钉子钉木条时,木条会来回晃动,数学道理:过一点有无数条直线;用两根钉子钉木条时,木条会被固定不动,数学道理:过两点有且只有一条直线;“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是: 两点之间线段最短; 故答案为:过一点有无数条直线,过两点有且只有一条直线,两点之间线段最短.【点睛】本题考查了直线的性质,过一点有无数条直线,过两点有且只有一条直线,两点之间线段最短,解题关键是掌握直线和线段的性质.5、69°【分析】由题意可设∠α=2x ,∠β=3x ,根据α∠与β∠互余可得关于x 的方程,解方程即可求出x ,然后代值计算即可;【详解】解:因为:2:3αβ∠∠=,所以设∠α=2x ,∠β=3x ,因为α∠与β∠互余,所以2x +3x =90°,解得x =18°,所以∠α=36°,∠β=54°, 所以25253654693636αβ∠+∠=⨯︒+⨯︒=︒;故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、(1)∠BOC =50°(2)∠BOE =135°【分析】(1)90=BOC COD COD DOE ∠+∠=︒∠+∠,BOC DOE ∠=∠,可求BOC ∠的值.(2)1452DOE AOD ∠=∠=︒,BOE BOD DOE ∠=∠+∠,可求∠BOE 的值.【详解】解:(1)90BOC COD ∠+∠=︒,90COD DOE ∠+∠=︒50BOC DOE ∴∠=∠=︒ (2)OE 平分AOD ∠1452DOE AOD ∴∠=∠=︒ 又BOE BOD DOE ∠=∠+∠135BOE ∴∠=︒【点睛】本题主要考察了角平分线.解题的关键在于明确角之间的等量关系.2、(1)90︒;(2)①80°;②601201n AOE n ︒⋅∠=︒-+. 【分析】(1)由题意根据角平分线可得∠BOD =30°,∠BOE =90°,进而可得∠AOE 的度数;(2)①由题意根据∠BOC =60°和∠COD :∠BOD =1:2可得∠BOD =40°,∠BOE =100°,进而可得∠AOE 的度数;②由题意根据∠BOC =60°和∠COD :∠BOD =1:n 可得60601n BOE n ︒⋅∠=︒++,再由①的思路可得答案. 【详解】解:(1)因为OD 平分BOC ∠,60BOC EOD ∠=∠=︒,所以30BOD ∠=︒,603090BOE ∠=︒+︒=︒,所以1809090AOE ∠=︒-︒=︒.故答案为:90︒;(2)①因为60BOC ∠=︒,:1:2COD BOD ∠∠=,所以40BOD ∠=︒,所以6040100BOE ∠=︒+︒=︒,所以18010080AOE ∠=︒-︒=︒. ②601201n AOE n ︒⋅∠=︒-+. 因为60BOC ∠=︒,:1:COD BOD n ∠∠=, 所以601n BOD n ︒⋅∠=+, 所以60601n BOE n ︒⋅∠=︒++, 所以60601806012011n n AOE n n ︒⋅︒⋅⎛⎫∠=︒-︒+=︒- ⎪++⎝⎭. 【点睛】本题主要考查角的运算,注意掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3、(1)∠ACD ,180°;(2)∠DAB +∠CAE =120°,见解析;(3)∠AOD +∠BOC =β+α【分析】(1)结合图形把∠ACB 与∠DCE 的和转化为∠ACD 与∠BCE 的和;(2)结合图形把∠DAB 与∠CAE 的和转化为∠DAC 与∠EAB 的和;(3)结合图形把∠AOD 与∠BOC 的和转化为∠AOB 与∠COD 的和.【详解】解:(1)由题可知∠BCE=∠ACD=90°,∴∠ACB=∠ACD+∠BCD,∴∠ACB=90°+∠BCD,∴∠ACB+∠DCE=90°+∠BCD+∠DCE=90°+∠BCE,∵∠BCE=90°,∴∠ACB+∠DCE=180°,故答案为:∠ACD,180°;(2)∠DAB+∠CAE=120°,理由:由题可知∠DAC=∠EAB=60°,∴∠DAB=∠DAC+∠CAB,∴∠DAB=60°+∠CAB,∴∠DAB+∠CAE=60°+∠CAB+∠CAE=60°+∠EAB,∵∠EAB=60°,∴∠DAB+∠CAE=120°;(3)∵∠AOB=α,∠COD=β,∴∠AOD=∠COD+∠AOC=β+∠AOC,∴∠AOD+∠BOC=β+∠AOC+∠BOC=β+∠AOB=β+α.【点睛】本题考查了余角和补角,根据题目的已知条件并结合图形找角与角之间的关系是解题的关键.4、(1)作图见解析;(2)作图见解析;(3)>,垂线段最短;(4)2.4【分析】(1)取格点T,直线直线CT即可;(2)利用数形结合的思想解决问题即可;(3)根据垂线段最短解决问题即可;(4)利用面积法构建方程求解即可.【详解】解:(1)如图,直线l即为所求;(2)如图,直线即为所求;(3)BA>BE(垂线段最短);故答案为:>,垂线段最短;(4)设点D到BC的距离为h,∵S△DCB=12×3×4=12×5×h,∴h =2.4,故答案为:2.4.【点睛】本题主要考查了作垂线,作图应用与设计,垂线段最短的应用,准确作图分析是解题的关键.5、线段MC 的长为1cm .【分析】根据已知条件“B 、C 两点把线段AD 分成2:3:4三部分”和“CD =8”易求线段AD =18.然后根据中点的性质知MD =12AD ,则由图中可以得到MC =MD −CD =1.【详解】解:设2AB xcm =,则3BC xcm =,4CD xcm =,AD AB BC CD =++,2349AD x x x x ∴=++= 48CD x ==,2x ∴=,918AD x ∴==. M 是AD 中点,192MD AD ∴==. 981MC MD CD cm ∴=-=-=.答:线段MC 的长为1cm .【点睛】本题考查了两点间的距离.利用中点及其它等分点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。

新人教版六年级数学下册《立体图形与平面图形(3)》教案

新人教版六年级数学下册《立体图形与平面图形(3)》教案

9.1 几何图形第三课时9.1.1立体图形与平面图形(三)——立体图形的展开图一、教学目标(一)学习目标1.直观认识简单立体图形的平面展开图.2.探究并掌握正方体的平面展开图.3.知道多面体可由平面图形围成.(二)学习重点了解直棱柱、棱锥、圆柱、圆锥的平面展开图.(三)学习难点根据平面展开图想象相应的几何体.二、教学设计(一)课前设计1.预习任务(1)有些立体图形是由一些平面图形围成的,可以将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.(2)准备一个正方体包装盒,为学习正方体的展开图做准备.2.预习自测(1)圆柱的侧面展开图形是( )A.圆B.长方形C.梯形D.扇形【知识点】立体图形的展开图.【数学思想】【解题过程】解:圆柱的侧面展开图形是以底面周长为长、圆柱的高为宽的长方形.【思路点拨】实际操作或由小学知识解答.【答案】B.(2)把一个圆锥的侧面沿图所示的线剪开,得到的图形是( )A.三角形B.圆C.圆弧D.扇形【知识点】立体图形的展开图.【数学思想】【解题过程】解:如图,圆锥的侧面展开图形是以点A为圆心、母线AB为半径的扇形. 【思路点拨】实际操作或由小学知识解答.【答案】D.(3)下列图形中可以作为一个三棱柱的展开图的是()【知识点】立体图形的展开图.【数学思想】【解题过程】解:三棱柱的底面是三角形,侧面是长方形即可确定答案为A.【思路点拨】分清三棱柱的底面是三角形,侧面是长方形即可判定.【答案】A.(4)下面四个图形中,可以折叠成三棱锥的是( )【知识点】立体图形的展开图.【解题过程】解:A折叠成三棱柱;B折叠成三棱锥;C折叠成四棱锥;D不能折叠成棱锥. 【思路点拨】抓三棱锥底面和侧面都是三角形的特点作答.【答案】B.(二)课堂设计1.知识回顾(1)回忆小学学过的正方体、圆锥、圆柱及展开图,初步体会立体图形与平面图形的关系. (2)回顾立体图形从不同方向看,可以得到不同的平面图形.(3)观察立体图形通过平面图形折叠得到,体会平面图形与立体图形的相互转化.2.问题探究探究一探究圆柱、棱柱(长方体)的展开图★▲●活动①师问:你能说出圆柱的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:圆柱的展开图底面是两个圆,侧面是长方形.师问:你能说出长方体的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:长方体的展开图底面是两个长方形,侧面是四个长方形.总结:圆柱的底面是圆,侧面是长方形;棱柱的底面是多边形,侧面是长方形.【设计意图】学生通过回顾小学的知识,了解圆柱、棱柱的平面展开图:区分圆柱的底面是圆,侧面是长方形;棱柱的底面是多边形,侧面是长方形.体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力.探究二探究立体图形的展开图★▲●活动①探究圆锥、棱锥的展开图师问:你能说出圆锥的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:圆锥的展开图底面是一个圆,侧面是扇形.师问:你能说出四棱锥的展开图吗?展开图的底面、侧面分别是什么图形?学生举手抢答:四棱锥的展开图底面是一个四边形,侧面是四个三角形.总结:锥体的平面展开图:圆锥的底面是圆,底面是扇形;棱锥的底面是多边形(几棱锥底面是几边形),侧面是三角形(三角形的个数与底面多边形的边数相同).【设计意图】通过学生独立思考、小组交流、师生点拨,了解锥体的平面展开图:圆锥的底面是圆,棱锥的底面是多边形(几棱锥底面是几边形),侧面是三角形(三角形的个数与底面多边形的边数相同).体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力.●活动②探究正方体的展开图.学生自主学习:教材81页内容,探究正方体包装盒的展开图.师问:同学们能将自己手中的正方体包装盒的展开吗?学生活动:以小组为单位,将自己准备的正方体包装盒展开,画出正方体的展开图,在小组里交流.总结:在小组交流的基础上,归纳总结正方体展开图的情况.正方体的展开图共有11种:①“141”型②“231”型③“222”型④“33”型【设计意图】通过学生独立思考、小组交流、师生点拨,了解正方体的11种平面展开图,体会立体图形与相应平面图形之间的对应关系,培养学生的空间观念和想象能力,为解决有关以正方体展开图为背景的问题打基础.●活动③探究由立体图形的展开图折叠成几何体师问:下图中各图形能否折成几何体?若能,写出折成的几何体的名称.学生举手抢答.(1)圆锥;(2)五棱柱;(3)不能;(4)圆柱;(5)正方体;(6)三棱锥总结:由展开图折叠成立体图形,需要熟悉立体图形的展开图,要求同学们要有空间想象能力.【设计意图】由展开图折叠成立体图形,进一步让学生体会立体图形与平面图形的转化.探究三运用知识解决问题★▲●活动①例1.如图所示,下列四个选项中,不是正方体表面展开图的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】解:选项A 、B 、D 折叠后都可以围成正方体;而C 折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C .【思路点拨】熟记正方体的11种展开图,进行对比判断,强调有“田”型不是正方体的展开 图.【答案】C .练习:下列各图中,经过折叠能围成一个立方体的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】解:A.可以折叠成一个正方体;B.是“凹”字格,故不能折叠成一个正方体; C.折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D.是“田”字格,故不能折叠成一个正方体.【思路点拨】由平面图形的折叠及正方体的展开图解题. 【答案】A .【设计意图】通过练习,熟记正方体的展开图,注意只要有“田”、“凹”字格的展开图都不是正方体的表面展开图. ●活动2例2 .下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B. C.D.A.B .C.D.【知识点】立体图形的展开图. 【数学思想】【解题过程】解:A.剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B.剪去阴影部分后,无法组成长方体,故此选项不合题意;C.剪去阴影部分后,能组成长方体,故此选项正确;D.剪去阴影部分后,无法组成长方体,故此选项不合题意.【思路点拨】根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出 即可. 【答案】C .练习:图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.梦B.水C.城D.美【知识点】立体图形的展开图. 【数学思想】【解题过程】解:第一次翻转“梦”在下面,第二次翻转“中”在下面,第三次翻转“国”在下面,第四次翻转“城”在下面,“城”与“梦”相对,故选:A .【思路点拨】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案,最好动手操作. 【答案】A .【设计意图】展开图折叠成几何体,培养了学生的空间想象能力.练习考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键. 这种题最好让学生实际操作. ●活动3例3 .过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开A.B.C.D.图正确的为()【知识点】立体图形的展开图.【数学思想】【解题过程】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.【思路点拨】由平面图形的折叠及立体图形的表面展开图的特点解题.【答案】B.练习:如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()【知识点】立体图形的展开图.【数学思想】【解题过程】解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C错误,只有D选项符合条件.【思路点拨】根据正方体的表面展开图进行分析解答即可.【答案】D【设计意图】以正方体展开图为背景是常考的题型,解答时注意正方体的空间图形,从相对面入手,仔细分析各种符号,对照展开图进行解答问题,最好实践操作完成.3.课堂总结知识梳理(1)柱体、锥体的展开图特征;(2)正方体的展开图;(3)以正方体及展开图为背景的考题.重难点归纳(1)正方体的展开图;(2)以正方体及展开图为背景的考题训练.(三)课后作业 基础型 自主突破1.把如图中的三棱柱展开,所得到的展开图是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:三棱柱两个底面是两个全等的三角形,侧面是三个长方形,这样的图形围 成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B . 【思路点拨】根据三棱柱的定义以及展开图解题. 【答案】B.2.依次写出展开后如图所示的六种平面图的几何体的名称.(1) _________;(2) _________;(3) _________; (4) _________;(5) _________;(6) _________. 【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:依次写出几何体名称:(1)正方体;(2)长方体:(3)三棱柱; (4)四棱锥;(5)圆柱;(6)圆锥.【思路点拨】由棱柱、棱锥、圆柱、圆锥的展开图对比判断.【答案】(1)正方体;(2)长方体:(3)三棱柱;(4)四棱锥;(5)圆柱;(6)圆锥. 3.下列图形中,能通过折叠围成一个三棱柱的是( )A.B.C.D.【知识点】立体图形的展开图.【数学思想】【解题过程】解:A.另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.【思路点拨】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【答案】C.4.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.梦B.的C.国D.中【知识点】立体图形的展开图.【数学思想】【解题过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.选A.【思路点拨】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【答案】A.5.正方体的六个面分别标有1、2、3、4、5、6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1B.5C.4D.3【知识点】立体图形的展开图.【数学思想】【解题过程】解:由三个图形可看出与3相邻的数字有2、4、5、6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1、2、3、4,所以与6相对的数是5.故选B.【思路点拨】正方体的六个面分别标有1、2、3、4、5、6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2、4、5、6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1、2、3、4,所以与6相对的数是5.【答案】B.6.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【知识点】立体图形的展开图.【数学思想】【解题过程】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【思路点拨】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【答案】B.能力型师生共研1.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?【知识点】立体图形的展开图.【数学思想】【解题过程】解:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【思路点拨】根据正方体的特征知,相邻的面一定不是对面,进行简单的推理即可得答案.【答案】面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6. 2.下图是正方体的一个平面展开图,如果折叠成原来的正方体时与边a重合的是线段__________.【知识点】立体图形的展开图.【数学思想】【解题过程】解:试着折叠,可以想象,也可以亲自动手做一做,折叠成原来的正方体时与边a重合的是d.【思路点拨】考查正方体的表面展开图及空间想象能力.在验证立方体的展开图时,试着折叠,可以想象,也可以亲自动手做一做,折叠成原来的正方体即可定答案.【答案】线段d.探究型多维突破1.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A、B围成的正方体上的距离是()A.0B.1C.D.【知识点】立体图形的展开图.【数学思想】【解题过程】解;将展开图折叠成正方体,AB是正方体的边长,AB=1,【思路点拨】根据展开图折叠成几何体,可得正方体,A、B是同一棱的两个顶点,可得答案.【答案】B.2.棱长为a的正方体摆成如图所示.(1)试求其表面积;(2)若如此摆放10层,其表面积是多少?若如此摆放n 层呢?【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:(1)从前后、左右、上下不同方向看,每个面可看见6个小正方形,故表面积为236a ;(2)若摆放10层,其表面积为:226(12310)330a a⨯++++=;若摆放n 层,其表面积为:226(123)3(1)n a n n a ⨯++++=+【思路点拨】从前后、左右、上下不同方向看,计算出表面积. 【答案】(1)236a ;(2)2330a ;23(1)n n a + 自助餐1.下列立体图形中,侧面展开图是扇形的是( )【知识点】立体图形的展开图. 【数学思想】【解题过程】 解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B. 【思路点拨】圆锥的侧面展开图是扇形. 【答案】B.2.如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是( )【知识点】立体图形的展开图. 【数学思想】 【解题过程】解:根据圆锥的特征可知:圆锥的侧面展开后是一个扇形,三视图分别为三角形和圆形,不A.B.C.D.可能是正方形,故选D.【思路点拨】根据圆锥的特征:圆锥的侧面展开后是一个扇形,再由三视图,即可选择答案.【答案】D.3.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是_____.【知识点】立体图形的展开图.【数学思想】【解题过程】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.【思路点拨】利用正方体及其表面展开图的特点解题.【答案】的.4.将一边长为4的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是__________.【知识点】立体图形的展开图.【数学思想】【解题过程】解:如图,三棱锥四个面中最小的一个面是三角形AEF的面积为2.【思路点拨】三棱锥四个面中最小的一个面是等腰直角三角形,它的两条直角边等于正方形边长的一半,根据三角形面积公式即可求解.【答案】2.5.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.将其补充完整,请将所有的方法画出来.【知识点】立体图形的展开图.【数学思想】【解题过程】解:共有下列4种情况:【思路点拨】由正方体的展开图对比可求解.【答案】6.小明家的客厅长5m,宽4m,高3m.现要在离地面0.5m的A处装一个电源,开关装在离天花板1m的B处.用电线把A、B两处连起来,且A、B点都在墙的中间(如图).为安全起见,电线应固定在客厅的天花板、地板或墙上,而不能从客厅中穿过.电工最少需多长的电线?【知识点】立体图形的展开图.【数学思想】【解题过程】解:①当电线过左面、上面、右面时,所用电线长为:1+5+(3﹣0.5)=8.5m,②当电线过左面,下面,右面时所用电线长为:3﹣1+5+0.5=7.5m;③当电线过左面,后(或前)面,右面时所用电线长为:2+5+2+(3-1-0.5)=10.5m ;所以故电工最少需7.5m电线. 【思路点拨】应把左面,上面,右面的三面展开在一个平面内,算出两点间的距离;把左面,下面,右面的三面展开在一个平面内,算出两点间的距离;把左面,后面,右面的三面展开在一个平面内,算出两点间的距离;进行比较.【答案】7.5m.。

小学数学苏教版六年级上表面涂色的正方体

小学数学苏教版六年级上表面涂色的正方体
3×3×3=27(个), 能切成27个小正方体。
六年级上册数学课件
如果像下图这样把正方体切开,能切成多 少个小正方体?
六年级上册数学课件
如果像下图这样把正方体切开,能切成多 少个小正方体?
切成的小正方体中,3面 涂色、2面涂色、1面涂色的各有多少个, 分别在什么位置?
先仔细视察,想一想,再 在下表中填出来。
六年级上册数学课件
……
大正方体的棱平均分的份数 2 3 4 5 …
切成小正方体的总个数
8 27 64 125
3面涂色的小正方体个数
8 8 88
2面涂色的小正方体个数
0 12 24 36
1面涂色的小正方体个数
0 6 24 54

六年级上册数学课件
8
8
3面涂色的小正方体 都在大正方体顶点的 位置,都是8个。
六年级上册数学课件
……
大正方体的棱平均分的份数 2 3 4 5 …
切成小正方体的总个数
8 27 64 125
3面涂色的小正方体个数
8 8 88
2面涂色的小正方体个数
0 12 24 36
1面涂色的小正方体个数
0 6 24 54
六年级上册数学课件
6
1面涂色的小正方体 的个数都是6的倍数。
……
24
54
6×(3-2)×(3-2)=6(个) 6×(4-2)×(4-2)=24(个) 6×(5-2)×(5-2)=54(个)
……
六年级上册数学课件
……
6
24
54
如果用n表示把大正方体 1面涂色的小正方体 的棱平均分的份数,用b表示1 的个数都是6的倍数。 面涂色的小正方体个数,你能
用式子表示n和b的关系吗?

六年级第8讲:面积计算

六年级第8讲:面积计算

六年级备课教员:×××第八讲面积计算一、教学目标: 1. 暑智能版六年级第8讲:面积计算。

2. 利用移补的方法解决阴影部分的面积问题,体会转化数学思想的应用。

3.通过寻找高相等的三角形,思维的灵活性和严谨性得到提升。

二、教学重点:利用等底等高三角形的面积相等这一性质求图形的面积。

三、教学难点:根据需要寻找高相等的两个三角形。

四、教学准备:PPT五、教学过程:第一课时〈50分钟〉一、导入〈5分〉师:同学们,我们全班有24个人,我现在要把你们平均分成两组,该怎么样分?生:每组12个就可以了。

师:平均分成3组呢?生:每组8个就可以了。

师:是的,这是有具体的数字,我们很容易就可以算出来,如果我们要把一个三角形分成面积相等的2个三角形,该怎么样分呢?生:……师:如果是分成3个面积相等的三角形呢?生:……师:很好,你们是根据什么去分的。

生:……师:是的,如果两个三角形的底和高都相等,我们称它们是等底等高三角形, 并且它们的面积也是相等的,今天这节课,我们将用这个性质去求面积。

板书:巧求面积二、探索发现授课〈40分〉〈一〉例题一:〈13分〉四边形ABCD的对角线BD被E、F两点三等分,且四边形AECF的面积为15cm2。

求四边形ABCD的面积〈如图所示〉。

师:同学们,如果要把一个三角形分成面积相等的两个三角形,怎么分?生:……师:如果要把一个三角形分成面积相等的三个三角形呢?生:……师:你们的依据是什么?生:……师:说的太棒了!如果两个三角形的底和高相等,则它们的面积相等。

现在回到题目,同学们能找出面积相等的三角形吗?生1:△ABE、△AEF和△AFD的面积相等。

生2:△BEC、△EFC和△FCD的面积相等。

师:所以△ABD的面积是△AEF的几倍?生:3倍。

师:△BCD是面积是△EFC的几倍呢?生:3倍。

师:很好,题目告诉我们四边形AECF的面积为15平方厘米,而四边形AEFC等于哪两个三角形的面积和?生:△AEF和△EFC。

2022年最新人教版(五四制)六年级数学下册第九章几何图形初步重点解析试题(含解析)

2022年最新人教版(五四制)六年级数学下册第九章几何图形初步重点解析试题(含解析)

六年级数学下册第九章几何图形初步重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点D 是线段AB 的中点,C 是线段AD 的中点,若CD =1,则AB =( )A .1B .2C .3D .42、若40α∠=︒,则α∠的余角的度数是( )A .40°B .50°C .60°D .140°3、如图,将一副直角三角尺按不同方式摆放,则图中α∠与β∠互余的是( )A .B .C .D .4、如图,在观测站O 发现客轮A ,货轮B 分别在它北偏西50°,西南方向,则∠AOB 的度数是( )A .80°B .85°C .90°D .95°5、如果A 、B 、C 三点在同一直线上,线段4cm AB =,2cm BC =,那么A 、C 两点之间的距离为( )A .2cmB .6cmC .2cm 或6cmD .无法确定6、如图,下列说法正确的是( )A .线段AB 与线段BA 是不同的两条线段B .射线BC 与射线BA 是同一条射线C .射线AB 与射线AC 是两条不同的射线D .直线AB 与直线BC 是同一条直线7、下列立体图形中,各面不都是...平面图形的是( ) A . B . C . D .8、如图是一个几何体的侧面展开图,则该几何体是( )A .三棱柱B .三棱锥C .五棱柱D .五棱锥9、下列标注的图形与名称不相符的是( )A .B .C .D .10、如图,在观测站O 发现客轮A ,货轮B 分别在它北偏西50°,西南方向,则∠AOB 的度数是( )A .80°B .85°C .90°D .95°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个正方体的表面展开图,每个面上都标有字母.其中与字母A 处于正方体相对面上的是字母_______.2、若42α∠=︒,则α∠的余角为_______°,α∠的补角为_______°.3、延长线段AB到C,使BC AB=,反向延长线段AB到D,使12AD BC=,E是线段CD的中点.若cmAB a=,则线段BE=____cm(用含a的式子表示).4、线段AB的长为2cm,延长AB到C,使AC=3AB,再反向延长AB到D,使BD=2BC,则线段CD的长为 _____cm.5、若∠A=25°24′,则∠A的补角是_______________.三、解答题(5小题,每小题10分,共计50分)1、(1)如图1,OC是∠AOB内部的一条射线,且OD平分∠AOC,OE平分∠BOC.①若∠AOC=20°,∠BOC=50°,则∠EOD的度数是.②若∠AOC=α,∠BOC=β,求∠EOD的度数,并根据计算结果直接写出∠EOD与∠AOB之间的数量关系.(2)如图2,射线OC在∠AOB的外部,且OD平分∠AOC,OE平分∠BOC.试着探究∠EOD与∠AOB之间的数量关系.2、如图,80AOC∠=︒,OB是∠AOC的平分线,OD是∠COE的平分线.(1)求∠BOC的度数;(2)若30DOE ∠=︒,求∠BOE 的度数.3、(1)如图1,OC 是∠AOB 内部的一条射线,且OD 平分∠AOC ,OE 平分∠BOC .①若∠AOC =20°,∠BOC =50°,则∠EOD 的度数是 .②若∠AOC =α,∠BOC =β,求∠EOD 的度数,并根据计算结果直接写出∠EOD 与∠AOB 之间的数量关系.(2)如图2,射线OC 在∠AOB 的外部,且OD 平分∠AOC ,OE 平分∠BOC .试着探究∠EOD 与∠AOB 之间的数量关系.4、如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分.点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)请直接写出原点在第几部分.________;(2)若A ,C 两点间的距离是5,B ,C 两点间的距离是3,b =-1.求a 的值;(3)若点C 表示数3,数轴上一点D 表示的数为d ,当点C 、原点、点D 这三点中其中一点是另外两点的中点时,直接写出d 的值.5、已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图1,若∠AOC=48°,求∠DOE的度数;(2)如图1,若∠AOC=α,则∠DOE的度数为 (用含有α的式子表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置,试探究∠DOE和∠AOC度数之间的关系,写出你的结论,并说明理由.(4)将图1中的∠DOC绕顶点O逆时针旋转至图3的位置,其它条件不变,若∠AOC=α,则∠DOE的度数为 (用含有α的式子表示),不必说明理由.-参考答案-一、单选题1、D【解析】【分析】根据线段的中点性质先求出AD,再求出AB即可.【详解】解:如图:C是线段AD的中点,1CD=,∴==,22AD CD点D是线段AB的中点,∴==,AB AD24故选:D.【点睛】本题考查了两点间距离,解题的关键是根据题目的已知条件画出图形.2、B【解析】【分析】根据余角的定义即可求解.【详解】解:∵∠α=40° ,∴它的余角=90°-40°=50°.故选:B.【点睛】本题考查了余角的知识,熟记互为余角的两个角的和等于90°是解题的关键.3、A【解析】【分析】A项根据平角的意义即可判断;B根据同角的余角相等即可判断;C根据等角的补角相等即可判断;D 根据角度的关系求出两角的角度再进一步判断即可.【详解】解:A、图中∠α+∠β=180︒-90︒=90︒,∠α与∠β互余,故本选项符合题意;B、图中∠α=∠β,不一定互余,故本选项不符合题意;C、图中∠α=∠β=135︒,不是互余关系,故本选不符合题意;D 、图中∠α=45︒,∠β=60︒,不是互余关系,故本选不符合题意;故选:A .【点睛】本题考查了余角和补角,是基础题,熟记余角的概念是解题的关键.4、B【解析】【分析】根据西南方向即为南偏西45︒,然后用180︒减去两个角度的和即可.【详解】由题意得:180(4550)85AOB ∠=︒-︒+︒=︒,故选:B .【点睛】本题考查有关方位角的计算,理解方位角的概念,利用数形结合的思想是解题关键.5、C【解析】【分析】根据题意,利用分类讨论的数学思想可以求得A 、C 两点间的距离.【详解】解:∵A 、B 、C 三点在同一条直线上,线段AB =4cm ,BC =2cm ,∴当点C 在点B 左侧时,A 、C 两点间的距离为:4-2=2(cm ),当点C在点B右侧时,A、C两点间的距离为:4+2=6(cm),故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.6、D【解析】【分析】根据直线、线段、射线的区别进行判断即可.【详解】解:A、线段AB与线段BA端点相同,顺序不同,属于一条线段,故错误;B、射线BC与射线BA端点与方向均不同,不是同一射线,故错误;C、射线AB与射线AC端点相同,方向相同,属于同一射线,故错误;D、直线AB与直线BC属于同一直线,故正确.故选:D.【点睛】本题考查的是直线、线段、射线的定义,熟练掌握之间的区别即可进行解题.7、B【解析】【分析】根据立体图形的基本性质即可求解.【详解】解:A.四棱锥是由平面围成,B. 圆锥是由2个面围成,底面是平面,侧面是曲面,不都是由平面图形围成,C. 六棱柱是由平面围成,D. 三棱柱是由平面围成,故选:B.【点睛】本题考查了立体图形的基本性质,逐个判断即可得出答案.8、D【解析】【分析】由题意可知,该几何体侧面为5个三角形,底面是五边形,从而得到该几何体为五棱锥,即可求解.【详解】解:由题意可知,该几何体侧面为5个三角形,底面是五边形,所以该几何体为五棱锥.故选:D【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.9、C【解析】【分析】根据每一个几何体的特征逐一判断即可.【详解】解:A .是圆锥,故A 不符合题意;B .是四棱柱,故B 不符合题意;C .是三棱柱,故C 符合题意;D .是圆柱,故D 不符合题意;故选:C .【点睛】本题考查了认识立体图形,熟练掌握每一个几何体的特征是解题的关键.10、B【解析】【分析】根据西南方向即为南偏西45︒,然后用180︒减去两个角度的和即可.【详解】由题意得:180(4550)85AOB ∠=︒-︒+︒=︒,故选:B .【点睛】本题考查有关方位角的计算,理解方位角的概念,利用数形结合的思想是解题关键.二、填空题1、F【解析】【分析】根据正方体的表面展开图找相对面的方法,“Z ”字两端是对面判断即可.【详解】解:与字母A处于正方体相对面上的是字母:F,故答案为:F.【点睛】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.2、48°##48度138°##138度【解析】【分析】根据两个角的和等于90°(直角),就说这两个角互为余角,两个角的和等于180°(平角),就说这两个角互为补角,列式计算即可.【详解】解:∠α的余角:90°-42°=48°,∠α的补角:180°-42°=138°,故答案为:48°、138°.【点睛】本题考查余角和补角,掌握余角和补角的定义,根据定义列式计算是解题关键.3、1 4 a【解析】【分析】求出EC,BC,可得结论.【详解】解:∵AB =BC =cm a ,AD =12AB =cm 2a , ∴CD =AD +AB +BC =5cm 2a , ∴DE =EC =12CD =5cm 4a , ∴EB =EC −BC =5cm 4a −cm a =1cm 4a . 故答案为:14a . 【点睛】 本题考查线段的和差定义等知识,解题的关键是理解题意,正确作出图形,属于中考常考题型. 4、12【解析】【分析】根据已知分别得出BC ,AD 的长,即可得出线段CD 的长.【详解】解:∵线段AB =2cm ,延长AB 到C ,使AC =3AB ,再反向延长AB 到D ,使BD =2BC ,∴BC =2AB =4(cm ),BD =2BC =8(cm ),∴AD =BD -AB =3AB =6(cm ),∴CD =AD +AB +BC =6+2+4=12(cm ),故答案为:12.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.5、15436'︒【解析】【分析】根据补角的定义解答即可.【详解】解:180°-25°24′=15436'︒,故答案为:15436'︒【点睛】本题考查了补角的意义,如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.三、解答题1、(1)①35°;②12EOD AOB∠=∠(或∠AOB=2∠EOD);(2)12EOD AOB∠=∠【解析】【分析】(1)①利用角平分线的定义和角的和差的意义解答即可;②利用角平分线的定义和角的和差的意义解答即可;(2)同(1)中的方法利用角平分线的定义和角的和差的意义解答即可.【详解】解:(1)①∵OD平分∠AOC,∠AOC=20°,∴11201022COD AOC∠=∠=⨯︒=︒;∵OE平分∠BOC,∠BOC=50°,∴11502522COE BOC ∠=∠=⨯︒=︒; ∴102535EOD COD COE ∠=∠+∠=︒+︒=︒;故答案为:35°;②解:∵OD 平分∠AOC ,AOC α∠=, ∴12COD α∠=. ∵OE 平分∠BOC ,BOC β∠=, ∴12COE β∠=. ∴1122EOD COD COE αβ∠=∠+∠=+; ∠EOD 与∠AOB 之间的关系为:12EOD AOB ∠=∠(或∠AOB =2∠EOD ). (2)∵OD 平分∠AOC ,OE 平分∠BOC , ∴12COD AOC ∠=∠,12COE BOC ∠=∠. ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【点睛】本题主要考查了角的平分线的意义,角的计算,利用角平分线的定义和角的和差的意义解答是解题的关键.2、 (1)40°(2)100°【解析】【分析】(1)根据角平分线的定义,即可求解;(2)根据角平分线的定义,可得60COE ∠=︒,再由BOE COE BOC ∠=∠+∠,即可求解.(1)解:∵80AOC ∠=︒,OB 是∠AOC 的平分线, ∴1402BOC AOC ∠=∠=︒; (2)解:∵OD 是∠COE 的平分线.30DOE ∠=︒,∴60COE ∠=︒,∵40BOC ∠=︒,∴100BOE COE BOC ∠=∠+∠=︒.【点睛】本题主要考查了有关角平分线的计算,熟练掌握在角的内部,把一个角分成相等的部分的射线叫这个角的角平分线是解题的关键.3、(1)①35°;②12EOD AOB ∠=∠(或∠AOB =2∠EOD );(2)12EOD AOB ∠=∠ 【解析】【分析】(1)①利用角平分线的定义和角的和差的意义解答即可;②利用角平分线的定义和角的和差的意义解答即可;(2)同(1)中的方法利用角平分线的定义和角的和差的意义解答即可.【详解】解:(1)①∵OD 平分∠AOC ,∠AOC =20°, ∴11201022COD AOC ∠=∠=⨯︒=︒; ∵OE 平分∠BOC ,∠BOC =50°,∴11502522COE BOC ∠=∠=⨯︒=︒; ∴102535EOD COD COE ∠=∠+∠=︒+︒=︒;故答案为:35°;②解:∵OD 平分∠AOC ,AOC α∠=, ∴12COD α∠=. ∵OE 平分∠BOC ,BOC β∠=, ∴12COE β∠=. ∴1122EOD COD COE αβ∠=∠+∠=+; ∠EOD 与∠AOB 之间的关系为:12EOD AOB ∠=∠(或∠AOB =2∠EOD ). (2)∵OD 平分∠AOC ,OE 平分∠BOC , ∴12COD AOC ∠=∠,12COE BOC ∠=∠. ∴111222EOD COD COE AOC BOC AOB ∠=∠-∠=∠-∠=∠. 【点睛】本题主要考查了角的平分线的意义,角的计算,利用角平分线的定义和角的和差的意义解答是解题的关键.4、 (1)第③部分;(2)a =﹣3;(3)d =6或1.5或﹣3.【解析】【分析】bc可得,b c异号,从而可得原点的位置;(1)由0,(2)由点B与点C距离3个单位长度,b=﹣1,相当于把表示1 的点向右平移3个单位,从而可得C对应的数,同样的把表示2的点向左边平移5个单位,从而可得a的值;(3)分三种情况讨论,当点C是OD的中点时,当点D是OC的中点时,当点O是CD的中点时,再分别求解d的值即可.(1)解:∵bc<0,∴b,c异号,∴原点在B,C之间,即第③部分;(2)解:∵点B与点C距离3个单位长度,b=﹣1,∴C表示的数为﹣1+3=2,∵AC=5,A点在点C的左边,∴点A表示的数为:2﹣5=﹣3,∴a=﹣3;(3)解:点C、原点、点D这三点中其中一点是另外两点的中点时,当点C是OD的中点时,OC=CD=3,∴OD=6,得d=6;当点D是OC的中点时,OD=CD=1.5,得d=1.5;当点O是CD的中点时,OC=OD=3,得d=﹣3,综上所述:d=6或1.5或﹣3.【点睛】本题考查的是数轴的应用,数轴上两点之间的距离,有理数的加减法的应用,线段中点的含义,清晰的分类讨论是解本题的关键.5、(1)24°(2)1 2α(3)∠DOE=12∠AOC,理由见解析(4)180 °-1 2α【解析】【分析】(1)由已知可求出∠BOC=180°-∠AOC=180°-48° = 132°,再由∠COD是直角,OE平分∠BOC 求出∠DOE的度数;(2)由(1)得,12DOE AOC∠=∠,从而用含a的代数式表示出∠DOE的度数;(3)由∠AOC+∠BOC=∠AOB=180°可得∠BOC=180°-∠AOC,再根据角平分线的定义以及角的和差关系解答即可;(4)根据角的和差关系,角平分线的定义解答即可.(1)(1)∵∠AOC+∠BOC=∠AOB=180°∴∠BOC=180°-∠AOC=180°-48° = 132°∵OE平分∠BOC∴∠COE =12∠BOC= 66°又∵∠COD 是直角∴∠COD = 90°∴∠DOE =∠COD -∠COE = 90°- 66°= 24°(2)由(1)得,12DOE COD BOC ∠=∠-∠ 190(180),2DOE AOC ︒︒∴∠=--∠ 11.22DOE AOC α∴∠=∠= 故答案为:12α (3)答:∠DOE =12∠AOC .理由如下: ∵∠AOC +∠BOC =∠AOB =180°∴∠BOC =180°-∠AOC ∵OE 平分∠BOC∴∠COE =12∠BOC =12 (180°-∠AOC )= 90°-12∠AOC 又∵∠COD 是直角∴∠COD = 90°∴∠DOE =∠COD -∠COE = 90°-(90°-12∠AOC )= 12∠AOC ∴∠DOE =12∠AOC(4)OE 平分BOC ∠1180180222AOC COE BOC α︒︒-∠-∴∠=∠== COD ∠是直角90,COD ︒∴∠=180********DOE COD COE αα︒︒︒-∴∠=∠+∠=+=- 故答案为:11802α︒-; 【点睛】此题考查的是角平分线的性质、旋转性质以及角的计算,关键是正确运用好有关性质准确计算角的和差关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共2页 第 页2012---2013学年度第二学期末测试卷(3)1、由3个亿、8个千万、9个万、6认真思考,对号入座:(16分)2、 个千和5个百组成的数写作( ),四舍五入到亿位约是( )。

3、 把 2.75化成最简分数后的分数单位是( );至少添上( )个这样的分数单位等于最小的合数。

4、 差是1的两个质数是( 和 ),它们的最小公倍数是( )。

5、 抽样检验一种商品,有38件合格,2件不合格,这种商品的合格率是( )。

6、 有a 吨化肥,每天用去1.2吨,用了b 天,还剩下( )吨。

7、 师徒两人生产一批零件,师、徒生产个数的比是5:3,徒弟生产150个,师傅生产( )个,这批零件一共有( 个。

8、 5小时24分=( )小时; 78050平方米=( )公顷。

9、 250千克:0.5吨化成最简整数比是( ):( ),比值是( )。

10、 14:( )=()30=0.7=7÷( )=( )%11、 一台收音机原价100元,先提价10%,又降价10%,现在售价是( )元。

12、 一块布长40米,先剪去它的40%,再剪去1/2米,还剩下( )米。

13、 把3米长的绳子平均分成5段,每段占全长的( ),是( )米。

14、 等底等高的圆柱体和圆锥体积之差是4.6立方分米,圆柱的体积是( )立方分米。

15、 一个数减少它的20%后是48,这个数是( )。

16、 看图填空:(1)小华骑车从家去相距5千米的图书馆借书,从所给的折线统计图可以看出:小华去图书馆路上停车( )分,在图书馆借书用( )分。

(2)从图书馆返回家中,速度是每小时( )千米。

一、仔细推敲,辨析正误。

(6分)1、 用棱长1厘米的小正方体摆一个大正方体,至少要8个小正方体。

( )2、 圆的半径和面积成正比例。

( )3、 任何一个自然数的倒数都小于这个数。

( )4、 面积相等两个梯形可以拼成一个平行四边形。

( )5、 一个大于0的数除以41的商,比这个数乘41的积大。

( )6、 某制衣厂去年比前年增产15%,就是说前年比去年减少15%。

( ) 二、反复比较,择优录取:(5分)1、 长方体体积一定,底面积和高__________。

① 成正比例 ② 成反比例 ③ 不成比例2、 a 、b 是两个不是0的自然数,a÷b=6,a 和b 最小公倍数是_____。

① a ② b ③63、 一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大( )①5倍 ② 6倍 ③不变4、 小明所在班级学生平均身高是1.4米,小强所在班学生平均身高是1.5米,小明比小强( )。

①高 ②矮 ③一样高 ④无法确定5、 右图是一个半圆,求它的周长的正确算式是_________。

① 3.14×1522 ② 3.14×(15×2)2+15 ③3.14×15+15×2三、看清题目,巧思妙算:(32分)1、 直接写数对又快!(5分)0.4×0.2= 9-0.9= 10.75-(0.75+3.4)= 72÷0.4= 24÷34 = 35 +13 =0.2-16 = (3+320 )×5= 1÷23 ×32 = 34 +12 ÷ 12 =2、神机妙算细又巧!(能简算的要写出简算过程)(15分)4×0.8×2.5×12.5 2.3×85+2.3×15 36.5×99+36.5 0.65×14+87×65%-2013 (32-21+61)÷2413、 列式计算我能行:(8分)(1)100比80多百分之几? (2)比一个数的4/5少32的数是28,求这个数。

四、动手操作,探索创新(5分)1、(1)在右图中,画出表示A 点到直线距离的线段。

(2)过A 点作已知直线的平行线。

(3)量一量,A 点到已知直线的距离是_______厘米。

2、已知右图平行四边形中阴影部分的面积是2.5平方厘米,求这个平行四边形的面积。

六。

走进生活,解决问题:(36分) 1.一项工程,甲单独做6天完成,乙单独做9天完成。

两人合做这项工程,多少天可以完成?2.钢铁厂去年生产钢材270万吨,比计划多生产30万吨,实际比计划多生产百分之几?3.商店运来600千克苹果,比运来的梨的3倍少60千克,商店运来的梨有多少千克?4.食堂买来一些大米,3天吃了其中的85,还剩下150千克。

求这些大米共有多少千克?5.甲乙两地相距405千米。

一辆汽车从甲地开往乙地,4小时行驶了180千米。

照这样的速度,这辆汽车从甲地到乙地一共要开几小时?(用比例解。

)6.一个圆锥形小麦堆,高1.2米,底面周长12.56米,如果每立方米小麦重750千克,这堆小麦共重多少千克?7.某厂生产一批水泥,原计划每天生产150吨,可以按时完成任务。

实际每天增产30吨,结果只用25天就完成了任务。

原计划完成生产任务需要多少天?8.修一条路,第一天修了全长的52,第二天修了全长的50%,还剩3.2千米没修,这条路全长多少千米?9.童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4∶5分给小班和中班,小班和中班各分到多少本?10.爷爷的药瓶标签上写着80片,每片10克,医生的药方上写着,每天吃3次,每次吃20克,要吃10天,你认为够吃吗?11.从A 城到B 城,甲汽车用6小时,从B 城到A 城,乙汽车用4小时。

现在甲乙两车分别从A 、B 两城同时出发相对而行,相遇时甲汽车行驶了96千米,A 、B 两城相距多远?2厘米A .2012---2013学年度第二学期末测试卷(4)一、填空。

(每空1分,共24分。

)1、5时24分=()时 78050平方米=()公顷2、由3个亿、8个千万、9个万、6个千和5个百组成的数写作(),四舍五入到亿位约是()。

3、250千克∶0.5吨,化简后是()∶(),比值是()。

4、把2.75化成最简分数后的分数单位是(),添上()个这样的分数单位后是最小的合数5、国旗长和宽比是3∶2,已知一面国旗长240厘米,宽()厘米。

国旗长比宽多()%6、差是1的两个质数是()和(),它们的最大公因数是()。

7、经过两点可以画出()条直线,两条直线相交有()个交点。

8、抽样检验一种商品,有38件合格,2件不合格,这种商品的合格率是()。

9、一台收音机原价100元,先提价10%,又降价10%,现在售价是()元。

10、把3米长的绳子平均分成5段,每段占全长的(),是()米。

11、等底等高的圆柱和圆锥体积之差是4.6立方分米,圆柱的体积是()立方分米二、选择。

(每题1分,共8分。

)1、长方体体积一定,底面积和高()①成正比例;②成反比例;③不成比例;④既可能成反比例,又可能成正比例。

2、a、b是两个不为0的自然数,a÷b=6,a、b的最小公倍数是()① a ;② b ;③ 6 ;④ 6a 。

3、一个平行四边形的底扩大到原来的3倍,高扩大到原来的2倍,面积就扩大到原来的(① 2倍;② 3倍;③ 5倍;④ 6倍。

4、下列图形中对称轴最多的是()① 长方形;② 正方形;③ 三角形;④ 圆。

5、一个长方形框架拉成平行四边形后,面积()。

①不变;②减小;③增大;④既可能减小又可能增大。

6、用一枚硬币连续抛20次,落地后,面值图案分别向上、向下、向上……第20次面值的图案( )①向上;②向下;③向上、向下都有可能;④向上、向下都不可能。

7、32以内3和5的公倍数有()① 1个;② 2个;③ 3个;④ 4个。

8、一个长方形、一个正方形和一个圆的面积相等,那么周长最长的是()① 长方形② 正方形③ 圆三、计算。

(31分)1、直接写出得数(5分)3500-700=0.4×0.2= 9-0.9=24÷2/11=204÷2= 1/2+1/3= 2/5+7/8= 0.9+99×0.9=2、解方程。

(4分)2x+3×0.9=24.9120%x+x =443、计算,能简算的要写出简算过程。

(16分)4×0.8×2.5×12.5 0.65×14+87×65%-65%42÷[14-(50-39)] 2.25×4.8+77.5×0.484、列式计算。

(6分) (1) 比一个数的4/5少32的数是28,求这个数。

(2) 100比80多百分之几?四、解答。

(16分)1、操作(4分)(1) 以A点为圆心画一个直径4CM的圆,并计算其面积。

2分(2) 过A点作已知直线的平行线。

.A(3) 量一量,A点到已知直线的距离是()厘米。

2、利用画图法分析下题的数量关系。

(4分)车展中,第一天成交量是65辆,第二天成交量比第一天增加了1/5。

第二天成交多少辆?3、根据统计图回答。

(8分)龙腾公司2007年空调机销售数量统计表(1) 第()季度的销售量最高,是()台;(2) 全年平均每月销售()台;(3) 第二季度比第一季度销售量提高了()%。

五、解决问题。

(第一题6分,其它题各5分,26分。

)1、某食堂,3月运入大米600吨,比运入的蔬菜的3/5少6吨,运入蔬菜多少吨?2、一间房子铺地砖,用边长是4分米的方砖,需要90块,如果改用边长是6分米的方砖,需要多少块?3、学校食堂有一些大米,3天吃了3/5,还剩60千克,这些大米共有多少千克?4、甲、乙两个工程队抢修一条灾区公路,它们从两端同时施工,甲队每天修8.5千米。

乙队每天修6.5千米,5天修完,这条公路长多少千米?5、张爷爷的标签上写着80片,每片10克。

医生的药方上写着,每天3次,每次20克,这瓶药张爷爷能吃多少天?6、师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,完成任务时徒弟正好生产了450个,这批零件共多少个?7、某电脑公司计划用9天时间组装电脑630台,实际只用6天就完成了任务,实际每天比计划多组装多少月份 1 2 3 4 5 6 7 8 9 10 11 12销售额1400 900 1200 2200 3400 4500 7500 5000 3000 2100 8001200共2页第页。

相关文档
最新文档