二次根式的加减法

合集下载

二次根式的运算知识讲解

二次根式的运算知识讲解

二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则与化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律与运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.。

要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算与整式运算中的运算律与乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式的加减运算1.计算: (1).+ (2).311932a a a a a+- 【答案与解析】(1)+=2232(23)252+=+=【总结升华】一定要注意二次根式的加减要做到先化简,再合并.举一反三:【变式】计算:11(1)()527232π--++-- 【答案】011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);【答案与解析】(1)×=;(2)×==;(3)===2;(4)==×2=2.【总结升华】直接利用计算即可.举一反三【变式】各式是否正确,不正确的请予以改正: (1).; (2).×=4××=4×=4=8.【答案】(1).不正确.改正:==×=2×3=6;(2).不正确. 改正:×=×====4.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯ 【答案与解析】(1)214=(9)()3483-⨯-⨯原式=6136=1; (2)原式=171123282711⎛⎫⨯-⨯⨯⨯⨯ ⎪⎝⎭=34-.【总结升华】掌握乘除运算的法则,并能灵活运用. 类型三、二次根式的混合运算4.下列各式计算正确的是( ) A.+=B. 4﹣3=1 C. 2×3=6D.÷=3【答案】D. 【解析】解:A.,无法计算,故此选项错误, B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确,故选D.【总结升华】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.5、计算:已知6+==ba,则,625-52ab=_______,a b+=________.【答案】1;10.【解析】225+26526,5(26)1==-∴=-=,a b ab【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就很简便而且准确.举一反三:【变式】已知x=1﹣,y=1+,则x2+y2﹣xy﹣2x﹣2y的值为.【答案与解析】解:∵x=1﹣,y=1+,∴x2+y2﹣xy﹣2x﹣2y=(x+y)2﹣2(x+y)+1﹣3xy﹣1=(x+y﹣1)2﹣3xy﹣1=1﹣3×(1﹣)(1+)﹣1=1+3﹣1=3.。

二次根式的化简与运算法则

二次根式的化简与运算法则

二次根式的化简与运算法则二次根式是数学中的一种特殊表达形式,通常以√来表示。

在实际应用中,我们经常会遇到需要对二次根式进行化简和运算的情况。

本文将介绍二次根式的化简方法以及运算法则。

一、二次根式的化简方法对于二次根式,我们希望将其化简为最简形式,即分子与分母互质的形式。

1. 化简含有平方数的二次根式当二次根式的被开方数是平方数时,可以直接提取出该平方数的因子。

例如√36,由于36是6的平方,即36 = 6^2,因此√36 = 6。

2. 有理化分母当二次根式出现在分母中时,我们可以通过有理化分母的方法将其转化为最简形式。

有理化分母的基本思想是将分母中的二次根式去除,实现分母为有理数的形式。

例如,对于分母为√a的二次根式,我们可以将其有理化分母得到如下形式:1/√a = (√a) / a二、二次根式的运算法则在进行二次根式的运算时,我们需要根据运算法则进行相应的操作。

1. 二次根式的加减法对于二次根式的加减法,要求根号下的被开方数相同,即二次根式相同。

例如√a + √a = 2√a2. 二次根式的乘法对于二次根式的乘法,我们直接将根号下的被开方数相乘,并转化为最简形式。

例如√a * √b = √(ab)3. 二次根式的除法对于二次根式的除法,我们可以借助有理化分母的方法进行转化,然后进行乘法运算。

例如√a / √b = (√a * √b) / (√b * √b) = √(a/b)三、综合运用下面通过几个例题来综合运用二次根式的化简与运算法则:例题1:化简√(108)。

解:首先,将108分解成最简的平方数的乘积,即108 = 4 * 27 = 4* 3^3。

然后,根据化简含有平方数的二次根式的方法,√(108) = √(4 * 3^3) = √4 * √(3^3) = 2 * 3√3 = 6√3。

例题2:进行二次根式的加法运算:√(8) + √(18)。

解:首先,化简每个二次根式√(8) = √(4 * 2) = 2√2,√(18) = √(9 * 2) = 3√2。

二次根式的加减法

二次根式的加减法

概念
例子
异类二次根式是指根指数或被开方数不同 的二次根式。
$\sqrt{4}$ 和 $\sqrt{9}$ 是异类二次根式 。
减法运算
加法运算
两个异类二次根式相减,先进行化简,再 进行减法运算。
两个异类二次根式相加,先将它们化成最 简二次根式,再进行加法运算。
运算结果化为最简二次根式
概念
最简二次根式是指被开方数不含分母,被开方数不含能开得尽方的因数或因式 。
乘法运算
$\sqrt{a} \times \sqrt{b}$在$ab \geq 0$ 时成立。
减法运算
$\sqrt{a} - \sqrt{b}$在a=b或ab=0时成立 。
除法运算
$\frac{\sqrt{a}}{\sqrt{b}}$在$ab \geq 0$ 且$a \neq 0$时成立。
二次根式的加减法
总结词
掌握含加减法的二次根式混合运算法则,能 够准确进行运算。
详细描述
含加减法的二次根式混合运算涉及到根式和 整式的加减法,运算顺序是先乘方,再乘除 ,最后加减。在运算中,需要注意各项均需 乘以平方数,根式外的数要移到根号内,相
加减时根式部分不变。
复杂二次根式混合运算的步骤和技巧
总结词
掌握复杂二次根式混合运算的步骤和技巧,能够准确 快速地进行运算。
02
同类二次根式的加减法
概念
同类二次根式是指根指数相同且被开 方数相同的二次根式。
例子
$\sqrt{4}$ 和 $\sqrt{9}$ 是同类二 次根式。
减法运算
两个同类二次根式相减,直接进行减 法运算。
加法运算
两个同类二次根式相加,先将它们化 成最简二次根式,再进行加法运算。

二次根式的化简与运算规律归纳

二次根式的化简与运算规律归纳

二次根式的化简与运算规律归纳二次根式是指具有平方根符号的数学表达式,常见形式为√a。

在数学中,化简和运算是我们经常需要进行的操作,对于二次根式也不例外。

本文将就二次根式的化简和运算规律进行归纳,并给出相应的例子加以说明。

一、二次根式的化简规律1. 同底数的二次根式可以进行简化。

当两个二次根式的底数相同时,可将它们合并为一个二次根式,并将系数相加。

例如:√2 + √2 = 2√22. 二次根式的乘积与商可以进行简化。

当两个二次根式相乘时,可以将它们的底数相乘并将系数相乘。

例如:√3 × √5 = √15当两个二次根式相除时,可以将它们的底数相除并将系数相除。

例如:√6 ÷ √2 = √33. 二次根式的分子和分母可以进行有理化。

对于分子或分母含有二次根式的分式,可以通过乘以一个适当的二次根式,使分子或分母的二次根式被消去。

例如:(4√2)/(√3) = (4√2) × (√3)/(√3) = 4√6/3二、二次根式的运算规律1. 二次根式的加减法规律当两个二次根式的底数和指数都相同时,可直接对其系数进行加减运算。

例如:3√2 + 2√2 = 5√2当两个二次根式的底数相同但指数不同时,不能直接进行运算,需要将它们化为相同指数的形式后再进行计算。

例如:√2 + √8 = √2 + 2√2 = 3√22. 二次根式的乘法规律当两个二次根式相乘时,可以将它们的底数相乘并将系数相乘,指数保持不变。

例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法规律当两个二次根式相除时,可以将它们的底数相除并将系数相除,指数保持不变。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的实际应用二次根式在实际生活和学习中有着广泛的应用。

例如,在几何学中,二次根式被用于计算圆的周长和面积,以及三角形的斜边长度等。

此外,在物理学和工程学中,二次根式也常用于计算物体的速度、加速度、电流等。

二次根式的加法与减法课件

二次根式的加法与减法课件

(3)3 3-2 2+ 3- 2 4 3-3 2
作业
❖ 习题9.2的1(3)(4)、2题
拓展提升
❖把二次根式 23-a与 8 分别化成最简二次根式后, 被开方式相同.
❖(1)如果a是正整数,那么符合条件的a有哪些? ❖(2)如果a是整数,那么符合条件的a有多少个?最大
值是什么?有没有最小值?
(3) 2 3
先化为最简二次根式, 把同类二次根式的系数相加减,做为结果的系数, 根号及根号内部都不变。
你有什么发现?
归纳总结
二次根式加减法法则:
目标2.通过具体题目的运算,得到二次根式 的加法与减法的运算步骤及注意问题.
m a n a =(m n) a
二次根式相加减,应先把各个二次根式化为最简二次根式, 然后把其中的同类二次根式分别合并(. 不是同类二次根式的不能合并).
2、4 2- 2=43 2 3、2+ 3= 5
× ( )为结果的系数; × 2、指数和被开方式都不变;
( )3、不是同类二次根式的不能合并;
× 4、3 2- 1 2=2 51 22 ( )4、系数是带分数的要化为假分数,若
× 2
22
是一个二次根式与一个多项式的积,则
5、a 5+b 5=(aa++bb)5 5 ( )多项式加括号.
2.字母和字母的指数有何变化? 不改变
3.不是同类项的能否合并?
不能合并
温故知新
目标1. 类比“合并同类项”的知识, 推导二次根式的加法与减法运算法则。
2、化简下列二次根式
化成最简二次根式后,
8 __2__2__; 12 _2__3__; 被开方式相同的二次根
18 ___3 _2___; 27 _3_3___; 式

二次根式的加减运算

二次根式的加减运算

二次根式的加减运算
二次根式的加减运算是指两个二次根式进行加法或减法运算。


进行二次根式的加减运算,需满足被开方数相同,且根号内的数也相同。

即若两个二次根式为√a和√b,则可进行加减运算的前提是a=b。

具体操作时,对于加法运算,将两个二次根式的系数相加,并保
持根号内的数不变。

例如:√a + √a = 2√a。

对于减法运算,将两个二次根式的系数相减,并保持根号内的数
不变。

例如:√a - √a = 0。

需要注意的是,除非被开方数相同,否则两个二次根式不能进行
加减运算。

二次根式的加减

二次根式的加减
_________;
2
(3)10 2 + (3 8 − 7 2) =9_______;
4 3−6 2
(4)5 12 − 3 8 + 2 27 = __________.
随堂训练
8.若最简根式
2+1
3 − 2 与 3 可以合并,求 的值.
2 + 1 = 2,
解:积为(2+3) 2=5 2(2 ).
2 2+3 2= (2+3) 2
也可由分配律得出:
2 2+3 2= (2+3) 2= 5 2.
新课导入
议一议
问题2:如果两个正方形的面积分别是18和8,那么大正
方形的边长比小正方形的边长大多少?
此问题需要计算 18 − 8,但由于 18, 8不是最简二次根式,先把它们
上面提到的3 2与2 2, 18与 8都是同类二次根式.
同类二次根式可以像同类项那样进行合并.
知识讲解
思考: 观察新课导入两个问题的计算过程,你能总结出二次根式
加减计算的过程吗?
二次根式的加减
一般地,二次根式相加减,先把各个二次根式分别化成最简二次根
式,然后再将同类二次根式分别合并.有括号时,要先去括号.
1
1
= 48 − 4
−3
+ 4 0.5
8
3
=2 11 − 3 11 − 11 2
2
3
2
=4 3 − 4 ×
−3×
+4×
4
3
2
= − 11 − 11 2.
=4 3 − 2 − 3 + 2 2
=3 3 + 2.
随堂训练

二次根式加减法

二次根式加减法
次根式
8 18 2 2 3 2 2 3 2 5 2


由 2 1.5 可知 5 2 7.5 ,即两个正方形的边长的和小于木板的 2 2 长,因此可以用这块木材按要求截出两个面积 8dm 和 18dm 的 正方形木板。 分析上面 8 18 的过程,可以看到,把 8 和 18 化成最简二 次根式 2 2 和 3 2 后,由于被开方数相同(都是2),可以利用分 配律将2 2 和 3 2 进行合并。
1.最简二次根式的概念; 2.同类二次根式的概念;
3.进行二次根式加减法的步骤
复习整式的加减运算 计算:
(1)2a 5a
(2)3a^2 ab 4a^2b
(3) 5 * x^2 x (2 * x x^2)

小结:整式的加减法,实质上就是去括号和合并同类项的 运算

情景引入
由上面的问题可知:二次根式加减时,可以先将二次根式化成最简 二次根式,再将被开方数相同的二次根式进行合并。

最简二次根式
定义:满足下列两个条件的二次根式,叫做最简
二次根式.
(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.
辨析训练一
判断下列各式是否为最简二次根式?

二次根式的加减法:
二次根式加减法的法则: 二次根式相加减,先把各个二次 根式化成最简二次式,再把同类二次 根式进行合并,合并方法为系数相 加减,根式不变.(可对比整式的 加减法则)
例题讲解
例1 计算:
(1 ) ( 12
20) +( 3- 5) 20) +( 3- 5)
.
解: ( 12
2 3 2 5+ 3- 5

二次根式的运算法则

二次根式的运算法则

二次根式的运算法则二次根式是数学中常见的一种形式,它可以表示方程中的未知数,也可以用于求解几何问题等。

在进行二次根式的运算时,有一些特定的法则需要遵循,这些法则能够帮助我们简化运算并得到准确的结果。

一、二次根式的乘法法则当我们需要计算两个二次根式的乘积时,可以按照以下步骤进行:步骤一:将每个二次根式的根号内的数相乘,这个过程叫做“合并”根号内的数。

步骤二:将两个二次根式的合并结果相乘,这个过程叫做“合并”二次根式。

举例来说,假设有两个二次根式√a和√b,它们的乘积可以表示为√a * √b = √(a * b)。

在计算过程中,我们先将根号内的数相乘,然后再合并二次根式。

二、二次根式的除法法则当我们需要计算两个二次根式的除法时,可以按照以下步骤进行:步骤一:将被除数和除数的根号内的数分别合并。

步骤二:将被除数的根号内的数除以除数的根号内的数。

步骤三:将合并后的数放在根号内。

举例来说,假设有两个二次根式√a和√b,它们的除法可以表示为√a / √b = √(a/b)。

在计算过程中,我们首先将根号内的数合并,然后再进行除法运算。

三、二次根式的加减法法则当我们需要计算两个二次根式的加法或减法时,可以按照以下步骤进行:步骤一:将每个二次根式的根号内的数合并。

步骤二:对合并后的数进行加法或减法运算。

步骤三:将结果放在根号内。

举例来说,假设有两个二次根式√a和√b,它们的加法可以表示为√a + √b,减法可以表示为√a - √b。

在计算过程中,我们先将根号内的数合并,然后再进行加法或减法运算。

综上所述,二次根式的运算法则包括乘法法则、除法法则和加减法法则。

这些法则可以帮助我们在处理二次根式时,简化运算、得到准确的结果。

通过熟练掌握这些法则,我们可以更加高效地解决与二次根式相关的数学问题。

(完整版)二次根式的加减法

(完整版)二次根式的加减法

二次根式的加减法一、知识概述1、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.3、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;(3)二次根式的运算结果必须是最简二次根式.二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.三、典型例题讲解例1、计算:.分析:本组题中各个加数都不是最简二次根式,因此需先进行化简,然后再把被开方数相同的根式进行合并.解:.例2、计算:分析:先根据去括号的法则,去掉括号,再进行二次根式的加减运算.总结:解此类问题分为三个步骤:一是去括号,二是化简,三是合并,但在去括号时应注意符号的处置.例3、计算下列各题:.思路:(1)题可仿照单项式乘以多项式的方法进行计算;(2)、(3)题可仿用多项式乘法法则进行计算;(4)题可套用完全平方公式计算.例4、计算下列各题.解:例5、化简:总结:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可交换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把变为,这样则为1,继续运算可避免错误.例6、已知x、y都为正整数,且.求x+y的值.分析:因为只有化简后被开方数相同的二次根式才能合并,而,易知化简后的被开方数必为222,故可设.由此求出正整数a、b即可求出x、y.解:,于是即a+b=3∴a=2,b=1或a=1,b=2,故x=222,y=888或x=888,y=222.∴x+y=1110,总结:几个二次根式化简后被开方数相同,则它们可以合并,本题则是逆用该结论,即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.课外拓展:例、已知a、b是实数,且,问a、b之间有怎样的关系?请推导.思路分析:由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.解:原等式两边分别乘以,得两式相加得,所以.A 卷一、选择题1、下列计算结果正确的是( )A.B.C.D.2、下列计算正确的是( )A.B.C.D.3、下列各式化简结果不正确的是()A.B.C.D.4、下列计算正确的是()A.B.C.D.5、计算等于()A.·1 B.3C.D.6、在数轴上点A表示实数,点B表示,那么离原点较远的点是()A.A B.BC.A、B的中点D.不能确定B 卷二、填空题7、△ABC的三边长为a、b、c,且a、b满足则△ABC的周长的取值范围是______.8、若成立,则xy的值为______.9、若,则______.10、已知正数a、b,有下列结论:(1)若a=1,b=1,则;(2)若,则;(3)若a=2,b=3,则;(4)若a=1,b=5,则.根据以上几个命题提供的信息,请猜想:若a=6,b=7,则______.三、解答题11、计算或化简下列各题:12、计算:13、已知,求代数式的值.14、计算.[15、先观察下列等式,再回答问题:(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2)请按照上面各等式反映的规律,试写出n(n为正整数)表示的等式,并加以验证.一.选择题DDCBDB二.填空题7、△ABC的周长大于6且小于10.8、由题意有x=2,y=3,∴x y=8.9、.10、=13.三.解答题11.12.13..14. 解:(1)配方法:本题中的根式不符合型,我们可根据分式的基本性质,分子、分母都乘以2,将原式变形为(2)换元法:设,两边同时平方得,所以x2=10,又因为x>0,所以,即.15.。

人教版八年级数学下册教学课件-16.3二次根式的加减

人教版八年级数学下册教学课件-16.3二次根式的加减

达标检测
1.二 次 根 式 2a - 4与 2可 以 合 并 , 那 么a的 值 ∴在这块木板上可以截出两个分别是8dm2和18dm2的正方形木板.
可 以 为 (B ) (2)化简后被开方式不相同的不能合并,只能用+
(2)化简后被开方式不相同的不能合并,只能用+ 1、二次根式加减法运算法则
二次根式的加减运算法则
的二相次同根式分别
。 合并
注意:合并的实质是对被开方式相同的二次 根式的系数进行合并,即把根号外系数相加减,根
指数和被开方数不变。
梳理
二次根式加减法运算步骤
(1)将每个二次根式化为最简二次根;一化 (2)合并被开方数相同的二次根式。 二合并
注意: 化简后被开方式不相同的不能合并,只能用+或-号连接 在一起。
3.细心算一算
(1)( 8 2 0.25) ( 11 50 2 72)
8
3
(2)( 80 14) ( 31 4 45)
5
55
(3)2a 3ab2 (b 27a3 2ab 3 a)
6
4
拓展提升
如 果a, b都 是 有 理 数 , 且a 2b 5 7 (a b) 5, 求a, b的 值 。
试一试
判断下列计算是否正确? 如有错误,说出错误 原因并改正。
(1) 8 2 2
22 3 5 2 7 5 X
2 3与5 2被开放式不相同, 所以不能合并。
例1计算下列各题:
(1) 54 24
(2) 1 18 3 8
2
9
(3) 90 2 20 5 4 5
解:
4 (1) 54 24 (3) 90 2 20 5
也就是被开方数是整数或整式;

初中数学二次根式的运算(含解析)

初中数学二次根式的运算(含解析)

初中数学二次根式的运算考试要求:重难点:1.(0)a≥的内涵,(0)a≥是一个非负数;2a=(0)a≥;a=(0)a≥ 及其运用.2.二次根式乘除法的规定及其运用.3.二次根式的加减运算.例题精讲:模块一二次根式的加减运算二次根式的加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再对同类二次根式进行合并.二次根式加减法的实质是合并同类二次根式,合并时只把系数相加减,根指数和被开方数不变.二次根式的加减法步骤:(1)将每一个二次根式化成最简二次根式;(2)找出并合并同类二次根式.【例1】计算:(1)(2【难度】1星【解析】如果几个二次根式的被开方数相同,可以直接进行加减运算;如果所给的二次根式不是最简二次根式应该先化简,再进行加减运算.(1)(3=+;(2(2==+【答案】(1);(2).【巩固】485127-=______.【难度】1星【解析】485127-7=5(14⨯⨯=-=-【答案】-【例2】计算:(1)(2【难度】1星【解析】先化简成最简二次根式,再对同类二次根式进行合并.(1)1132(41)242=⨯⨯⨯-+;(2=1443(212)99⨯⨯-+=【答案】(1(2【巩固】计算:(1) (2【难度】2星 【解析】(1)1(64)5=+=-+=(2)=1(22=--= 【答案】(1(2).【例3】 如图,一架长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么它的底端是否也下滑1m ?【难度】1星【解析】如图所示,在RT ABC ∆中,由勾股定理,得BC = 当AC=8m时,6BC ==m ; 当AC=7m时,BC =,所以梯子的顶端下滑1m6 1.1≈m .【答案】梯子的顶端下滑1m ,那么它的底端不是下滑1m ,而是滑动1.1m .模块二 二次根式的混合运算在进行二次根式的混合运算时,要注意几点: (1) 整式和分式的运算法则仍然适用.如CBA=== (2) 多项式的乘法法则及乘法公式在运算中同样是适用的.乘法公式:22()()a b a b a b +-=-;222()2a b a b ab ±=+±.【例4】 计算:(1 (26x 【难度】1星【解析】(1)原式==(2)原式=23223⋅=-【答案】(1(2)-【例5】 计算:(1)2 (2)(2(3)22(2(2-+ (4)20112012(3(3-【难度】2星 【解析】(1)用完全平方公式;(2)逆用平方差公式;(3)用平方差公式;(4)逆用平方差公式.(1)2222184866=-⨯=-=-(2)(2=22[224(82484-+=-=-+=----(3)22(2(2-+(2224(==⨯-=- ;(4)20112012(3(320112011[(3(3(98)(33=-+=-+=+【答案】(1)66- (2)4--(3) -; (4)3+【巩固】(1) (2(3) (4)3ab (0,0a b ≥≥) 【难度】2星【解析】在二次根式的乘除法中,首先确定结果的符号,同时要注意指数和运算顺序,最后的结果必须化成最简二次根式.(1)2(1218624==++-=+;(21=;(3)(61834=⨯⨯⨯⨯;(4)3ab3ab a ==-【答案】(1)24+; (2)1; (3) (4)a -.【例6】 解方程或不等式:(1))11x x +>- (21+=【难度】2星【解析】解不等式时,在系数化为1时,要注意系数的正负.(1))11x x +>- (21x +=x >=x <x =13x <+ x =x【答案】(1)13x <+ (2.【巩固】已知1018222=++a a a a,求a 的值. 【难度】2星【解析】先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10=10=2=a =【答案】a =模块三 二次根式的化简求值【例7】 (2008年西城二模)先化简,再求值:2221412211m m m m m m --⋅÷+-+-,其中m =. 【难度】1星【解析】2221412211m m m m m m --⋅÷+-+-21(2)(2)(1)(1)(1)(2)2(1)m m m m m m m m m --+=⋅⋅-+=+-+-22m m =--,当m 时,原式21-=【答案】1【例8】 (2009年西城二模)先化简,再求值222x y xyx y x y x y +++--,其中x =-,y =.【难度】1星【解析】222x y xyx y x y x y +++-- 222()()22()()()()()()()()()()()x x y y x y xy x xy y xy xy x y x y x y x y x y x y x y x y x y x y x y x y x y-+-+++++=++===+-+-+-+-+--.当x =-y =时,原式15==.【答案】15【巩固】(2011年东城区一模)先化简,再求值:2232()111x x xx x x +÷---,其中1x =. 【难度】1星【解析】原式232132[]2(1)(1)111x x x x x x x x x x x --=-⨯=-=-+-++,当1x =时,原式1===-【答案】1【巩固】(2011年东城区二模)先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =. 【难度】2星 【解析】原式222441444x x x x x =+++---23x =- .当x =时 ,原式227153344=-=-=⎝⎭.【答案】154总结:解此类题目时,一定要先化简再代入求值.【例9】已知x =,y =,求2y x x y ++的值.【难度】2星【解析】当分母中含有根号时,要先化简再求值.x ==231)+,y231)=-=, ∴2y xx y ++222(3336===+-=. 【答案】36【例10】 已知121x x +=,121x x ⋅=-,求12x x 的值. 【难度】3星【解析】12x x -==,12x x ∴-=22221111212221122()()22x x x x x x x x x x x x ⋅++-∴==⋅21212121212[()2][()()]2x x x x x x x x x x +-++-==.总结:该类题目直接将a ,b (或a ,b 化简后的结果)代入所求的式子中,计算都相对繁琐.在类似的题目中,要灵活的应用公式的变形,以便使计算过程大大的简化.【例11】2011++的值. 【难度】2星【解析】通过观察可以知道,先进行分母有理化,通过前几项的分母有理化发现,每一项的结果都是分母的后一项前去分母前一项,这样把每项展开,即可相加减,也就得出了结果. 原式1201211+-=-+【答案】1-+【例12】【巩固】2011+【难度】2星【解析】原式=2[1)(20122(12⨯---=-⨯-+=-【答案】2-总结:=利用这个公式解题.【例13】当a=,求代数式2963a aa-++-的值.【难度】2星【解析】原式=211(3)33(1)(1)a aaaa a aa a---+=-+---,2)212a a=-∴=-=<+原式=111333(1)(1)a aa a aa a a a a---+=-+=----,当a=时,原式= 2321+=.【答案】1【巩固】已知13a=-,12b=【难度】2星【解析】由题可知,0b a->,∴原式13a=-,12b=时,原式=115231622+==⨯.总结:在这类题目中,依然是对原题目进行化简,化简过程中出现了绝对值,此时应特别注意绝对值里面式子的正负,不能贸然的去掉绝对值符号.模块四二次根式的大小比较通过平方比较大小【例14】比较大小(1)1+(2)133-【难度】1星【解析】比较大小可以左右平方,比较平方数的大小,对于两个正数,平方大的就大;对于两个负数,平方大的反而小.(1)2(13=+23=,3223+>,1∴(2)2(10=,221101001(3)()113399-===,110119<,133-.【巩固】比较大小:【难度】1星【解析】略 【答案】>【巩固】实数-3-的大小关系是 .(用“>”表示) 【难度】1星【解析】通过比较平方数的大小来比较原数的大小.【答案】3->-.总结:在比较两个数或式子的大小时,如果只是数,可以平方之后再比较原数的大小;如果是式子且每个式子只含有一个根号时,可以采用平方法比较大小.通过做差比较大小【例15】 比较大小【难度】2星【解析】直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=,<通过取倒数比较大小【例16】 比较大小(1 (2【难度】2星【解析】(1=====65+(2=2011+,【答案】(1<;(2<.总结:在比较两个式子的大小,且每一个式子都含有两个二次根式,可以通过取倒数比较大小.由上题我模块五 非负数性质的综合应用0≥且0a ≥,以前所学的平方和绝对值同样具有非负性,这也是中考中必考的三个非负性.【例17】 2(4)0y -=,则y x 的值等于 . 【难度】1星【解析】对二次根式和平方非负性的直接考察. 【答案】1【例18】 如果2y =,则2x y += . 【难度】1星【解析】对二次根式非负性的直接考察. 解:注意到230320x x -≥-≥,, 0230230x x ∴≤-≤-=, 232x y ∴==, 25x y ∴+=. 【答案】5【例19】 当x【难度】1星【解析】因为二次根式的被开方数大于或等于零,所以222012x x x≥-+.因为x >,.【巩固】已知0a <的值.【难度】2星【解析】原式= (*)因为21()0a a --≥但21()0a a --≤故只有21()0a a --=即1a a=又0a <,所以1a =- 代入(*)得:原式=2-. 【答案】2-【例20】 已知实数x ,y ,z满足2144104x y z z -+-+=,求2()x z y +⋅的值. 【难度】2星【解析】对绝对值、二次根式和平方非负性的考察.原式可化为1441()02x y z -+-=,441020102x y y z z ⎧⎪-+=⎪∴+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩22111()()()0224x z y ∴+⋅=-+⨯-=.【答案】0【巩固】已知实数a ,b ,c满足212102a b c c -+-+=,求()a b c +【难度】2星【解析】略【答案】14-课堂检测:【练习1】下列计算正确的是( )A B C D【难度】1星【解析】考察二次根式的运算.【答案】A【练习22得( ).A 2B C D【难度】1星【解析】 因为230x -≥,23232x x ≥=-,,所以210|21|21x x x ->-=-221(23)2x x =---=.故选A .【答案】A【练习3化简,然后自选一个合适的x 值,代入化简后的式子求值.【难度】2星【解析】这是一道结论开放题,它留给我们较大的发挥和创造空间.但要注意x 的取值范围是2x >.原式===2,x >∴取4x =,原式=2.【答案】2(合理即可)【练习4】设22a b c==-==,则a,b,c的大小关系是()A a b c>>B a c b>> C c b a>> D b c a>>【难度】2星【解析】1a===,同理1122b c=220>>,所以1110,c b ac b a>>><<.故选A.【答案】A【练习53x=+,求11xy++的值.【难度】2星【解析】考察的是非负性,同时也对分式进行了考察.3x=+,2309030x yxx-=⎧⎪∴-=⎨⎪+≠⎩,解得31xy=⎧⎨=⎩,1312111xy++∴==++.【答案】2课后作业:1.化简时,==,乙的解法:==,以下判断正确的是().A 甲的解法正确,乙的解法不正确B 甲的解法不正确,乙的解法正确C 甲、乙的解法都正确D 甲、乙的解法都不正确【难度】2星【解析】甲是将分子和分母同乘以进行分母有理化,乙是利用3=进行约分,所以二人都是正确的,故选C .【答案】C2. 计算:(1)(2) 【难度】1星【解析】题中每个二次根式都不是最简二次根式,应“先化简——再判断——最后合并”.(1)原式=1121023⎛⎛=+-- ⎝⎝= (2)原式=2a b b a b =⎛=- -⎝= 【答案】(1(23.化简 【难度】1星 【解析】初看此题像没有给出化简条件,但充分发掘隐含条件,由二次根式的定义可知10a->,即.故用分母有理化化简的第三步中1a 应为1a -. 原式1a a a a ===⋅=- 【答案】4.已知x=,y=222)x xy y x y+++-的值.【难度】2星【解析】x=2)2==2222)())x xy y x y x y x y∴+++-=++-,把x y==代入得原式=2402416=-=.【答案】165.请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值.÷【难度】2星【解析】原式====当2x=时,原式=当3x=时,原式=.2x=时,原式=3x=时,原式=.6.=a、x、y是两两不同的实数,求22223x xy yx xy y+--+的值.【难度】3星【解析】由题可知,()0()0a x aa y ax aa y-≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得x aaa ya≥⎧⎪≥⎪⎨≥⎪⎪≤⎩,0a∴=,此时,原式变为0,x y=-把x y=-代入有222222222222222233()()3()()3x xy y y y y y y y y yx xy y y y y y y y y y+--+----∴===-+---+++,a、x、y是两两不同的实数,0y∴≠,原式13=.【答案】13。

十四讲 二次根式的加减法

十四讲 二次根式的加减法

二次根式的加法与减法知识引入话说“二次根式节”是二次根式爱好者的节日.该节日是每个世纪中的第一个年份、月份及日期的数字和的算术平方根正好是7的这一天,例如1300年1月2日,1400年1月1日.请你写出一个你最喜欢的“平方根节”的具体日期:____年____月____日(题中所举例子除外).二次根式的加减法☆被开方式相同的二次根式的合并(重点)将二次根式化简成最简二次根式,如果被开方式相同,则这样的二次根式可以合并。

合并被开方式相同的方法与整式加减运算中的合并同类项类似,合并被开方式相同的二次根式,把系数相加减,根指数和被开方式不变。

【注意】(1)系数相加减,“其他”不变;(2)根号外面的因式就是这个根式的系数。

在进行二次根式加减时应该先把可以化简的二次根式化简,然后把化成最简二次根式后被开方式相同的二次根式合并。

(被开放根式不相同的不能合并,二次根式的加法也满足加法的交换律和结合律)合并同类二次根式【典题导入】【亮点题】【例1】若最简二次根式35a-与3a+是可以合并的二次根式,则____a=。

【例2】下列二次根式中,与a是可以合并的是()考点1A B C D【例3】 下列二次根式中,哪些是同类二次根式?(字母均为正数).【例4】 若最简二次根式a 是同类根式,求2b a -的值.【例5】 已知最简根式a a ,b 的值( )A .不存在B .有一组C .有二组D .多于二组【例6】 计算:-+【例7】 先化简后求值。

当149x y ==,【例8】【例9】 设直角三角形的两条直角边分别为a b ,,直角边为c ,周长为C 。

(1)如果a b ==C 。

(2)如果3555a b ==,,求C 。

【方法提炼】 1.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 合并同类二次根式:.同类二次根式才可加减合并.【小试牛刀】【巩固】判断下列各组二次根式是不是同类二次根式:⑴3322x y x yz 和 ⑵22b aa b和⑶27348x xyy 和 ⑷2332455a b a b 和【巩固】若a b ,为非负数,4a b b +与3a b +是可以合并的二次根式,则a b ,的值是( )A .02a b ==,B .11a b ==,C .02a b ==,或11a b ==,D .20a b ==,【巩固】若4a b b +与最简二次根式3a b +为同类二次根式,其中a ,b 为整数,则a =______,b =________;二次根式加减法【例10】 化简:22691025a a a a +++-+()a x b x a b x +=+考点2【例11】计【例12】3+【例13】计算:【小试牛刀】【巩固】-【巩固】计算:-【巩固】-(20-40分钟)1、下列各式计算正确的是( )A .2222-=-B .)0(482>=a a aC .94)9()4(-⨯-=-⨯-D .336=÷ 2、下列根式合并过程正确的是( )A .-=2B .C.+=a+D .-=3、计算:(1)-7(2) (3)326-125.02138+++ (4)aa a a a 2318632412-+4、下列计算错误的是 ( )A .27714=⨯B .23060=÷C .a a a 8259=+D .3223=-121213141125、计算:221418+-6、计算28-的结果是( )A .6B .6C .2D .2 7、计算:8212-= 8、283-=(5分钟)1.下列二次根式中,与是同类二次根式的是( ) A .B .C .D .2.下列各组二次根式中是同类二次根式的是( ) A .B .C .D .3.下列计算正确的是( )A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2D.(﹣a3)2=a54.下列等式一定成立的是()A.a2×a5=a10B.C.(﹣a3)4=a12D.5 .下列各组二次根式中,属于可以合并的是()A B C与D6. 如果最简根式a与2a100a b+的值.()7.下列各组二次根式中是同类二次根式的是()A.B.C.D.8.化简﹣()2,结果是()A.6x﹣6B.﹣6x+6C.﹣4D.49.下列各式中,与是同类二次根式的是()A.B.C.D.10.计算的结果是()A.3B.C.2D.11.下列计算正确的是()A.+=B.﹣=﹣1C.×=6D.÷=312.下列运算正确的是()A.B.C.D.13.下列计算结果正确的是()A.22+22=24B.23÷23=2C.D.14.在根式、、、、中与是同类二次根式的有()A.1个B.2个C.3个D.4个15.下列计算中,正确的是()A.B.C.D.16.化简﹣x的结果为()A.x﹣x B.x﹣C.2x D.0。

学生版二次根式的运算(基础)知识讲解

学生版二次根式的运算(基础)知识讲解

二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+-举一反三:【变式】计算:011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);举一反三【变式】各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯类型三、二次根式的混合运算4.(聊城模拟)下列计算正确的是( ) A .5﹣2=3 B .2×3=6 C .=3 D .3=35、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.举一反三:【变式】(汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3 D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B. a b ab +=C.22+a b a b =+D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)52+-÷32 (2)()1212328-⎪⎭⎫⎝⎛+--14.(市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(a +((6)a a a --,其中12a =.(2).已知251,251+=-=b a ,求722++b a 的值.。

八年级数学二次根式的加减法

八年级数学二次根式的加减法

12.7二次根式的加减法(第1课时)教学目标:1.类比同类项概念,了解同类二次根式的意义,学会识别同类二次根式(难点)2.能熟练进行简单二次根式的运算(重点)教学重点:⒈同类二次根式的概念⒉二次根式加减运算的方法本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.二次根式的加减法运算实质是合并同类二次根式,前提是要充分了解同类二次根式的概念,因此同类二次根式的概念是本节的一个重点.教学难点:二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是学生初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.教学过程:一、情景导入与练习:1.同类项的特点?如何合并同类项?2.计算:a +a = ,a +2a = ,a +2b -b +2a = , 类似地:33+= ,323+= ,223+-32+= ,3.思考并尝试说明:你对以上加减法的理解?二、探究与训练:活动1:例题探究,计算:3233-,a a 23+学生根据前面的经验体验,讨论尝试,交流互助,达成共识教师引导学生归纳所感要点:①同类二次根式:根号和根号内的部分完全相同的根式就是同二次根式(分类区别标志,只需看根号内是否相同)②同类二次根式的合并方法:合并同类二次根式时,根号部分(视为一个整体)不变,只需将根号的系数相加减。

③利用整体思想和类比方法,合并同类项与合并二次根式实际上是同一种变形。

活动2:例题探究,计算:a b b a 4223-+-3223-,a b b a 2323-+-学生练习研究、分歧及争论教师引导学生叙述所思所得:非同类二次根式不能合并活动3:同类二次根式的识别:指出下列各组二次根式是否同类二次根式:2与22 2 与 -2 a b 与 b a ab b 与 ba a-8与22 b a b 2 与 2ab a (其中a 、b 是正数)8、50 与 -18 b a b 3 与 3ab a (其中a 、b 是正数)讨论:还能简单地认为“只有根号内完全相同的二次根式才是同类二次根式”吗?究竟怎样的式子才是同类二次根式?教师点评:同类二次根式是化简后被开方数相同的根式。

二次根式的加减法

二次根式的加减法

点拔
判 断同类 二 次根 式 ,
关 键 是 能 熟 练 准 确 地 化 二 次 根
式为最简二次根式.
二次 根式 :
时 间 消 逝 : 是 慰 藉 者 , 是 镇 痛 剂 。— — 威廉 ・ 克 雷 它 也 萨 1 5


・ … - - 一 ”



点拔
同 类二次根式必须在 .


3 V ̄-6— 4 / 6 '0 2 、 了
1 、了 ~0 2/ 6 :

: 成最 简 二次根 ;2) 出同类 二次 根式 ;3 合并 同类 二次根 式 ( 找 ()
计算:
( 1

) 5 一 丢 ; + 3 愕 愕
W a Welv od t o et owef dt i n i met o od .
1 6
() 2 () 3 () 4

=' 一'詈 4- V + 4- 3 V- 3 一 (4 ) 4 詈 +
式 . 看 被 开 方 数 是 否 相 同 再
( ) 个 二 次 根 式 是 否 同 类 2几
二 次 根 式 . 只 与 被 开 方 数 及 根 指 数 有 关 . 而 与 根 号 外 的 因 式
无 关.
下 列二 次根 式 中 , 些是 同类二 次根 式? 哪

6 —3 2 V7 — a
算过程简化.
c2 悸 + ) 2 , ( 1 .
㈥ + H ) 去 一 2 1;
()、了. / (+ 、 ) 4 (/ I ) 5 2/ . 、 .


( ) 13

一 5
一x- 2 /()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾:二次根的乘除 二次根式的乘法法则 a b ab(a 0, b 0)
二次根式的除法法则
a a (a 0,b 0) bb
积的算术平方根的性质
ab a b(a 0,b 0)
商的算术平方根的性质
a a (a 0,b 0) bb
48
75
6a 2
0.5
a
48 16 3 16 3 4 3
12
48
18
50
23 43 32 52
1
1
22
32 42
45
1 3
35 23
2
3
注意:判断一组式子是否为同类二次根式,只需看
化为最简二次根式后的被开方数是否相同,与最简二 次根式前面的因式和符号无关.
(1)说出 2 5 的三个同类二次根式;
(2)试举出一组同类二次根式.
(3)下列各式中哪些是同类二次根式?
4 6 10
10 7 3
2 2 4
2 3 2 3
彗眼识真: 下列计算哪些正确,哪些不正确?
⑴ 3 2 5 (不正确)
⑵ a b a b (不正确) ⑶ a b a b (不正确)
⑷ a a b a (a b) a (正确)
⑸ 1 3a 1 2a a a 0(不正确)
以下问题你能用同样的方法计算吗?
(1)3 3 2 3 (2)3 a 2 a
(1)3 3 2 3 (2)3 a 2 a
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就 叫做同类二次根式.
3 32 2
2
4 8 18 12
例题解析
例1: 下列各式中,哪些是同类二次根式?
3
8
(2)( 32 0.5 2 1 ) ( 1
3
8
75)
1.同类二次根式的定义?
2.二次根式加减运算的步骤? 3.如何合并同类二次根式?
合并同类二次根式与合并同类项类似.
3
2
2.在下列各组根式中,是同类二次根式的
是( B )
A . 2 , 12
B. 2, 1
2
C. 4ab , ab2 D. a 1, a 1
3. 与 12 是同类二次根式的是( D )
A. 32 B. 24 C. 125 D. 6 1
27
4.如果最简二次根式 2 mn2 与 m n
是同类二次根式,求m、n 的值.
练习
5.计算:
15 2 8 7 18
2 8 4 12
2
(3) 1 45 (5 1 5)
3
5
4 2 9x 6 x 2x 1
3
4
x
例3 计算: (1)( 2 1)( 2 1) ; (2)( a 2b)( a 2b) .
练习: 计算:
(1) 24 1 2 2 1 6,
2
如: 1或 0.2 ()
分子分母可约分 2 如:a 2 ()
2a
判断下列各式中哪些是最简二次根式, 哪些不是?为什么?
(1) 3a2b (2) 1.5ab (3) x2 y2 (4) a b
练习:把下列二次根式化为最简二次根式。
(1) 24
(2) 2 5
(3) 125a3
(4) 3 2
(5) 1 8
(6) 3 3 5
(7) 0.4
18b2 (8)
a
(9) 3 (10) 1
24
2 1
(11) 3 2 5
(1)两列火车分别运煤2x吨和3x吨,问这两5__x__吨
(2)两列火车分别运煤2x吨和3y吨,问这两
列火车共运多少?_(__2_x___+__3_y__)_吨__
4
二次根式加减运算的步骤: (1)把各个二次根式化成最简二次根式
(2)把各个同类二次根式合并. 注意:不是同类二次根式的二次根式
(如 2与 3 )不能合并
练习 1.判断:下列计算是否正确?为什么?
1 2 3 5 ;22 2 2 2 ;
3 8 18 4 9 2 3 5
2
1、下列计算正确吗?
2 , 75 , 1 , 1 , 3 , 2 8ab3 ,6b a ,3 2
50 27 3
2b
例1: 计算 3 2 32 23 3
解:原式 (3 2 2 2) ( 3 3 3)
22 3
例2 : 计算 (1) 50 32 (2) 27 12 45 (3) 25 x 16 x 9x
75 25 3 25 3 5 3
6a 2 6a 2 6a 2 a 6a 2a 6 2a
a
a
aa
a
0.5 1 1 1 2 2 2 2 22 2
最简二次根式的两个条件:
(1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式;
分母含有二次根式
如:2 () 3
被开方数含有小数或分数
相关文档
最新文档