立体图形与平面图形

合集下载

《立体图形与平面图形》-完整版课件

《立体图形与平面图形》-完整版课件

提示:可见棱应画为实线形线段;不可见棱应 画为虚线形线段.













从 上 面 看
练习:如图,右面三幅图分别是从哪个方向看 这个棱柱得到的?
上面
正面
左面
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
练习:
3.如图,你能看到哪些立体图形?
(第3题)
(第4题)
4.如图,你能看到哪些平面图 形?
小结: 本节课主要学习了立体图形和平面图形的概念, 并初步经历了由具体实物的外形中抽象出几何图形 的过程,体验到了现实生活与数学的密切联系.
作业: 1.结合身边的实际物体,看一看可以得到哪些 几何图形,其中哪些是立体图形?哪些是平面图形? 说出来与同学交流一下. 2.动手画一画你所熟悉的立体图形. 3.选用合适的材料和工具,做一个三棱柱和一 个四棱锥.
学习目标: 1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解 这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见
几何体的展开图.
本课件可与几何画板课件《正方体的11种展 开图》配合使用.
这些精美的包装盒是怎么制成的?
要设计、制作一个包装盒,除了美术设计以外,还要了 解它展开后的形状,好根据它来准备材料,这就是我们今天 学习的立体图形的展开图.
本课学习“立体图形”和“平面图形”两个概 念,是初中学段“图形与几何”领域的第一课.首 先通过前言中的实际问题和大量实物图片,展示现 实生活中多姿多彩的图形世界与几何知识间的密切 联系;接着从观察长方体形纸盒入手,引导我们初 次经历从具体物体的外形中抽象出几何图形,然后 通过观察、对比,归纳出立体图形和平面图形的概 念,并进一步认识常见的棱柱和棱锥等立体图形.

平面图形和立体图形

平面图形和立体图形

方形。找一个魔方看看,正方体是否有这些特点呢?
• 圆柱体的上下有两个一样大的圆形的面,圆十住的曲面也叫做侧面,展开之 后就变成了一个长方形或者正方形,也可以变成平行四边形。你一定见到过圆 柱体的薯片盒吧?还有喝水用的圆柱体杯子,大桥底下的圆柱体石柱,他们都 能体现圆柱体的特点。

圆锥体有一个顶点,一个曲面,一个圆形的底面把他的曲面展开会变成
平面图形和立体图形
在此输入您的封面副标题
• 你所见到的图形中,有的是在纸上或者广告板上的,有的是立在那里的,他们 一样吗?我告诉你他们有些是平面图形,有些是立体图形,那么,平面图形就 是立体图形吗?或者,你知道他们的区别吗?
平面图形指的是图形上的所有部分都在一个平面上,比 如直线、线段、三角形、四边形、圆等等,它们的所有组 成部分都在一个平面上。而立体图形指的是由一个或者 多个面围成的图形,比如四四方方的盒子,厚厚的字典 等。我们已经知道了点是几何图形中最基本的组成部分, 点的运动轨迹组成了线,线的运动轨迹组成了面,而面 的运动轨迹又组成了体。虽然都叫做图形,但是立体图 形是由平面图形构成的,它们并不是一回事。
一个扇形,沙漏是圆锥体的,喝红酒的高脚杯也是圆锥体的,草帽、小喇叭的
设计都是圆锥体。
• 举了这么多例子,相信你已经能够区分平面图形和立体图形了,那下面再列举 一个生活中的例子:鸡蛋放在桌面上是一个椭圆的物体,我们叫它立体图形。可 是我们当我们从一个角度去看他的时候,他只是一个椭圆形,是一个平面图形, 无法单拿出来立在桌面上。再比如一本字典摆在书架上,它是一个长方体,可 我们看他的封面,那是一个平面,是不能单独立起来的。
•就拿长方体来说吧,长方体有八个顶点,六个面,每个面都是由长方形组成 的。它有+二条棱,相对应的四条棱的长度是相等的。长方体的物品有很多:长 方体的积木、长方体的纸箱、长方体的文具盒等等。

数学中的平面图形和立体图形

数学中的平面图形和立体图形

数学中的平面图形和立体图形一、平面图形的知识1.1 定义与性质平面图形是平面内的图形,它由线段、射线、直线组成。

平面图形有无数个,如正方形、长方形、三角形、圆形、椭圆形等。

根据边数和角数对平面图形进行分类:(1)三角形:由三条边和三个角组成,分为不等边三角形、等腰三角形、等边三角形;(2)四边形:由四条边和四个角组成,分为矩形、正方形、平行四边形、梯形;(3)五边形、六边形等:根据边数和角数进行分类;(4)圆:由无数条等距的线段组成,圆心到圆上任意一点的距离相等。

1.3 面积计算(1)三角形面积:底×高÷2;(2)矩形面积:长×宽;(3)正方形面积:边长×边长;(4)圆形面积:π×半径²。

二、立体图形的知识2.1 定义与性质立体图形是空间内的图形,它由平面图形组成。

立体图形有无数个,如长方体、正方体、圆柱、圆锥、球等。

根据面、棱、顶点的数量对立体图形进行分类:(1)三棱锥:四个面,六个棱,四个顶点;(2)四棱锥:五个面,七个棱,四个顶点;(3)五棱锥:六个面,十一个棱,五个顶点;(4)长方体:六个面,十二条棱,八个顶点;(5)正方体:六个面,十二条棱,八个顶点;(6)圆柱:两个底面,一个侧面,四个顶点;(7)圆锥:一个底面,一个侧面,两个顶点;(8)球:一个曲面,无数个点。

2.3 体积计算(1)三棱锥体积:底面积×高÷3;(2)四棱锥体积:底面积×高÷3;(3)五棱锥体积:底面积×高÷3;(4)长方体体积:长×宽×高;(5)正方体体积:棱长×棱长×棱长;(6)圆柱体积:底面积×高;(7)圆锥体积:底面积×高÷3;(8)球体积:4/3×π×半径³。

三、平面图形与立体图形的联系与转换平面图形与立体图形之间存在联系,如长方体、正方体的展开图是矩形或正方形,圆柱的侧面展开图是矩形或圆形。

立体图形与平面图形

立体图形与平面图形
只有表面积。
04
立体图形绘制方法
坐标系与三维空间
01
02
03
04
直角坐标系
由三个互相垂直的坐标轴构成 ,用于描述三维空间中的点。
极坐标系
用极径和极角来描述三维空间 中的点。
圆柱坐标系
以圆柱坐标表示空间中的点。
球坐标系
以球坐标表示空间中的点。
立体图形绘制技巧
01
02
03
线面分析
对立体图形的结构进行分 析,确定绘制的顺序和细 节处理方法。
演讲等。
THANK YOU
投影法
将立体图形投影到二维平 面上,以便于绘制。
布尔运算
利用布尔运算(并、交、 差)可以将立体图形分割 成几个部分分别绘制,最 后再组合起来。
常见立体图形的绘制
长方体
在二维平面上确定长方体 的顶点,然后连接这些顶 点即可。
圆柱体
确定圆柱体的中心轴线, 然后绘制出底面和顶面的 圆,再将它们连接起来。
根据功能
可分为几何图形、函数图形、图像 等。
根据构成
可分为由线段组成的图形和由曲线 组成的图形。
平面图形的应用
数学领域
平面图形是数学领域中几何学 研究的基本对象,用于解决几 何问题、解析几何和代数学等
问题。
科学领域
平面图形可以用于表示物体的 轮廓、表面和结构,在物理学 、生物学等领域有广泛应用。
工程领域
二维图像处理
图像识别
利用平面图形处理技术,识别图像中 的特定对象、文字和场景等。
图像增强
对平面图像进行编辑和处理,如调整 亮度、对比度、色彩平衡等,以改善 图像质量。
图像分割
将平面图像分割成不同的区域或对象 ,如人脸检测、特定物体识别等。

4.1.1 立体图形与平面图形

4.1.1  立体图形与平面图形

常见的立体图形
长方体 圆锥
正方体 球 圆柱
下列实物与给出的哪个几何体相似?
图1
图2
图3
棱柱和棱锥
三棱柱
六棱柱
三棱锥
常见立体图形的归类
圆柱
柱体 三棱柱 四棱柱 五棱柱 六棱柱 „„
棱柱பைடு நூலகம்
立体图形 球体 圆锥 锥体 棱锥
三棱锥 四棱锥 五棱锥 六棱锥 „„
常见的平面图形
三角形
长方形
五边形
圆形
正方形
几种常见几何体的特征:
①圆柱的特征:侧面是曲面,两个底面是圆的几何体等. ②圆锥的特征:像锥体,侧面是曲面,底面是圆等. ③正方体的特征:所有面都是正方形. ④长方体的特征:其侧面均为长方形. ⑤棱柱的特征:底面为多边形,侧面为长方形.
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
从正面看
从上面看
从左面看
请你从不同角度观察,下列立体图形各是 什么图形?
把你手中的立体图形沿棱展开,看它的平面展开图是什
金字塔—埃及
长方体
正方形
长方形
·
线段 点
我们把从实物中抽象出的各种图形统称为几何图形.
生活中你会经常见很多实物,由下列实物你能想象 出熟悉的几何体吗?
长方体
生活中你会经常见很多实物,由下列实物你能想象

4.1.1 立体图形与平面图形

4.1.1  立体图形与平面图形

从正面看
从上面看 从左面看
【跟踪训练】
分别将下列四个物体与其相应的从上面看到的图 连接起来:
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
把你手中的立体图形沿棱展开,看它的平面展 开图是什么?
长方体
展开
圆柱
展开
圆锥
展开
A
B
C
D
13. 如图是由若干个大小相同的小正方体堆砌而成的几何 体.那么从哪个方向看得到的图形中面积最小( )
A.从正面看
B.从左面看
C.从上面看
D.三种一样
【解析】选B.从正面看是由5个小正方形构成的平面图形;
从左面看是由3个小正方形构成的平面图形;从上面看是由
5个小正方形构成的平面图形.
14.(宁波·中考)骰子是一种特别的数字立方体(如
象出熟悉的几何体吗?
根据上述实物,我们想象出熟悉的几何体是:
长方体
正方体
圆柱体

4.1.1 立体图形与平面图形
圆锥体
有些几何图形(如长方体、正方体、圆柱、圆锥、 球等)的各部分不都在同一平面内,它们是立体图形.
常见的立体图形
长方体 正方体
圆柱
圆锥 球
【例题】
下列实物与给出的哪个立体图形对应?
C.圆
D.长方形
3.如图所示,将下列图形与对应的图形名称用线连 接起来.
4.下列图形中,都是柱体的一组是( C )
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
三棱柱
三棱锥
圆锥
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).

4.1.1(3) 立体图形与平面图形

4.1.1(3) 立体图形与平面图形

2、如图不是正方体的平面展开图是( A )
A
B
C

D
方法总结:①用方位拼凑法,B、C、D都能拼成正方体; ③正方体展开图,外周长必须是小正方形边 长的14倍,简称14个单位,因为正方体剪开 必须剪7刀,1刀两边,由此得出14。
②一般地有田字格的不是正方体的平面展开图;
3、把立方体的六个面分别涂上六种不同颜色,并 画上朵数不等的花,各面上的颜色与花的朵数情况 列表如下:
圆柱体展开会是 什么图形?
结论:圆柱的侧面展开图是 一个长方形,底面是两个圆。
圆锥体展开又会是什么图形呢?
结论:圆锥的侧面展开图是一个扇形, 底面是圆。
4.如图所示的四个平面图形,分别能折成什 么立体图形?
( 1)
( 2)
( 3)
( 4)
能将这个正方体 沿某根棱剪开, 展成一个平面图 形吗?再想想, 至少要剪开几条 棱?
.
B
在点B 发现食物
.
B1
.
A
B2
一只蚂蚁 在点A处
A
.
.
小结
1、立体图形 展开
折叠
平面图形
2、立体图形与平面图形相互变换的方法: (1)粘合拼凑法; (2)方位法。
沙漠中的树木渴望水,同学 们渴望更多的知识,以适应社会, 同学们努力吧!
颜色
花的朵数 红 1 黄 2 蓝 3 白 4 紫 5 绿 6
现将上述大小相同,颜色、花朵分布也完全相同的 四个立方体拼成一个水平放置的长方体,如图所示。 问长方体的下底面共有多少朵花?
3.如图:一只圆桶的下方有一只小壁虎,上方有一只蚊子, 小壁虎要想尽快吃到蚊子,应该走哪条路径?
第3题
如图,一只蚂蚁,在正方体箱子的一个顶 点A,它发现相距它最远的另一个顶点B处有 它感兴趣的食物,这只蚂蚁想尽快得到食物, 哪条路径最短?试在图中将路线画出来。

4.1.1 立体图形与平面图形

4.1.1  立体图形与平面图形


A.从正面看 C.从上面看
B.从左面看 D.三种一样
【解析】选B.从正面看是由5个小正方形构成的平面图形;
从左面看是由3个小正方形构成的平面图形;从上面看是由
5个小正方形构成的平面图形.
15.(宁波·中考)骰子是一种特别的数字立方体(如图),它符 合以下规则:相对两面的点数之和总是7.下面四幅图中可以折
金字塔—埃及
长方体
正方形
长方形
·
线段 点
我们把从实物中抽象出的各种图形统称为几何图形.
知识点一 生活中你会经常见很多实物,由下列实物你能想 象出熟悉的几何体吗?
长方体
根据上述实物,我们想象出熟悉的几何体是:
长方体
正方体

圆柱体 圆锥体
有些几何图形(如长方体、正方体、圆柱、 圆锥、球等)的各部分不都在同一平面内,它们
12.下面是由六个正方形连在一起的图形,经折
叠后能围成正方体的图形有哪几个?
A
B
C
D
E
F
G
13.(武汉·中考)如图所示,李老师办公桌上放
着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳
从上面看,看到的图形是(
A

A
B
C
D
14. 如图是由若干个大小相同的小正方体堆砌而成的几何
体.那么从哪个方向看得到的图形中面积最小(
第四章 几何图形初步
4.1 几何图形
4.1.1 立体图形与平面图形
1.通过观察生活中的大量物体,认识基本的几何体.
通过比较不同的物体学会观察物体间的不同特征,
体会几何体间的联系与区别.
2.会从不同方向看立体图形并能说出看到的平面图
形. 3.了解立体图形的展开图,并能根据展开图判断和制 作立体图形.

小学数学知识点汇总之平面图形与立体图形

小学数学知识点汇总之平面图形与立体图形

小学数学知识点汇总之平面图形与立体图形平面图形与立体图形是小学数学中的基础知识点,通过学习这些知识点,学生能够提升他们的几何意识和空间想象力。

本文将详细介绍平面图形和立体图形的定义、特点和常见的几何形状,并探讨它们在实际生活中的应用。

首先,我们来了解一下平面图形。

平面图形是由线段和弧段组成的封闭图形。

常见的平面图形有:点、线段、直线、射线、角、多边形、圆等。

其中,多边形是由线段组成的封闭图形,根据边的数量可以分为三角形、四边形、五边形等。

圆是由一条曲线,其上任意两点与圆心的距离相等所构成的图形。

平面图形有一些重要的特点。

首先,平面图形的面积是其中一个重要的属性。

我们可以通过不同的方法计算平面图形的面积,如长方形的面积等于它的长乘以宽,三角形的面积等于底边长度乘以高的一半。

其次,平面图形还有周长这个属性。

周长是指图形边界上的长度总和,是我们通过测量边长得到的。

在日常生活中,平面图形的应用是非常广泛的。

例如,我们常常使用直尺和量角器来绘制和测量平面图形,如绘制房间的平面图,设计等。

另外,平面图形在建筑、工程等领域也有重要的应用,例如,通过计算房间的面积和周长来确定所需的材料数量。

除了平面图形,立体图形也是小学数学中的重要内容。

立体图形是由平面图形沿着一定的方向延伸形成的图形。

常见的立体图形有:棱柱、棱锥、棱台、圆锥、圆柱、球等。

其中,棱柱是由一个平面图形作为底面,一个平行于底面的平面图形作为顶面,这两个平面图形之间的边线称为棱。

棱锥是由一个底面和一个顶点连接底面的边线组成。

棱台和棱锥类似,只是底面和顶面都是多边形。

圆锥和圆柱是以圆为底面的特殊立体图形。

球是一个三维的几何图形,没有顶点、棱和面,只有一个曲面。

立体图形也有一些重要的特点。

首先,立体图形具有体积这一属性。

体积是指立体图形所占的空间大小,我们可以通过不同的方法计算立体图形的体积,如长方体的体积等于它的底面积乘以高。

其次,类似于平面图形的周长,立体图形也有一个类似的属性叫做表面积。

立体图形与平面图形

立体图形与平面图形

立体图形与平面图形一、立体图形1. 柱体棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.圆柱:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱.2. 锥体棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.圆锥:以直角三角形一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.3. 球体半圆以它的直径为旋转轴,旋转所成的曲面所围成的几何体叫球体.4. 多面体围成棱柱和棱锥的面是平的面,像这样的立体图形叫多面体.棱柱有三棱柱、四棱柱、五棱柱等.棱锥也有三棱锥、四棱锥、五棱锥等.二. 画立体图形1. 三视图法从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图,这样就把一个物体转化为平面的图形.从正面看到的图形称为正视图;从上面看到的图形称为俯视图;从侧面看到的图形称为侧视图,按观察方向不同,有左视图,右视图.注:⑴正视图与俯视图的长度相等,且相互对正,即“长对正”;⑵正视图与侧视图的高度相等,且相互平齐,即“高平齐”;⑶俯视图与侧视图的宽度相等,即“宽相等”.2. 欧拉公式多面体具有的顶点数,棱数和面数满足欧拉公式:顶点数+面数-棱数=2三、柱体、锥体的展开名称几何体图形平面展开图底面形状侧面展开形状正方体正方形长方形圆锥圆扇形圆柱圆长方形四、常见几何体的主视图【典型例题】例1. 下列说法是否正确?正确的打“√”,不正确的打“×”,并简要说明理由.(1)柱体的上、下两个面一样大(2)圆柱和圆锥的底面都是圆,圆柱的侧面是长方形,圆锥的侧面是三角形(3)棱柱的底面是四边形,侧面可能是三角形(4)棱锥的侧面都是三角形(5)球体、圆柱、圆锥都不是多面体.分析:要对以上各种说法作出正确的判断,应从熟悉柱体、锥体、球体这些立体图形入手,把握它们各自的特征,弄清它们之间的区别.解:(1)√.柱体包括圆柱和棱柱.圆柱的两个底面都是大小一样的圆,棱柱两个底面都是一样大的三角形或多边形.(2)×.圆柱和圆锥的侧面都是弯曲的面.而长方形、三角形都是平的面,两者显然有区别.(3)×.棱柱的底面除了四边形以外,还可以是三角形等其它图形,棱柱的侧面都是四边形.(4)√.棱锥的所有棱都交于一点,侧面都是三角形.(5)√.多面体都是由平的面围成的立体图形,而球体、圆柱、圆锥并不都是由平面围成的.说明:留心生活中的物体,并能从中抽象出立体图形,除了注意不同类立体图形的区别,更应注意同类立体图形的细微差别.例2. 能否组成一个22条棱,10个面,15个顶点的棱柱或棱锥?为什么?分析:本题很难利用图形作出判断、考虑到棱柱或棱锥都是多面体,多面体都应满足“欧拉公式”.解:根据欧拉公式,顶点数+面数-棱数=2+-=当顶点数为15,面数为10时,棱数应为:1510223因此,不能组成一个棱数为22,面数为10,顶点数为15的棱柱或棱锥.说明:欧拉公式体现了多面体中顶点数、面数与棱数之间的关系,已知其中的两个数就可以求出第三个数.另外,还可以用它来判断具有某些条件的多面体是否存在.例3. 填空正方体是由_________个顶点,_________条棱,_________个面组成的,它还具有以下特点(写出三个)___________________________.解:正方体是由8个顶点,12条棱,6个面组成的,它还具有以下特点:所有的棱都相等,所有的面都是正方形,它是一个多面体.(或柱体、四棱柱等)例4. 用火柴摆出正方形,用多少根火柴才能摆出6个正方形?尽可能多地设想各种方案.并画出你的图形.(要求摆出的6个正方体的边长限于一根火柴的长)解:第一种方法:摆平面图形需要用17根火柴.第二种方法:摆三棱柱需要用15根火柴.第三种方法:摆正方体需要用12根火柴.例5.如图,下面是一个物体的三视图,试描述该物体的形状.正视图左视图俯视图分析:由物体的三视图想象物体的形状,要几个视图联系起来看.从正视图中可看出它是由两个部分叠加或是左边挖掉了一个形体,再对照俯视图,左视图便可知道右边上面加了半个圆柱体,圆柱下面是一个长方体,并且圆柱体的左面与长方体左面平齐,柱体的底面直径与长方体的宽一样.解:该物体的形状如图所示:说明:由视图想象物体的形状一般按以下步骤进行:(1)分线框,把几个视图联系起来看,把物体大致分成几部分;(2)识形体,定位置,根据每一部分的视图想象出它的形体,并确定它们的相互位置;(3)综合起来想整体,确定各个部分的形体及相互位置后,整个物体的形状也就清楚了.例6. 如图所示是一个几何体的两个视图,求该几何体的体积( 取3.14,长度单位cm )2032402530正视图 俯视图分析:从所给两个视图可以确定,设几何体是由两部分组成的,下面是一个长方体,它的长、宽、高分别是30cm 、25cm 、40cm.上面是一个圆柱体,底面圆的直径是20cm ,长为32cm ,所以该几何体的体积是这两部分体积之和.解:长方体体积为:30×25×40=30000cm3圆柱体体积为:3.14×102×32=10048 cm 3 30000+10048=40048cm 3答:几何体体积为400483cm .例7. 如图所示的立方体,将其展开得到的图形是( )A B C D (例8图)。

立体图形和平面图形-完整版PPT课件全

立体图形和平面图形-完整版PPT课件全
第四十四页,共五十五页。
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
第四十五页,共五十五页。
练习:下列图形中可以作为一个正方体的展开图的是( ).
C
(A)
(B)
(C)
(D)
第四十六页,共五十五页。
探究常见的立体图形的展开图
下面是一些立体图形的展开图,用它们能围成什么样的立 体图形?把它们画在一张硬纸片上,剪下来,折叠、 粘贴,看看得到的图形和你想象的是否相同.
作业
教科书习题4.1第 4 题.
第三十八页,共五十五页。
4.1.1 立体图形与平面图形
(第3课时)
第三十九页,共五十五页。
学习目标:
1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解
这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见几何
体的展开图.
立体图形
正面
左面
上面
第三十六页,共五十五页。
分别从正面、左面、上面看一个由若干个正方体组成的立体图形,
得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!
正面
左面
上面
第三十七页,共五十五页。
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形,
回顾学习过程,谈一谈自己有哪些学习成果.
第四章 几何图形初步
9.1.1立体图形和平面图形(1)
第一页,共五十五页。
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并了解立 体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.

4.1.1 立体图形与平面图形(解析版)

4.1.1 立体图形与平面图形(解析版)

4.1.1 立体图形与平面图形1.通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等.能用自己的语言描述它们的某些特征2.了解多面体可由平面图形围成,进一步认识立体图形与平面图形之间的关系3.通过丰富的实例,认识点、线、面、体,初步感受它们之间的关系.逐步由感性认识上升到对抽象的数学图形的认识,从而提高空间想象能力和几何直观能力知识点一 立体图形的认识1.图形几何图形是从实物中抽象出的各种图形,分为立体图形和平面图形2.体形有些几何图形的各部分不都在同一平面内,它们是立体图形合并同类项解方程的方法与步骤几种常见的立体图形如下表:名称图例特征圆柱底面是大小相同的圆侧面是曲面柱体棱柱底面是多边形,侧面是长方形或正方形有两个面(底面)互相平行圆锥只有一个圆形底面,侧面是曲面有一个顶点椎体棱锥只有一个圆形底面,侧面是曲面各侧面有一个公共顶点圆台底面是大小不相同的圆,侧面是曲面台体棱台底面是多边形,侧面是梯形有两个面(底面)互相平行球表面是曲面即学即练(2022上·广东河源·七年级校考期中)观察下列实物模型,其整体形状给我们以圆柱的形象的是( )A.B .C .D .【答案】D【分析】根据圆柱体上下表面都是圆的特征即可解题.【详解】解:A .此物体给我们以圆台的形象,不符合题意;B .此物体给我们以长方体的形象,不符合题意;C .此物体给我们以圆锥的形象,不符合题意;D .此物体给我们以圆柱的形象,符合题意;故选:D .【点睛】本题考查了圆柱体的识别,属于简单题,熟悉立体图形的定义是解题关键.知识点二 平面图形1.平面图形有些几何图形的各部分都在同一平面内,它们是平面图形2.几种常见的平面图形名称图形名称图形直线射线线段三角形长方形正方形梯形平行四边形圆扇形一些简单的平面图形可以组合成许多优美的图案,如某些国家的国旗、各种银行标志、由各种形状的地砖铺成的漂亮的地面等。

即学即练(2023上·山东济南·七年级校考阶段练习)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【答案】B【分析】根据棱柱的特点即可得出答案.【详解】解:B是四棱柱的展开图,故该选项符合题意;A、C、D选项都不是棱柱的展开图,故都不符合题意;故选:B.【点睛】本题考查的是棱柱的展开图,掌握常见几何体的展开图是解题的关键.知识点三从不同方向看物体1.从不同方向看物体一般地,从立体图形的正面、左面、上面三个角度观察立体图形,往往会得到不同形状的平面图形看得见的轮廓线画实线,看不见的轮廓线画虚线.从不同方向看同一物体,所看到的平面图形可能不同,也可能相同。

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形

4.1.1 立体图形与平面图形
栏目索引
例2 如图4-1-1-3所示,下列各标志图形主要由哪些简单的几何图形组 成?
图4-1-1-3
解析 图①由圆组成;图②由长方形和正方形组成;图③由四边形(或菱 形)组成;图④由圆和圆弧组成.
4.1.1 立体图形与平面图形
知识点三 从不同方向看物体
栏目索引
常见立体图形从不同方向看得到的平面图形列表如下:
栏目索引
答案 B A是球,B是圆柱,C是圆锥,D是三棱柱,故选B.
4.1.1 立体图形与平面图形
2.如图是一座房子的平面图,组成这幅图的图形有 ( )
栏目索引
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形 答案 C 由题图可以看出,在这个平面图中,房子的屋顶是三角形,其 余的图形分别有长方形、正方形、梯形.这座房子的平面图是由上述四 种图形组成的.
答案 A 点拨 考查从不同角度观察物体的能力,体会立体图形与平面图形相互 转化的过程,培养空间想象能力.
4.1.1 立体图形与平面图形
栏目索引
题型二 正方体的平面展开图 例2 图4-1-1-8是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字所在面相对的面上的汉字是 ( )
4.1.1 立体图形与平面图形
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
栏目索引
4.1.1 立体图形与平面图形
栏目索引
2.与图中实物图相类似的立体图形按从左至右的顺序依次是 ( )
A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 2、
形状 (如方的、圆的等); 大小 (如长度、面积、体积等);
3、
位置 (形?常见的几何图形有哪 些?
10
什么是几何图形?
我们把从实物中抽象出的各种图形统称为几 何图形。常 见的几何图形有:

小组合作:
我们周围的物体可以抽象出哪些几何图形?
1. 说说你发现的几何图形; 2.小组合作交流,总结发现的几何图形; 3.小组展示。
自主学习二
阅读课本第115——116页内容,思考: 1.常见的几何图形可以分为哪两大类?
2.什么是立体图形?
3.什么是平面图形?
• 立体图形 几 何 图 形 • 平面图形
什么是立体图形?
几何图形的各部分不都在同一 平面内,这样的图形是立体图形。
常见的立体图形
什么是平面图形?
几何图形的各部分都在同一 平面内,这样的图形是平面图形。
常见平面图形
认识,区别 棱柱 圆柱
19
棱锥
圆锥
20
练习1:
说出下列立体图形的名称并进行分类
1.圆柱
2.三棱柱
3.三棱锥
4.圆锥
5.四棱柱
6.圆锥
7.球 体
8.圆柱
9.四棱锥
柱体: 1、2、5、8 锥体: 3、4、6、9 球体: 7
找一找
从下列图片中找出立体图形
22
23
24
25
26
练习2:
如图,你能看到哪些立体图形?
找一找
从下列图片中找出平面图形
28
29
30
练习3:
如图,你能看到哪些平面图形?
总结
通过这节课的学习,你学到 了什么?有什么收获? 你对自己在这节课的表现满 意吗? 你认为哪个小组的表现最好?
活动:请你用自己喜欢的几何图形作为 构件,拼出有趣的图案。
33
34
学习目标: 1、初步了解立体图形与平面图形 的概念。 2、能从具体的物体中抽象出常见 的几何图形。
自主学习1
阅读课本第114页内容,思考以下问题: 1、对于各种各样的物体,数学上关注它们 哪些方面的内容? 2、什么是几何图形?
8
对于各种各样的物体,我们关注它们的很多方面, 数学上关注它们的什么?
相关文档
最新文档