分式加减法则
分式加减法
【通分】利用分式的基本性质 ,把异分 母的分式化为同分分母的过程 .
【通分的原则】异分母通分时, 通常取 各分母的最简公分母作为它们的共同 分母.
分子相减时要注意符号的变化
例4
计算
3 24 2 x 4 x 16
3 24 分式的分母不同要先通分,再加减 解: 2 x 4 x 16 3 24 x 4 ( x 4)(x 4) 3( x 4) 24 ( x 4)(x 4) ( x 4)(x 4) 3( x 4) 24 ( x 4)(x 4) 3 x4
甲、乙两位采购员同去一家饲料公司购买两次 饲料.两次饲料的价格有变化,两位采购员的购 货方式也不同,其中,甲每次购买1000千克, 乙每次用去800元,两次购买饲料的单价为分别 为m元/千克,n元/千克,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少? (2)谁的购货方式更合算?
a a ( 3) x y y x
3、计算:
5a 2b 3 3a 2b 5 8 a 2b (1) ; 2 2 2 ab ab ab
b a (3) ; 3a 2b
1 2 (4) ; 2 a 1 1 a
4 xy (6) x y . x y
若
x3 = ( x 1)(x 1)
A + B , x 1 x 1
求A、 B的值.
A=2,B=-1
x2 x 1 4 x ( 2 2 ) 2 x 2x x 4x 4 x 2x
a b a b 2ab ( 2 2 ) a b a b (a b)(a b)
11.分式的运算
③相同字母的幂取指数最高的。
例
4,(1)
1 2ab2c3d
+
1 3a3b2c
+
1 4a2b2c2
(2)
1+1− x x
1− 1− xy xy
注意:整式与分式的运算,根据题目特点,将整式化为分母为“1”的分式;
例 5:(1)已知: 2m − 5n = 0 ,求下式的值: (1+ n − m ) ÷ (1+ n − m )
m m−n
m m+n
(2)
1+
n m
− −
m 2n
÷
m2
m2 − n2 − 4mn +
4n2
一题多解
例 6:已知:= x2 M− y2
2xy − y2 + x − y x2 − y2 x + y
,则 M
=
________
例 7:
[ (a
1 + b)2
−
(a
1 − b)2
]÷( a
1 +b
−
a
1) −b
11.分式的运算
基础知识 1、分式的定义与意义(变成习惯思维,见到分式想到分母不能为 0)
A
定义:(A、B为整式,B中含有字母,不是系数且B ≠ 0)
B
2x + 2
例 1: 取什么值时试判断 (3x −1)(x +1) 有意义。
2x +1
例 2,当 x 取何值时,分式 1− 1 有意义?
x
2、分式的乘除法法则:注意约分,找公因式
)
D. x x -1
。
7.
(2011
分式的加减法法则
分式的加减法法则分式是数学中常见的一种表达形式,它由分子和分母组成,分子表示分数的被除数,分母表示分数的除数。
分式的加减法法则是指在进行分式的加减运算时需要遵循的规则。
我们来看分式的加法法则。
当两个分式的分母相同时,我们只需将分子相加,然后保持分母不变即可。
例如,对于分式$\frac{a}{b} + \frac{c}{b}$,我们可以直接将分子相加,得到$\frac{a+c}{b}$。
这里的a、b、c可以是任意实数。
当两个分式的分母不相同时,我们需要通过求最小公倍数的方法来进行转化。
首先,我们找到两个分式的最小公倍数作为新的分母,并将原分式的分子分别乘以最小公倍数除以原来的分母,得到新的分子。
然后,将两个新的分式的分子相加,保持分母不变。
例如,对于分式$\frac{a}{b} + \frac{c}{d}$,我们可以通过求b和d的最小公倍数bd,得到新的分式$\frac{ad}{bd} + \frac{cb}{bd}$,然后将分子相加,得到$\frac{ad+cb}{bd}$。
接下来,我们来看分式的减法法则。
分式的减法可以通过将减数取相反数,然后按照加法法则进行运算来实现。
例如,对于分式$\frac{a}{b} - \frac{c}{b}$,我们可以将减数$\frac{c}{b}$取相反数,即$-\frac{c}{b}$,然后按照加法法则进行运算,得到$\frac{a+(-c)}{b}$,即$\frac{a-c}{b}$。
同样地,当两个分式的分母不相同时,我们需要通过求最小公倍数的方法来进行转化。
首先,我们找到两个分式的最小公倍数作为新的分母,并将原分式的分子分别乘以最小公倍数除以原来的分母,得到新的分子。
然后,将被减数的新分子减去减数的新分子,保持分母不变。
例如,对于分式$\frac{a}{b} - \frac{c}{d}$,我们可以通过求b和d的最小公倍数bd,得到新的分式$\frac{ad}{bd} - \frac{cb}{bd}$,然后将分子相减,得到$\frac{ad-cb}{bd}$。
分式加减法运算法则
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
分式的运算法则
分式的运算一.通分的方法:1.分式通分的涵义和分数通分的涵义有类似的地方;(1)把异分母分式化为同分母分式;(2)同时必须使化得的分式和原来的分式分别相等;(3)通分的根据是分式的基本性质,且取各分式分母的最简公分母,否则使运算变得烦琐.2.求最简公分母是通分的关键,其法则是:(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数最高的.这样取出的因式的积,就是最简公分母.例1.通分:解:∵8,12,20的最小公倍数为120,字母因式x、y、z的最高次幂分别为x3、y3、z2,所以最简公分母是120x3y3z2.∴.通分过程中,如果字母的系数是负数,一般先把负号提到分式的前面.例2.通分:解:将分母分解因式:a2-b2=(a+b)(a-b);b-a=-(a-b)∴最简公分母为(a+b)(a-b)2∴[分子,分母同乘以(a-b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)(a-b)]=-[分子作整式乘法]说明: (1)分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘。
(2)通分是和约分相反的一种变换.约分是把分子和分母的所有公因式约去.将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式。
约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的。
二.分式的乘除法:1.同分数乘除法类似,分式乘除法的法则用式子表示是:,其中a、b、c、d可以代表数也可以代表含有字母的整式.2.分式乘除法的运算.归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分。
3.整式和分式进行运算时,可以把整式看成分母为1的分式。
人教八年级数学上册《分式的加减 第1课时:分式的加减法法则》精品教学课件
2
p
1
3q
-
2
1 p-3q
.
解:(1)
2
p
1
3q
2
1 p-3q
=
(2
p
2 p-3q 3q)(2 p-3q)
(2
p
2 p 3q 3q)(2 p-3q)
2 p-3q 2 p 3q (2 p 3q)(2 p-3q)
(2 p
4p 3q)(2 p-3q)
通分
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
1
8 a2 4
8(a2 4) 8(a2 1) (a2 1)(a2 4) (a2 1)(a2 4)
8(a2 4) 8(a2 1)
(a2 1)(a2 4)
8(a2 4 a2+1) (a2 1)(a2 4)
(a2
24 1)(a 2
4)
.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
3q2 p
3q
3q
2p
6q
3q2 p
3q
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
异分母分式相加减的一般步骤: (1)通分:将异分母分式转化为同分母分式; (2)加减:写成分母不变、分子相加减的形式; (3)合并:若分子有括号,则先去括号、再合并同类项; (4)约分:分子、分母约分,将结果化成最简分式或整式.
1+ 1 两队共同工作一天完成这项工程的__n___n___3_.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考
问题2:2019年、2020年、2021年某地的森林面积 (单位:km2) 分别是S1,S2,S3,2021年与2020年相比,森林面积增长率提高了 多少?
沪教版七年级 分式的四则运算,带答案
分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a bcdacbd⋅=;abcdabdcadbc÷=⋅=当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘.2. 分式的加减法(1)同分母的分式加减法法则:acbca bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等的同分母的分式的过程.4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取;(3)相同字母(或含有字母的式子)的幂的因式取指数最高的.5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(xym m y x xy m ÷-⋅-(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅(5)22)2(4422-++---x x x x x x (6)6554651651222222-+-+-++--++x x x x x x x x x (7)()()222624x x x ---+ (8)223y xy xy xy x y x +-+++(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+--精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯--例2. ()242223232222222+++++--+-a a a a a a a a例3. 计算:xx xx x x x x x x x 4122121035632222-+-++---+++例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值例5.已知6112=++a a a ,试求1242++a a a 的值 例6. 1814121111842+-+-+-+--x x x x x例7. 计算 45342312+++++-++-++x x x x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x -++⋅+÷+--36)3(446222类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b ca b c b c a c a b-+-+--++--+--(3)2422---x x x (4)22211y x xy x y x -+--+(5)224--+a a (6) 222244242x y y x y x y y x -+-++ (7) 已知y x a x y -=,y xb x y+=,求22a b -类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭(3)245(3)33x x x x -÷----- (4)111111--++x x(5)2222222265232y x y x y xy x y x y xy x y xy x -+⋅---÷+++-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+-类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少?类型五:分式的拆分 1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n .2.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x .自我测试一、选择题2. 下列分式是最简分式的( ) A .ba a 232 B .aa a 32- C .22b a b a ++ D .222b a ab a --3. 化简)2()242(2+÷-+-m mm m 的结果是( )A .0B .1C .-1D .(m +2)24. 已知2111=-b a ,则b a ab -的值是( )A .21B .21- C .2 D .-25. 化简(x y -y x ) ÷x yx -的结果是( )A .1yB .x y y +C .x y y -D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 .7. 化简: aa 12-÷(1+a 1)= .8. 化简:4)222(2-÷--+x x x x x x 的结果为 .9. 若x 2-3x +1=0,则2421x x x ++的值为_________.10.化简12-a ·442++a a ÷2+a +12-a ,其结果是________.三、计算题 11. 计算(1) 22399xx x --- (2) x x x x x x x x x x 23832372325322222--+--+++--+ (3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x(5)aaa a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x12.化简求值 (1)aa -+-21442,并求时原式的值.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n 3… 输出答案 11分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a b c d ac bd ⋅=;a b c d a b d c adbc÷=⋅= 当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘. 2. 分式的加减法(1)同分母的分式加减法法则:a cbc a bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等 的同分母的分式的过程. 4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取; (3)相同字母(或含有字母的式子)的幂的因式取指数最高的. 5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、 分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项, 从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分, 将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( C )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( A )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( B )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( D )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( B )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(x ym m y x xy m ÷-⋅-解: 原式=663827c b a - 解:原式=338ym x -(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅ 解:原式=))(()(223b a b a b a +-+ 解:原式=32916ax b(5)22)2(4422-++---x xx x x x (6)6554651651222222-+-+-++--++x x x x x x x x x解:原式=21-+x x 解:原式=64+-x x (7)()()222624x x x ---+ (8)223y xy x y xy x y x +-+++ 解:原式=21-x 解:原式=xy x y -3(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+-- 解:原式=)1)(5(24-+-x x x 解:原式=0精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯-- 解:原式=)55()2222(426912624242669661244yx y x y x y x y x y x -÷⋅=)1()(51022y x y x -⋅=361yx -例2. ()242223232222222+++++--+-a a a a a a a a 解:原式=326322=++a a例3. 计算:x x xx x x x x x x x 4122121035632222-+-++---+++解:原式=)2)(2(12)1)(2()1()2)(5()1)(5(2-++-+---+++x x x xx x x x x x x=)2)(2(122121-+++---+x x x x x x =)2)(2(126-++x x x=26-x例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值解:由已知得:a c b b c a c b a -=+-=+-=+,,∴原式=a cb c c b a b c a b a +++++ =acb c b a b c a +++++ =-3例5.已知6112=++a a a ,试求1242++a a a 的值 解:由已知得:612=++a a a ,即611=++aa 51=+∴a a 232)1(1222=-+=+∴aa a a2411122224=++=++∴a a a a a 2411242=++∴a a a例6. 1814121111842+-+-+-+--x x x x x 解:原式=181412128422+-+-+--x x x x =181414844+-+--x x x =181888+--x x =11616-x例7. 计算 45342312+++++-++-++x x x x x x x x 解:原式=411311211111++++--+--++x x x x =41312111+++-+-+x x x x =)3)(2(52)4)(1(52+++-+++x x x x x x=24503510104234+++++x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x --+⋅+÷+--36)3(446222解:原式=)23(5--x m y x 解:原式=22--x类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b c a b c b c a c a b-+-+--++--+-- 解:原式=2- 解:原式=0(3)2422---x x x (4)22211y x xy x y x -+--+ 解:原式=2+x 解:原式=yx +2(5)224--+a a (6) 222244242x y y x y x y y x -+-++ 解:原式=242++-a a 解:原式=yx x 22+(7) 已知y x a x y -=,y xb x y+=,求22a b - 解:原式=4)2(2))((-=-⋅=-+yxx y b a b a类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭ 解:原式=nm nm 222-- 解:原式=)2(2+x x(3)245(3)33x x x x -÷----- (4)111111--++x x 解:原式=22+-x 解:原式=)2)(1()1)(2(-+-+x x x x(5)2222222265232y x yx y xy x y x y xy x y xy x -+⋅---÷+++- 解:原式=yx yx 26+-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+- 解:原式=))(()())(()(223334y xy x y x y x y x y x y x +--+=+-+又x y 2=,代入得: 原式=-9类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2解:原式=34--x , 当x =2时,原式=4.(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.解:原式=11+x , 当x =-45时,原式=5.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少? 解:原式=22-+x x , 当1x =时,原式=-3.类型五:分式的拆分1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n . 解:原式=11141313121211+-++-+-+-n n =111+-n =1+n n3.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x . 解:原式=100199********+-++++-+++-x x x x x x =10011+-x x =)100(100+x x 自我测试一、选择题A. a +bB. a -bC. a 2-b 2D. 12. 下列分式是最简分式的( C )A .b a a232 B .a a a 32- C .22b a b a ++ D .222b a ab a -- 3. 化简)2()242(2+÷-+-m mm m 的结果是( B ) A .0B .1C .-1D .(m +2)2 4. 已知2111=-b a ,则b a ab -的值是( D ) A .21 B .21- C .2 D .-2 5. 化简(x y -y x ) ÷x y x -的结果是( B ) A . 1y B . x yy + C . x yy - D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 -3 . 7. 化简: aa 12-÷(1+a 1)= a -1 . 8. 化简:4)222(2-÷--+x x x x x x 的结果为 x -6 .10.化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是11-a . 三、计算题11. 计算(1) 22399x x x --- (2)x x x x x x x x x x 23832372325322222--+--+++--+ 解:原式=31+-x 解:原式=(3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x 解:原式=2)(y x xy - 解:原式=53-x (5)aa a a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x 解:原式=aa a a a a a a 633633-⋅+--⋅- 解:原式=252-x =)3(6361+-+-a a =31+-a12.化简求值 (1)aa -+-21442,并求3-=a 时原式的值. 解:原式=21+-a 当3-=a 时,原式=1.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 解:原式=22--a a由已知得:02=-a a∴原式=-2(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n3 … 输出答案 1 1解:12=-+n nn n。
专题5.3分式的加减法运算(知识解读)
专题5.3 分式的加减法运算(知识解读)【学习目标】1. 类比分数的加减法运算法则,探究分式的加减法运算法则.2. 能进行简单的分式加、减运算.3. 掌握分式的加、减、乘、除混合运算.4. 掌握分式的化简求值.【知识点梳理】考点1:同分母分式的加减同分母分式相加减,分母不变,把分子相加减; 上述法则可用式子表为:. 注意:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.考点2:异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减. 上述法则可用式子表为:. 注意:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.a b a b c c c ±±=a c ad bc ad bc b d bd bd bd ±±=±=【典例分析】【考点1 同分母分式的加减】【典例1】(2017•湖北)化简:﹣.【解答】解:﹣===【变式11】(2015•义乌市)化简的结果是()A.x+1B.C.x﹣1D.【答案】A【解答】解:原式=﹣===x+1.故选:A.【变式12】(2020•淄博)化简+的结果是()A.a+b B.a﹣b C.D.【答案】B【解答】解:原式====a﹣b.故选:B.【变式13】(攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n 【答案】A【解答】解:+=﹣==m+n.故选:A.【考点2 异分母分式的加减】【典例2】(2016•南京)计算﹣.【解答】解:﹣=﹣==.【变式21】(2015•百色)化简﹣的结果为()A.B.C.D.【答案】C【解答】解:原式=﹣====.故选:C.【变式22】(2019•济南)化简+的结果是()A.x﹣2B.C.D.【答案】B【解答】解:原式=+==,故选:B.【变式23】(2016•甘孜州)化简:+.【解答】解法一:+=+==.解法二:+=+=+=.【典例3】(2015春•扬州校级月考)计算(1)﹣(2)﹣(3)﹣x﹣1.【解答】解:(1)﹣===﹣;(2)﹣=﹣===;(3)﹣x﹣1=﹣==.【变式31】(2019秋•石景山区期末)计算:﹣.【解答】解:原式=+==【变式32】(秋•南充期末)计算:﹣.【解答】解:原式=﹣,=,=,=,=.【变式33】(2020•鼓楼区一模)计算.【解答】解:原式====【考点分式化简】【典例4】(2016•聊城)计算:(﹣).【解答】解:原式=•=•=﹣.【变式41】(2021•碑林区校级一模)化简:(﹣)÷.【解答】解:原式=[﹣]÷=÷=•=.【变式42】(2020秋•潍城区期中)计算:(1);(2);(3).【解答】解:(1)原式=•==;(2)原式=﹣==;(3)原式=•+=+==.【变式43】(2021•金州区校级模拟)计算:÷﹣1.【解答】解:原式=•﹣1=﹣=.【变式44】(2020秋•华龙区校级期中)计算(1);你(2).【解答】解:(1)原式=﹣•=﹣==;(2)原式=÷=•=.【典例5】(2021秋•北碚区校级期中)先化简再求值:÷(x﹣1+),其中x=2.【解答】解:原式=÷=÷=•=,当x=2时,原式=1【变式5】(2021秋•雨花区校级月考)先化简,再求值:,其中a=2022.【答案】﹣.【解答】解:原式=()÷=()×==﹣.当a=2022时,原式=﹣=﹣.【典例6】(2021•射阳县二模)先化简,再求值:()÷,其中x从1,2,3中取一个你认为合适的数代入求值.【答案】1【解答】解:原式=[]===,∵x(x+1)(x﹣1)≠0,∴x≠0且x≠±1,∴x可以取2或3,当x=2时,原式=,当x=3时,原式==1.【变式6】(2022•牟平区校级开学)化简求值:,再从﹣1≤x <2中选一个整数值,对式子进行代入求值.【解答】解:原式=÷=•=﹣,∵﹣1≤x<2且x为整数,∴x=﹣1,0,1,2,当x=1时,原式没有意义,舍去;当x=﹣1时,原式=;当x=0时,原式=1;当x=2时,原式=﹣.【典例7】(2021•潍城区二模)先化简,再求值:(﹣)÷(x+2﹣),其中x是不等式组的整数解.【解答】解:原式=[+]÷[﹣]=(+)÷(﹣)=÷=•=,由,解得:﹣1<x≤2,∵x是整数,∴x=0,1,2,由分式有意义的条件可知:x不能取0,1,故x=2,∴原式==2.【变式7】(2021•苍溪县模拟)先化简:,再从不等式组的解集中取一个合适的整数值代入求值.【解答】解:原式===2(x+1)﹣(x﹣1)=2x+2﹣x+1=x+3.解不等式组,得﹣3<x≤1.由分式有意义的条件可知:x不能取﹣1,0,1,且x是整数,∴x=﹣2.当x=﹣2时,原式=1.【典例8】(2021秋•兴宁区校级月考)先化简,再求值:,其中a满足a2+2a﹣3=0.【解答】解:原式=•=•=•=2a(a+2)=2(a2+2a),∵a满足a2+2a﹣3=0,∴a2+2a=3,当a2+2a=3时,原式=2×3=6.【变式8】(2021秋•沭阳县校级月考)先化简,再求值:(﹣)÷,其中x2﹣x﹣6=0.【解答】解:原式=[﹣]÷=•=•=•=,∵x2﹣x﹣6=0,∴x=3或x=﹣2,由分式有意义的条件可知:x不能取﹣2,故x=3,∴原式==﹣.。
分式与分式方程
(3)列出方程
(4)解方程并检验,一是检验所列方程是否有根,二是 看根是否符合实际情况。 (5)写出答案。
例题讲解
1、某人骑自行车比步行每小时多走8千米,如果他步行 12千米所用时间与骑车行36千米所用的时间相等,求他
步行40千米用多少小时?
例题讲解
3、A,B两地相距135千米,两辆汽车从A地开往B地, 大汽车比小汽车早出发5小时,小汽车比大汽车晚到30 分钟.已知小汽车与大汽车的速度之比是5:2,求两辆 汽车各自的速度.
第五章 分式与分式方程
三、分式的加减
1、同分母分式加减法法则:
同分母的分数相加减,分母不变,分子相加减。
b c bc 用式子表示为: a a a
例题讲解
m y c (1) x x x
y x (2) x y x y
2
x 4 2 ) . (( 3 ) x2 x2
例题讲解
4、小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾
高速公路,全程约84km,返回时经过跨海大桥,全程
45km.小丽所乘汽车去时的平均速度是返回时的1.2倍, 所用时间却比返回时多20min.求小丽所乘汽车返回时的 平均速度.
例题讲解
5、文具商店从批发部门购进甲、乙两种型号的笔记本进
行销售.若每本甲种笔记本的进价比每本乙种笔记本的进
三、分式的加减
1、通分: 根据分式的基本性质,异分母的分式可以化为同分母的分式
2、最简公分母:
(1)各分母系数的最小公倍数
(2)各分母所有因式最高次幂的乘积
例题讲解
计算:
5 2 3 2 2 6a b 3ab 4abc
先找出最简公分母,再 正确通分,转化为同分 母的分式相加减。
分式知识点归纳
《分式》知识点归纳一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B叫做分式,A为分子,B为分母。
二、与分式有关的条件①分式有意义:分母不为0(B≠0)②分式无意义:分母为0(B=0)③分式值为0:分子为0且分母不为0④分式值为正或大于0:分子分母同号?⑤分式值为负或小于0:分子分母异号?⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
(3)注意:在应用分式的基本性质时,要注意同乘或同除的整式不为O 这个限制条件和隐含条件分母不为0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2.取各个公因式的最高次幂作为最简公分母的因式.3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.3、“两大类三类型”通分“两大类”指的是:一是分母是单项式;二是分母是多项式“两大类”下的“三类型”:“二、三”型,“二,四”型,“四、六”型1)“二、三”型:指几个分母之间没有关系,最简公分母就是他们的乘积;2)“二,四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母;3)“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母既要有独特的因式,也应包括相同的因式4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。
分式基础知识讲解
分式基础知识讲解分式,也称为有理数,是指一个整数除以另一个非零整数所得的数。
在数学中,分式是一个重要的概念,它在各种数学问题中都有广泛的应用。
本文将对分式的基础知识进行讲解。
一、分式的定义和表示方式分式可以看作是两个整数的比值,其中一个整数作为分子,另一个整数作为分母。
分式的一般表示方式为“a/b”,其中a为分子,b为分母。
例如,2/3、5/8都是分式。
分式可以用于表示一个数量相对于另一个数量的比值,比如“5个苹果中有3个是红色的”,可以表示为分式5/3。
二、分式的性质和运算法则1. 分式的相等性质对于任意两个分式a/b和c/d,如果ad=bc,则a/b=c/d,即分式相等性质。
2. 分式的相反数和倒数对于任意一个分式a/b,它的相反数是- a/b,它的倒数是b/a。
3. 分式的加减法当两个分式的分母相同时,可以直接对分子进行加减运算,并保持分母不变。
例如,对于分式a/b和c/b,它们的和为(a+c)/b,差为(a-c)/b。
当两个分式的分母不同时,可以通过求公共分母的方法将它们进行相加或相减。
具体方法可以参考通分的原理。
4. 分式的乘除法两个分式相乘时,只需将它们分子相乘得到新的分子,分母相乘得到新的分母。
例如,分式a/b和c/d的乘积为ac/bd。
两个分式相除时,可以将第二个分式的倒数乘以第一个分式。
即,分式a/b和c/d的商为(a/b) * (d/c) = (ad)/(bc)。
三、分式的简化和约分当一个分式的分子和分母有公约数时,可以进行约分,即将分子和分母同时除以它们的最大公约数。
约分后的分式与原分式表示相同的数。
四、分式的应用1. 倒数的表示当需要表示一个数的倒数时,可以使用分式。
例如,数x的倒数可以表示为1/x。
倒数在分数的求解和比较中起到重要作用。
2. 比例问题在比例问题中,分式被广泛使用。
比如“苹果的单价是2元/个,芒果的单价是3元/个,求苹果和芒果价格的比值”,可以表示为2/3这个分式。
初中数学分式的加减知识点
If one day I have money or I am completely out of money, I will start wandering.整合汇编简单易用(页眉可删)初中数学分式的加减知识点分式加减法法则(rule of addition and subtraction of fraction)是分式的运算法则之一。
下面是初中数学分式的加减知识点,快来看看吧!初中数学知识点总结:分式的加减法则以下是对分式的加减知识点的总结学习,同学们认真记录笔记。
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd (ad±bc)注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。
希望上面对分式的加减知识点的总结内容,同学们都能很好的掌握,并在考试中取得理想的成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的`数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。
三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
分式运算
知识梳理:1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:;2.零指数.3.负整数指数4.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.5.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项(1)通分的关键是确定最简公分母,最简公分母应为各分母系数的最小公倍数与所有相同因式的最高次幂的积;(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.6.分式的加减法法则(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.7.分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.8.分式的混合运算顺序先算乘方,再算乘除,最后算加减,有括号先算括号里面的.例题:【例 1】 通分:a 25-,2432127,92ba cb a -.【例 2】 计算:(1)xyyx xy y x 3339+-+; (2)yx xy 2232121-; (3)a b abb b a a ----222; (4)2122442--++-x x x .【例 3】 下面是三位同学做的异分母的加减法,他们的解答正确吗?甲:计算:y x x -+22x xy y -.y x x -+22x xy y -=yx x --)(2y x x y -=)(22y x x y x --.乙:计算:122-x x -x -1.122-x x -x -1=122-x x -11+x =1122---x x x . 丙:计算:132--x x -x +12.132--x x -x +12=)1)(1(3-+-x x x -)1)(1()1(2-+-x x x =x -3-2(x -1)=-x -1.【例 4】 化简:yx yx -+11.【例 5】 请你阅读下列运算过程,再回答所提出的问题:132--x x -x-13=)1)(1(3-+-x x x -13-x (A ) =)1)(1(3-+-x x x -)1)(1()1(3-++x x x (B ) =x -3-3(x +1)(C ) =-2x -6.(D )(1)上述计算过程中,从哪一步开始出现错误? .(2)从(B )到(C )是否正确?______.若不正确,错误的原因是 . (3)请你正确解答.【例 6】 若x +x 1=3,则x 2+21x =______.【例 7】 计算: (1)2243nm -÷6mn 4; (2)2222b ab b ab a -++÷2222b ab a b ab +-+.【例 8】 计算: (1)yx y xy x -+-24422÷(4x 2-y 2);(2)222x ax a ax +-÷22x a ab -÷22x a bx-;(3)mn m nm -+2÷(m+n )·(m 2-n 2).【例 9】 化简求值:b a b -·32232b b a ab a -+÷222b ab b a +-,其中a=32,b=-3..【例 10】 小赵、小钱用电脑打字,小赵每分钟打m 个字,小钱每分钟打n 个字,则两人打1000字的时间比是 .【例 11】 在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【例 12】 给定下面一列分式:3579234,,,,x x x x y y y y-- ,(其中0x ≠)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式。
八年级数学知识点:分式的加减
八年级数学知识点整理:分式的加减分式的四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:a/c±b/c=(a±b)/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算。
用字母表示为:a/b ±c/d=(ad±cb)/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c不管什么样的计算,其过程都是需要大家急躁和细心的。
一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依据是分式的根本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是一样因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依据分式的根本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的`最小公倍数、一样字母的最高次幂的全部不同字母的积;(2)假如各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母一样,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。
初中数学八年级上册《3.5 分式的加减
问题1:猜一猜, 同分母的分式应该如何加减?
【同如分:母a1 的 a2分式?a3加减法的法则】
同分母的分式相加减,分母不变,
分子相加减.
一 计算:
(1)
x2 y2
x y x y
(2)
3x 6x y
2x y 2x y
同分母分式加减的基本步骤:
1.分母不变,把分子相加减. (1)如果分式的分子是多项式,一定要加 上括号 (2)如果是分子式单项式,可以不加括号。 2.分子相加减时,应先去括号,再合并同类
• 学习目标: • 1、理解并掌握分式加减法的运算法则; • 2、能熟练运用分式的加减法法则进行分式
的加减运算;
• 学习重难点: • 1、重点:运用分式的加减法法则进行运算 • 2、 难点:异分母分式的加减运算
复习:
计算:
1 5
4 5
3 5
【同分母的分数加减法的法则】
同分母的分数相加减,分母不变,分子相加减.
计算:
(1) (2)
a 2 b2 2ab ab ab
x2 4 x2 x2
2 xy2 1 1 2 x2 y (x y)2 ( y x)2
(3)
问题2:想一想,异分母的分数如何加减?
如
1 3
7 12
应该怎样计算?
【异分母分数加减法的法则】
问通题分3,:把想异一分想母,分异数分化母为的同分分式母如分何数进。行加减?
小测:
1.填(空1):3 5 xy xy =
3 、1 、5 4x 2x 6x
(2) 4x 4 y
;
x yΒιβλιοθήκη yx=(3) 2m m n的最简公分母是
第19讲 分式的加减及综合计算(解析版)
原创精品资源学科网独家享有版权,侵权必究!1第19讲分式的加减及综合计算模块一:分式的加、减法一、同分母的分式加减法法则:同分母分式相加减,分母不变,分子相加减.二、异分母的分式加减法法则:(1)通分:将几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫做通分,这几个相同的分母叫做公分母.(2)异分母分式加减法法则:分母不同的几个分式相加减,应先进行通分,化成同分母分式后再进行加减运算,运算结果能化简的必须化简.【例1】计算:(1)x yx y x y ---;(2)211a ab ab+-.【答案】(1)1;(2)b2.【解析】本题主要考查同分母的加减法,注意计算结果一定要是最简分式.【例2】化简22x y y x y x---的结果是()A 、x y--B 、y x-C 、x y-D 、x y+【答案】A【解析】本题主要考查同分母的加减法,注意结果为最简分式.【例3】计算:(1)22x x+;(2)31269x x+.【答案】(1)x x 242+;(2)321843x x +【解析】(1)222442222x x x x x x x++=+=;(2)22333312343469181818x x x x x x x++=+=.【总结】本题主要考查异分母分式的加减法.【例4】计算:(1)a b b c ab bc++-;(2)2212y x x x y y -+-.【答案】(1)ac ac -;(2)22232242xy x x y x y +-+.【解析】(1)()()()c a b a b c b c a a b b c ca cb ab ac c aab bc abc abc abc abc ac++-+++----=-===;(2)()323222222222121224222222x x y x x y x y y x y x x x y y xy xy xy xy--+-++-=+-=.【总结】本题主要考查异分母分式的加减法,注意结果要化为最简分式.【例5】计算:(1)23(3)3x xx x ---;(2)2216322a a a a a --++--.【答案】(1)()223x x -;(2)4102--a a .【解析】(1)23(3)3x x x x ---()()2233(3)3x x x x x -=---2233(3)x x x x -+=-22(3)x x =-;(2)2216322a a a a a --++--()()()()161221a a a a a -=-++-+()()()()()()()()()1262122122a a a a a a a a a --+=-++-++-()()()232612122a a a a a a -+--=++-原创精品资源学科网独家享有版权,侵权必究!3()()()2910122a a a a a --=++-()()()()()101122a a a a a -+=++-()()1022a a a -=+-2104a a -=-.【总结】当分式的分母是多项式时,要先分解因式,再按照相应法则进行加减运算.【例6】某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下.已知该同学上楼速度是a 米/分,下楼速度是b 米/分,求他上、下楼的平均速度.(用含a 、b 的代数式表示)【答案】b a ab+2.【解析】b a ababb a b a +=+=+22112.【总结】本题要注意速度等于路程除以时间,不要简单的求两个速度的平均数.模块二:分式的综合计算一、分式的综合运算:与分数的混合运算类似,先算乘除,再算加减,如果有括号,要先算括号内的.【例7】计算:a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为()A 、a b b-B 、a b b+C 、a ba-D 、a b a+【答案】A【解析】原式=bba b a a ab b a -=+⋅-22.【总结】本题在计算时,注意按照运算顺序进行,有括号先算括号里面的.【例8】计算:262393m m mm ⎛⎫⎛⎫⎛⎫-÷ ⎪ ⎪ ⎪+--⎝⎭⎝⎭⎝⎭的结果为()A 、1B 、33m m -+C 、33m m +-D 、33m m +【答案】A【解析】原式=()()1333233363=+++=-⋅+--+mm m m m m m m .【总结】本题依旧考查的是分式的混合运算,注意先乘除后加减.【例9】计算:(1)22211()()a b ab a b b a a b a b--÷-+--;(2)2284111[(1)(442a a a a+-⋅-÷--.【答案】(1)ab a b -+;(2)22+-a a .【解析】(1)22211((a b ab a b b a a b a b--÷-+--()()()()()()()()2()a a b b a b ab b a a b a b a b a b a b a b ab ab ⎡⎤-+=+-÷-⎢⎥+-+-+-⎢⎥⎣⎦()()222a ab ab b ab ab a b a b b a -++-=⋅+--()()()2a b ab a b a b b a-=⋅+--ab a b=-+;(2)2284111[(1)()]442a a a a+-⋅-÷--()()284421[((224422a a a a a a a a a +=-⋅-÷-+-()()()228212242a aa a aa -=-⋅⋅+--412a =-+22a a -=+.【总结】本题主要考查分式的混合运算,在计算时一方面注意法则的准确运用,一方面注意方法的灵活.【例10】已知320a b -=,求下式的值:(1)(1b a b a a a b a a b+-÷---+.【答案】-5.【解析】∵320a b -=,∴23=a b ,2-=-b a a ,52=+b a a .∴(1)(1b a b a a a b a a b +-÷---+332121225⎛⎫⎛⎫=++÷-- ⎪ ⎪⎝⎭⎝⎭5=-.【总结】本题主要是利用分式的性质,通过整体代入的思想求值,另外本题也可以通过分式的混合运算,算出分式的最终结果之后再求值.【例11】化简:11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- .原创精品资源学科网独家享有版权,侵权必究!5【答案】()()99199---a a 【解析】11111(1)(2)(2)(3)(99)(100)a a a a a a a ++++------- 1111111=1213210099a a a a a a a +-+-++-------- 1100a =-.【总结】本题主要是类比分数的拆项的思想来求解,注意方法的恰当选择.1.(2022秋黄浦七年级期末真题)12-的结果是()A .12B .12-C .2D .2-【答案】A【分析】根据负整数指数幂法则即可得.【详解】解:1122-=,故选:A .【点睛】本题考查了负整数指数幂,熟练掌握运算法则是解题关键.2.(2022秋浦东新区七年级期末真题)如果2210a a --=,那么代数式242aa a a ⎛⎫-⋅ ⎪+⎝⎭的值是()A .3-B .1-C .1D .3【答案】B【分析】先化简所求的式子,再根据2210a a --=,可以得到221a a -=-,然后代入化简后的式子即可.【详解】解:242aa a a ⎛⎫-⋅⎪+⎝⎭2242a a a a -=⋅+()()2222a a a a a +-=⋅+()2a a =-22a a =-,2210a a --= ,221a a ∴-=-,∴原式1=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.3.计算23111b b b a a a +-+++的结果是()A .0B .61b a +C .()3361b a -+D .1b a -+【答案】A【分析】根据分式的混合运算法则即可求解.【详解】解:23111b b b a a a +-+++231b b b a +-=+0=,故选:A .【点睛】本题主要考查分式的混合运算,掌握同分母分式的加减法运算法则是解题的关键.4.(2022秋黄浦七年级期末真题)已知244A x =-,1122B x x=++-,其中2x ≠±,下列说法正确的是()A .A B=B .A ,B 互为倒数C .A ,B 互为相反数D .以上均不正确【答案】C【分析】把A 、B 先分别化简,然后观察比较.【详解】∵B=222111122442222444x x x x x x x x x ----+=-===-+-+----,且A=244x -,∴A 、B 互为相反数,故选C .【点睛】本题考查分式的加减运算,这类题通常的解题思路是将A 、B 两个式子分别先化简,然后再根据化简的结果进行分析判断,得出结论.5.(2022秋徐汇区七年级期末真题)如图是嘉琪进行分式计算的过程,下列判断不正确的是()原创精品资源学科网独家享有版权,侵权必究!7A .第二步运用了分式的基本性质B .从第三步开始出现错误C .原分式的计算结果11x -D .当1x =时,原分式的值为0【答案】D【分析】根据分式的混合运算法则和分式有意义的条件即可解答.【详解】解:第二步将11x +变为()()()111x x x -+-,即分式的分子和分母同时乘()1x -,是运用了分式的基本性质,故A 正确,不符合题意;第三步分式相减时,把分母减没了,出现错误,故B 正确,不符合题意;从第三步开始,正确的计算如下,()()2(1)11x x x x --=+-…………第三步()()111x x x +=+-…………第四步11x =-…………第五步.∴原分式的计算结果为11x -,故C 正确,不符合题意;当1x =时,原分式没有意义,故D 错误,符合题意.故选D .【点睛】本题考查分式的化简求值.掌握分式的混合运算法则和分式的分母不能为0是解题关键.6.(2022秋青浦区七年级期末真题)计算312112a a a a++--的结果是()A .1B .1-C .2121a a +-D .4121a a +-【答案】A【分析】根据同分母分式减法计算法则求解即可.【详解】解:312112a a a a++--312121a a a a +=---3121a a a --=-2121a a -=-1=,故选A .【点睛】本题主要考查了同分母分式减法,正确计算是解题的关键.7.(2022秋浦东新区七年级期末真题)计算211a a a a ++++的结果是()A .1a a +B .21a a ++C .3D .2【答案】D【分析】根据同分母分式加法计算法则求解即可.【详解】解:211a a a a ++++21a a a ++=+221a a +=+()211a a +=+2=,故选D .【点睛】本题主要考查了同分母分式加法,熟知相关计算法则是解题关键.8.(2022秋徐汇区七年级期末真题)计算12x x+=_____.【答案】3x【分析】根据同分母分式相加,分母不变,只把分子相加,进行计算即可.【详解】解:123x x x+=,故答案为:3x.【点睛】本题要考查了同分母分式的加法,解题的关键是掌握:同分母分式相加,分母不变,只把分子相加.原创精品资源学科网独家享有版权,侵权必究!99.化简分式2422x x x ---的结果为______.【答案】2x +/2x+【分析】根据分式的减法法则进行计算.【详解】2422x x x ---242x x -=-()()222x x x +-=-2x =+,故答案为:2x +.【点睛】本题考查了分式的减法,正确的计算是解题的关键.10.(2022秋民办华育七年级期中真题)化简22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭的结果为______.【答案】1m n-【详解】解:22m n mn n m m m ⎛⎫--÷- ⎪⎝⎭222m n m mn n m m m ⎛⎫--=÷- ⎪⎝⎭222m n m mn n m m--+=÷()2m n mm m n -=⨯-1m n=-故答案为:1m n-【点睛】此题考查了分式的混合运算,熟练掌握运算顺序和法则是解题的关键.11.已知50x y --=,则11⎛⎫-÷ ⎪-++⎝⎭yx y x y x y 的值为______.【答案】25/0.4【分析】先将括号里面的通分,将除法转化为乘法,约分化简,代入x y -的值,即可求解.【详解】原式()()()()x y x yx y y x y x y x y x y ⎡⎤+-+=-⨯⎢+-+-⎢⎥⎣⎦()()2yx yyx y x y +=⨯+-2x y=-5x y -= ∴225x y =-故答案为:25.【点睛】本题考查了分式化简求值,正确化简分式是解题的关键.12.计算:23111m m m +-=++______.【答案】2【分析】根据同分母的减法运算可进行求解.【详解】解:231222111m m m m m ++-==+++;故答案为2.【点睛】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.13.(2022秋青浦区七年级期末真题)已知13a b =,则2222a ab b a b ++=+________.【答案】1310【分析】由13a b =可得3b a =,代入式子进行化简即可求解.【详解】解:13a b =,3b a ∴=,原式22222399a a a a a +=++2213131010a a ==.故答案:1310.【点睛】本题考查了分式化简求值,掌握化简求值方法是解题的关键.原创精品资源学科网独家享有版权,侵权必究!1114.(2022秋上宝七年级期中真题)通分(1)314x y ,246xy (2)26a a +,219a a --(3)229a a -,2369a a -+(4)21(1)4a a -+-,21242a a a --+【答案】(1)33213412y x y x y =,223248612x xy x y =(2)(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-(3)2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+(4)212(1)(1)42(1)(3)a a a a a --=+--+,2132422(1)(3)a a a a a a -+=--+-+【分析】根据分式的基本性质,把几个异分母分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分.根据分式的通分的概念逐个化简即可.【详解】(1)最简公分母:3212x y ,33213412y x y x y =,223248612x xy x y =;(2)最简公分母:2(3)(3)a a +-(3)262(3)(3)a a a a a a -=++-,212292(3)(3)a a a a a --=-+-;(3)最简公分母:2(3)(3)a a -+,2222(3)9(3)(3)a a a a a a -=--+,2233(3)69(3)(3)a a a a a +=-+-+;(4)最简公分母:2(3)(1)a a +-,21112(1)(1)4(3)(1)32(1)(3)a a a a a a a a a ---===--+-+-+,2211132422(1)2(1)2(1)(3)a a a a a a a a a --+==-=--+---+.【点睛】本题考查了分式通分的概念,理解分式通分的概念,会正确求出几个分式的最简公分母是解题的关键.15.化简:(1)()1333x x x ---;(2)2111x x x+--;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭.【答案】(1)1x (2)1x +(3)1x +(4)22a bb a+-【分析】(1)根据异分母分式的减法运算法则求解即可;(2)根据同分母分式的加法运算法则求解即可;(3)根据分式的混合运算法则求解即可;(4)根据分式的混合运算法则求解即可;【详解】(1)()1333x x x ---()()333x x x x x =---()33x x x -=-1x=;(2)2111x x x+--2111x x x =---211x x -=-()()111x x x +-=-1x =+;(3)212111x x x -⎛⎫-÷ ⎪--⎝⎭()()1111211x x x x x x -⎛⎫-÷ ⎪--+⎝=-⎭-()()11212x x x x x +--⨯--=原创精品资源学科网独家享有版权,侵权必究!131x =+;(4)222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭()222223a b b a b a b a b a b +⎛⎫-=÷ ---⎝⎭()22224a b b a b a a b+=-÷--()()()2222a a b a b ba b a b +-+⨯--=22a bb a +=-.【点睛】此题考查了分式的加减乘除混合运算,解题的关键是熟练掌握以上运算法则.1.分式2411÷--xxx x 的值可能等于()A .0B .1C .2D .4【答案】B【详解】解:()()2441411111x xxx x x x x x x -÷=⋅--+-+,401x ≠+,故选项A 不符合题意;41x =+,则3x =,存在,故选项B 符合题意;()421x =+,则1x =,此时原式无意义,故选项C 不符合题意;()441x =+,则0x =,此时原式无意义,故选项D 不符合题意;故选:B .【点睛】此题主要考查了分式的乘除,正确化简分式是解题关键.2.已知13xyx y =+,15yzy z =+,16zxz x =+,则xyzxy yz zx =++()A .14B .12C .17D .19【答案】C【分析】结合题意得3x y xy +=,5y z yz +=,6z x zx+=从而求出1117x y z ++=,对xyz xy yz zx ++进行化简得1111z x y++代入即可求解.【详解】解:13xy x y =+ ,15yz y z =+,16zx z x =+,3x y xy +∴=,5y z yz +=,6z x zx+=,113x y ∴+=,115y z +=,116z x+=,111111356x y y z z x∴+++++=++,1117x y z∴++=,1111117xyz xy yz zx xy yz zx xyz xyz xyz z x y===++++++,故选:C .【点睛】本题考查了分式的化简求值,解题的关键是结合题意求出1111z x y++.3.若分式24932321x A B x x x x -=---+-(A 、B 为常数),则A 、B 的值为()A .43A B ==;B .71A B ==;C .17A B ==;D .3513A B =-=;【答案】B 【分析】等式右边进行分式的减法运算,再根据对应项的系数相等可求解.【详解】解:∵321A B x x -+-()()()()132321A x B x x x --+=+-()()32321Ax A Bx Bx x ---=+-()()22323A B x x A B x --+--=,∴()()2223493232A B x A B x x x x x ---+=----,∴3429A B A B -=⎧⎨+=⎩,则71A B =⎧⎨=⎩,故选:B .【点睛】本题考查了分式的加减法、解二元一次方程组,熟练掌握分式加减运算法则是解答的关键.原创精品资源学科网独家享有版权,侵权必究!154.已知2610m m --=,则22126m m m -+的值为______.【答案】39【分析】由已知得到16m m-=和22261m m m -=+,再整体代入,利用完全平方公式化简即可求解.【详解】解:将2610m m --=,两边同时除以m ,得:16m m -=,由2610m m --=,可得:22261m m m -=+,所以22126m m m -+2211m m =++2112m m ⎛⎫ ⎪⎝⎭=+-+2162=++39=.故答案为:39.【点睛】本题考查了分式的加减以及完全平方公式的运用,解题关键是正确将已知变形.5.甲、乙两港口分别位于长江的上、下游,相距50千米,一艘轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,轮船往返两个港口一次共需______小时.【答案】22100aa b -【分析】分别求出顺流和逆流时的速度,利用路程、时间、速度之间的关系即可列式求解.【详解】解: 轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时()b a <,∴顺流速度为()a b +千米/时,逆流速度为()a b -千米/时,甲、乙两港口分别位于长江的上、下游,相距50千米,∴轮船往返两个港口一次共需时间为:()()()()2250505050100a b a b a a b a b a b a b a b -+++==+-+--,故答案为:22100a a b -.【点睛】本题考查分式加减的应用,解题的关键是计算出轮船顺流和逆流时的速度,根据路程、时间、速度之间的关系列出分式.6.分式化简:22424422x x x x x x x ⎛⎫---÷= ⎪-++-⎝⎭___.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式2(2)(2)22(2)2x x x x x x x ⎡⎤+---=-⨯⎢⎥-+⎣⎦22222x x x x x x +--⎛⎫=-⨯ ⎪-+⎝⎭()()()()2222222x x x x x x +---=⨯+-82(2)(2)x x x x x-=-+82x =+.故答案为:82x +.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.若()()112121A x x x x =+----,则A =__________.【答案】1-【分析】首先将等式右边通分,然后根据题意得到()112x A x =-+-,然后求解即可.【详解】∵121A x x +--()()()()()212121A x x x x x x --=+----()()()1221x A x x x -+-=--∵()()112121A x x x x =+----∴()112x A x =-+-∴()22x A x -=-∴1A =-.故答案为:1-.【点睛】此题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算法则.8.计算:(1)2221651565a a a a a a a a a --+⋅÷++++;(2)29(2)33666x x x x x x --+--+-.原创精品资源学科网独家享有版权,侵权必究!17(2)26xx +【分析】(1)因式分解约分即可得到答案;(2)通分合并再因式分解约分即可得到答案.【详解】(1)解:原式1(5)(1)1(5)(5)(1)a a a a a a a a a -++=⨯⨯++--15a =-;(2)解:原式221896(318)(6)(6)x x x x x x x -+----+=+-2(6)(6)(6)x x x x -=+-26x x =+.【点睛】本题考查分式化简,解题的关键是熟练掌握整式乘法及因式分解.9.已知2321302a b a b ⎛⎫-+++= ⎪⎝⎭,求代数式221b a a a a b a b a b ⎛⎫⎛⎫÷-⋅- ⎪ ⎪+--⎝⎭⎝⎭的值.【答案】2ab a b -+,14a ,b ,再根据分式的混合运算法则先化简后代值求解即可.【详解】解:由已知,得210,330,2a b a b -+=⎧⎪⎨+=⎪⎩解得1,41.2a b ⎧=-⎪⎪⎨⎪=⎪⎩原式22()()b a a b a a b a a b a b a b ⎡⎤----⎡⎤=÷⋅⎢⎥⎢⎥+--⎣⎦⎣⎦2b a b ab a b b a b--=⋅⋅+-2ab a b=-+,当14a =-,12b =时,原式21114211442⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭=-=-+.【点睛】本题考查非负数的性质、分式的混合运算、解二元一次方程组等知识,正确运用法则是解题的关键,是中考常考题型,可以通过此类题目的训练提高计算能力.10.计算(1)22211444a a a a a --÷-+-;(2)211a a a ---【答案】(1)2(1)(2)a a a ++-(2)11a -【分析】(1)先将两个分式分解因式,然后再约分化简即可.(2)先通分,再化简求解.【详解】(1)解:原式21(2)(2)2(2)(1)(1)(1)(2)a a a a a a a a a -+-+=⋅=-+-+-(2)解:原式=2111a a a +--=2(1)(1)1a a a a -+--=2211a a a -+-=11a -【点睛】本题考查了分式的加减、乘除运算,掌握通分、分解因式的方法是求解的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
242422++-=+--=a a a a a a 3
1))1)(1()1()1)(1(3222--⨯⎥⎦⎤⎢⎣⎡-++--+--x x x x x x x x x 3431)1)(1(44--=--•-+--x x x x x x 311131)1)(1()1)(3(--⨯-+---⨯-++-x x x x x x x x x x 343)1(33133--=-+--=-+---x x x x x x x x 1.分式加减法法则
(1)通分:把异分母的分式化为同分母分式的过程,叫做通分
(2)同分母分式的加减法法则:同分母的分式相加减,分母不变.分子相加减.用字母表示为:
b
c a b c b a ±=± (3)异分母分式的加减法法则:异分母的分式相加减,先通分.变为同分母的分式后再加减.用字母表示为:b
d bc ad bd bc bd ad d c b a ±=±=± 问题:通分有哪些应注意的问题,通分与约分之间又有哪些区别与联系呢?
探究:通分的关键是确定几个分式的最简公分母,其步骤如下:①将各个分式的分母分解因式;②取各分母系数的最小公倍数;③凡出现的字母或含有字母的因式为底的幂的因式都要取;④相同字母或含字母的因式的幂的因式取指数最大的;⑤将上述取得的式子都乘起来,就得到了最简公分母。
如分式223c a b ,c b a 35的最简公分母为15a 2b 3c 2,通分的结果为23242215a 53c b b c a b =
老师:学习了通分和约分后,你能总结出通分和约分的区别和共同点吗?
小明:通分与约分虽都是针对分式而言,但却是两种相反的变形.
小勇:约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,把各分式的分母统一起来. 小刚:通分和约分都是依据分式的基本性质进行变形,在变形中都保持分式的值不变.
老师:一般地,通分结果中,分母不展开而写成连乘积的形式.分子则乘出来写成多项式,为进一步运算作准备.
y
x y x y x x y x y x y x y x x y x y x y x y x y x y x y x x y x y x +=-+++--=-++-++--+-=-+--+2))((2)()()
)((2))(())((2112
2 例题2
2)44(42)2(42)2(241224224222+++-=++-=++-+=+-+=--+a a a a a a a a a a a a 名师点金:(1)异分母分式相加减步骤如下:分母能分解因式的分解因式;确定最简公分母;通分;同分母分式加减;化成最简形式.(2)分式与整式进行加减,要把整式当成分母为“1”的式子.与分式进行通分,再计算.(3)分式中的分数线有括号的作用,单个的分式分子、分母不用加括号,只要几个分式统一成一个分式时,原来隐藏的话号主写出来。
解法一:13)11132(22--÷-+----x x x x x x x = =3
1)1)(1()12(3222--⨯-+++---x x x x x x x x =。
解法二:13)111
32(22--÷-+----x x x x x x x = = 当x=2时,原式=一3
24-=4。
名师点金:分式混合运算法则口诀:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘):乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同.分母化积关键;找出最简公分母,通分不是很难;变号必须两处.结果要求最简.
例题1
例3. 先化简 412312-+÷⎪⎭
⎫ ⎝⎛-+a a a ,然后请你给a 选取一个合适的值,再求此时原式的值. 分析:本题有三个步骤:(1)化简;(2)取值;(3)求值. 解:原式=21
)2)(2(232+=+-+⨯-+-a a a a a a 当a=1时,原式=1+2=3. 名师点金:此类题以开放题的形式出现,字母的取值范围很广,比如,在本题中,为a 选取合适的值时.存在许多种选法,一般地,取易于计算的值,但要考虑分式的分母不为零.即a ≠±2.
基础巩固题 1.计算 x x x -++-2224 的结果是 ( ) A .1 B .-1 C .22-+x x D .2
2--x x 2.计算2222223223b a b a b a b a b a b a --+----+的值为___________。
3.计算2)(y x x y y y x x -•⎪⎪⎭
⎫ ⎝⎛---的结果为____________。
4.计算:
c b a 111++ 5.请你阅读下列计算过程,再回答所提出的问题: ..................13)1)(1(3131
32---+-=----x x x x x x x (A)=....)1)(1()1(3)1)(1(3-++--+-x x x x x x (B ) =...).........1(33+--x x (C ) =........................62--x (D )
(1)在上述计算过程中,从__________开始出现错误;(在A 、B 、C 、D 中选一个填入)
(2)从B 到C____(填“正确”或“不正确”),若不正确,错误的原因是________;
6.先化简,再求值.2
2
22a ab b ab ab b a ----,其中a =1,b =2 探究提高题7.如果a =100,则a a a a a a 12222+-+--的值是( ) A .0 B .100101 C .5049 D .50
51 8.松鼠为过冬预存了m 天的坚果a 千克,要使存的坚果多吃n 天,问每天应节约坚果_______千克.
9.某空调现价为a 元,若不加维护可使用m 年,经过维护后,可多用n 年,维护费用为b 元,问在什么条件下,维护使用比较合算? 拓展延伸题10. 已知a 1一b 1=4,则ab b a b ab a 7222+---的值等于( )A .6 B .-6 C .152 D .7
2- 11.先化简下列代数式,再求值: ⎪⎭⎫ ⎝
⎛-÷⎪⎪⎭⎫ ⎝⎛---33232x x x x x x ,其中x =5+1(结果精确到0.01) 12.有一道题:先化简,再求值:⎪⎭⎫ ⎝⎛-++-44222x x x x ÷4
12-x ,其中x =一3。
小玲做题时把“x =一3”错抄成了“x =3”,但她的计算结果也是正确的,请你解释这是怎么回事?
中考模拟题13.计算a
a a a -++-11142的结果是__________. 14.先化简代数式:11121122-÷⎪⎭⎫ ⎝⎛-++-x x x x x ,然后选取一个使原式有意义的x 的值代入求值.。