分式加减法练习题一
大班加减法练习题分式
大班加减法练习题分式加减法是数学中的基础运算,对于大班的孩子来说,掌握基本的加减法是进入小学学习的重要一步。
以下是一些适合大班孩子的加减法练习题,以分式的形式呈现,旨在帮助孩子通过练习提高计算能力。
题目一:小明有5个苹果,他又从妈妈那里得到了3个苹果。
请问小明现在一共有多少个苹果?解答:5 + 3 = 8小明现在一共有8个苹果。
题目二:小华有7块巧克力,他给了妹妹4块。
请问小华现在还剩下多少块巧克力?解答:7 - 4 = 3小华现在还剩下3块巧克力。
题目三:班级里有10个小朋友,其中5个小朋友是男生,5个小朋友是女生。
如果走了2个男生,现在班级里有多少个小朋友?解答:10 - 2 = 8现在班级里有8个小朋友。
题目四:小丽有8朵花,她决定送给朋友4朵。
请问小丽送出花后还剩多少朵?解答:8 - 4 = 4小丽送出花后还剩4朵。
题目五:小刚有6支铅笔,他用掉了2支。
请问小刚现在还剩下多少支铅笔?解答:6 - 2 = 4小刚现在还剩下4支铅笔。
题目六:小芳有12个气球,她放飞了6个。
请问小芳放飞气球后还剩多少个?解答:12 - 6 = 6小芳放飞气球后还剩6个。
题目七:小强有9个玩具,他决定送给朋友5个。
请问小强送出玩具后还剩多少个?解答:9 - 5 = 4小强送出玩具后还剩4个。
题目八:小美有15个果冻,她吃了7个。
请问小美吃了果冻后还剩多少个?解答:15 - 7 = 8小美吃了果冻后还剩8个。
通过这些练习,孩子们可以逐渐熟悉加减法的运算规则,并在实际情境中应用这些技能。
家长和老师可以鼓励孩子们在日常生活中寻找机会进行类似的练习,以增强他们的数学能力。
分式加减法练习题
分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。
分式加减法练习题及答案
分式加减法练习题及答案分式加减法练习题及答案分式加减法是数学中的基础概念之一,也是我们在日常生活中经常会遇到的计算问题。
掌握了分式加减法的方法和技巧,不仅可以帮助我们更好地理解数学知识,还能在实际生活中提高计算能力。
下面,我将为大家提供一些分式加减法的练习题及答案,希望能够帮助大家更好地掌握这一知识点。
练习题一:1. 2/3 + 1/4 = ?2. 3/5 - 1/10 = ?3. 4/7 + 5/7 = ?4. 2/3 - 1/6 = ?5. 1/2 + 3/4 = ?练习题二:1. 3/8 + 2/5 = ?2. 5/6 - 1/3 = ?3. 7/9 + 2/9 = ?4. 4/5 - 1/10 = ?5. 2/3 + 1/6 = ?练习题三:1. 1/4 + 2/3 = ?2. 3/5 - 1/5 = ?3. 2/7 + 5/7 = ?4. 1/2 - 1/4 = ?5. 3/4 + 1/8 = ?答案:练习题一:1. 2/3 + 1/4 = 11/122. 3/5 - 1/10 = 7/103. 4/7 + 5/7 = 9/74. 2/3 - 1/6 = 3/65. 1/2 + 3/4 = 5/4练习题二:1. 3/8 + 2/5 = 31/402. 5/6 - 1/3 = 1/23. 7/9 + 2/9 = 9/94. 4/5 - 1/10 = 39/505. 2/3 + 1/6 = 5/6练习题三:1. 1/4 + 2/3 = 11/122. 3/5 - 1/5 = 2/53. 2/7 + 5/7 = 7/74. 1/2 - 1/4 = 1/45. 3/4 + 1/8 = 7/8通过以上练习题,我们可以看到分式加减法的运算过程其实并不复杂。
首先,我们需要找到两个分式的公共分母,然后将分子进行相应的运算,最后将结果化简为最简形式。
在解答这些练习题的过程中,我们可以学到一些技巧。
比如,在计算分式的加法时,我们可以先找到两个分式的公共分母,然后将分子相加,分母保持不变。
《分式的加减法》习题
《分式的加减法》习题1.化简13+a a -1+a a =___________. 2.若50m x y y x-=--,则m =___________. 3.计算. (1)a a 21+ (2)a c b a c b ++- (3)ba b b a a +++ (4)13+a a -1+a a (5)xyy x xy y x 2)(2-++)( 4.计算32a a -+的结果等于( ). (A)5a -(B)1a (C)1a - (D)无意义 5.2b a c b c a b c b a c b a c+-+-=-+----____________________. 6.已知x 0≠,则xx x 31211++等于( ).A .x21 B .x 61 C .x 65 D .x 611 7.化简xyy x zx x z yz z y 649332232-+-+-可得到( ). A .零 B .零次多项式 C .一次多项式 D .不为零的分式8.分式35,3,xa bx c axb -的最简公分母是( ).A .5abxB .15ab 5xC .15abxD .15ab 3x9.在分式①;3y x x -②222b a ab -;③;23b a a -+④))((2b a b a ab -+-中分母相同的分式是( ). A .①③④ B .②③ C .②④ D .①③10.下列算式中正确的是( ).A .a c b a c a b 2+=+B .ac d b d c a b +=+C .c a d b d c a b ++=+D .ac ad bc d c a b +=+ 11.x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( ).A .amx 克 B .x am 克 C .a x am +克 D .ax mx +克12.计算: (1)329122---m m ;(2)969392222++-+++x x x x x x x ; 13.某工程招标会上,甲工程队在其投标书上宣称可以在2a 天内完成这项工程,而乙工程队在其投标书上宣称可以在a 天内完成这项工程,那么乙工程队比甲工程队每天多完成多少工作量?14.过节了,南京人也喜欢开点洋荤,把平常不去购买的高档的海鲜、高级糕点都买点回家,在节日里尝个鲜.据悉,国庆几天高档海鲜市场需求很旺,其中,某种高档海鲜由原来a 元/kg 上涨了1倍,那么用100元买这种海鲜,比原来少买了多少千克?。
分式的加减法速算练习题(打印版)
分式的加减法速算练习题(打印版)### 分式的加减法速算练习题#### 一、基础练习题1. 计算以下分式的和:\[\frac{1}{2} + \frac{3}{4}\]2. 计算以下分式的差:\[\frac{5}{6} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{8} + \frac{5}{12}\]4. 计算以下分式的差:\[\frac{7}{9} - \frac{2}{9}\]#### 二、进阶练习题1. 计算以下分式的和:\[\frac{2}{5} + \frac{1}{10} + \frac{3}{20}\]2. 计算以下分式的差:\[\frac{4}{7} - \frac{2}{21} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{7} + \frac{5}{14} + \frac{1}{2}\]4. 计算以下分式的差:\[\frac{8}{15} - \frac{1}{5} + \frac{3}{10}\]#### 三、挑战练习题1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} \]2. 计算以下分式的差:\[\frac{5}{11} - \frac{3}{22} + \frac{1}{66}\]3. 计算以下分式的和:\[\frac{2}{3} + \frac{1}{6} - \frac{1}{9} + \frac{1}{18}\]4. 计算以下分式的差:\[\frac{7}{12} - \frac{1}{4} + \frac{1}{6} - \frac{1}{3}\]#### 答案解析1. \(\frac{1}{2} + \frac{3}{4} = \frac{2}{4} + \frac{3}{4} =\frac{5}{4}\)2. \(\frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{2}{6} =\frac{3}{6} = \frac{1}{2}\)3. \(\frac{3}{8} + \frac{5}{12} = \frac{9}{24} + \frac{10}{24} = \frac{19}{24}\)4. \(\frac{7}{9} - \frac{2}{9} = \frac{5}{9}\)5. \(\frac{2}{5} + \frac{1}{10} + \frac{3}{20} = \frac{8}{20} + \frac{2}{20} + \frac{3}{20} = \frac{13}{20}\)6. \(\frac{4}{7} - \frac{2}{21} - \frac{1}{3} = \frac{12}{21} - \frac{2}{21} - \frac{7}{21} = \frac{3}{21} = \frac{1}{7}\)7. \(\frac{3}{7} + \frac{5}{14} + \frac{1}{2} = \frac{6}{14}+ \frac{5}{14} + \frac{7}{14} = \frac{18}{14} = \frac{9}{7}\)8. \(\frac{8}{15} - \frac{1}{5} + \frac{3}{10} = \frac{16}{30} - \frac{6}{30} + \frac{9}{30} = \frac{19}{30}\)9. \(\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81}= \frac{27}{81} + \frac{18}{81} + \frac{12}{81} + \frac{8}{81} = \frac{65}{81}\)10. \(\frac{5}{11} - \frac{3}{22。
分式的加减练习题
分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。
分式加减法练习题及答案
分式加减法练习题及答案分式加减法练习题及答案分式加减法是数学中的一个重要概念,它在实际生活中有着广泛的应用。
掌握分式加减法的运算规则和技巧,对于提高数学能力和解决实际问题都有着重要的意义。
本文将为大家提供一些分式加减法的练习题及答案,帮助大家更好地理解和掌握这一知识点。
练习题一:1. 计算:3/5 + 2/5。
2. 计算:4/7 - 1/7。
3. 计算:2/3 + 1/6。
4. 计算:5/8 - 1/4。
5. 计算:3/4 + 1/2。
答案一:1. 3/5 + 2/5 = 5/5 = 1。
2. 4/7 - 1/7 = 3/7。
3. 2/3 + 1/6 = 4/6 + 1/6 = 5/6。
4. 5/8 - 1/4 = 5/8 - 2/8 = 3/8。
5. 3/4 + 1/2 = 6/8 + 4/8 = 10/8 = 1 1/4。
练习题二:1. 计算:2/3 + 3/4。
2. 计算:5/6 - 1/3。
3. 计算:1/2 + 3/8。
4. 计算:7/8 - 1/2。
5. 计算:2/5 + 1/10。
答案二:1. 2/3 + 3/4 = 8/12 + 9/12 = 17/12。
2. 5/6 - 1/3 = 10/18 - 6/18 = 4/18 = 2/9。
3. 1/2 + 3/8 = 4/8 + 3/8 = 7/8。
4. 7/8 - 1/2 = 7/8 - 4/8 = 3/8。
5. 2/5 + 1/10 = 4/10 + 1/10 = 5/10 = 1/2。
练习题三:1. 计算:3/4 + 1/3。
2. 计算:2/5 - 1/4。
3. 计算:5/6 + 2/3。
4. 计算:7/8 - 3/4。
5. 计算:1/2 + 1/4。
答案三:1. 3/4 + 1/3 = 9/12 + 4/12 = 13/12。
2. 2/5 - 1/4 = 8/20 - 5/20 = 3/20。
3. 5/6 + 2/3 = 10/12 + 8/12 = 18/12 = 1 1/2。
分式的加减法练习题
分式加减法(一)一.填空题1.若代数式1324x x x x ++÷++有意义,则x 的取值范围是__________. 2.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 3.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 4.公路全长s 千米,骑车t 小时可到达,要提前40分钟到达,每小时应多走____千米.5.某班a 名同学参加植树活动,其中男生b 名(b<a).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.6.已知y x 11-=3,则分式y xy x y xy x ---+2232= 。
7.化简13+a a -1+a a= ,8.若50m x y y x -=--,则m =9.若113x y -=,则232x xy y x xy y +---= 10. ________6,4的最简公分母是x a a 11. ________25,43,322422的最简公分母是c a b c b a b a c - 12. ________21,442的最简公分母是--m m 13. ________221,)(2,432的最简公分母是y x y x x xy -- 14. ________341,651,231222的最简公分母是+-+-+-x x x x x x7.若113x y -=,则232x xy y x xy y +---= __________________二.选择题1.下列等式中不成立的是( )A 、y x y x --22=x -yB 、y x yx y xy x -=-+-222 C 、yx y xy x xy -=-2 D 、xy x y y x x y 22-=- 2.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、yx y x y x y x +-=--+- C 、y x y x y x y x -+=--+- D 、yx y x y x y x +--=--+- 3.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是( )A .b+1a 米B .(b a +1)米C .(a+b a +1)米D .(a b +1)米4.已知a ,b 为实数,且ab=1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是( ) A 、M>N B 、M=N C 、M<N D 、不确定5.下列分式的运算中,其中结果正确的是( )A 、a 1+b a b +=21B 、323)(a a a =C 、b a b a ++22=a+bD 、319632-=+--a a a a 6.下列各式从左到右的变形正确的是( )A.122122x y x y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C.11x x x y x y +--=-- D.a b a b a b a b+-=-+ 7.若有m 人a 天完成某项工程,则(m+n )个同样工作效率的人完成这项工程需要的天数是( ) BA 、a+mB 、n m ma + C 、n m a + D 、man m + 8.已知两个分式:244A x =-,1122B x x =++-,其中2x ≠±,则A 与B 的关系是( ) A.相等 B.互为倒数 C.互为相反数 D.A 大于B三、计算题:1.化简(x x x x x 2)2422+÷-+-2.化简:÷--23x x (25-x -x-2),3.化简:ab b a ab b a b a 21(222222++÷-- ),4.化简:22193m m m -=-+. 5.(m 1+n 1)÷n n m + 6. 24111a a a a++-- 7.)11(122xx x x +⋅+- 8.化简x -1x ÷(x -1x ). 9.xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+ 10.2221412211a a a a a a --÷+-+- 11.222299369x x x x x x x +-++++; 12.23111x x x x -⎛⎫÷+- ⎪--⎝⎭ 13.2a a b a b --- 14.2222a a a a +-+-+ 15.233a a a ---16.22111x x x -+- 17.18.19.20.21.1213223-+----x x x x x 2222229631y xy x y x y x y x +--÷---23. 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y24. ⎪⎭⎫ ⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 25. 2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+26. 已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x y x y x y xy x y xy x x 的值.27.x x x x -----52335175 28.1123-+-+x x x x 29.y x z z y z x y z x z y x y x -++---+++-+ 30. 已知0132=++x x ,求441x x +的值.31. 已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 32. 33.34. 35.36. 37.38.39. 35.先化简,再求值:(1). 请你先化简,再选取一个你喜欢的数代入并求值:11)1(212--+-+a a a a . (2). 14422-+-x x x ÷(13+x -1) ,其中x =-2⑶. 2132·446222--+-+-+x x x x x x x ,其中2-=x(4). 先化简再求值:()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。
分式的加减法练习题及答案
分式的加减法练习题及答案一、基础练习题1. 计算下列分式的和或差:(1) 1/2 + 1/3(2) 3/5 - 1/4(3) 2/3 + 5/6(4) 7/8 - 2/92. 用分式表示下列各数:(1) 八分之三(2) 六分之五(3) 三分之六(4) 十分之一3. 简化下列分式:(1) 4/8(2) 6/12(3) 9/27(4) 10/20二、深度练习题1. 小明喝了1/2瓶可乐,小红喝了3/4瓶可乐,两人一共喝了多少瓶可乐?解答:小明和小红喝的可乐瓶数之和为 1/2 + 3/4 = 2/4 + 3/4 = 5/4 瓶可乐。
2. 小华从家到学校有4/5小时的路程,小明从家到学校有3/4小时的路程,两人谁比较早到学校?解答:比较两人到学校所需的时间,3/4小时 < 4/5小时,即小明比小华更早到学校。
3. 小明在数学考试中获得了4/5的分数,小红获得了3/4的分数,两人的总分是多少?解答:小明和小红的总分为 4/5 + 3/4 = 20/25 + 15/20 = 35/25 = 7/5。
三、答案:一、基础练习题1.(1) 1/2 + 1/3 = (3 + 2)/6 = 5/6(2) 3/5 - 1/4 = (12 - 5)/20 = 7/20(3) 2/3 + 5/6 = (4 + 5)/6 = 9/6 = 3/2(4) 7/8 - 2/9 = (63 - 16)/72 = 47/722.(1) 八分之三 = 3/8(2) 六分之五 = 5/6(3) 三分之六 = 6/3 = 2(4) 十分之一 = 1/103.(1) 4/8 = 1/2(2) 6/12 = 1/2(3) 9/27 = 1/3(4) 10/20 = 1/2二、深度练习题1. 小明和小红一共喝了 5/4 瓶可乐。
2. 小明比小华更早到学校。
3. 小明和小红的总分为 7/5。
希望以上练习题及答案对你有帮助!如有其他问题可以继续咨询。
分式加减练习题及答案
分式加减练习题及答案分式加减练习题及答案分式是数学中的一个重要概念,它可以帮助我们更好地理解和处理数值之间的关系。
在日常生活和学习中,我们经常会遇到需要进行分式的加减运算的情况。
下面,我将给大家提供一些分式加减的练习题及答案,希望能够帮助大家加深对这一概念的理解。
练习题一:1. 计算:3/4 + 2/5 = ?2. 计算:7/8 - 3/10 = ?3. 计算:5/6 + 1/3 = ?4. 计算:2/3 - 1/4 = ?5. 计算:4/5 + 3/10 = ?答案一:1. 3/4 + 2/5 = (3×5 + 2×4) / (4×5) = 23/202. 7/8 - 3/10 = (7×10 - 3×8) / (8×10) = 49/803. 5/6 + 1/3 = (5×3 + 1×6) / (6×3) = 23/184. 2/3 - 1/4 = (2×4 - 1×3) / (3×4) = 5/125. 4/5 + 3/10 = (4×10 + 3×5) / (5×10) = 47/50练习题二:1. 计算:2/3 + 1/2 = ?2. 计算:5/8 - 1/4 = ?3. 计算:3/5 + 2/7 = ?4. 计算:4/9 - 1/6 = ?5. 计算:1/2 + 1/3 = ?答案二:1. 2/3 + 1/2 = (2×2 + 1×3) / (3×2) = 7/62. 5/8 - 1/4 = (5×4 - 1×8) / (8×4) = 3/83. 3/5 + 2/7 = (3×7 + 2×5) / (5×7) = 29/354. 4/9 - 1/6 = (4×6 - 1×9) / (9×6) = 15/54 = 5/185. 1/2 + 1/3 = (1×3 + 1×2) / (2×3) = 5/6通过以上的练习题,我们可以看到,分式的加减运算实际上就是对分子和分母进行相应的运算。
100题分数加减法(有答案)
100题分数加减法(有答案)100题分数加减法(有答案)1. 1/2 + 1/3 = 5/62. 3/4 - 1/5 = 11/203. 2/3 + 4/5 = 22/154. 7/10 - 1/3 = 17/305. 2/5 + 3/8 = 31/406. 4/7 - 2/9 = 22/637. 3/8 + 1/6 = 11/248. 5/6 - 1/4 = 1/39. 2/5 + 7/12 = 29/3010. 1/3 - 1/9 = 2/9在这个分数加减法练习中,我们将解决一系列的分数加减法题目。
下面是一百道题目,每一道题都附有答案供您核对。
11. 3/4 + 2/3 = 17/1212. 5/7 - 1/6 = 29/4213. 1/2 + 3/4 = 5/414. 2/5 - 1/3 = 1/1515. 3/8 + 2/5 = 31/4017. 1/4 + 1/6 = 5/1218. 4/5 - 2/9 = 26/4519. 1/3 + 1/8 = 11/2420. 5/6 - 1/4 = 1/321. 1/2 + 1/3 = 5/622. 3/4 - 1/5 = 11/2023. 2/3 + 4/5 = 22/1524. 7/10 - 1/3 = 17/3025. 2/5 + 3/8 = 31/4026. 4/7 - 2/9 = 22/6327. 3/8 + 1/6 = 11/2428. 5/6 - 1/4 = 1/329. 2/5 + 7/12 = 29/3030. 1/3 - 1/9 = 2/9在这一组题目中,我们需要计算分数的加法和减法。
分数加减法是数学中的基础概念之一,通过练习可以提高我们的计算能力。
31. 3/4 + 2/3 = 17/1232. 5/7 - 1/6 = 29/4234. 2/5 - 1/3 = 1/1535. 3/8 + 2/5 = 31/4036. 6/7 - 3/4 = 9/2837. 1/4 + 1/6 = 5/1238. 4/5 - 2/9 = 26/4539. 1/3 + 1/8 = 11/2440. 5/6 - 1/4 = 1/3在这一组题目中,我们再次进行分数的加法和减法练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的加减法练习题一
主备人:陆相慧 审核人: 创作时间:2011年6月
课前自主练
分式的加减法:
(1)23+34=34⨯+ 34
⨯= (2)ab
ab 610-= (3)1a +1b =ab +ab
= (4)b a 21+21ab
= 因为最简公分母是___________,所以
b a 21+21ab
= =_____________________
=_____________________
=_____________________-.
提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab
,它们的最简公分母是 (5)y x -1+y
x +1 因为最简公分母是___________,所以
y x -1+y x +1 =
(6)1()x x y -+y
x +1 因为最简公分母是___________,所以
1()x x y -+y x +1 =
课中合作练
练习A :
(1)
a
a 21+= (2)
b
c a c -= (3)a c b a c b ++- (4)b
a b b a a +++=
(5)a
b b b a a -+-= (6)x x -++1111 = (7)231x +x 43; 因为最简公分母是_____,所以
231x +x 43 =2134x ⨯ +34x =
+
=
(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y + +1x =+
(9)231x +xy
125; 因为最简公分母是___________ =
(10)
24a
b a b -;
B 组
(1)xy y x xy y x 2)(2-++)(; (2)xy y x xy y x 22)()(--+
(3)
x x +21+x x -21. 最简公分母是__________ =
(4)
1624432---x x (5)a
a a +--22214;
(6)224-++a a (7)11
2
---x x x .
(8)323111x x x x
⋅⎪⎭⎫ ⎝⎛+-;
(9)⎪⎭
⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.
(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校?
(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍?。