管道阻力损失计算

合集下载

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

管道阻力损失计算公式

管道阻力损失计算公式

管道阻力损失计算公式
管道阻力损失是流体在管道中经历的机械能损失,由其内的摩擦力,压力损失和间断损失组成。

管道阻力损失的计算公式是:
ΔP = L × 0.109 × (V²/ D4) × (f / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:流体流速,单位是m/s;
D:管道内径,单位是m;
f:管道内摩擦系数;
2g:重力加速度,一般把2g定为9.8。

管道阻力损失计算公式可以帮助我们计算管道中流体的机械能损失,从而更好地控制管道的设计和运行。

管道阻力损失的计算公式可以用于计算水管、汽油管、空气管、蒸汽管等各种流体的阻力损失。

例如,可以用来计算水管中水流的阻力损失,计算公式如下:
ΔP = L × 0.109 × (V²/ D4) × (0.02 / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:水流流速,单位是m/s;
D:管道内径,单位是m;
0.02:水流的摩擦系数;
2g:重力加速度,一般把2g定为9.8。

通过计算管道的阻力损失,我们可以更好地控制管道的运行,从而更有效地利用管道的资源。

管道阻力损失的计算公式实际上是一种能量守恒定律,它也可以用于分析水力学系统中流体的流动特性,从而发现和解决流体流动中的问题。

总之,管道阻力损失计算公式是一个非常有用的工具,可以帮助我们计算管道中流体的机械能损失,更好地控制管道的设计和运行。

管道压力损失计算

管道压力损失计算

管道压力损失计算(总1页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除管道压力损失计算管道总阻力损失hw=∑hf+∑hj,hw—管道的总阻力损失(Pa);∑hf—管路中各管段的沿程阻力损失之和(Pa);∑hj—管路中各处局部阻力损失之和(Pa)。

hf=RL、hf—管段的沿程损失(Pa);R—每米管长的沿程阻力损失,又称比摩阻(Pa/m);L—管段长度(m),R的值可在水力计算表中查得。

也可以用下式计算,hf=[λ×(L/d)×γ ×(v^2)]÷(2×g),L—管段长度(m);d—管径(m);λ—沿程阻力因数;γ—介质重度(N/m2);v—断面平均流速(m/s);g—重力加速度(m/s2)。

管段中各处局部阻力损失hj=[ζ×γ ×(v^2)]÷(2×g),hj—管段中各处局部阻力损失(Pa);ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。

(引自《简明管道工手册》.P.56—57)管道压力损失怎么计算其实就是计算管道阻力损失之总和。

管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。

局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。

2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。

它的计算复杂、分类繁多,误差也大。

如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启着的“化工工艺算图手册”查取。

管道主要损失分为沿程损失和局部损失。

Δh=ΣλL/d*(v2/2g)+Σξv2/2g。

其中的λ和ξ都是系数,这个是需要在手册上查询的。

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

管道阻力损失计算(20210425191904)

管道阻力损失计算(20210425191904)

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1 )o直管臥摩擦齟力为主,弯头处J5部阻力图6-1-1 直管与弯管(一)摩擦阻力1 •圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:对于圆形风管,摩擦阻力计算公式可改为:(6-1~2 )圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1 -3 )以上各式中入一摩擦阻力系数;v 风秘内空气的平均流速,m/s;P — 一空气的密度,kg/m3;i ------ 风管长度,mRs 一一风管的水力半径,mf' --- 管道屮充满流体部分的横断面积, m2P 一一湿周,在通风、空调系统屮即为风管的周长,D ---- 圆形风管直径,mo摩擦阻力系数入与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中, 薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区Z 间的过渡区。

通常,高速风管的流动状 态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区 摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:式中 K 风管内壁粗糙度,mq D 风管直径,mm进行通风管道的设计时,为了避免烦琐的计算,可根据公式( 6-1-3 )和(6-1-4 )制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的 任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的入值,在压力B0=101. 3kPa. 温度t0=20 C 、宽气密度p 0=1. 204kg/m3>运动粘度 v0=15. 06 X 10- 6m2/s 、管壁粗糙度K=0. 15mm 圆形风管等条件下得出的。

管道阻力损失计算

管道阻力损失计算

精心整理管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

??????????????????? ?????????????????????????????? ??????????? ??以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空???????????????实际使用条件下上述条件不相符时,应进行修正。

(1)密度和粘度的修正?????????????? (6-1-5)式中? Rm——实际的单位长度摩擦阻力,Pa/m;Rmo——图上查出的单位长度摩擦阻力,Pa/m;ρ——实际的空气密度,kg/m3;v——实际的空气运动粘度,m2/s。

(2)空气温度和大气压力的修正????????????????????? ?? (6-1-6)式中? Kt——温度修正系数。

????????????????????? ?? ??v——管内空气流速,m/s。

表6-1-1? 各种材料的粗糙度K风管材料粗糙度(mm)薄钢板或镀锌薄钢板0.15~0.18塑料板0.01~0.05矿渣石膏板1.0算成相当的圆形风管直径,即折算成当量直径。

再由此求得矩形风管的单位长度摩擦阻力。

所谓“当量直径”,就是与矩形风管有相同单位长度摩擦阻力的圆形风管直径,它有流速当量直径和流量当量直径两种。

(1)流速当量直径假设某一圆形风管中的空气流速与矩形风管中的空气流速相等,并且两者的单位长度摩擦阻力也相等,则该圆风管的直径就称为此矩形风管的流速当量直径,以Dv表示。

管道阻力损失计算

管道阻力损失计算
管道的阻力计算
风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻 力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图 6-1-1)。
(6-1-10)
式中 Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表 6-1-1 各种材料的粗糙度 K
风管材料15~0.18 塑料板
0.01~0.05 矿渣石膏板
1.0 矿渣混凝土板
1.5 胶合板
1.0 砖砌体
3~6 混凝土
1~3 木板 0.2~1.0
矩形风管的水力半径

则 (6-1-11)
Dv 称为边长为 a×b 的矩形风管的流速当量直径。 (2)流量当量直径 设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以 DL 表示。根据推 导,流量当量直径可近似按下式计算。
图 6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3) 以上各式中
λ——摩擦阻力系数; v——风秘空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m;
(1) 比摩阻法 令
称 Rm 为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:

管道压头损失计算式

管道压头损失计算式

管道阻力损失计算式一、雷若数Re 的计算 Re =d u ρ/μ =(m )(m/s )(kg/m 3)/(N.s/m 2)=m 0kg 0s 0 式中:d 管径,u 流速,μ流体粘度,ρ流体密度。

流体粘度μ的计算式:μ=469.0R(00158.0460.0s11)φη--= (mPa.s )式中:溶剂(水)密度η1(g/cm 3),纯溶质密度η2(g/cm 3), R =η1/η2 , 固体体积分率Φs 。

(备注:20℃时,水密度η1=1g/cm 3,石灰密度η2=0.64g/cm 3,石灰浆液中质量浓度为5%,8%,10%,15%,20%的石灰浆液密度ρ(g/cm 3)和固体体积分率Φs 分别为:1.031,1.055,1.061,1.093,1.126;0.05,0.08,0.1,0.15,0.2。

)二、湍流时的摩擦损失因数 λ (一)光滑管 1. 柏拉修斯式:λ=0.316/Re 0.25其适用范围为Re =5×103~105 2. 顾袖珍式:λ=0.0056+0.5/ Re 0.32其适用范围为Re =3×103~3×106 3. 尼库拉则与卡门式1/λ0.5=2 logRe λ0.5-0.8此式可用于更广的湍流范围,但由于式两边都含有待求的λ,计算较为不便。

(二)粗糙管 1. 顾袖珍式:λ=0.01227+0.7543/ Re 0.38上式适用范围为Re =3×103~3×106。

此式所指的粗糙管为内径50~200mm 的新钢铁管。

2. 柯尔布鲁克式:1/λ0.5=1.14-2 log[ e/d + 9.35/ (Re λ0.5)]其适用范围甚广(Re =4×103~108,e/d =5×10-2~10-6),但由于算式两边都含有待求的λ,计算较为不便。

(e/d为管壁粗糙度与管径之比,即相对粗糙度)三、阻力损失计算直管(管径一至)损失:h f = λL/d×u2/2g = (m)90°弯头损失:h f = ∑ξu2/2g =λ∑Le/d×u2/2g = (m)式中:ξ为90°弯头阻力系数,ξ=0.75,λ为管道摩擦因数,L/d为管长与管径之比,Le为当量长度,90°弯头的当量长度与管径之比Le/d=35。

管道阻力损失计算

管道阻力损失计算
(1)比摩阻法

称Rm为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:
(6-1-13)
为了便于工程设计计算,人们对Rm的确定已作出了线解图,设计时只需根据管风 量、管径和管壁粗糙度由线解图上即可查出Rm值,这样就很容易由上式算出摩擦阻力。
(2)综合摩擦阻力系数法
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制
成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、 阻力四个参数中的任意两个, 即可利用线解图求得其余的两个参数。线解图是按过渡区 的入值,在压力B0=101.3kPa、温度t0=20C、宽气密度p0=1204kg/m3、运动粘度v0=15.06 >10—6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用 条件下上述条件不相符时,应进行修正。
入擦阻力系数;
v――风秘空气的平均流速,m/s;
P――气的密度,kg/m3;
l――风管长度,m;
Rs――风管的水力半径,m;
f——管道中充满流体部分的横断面积,m2;
P——湿周,在通风、空调系统中即为风管的周长,m;
D——圆形风管直径,m。
摩擦阻力系数入与空气在风管的流动状态和风管管壁的粗糙度有关。在通风和空调
(1)密度和粘度的修正
(6-1-5)
式中Rm——实际的单位长度摩擦阻力,Pa/m;
Rmo——图上查出的单位长度摩擦阻力,Pa/m;
p――际的空气密度,kg/m3;
v——实际的空气运动粘度,m2/s。
(2)空气温度和大气压力的修正
(6-1-6)

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及 设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部 阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中陋■几丄■吃/ Pa4&2(6-1-1)直管臥摩擦a 力为主,弯头处B 部ffl 力大I入一d 摩擦阻力系数; v ――风秘内空气的平均流速,m/s ;P 气的密度,kg/m3 ;l ――风管长度,m ; Rs 风管的水力半径,m ;管道中充满流体部分的横断面积, m2 ;P 一一湿周,在通风、空调系统中即为风管的周长, m ;D ――圆形风管直径,摩擦阻力系数入与空气在风管内的流动状态和风管管壁的粗糙度有关。

调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管 流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多, 下面列出的公式适用范围较大,在目前得到较广泛的采用:式中K ----- 风管内壁粗糙度,mm ;D ---- 风管直径,mm 。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式( 6-1-3)和(6-1-4)制 成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、 阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区修正。

(1)密度和粘度的修正式中Rm ――实际的单位长度摩擦阻力,Pa/m ;Rmo ――图上查出的单位长度摩擦阻力,Pa/m ;P 际的空气密度,kg/m3 ;在通风和空1 —I 疋丄2力忑2判R 畑反(6-1-4)的入值,在压力B0=、温度t0=20C 、 宽气密度 P 0=m3运动粘度v0=x 10- 6m2/s 、管壁 粗糙度K=、圆形风管等条件下得出的。

给水管道阻力损失估算

给水管道阻力损失估算

给水管道阻力损失估算
给水管道阻力损失的估算是工程设计中非常重要的一项计算。

管道的阻力损失取决于多个因素,包括管道的直径、长度、流体的流速、流体的性质以及管道内壁的粗糙度等。

下面我将从不同角度来回答这个问题。

首先,管道的阻力损失可以通过达西-魏布努斯公式来估算,该公式为h_f = f (L/D) (V^2/2g),其中h_f为单位长度管道的阻力损失,f为摩擦阻力系数,L为管道长度,D为管道直径,V为流体流速,g为重力加速度。

摩擦阻力系数f可以通过经验公式或图表查得,而流速V可以根据设计流量和管道截面积计算得出。

其次,对于复杂的管道系统,可以使用计算机辅助设计软件进行模拟计算。

这些软件可以考虑更多的因素,如管道的布局、管道材质、流体的温度和压力等,从而更准确地估算阻力损失。

此外,还可以通过实验测定的方法来估算管道的阻力损失。

通过在实验室或现场设置实验装置,测量流体在管道中的压力损失,从而得出阻力损失的数据。

最后,需要指出的是,在进行阻力损失估算时,需要充分考虑管道系统的实际工况,如流体的变化流速、流量以及管道的局部阻力等因素,以保证估算结果的准确性和可靠性。

综上所述,给水管道阻力损失的估算涉及多个方面,需要综合考虑各种因素,通过理论计算、软件模拟、实验测定等方法来获得准确的结果,以保证管道系统的安全稳定运行。

管路阻力计算公式

管路阻力计算公式

管路阻力计算公式管路阻力是指液体在管道内流动时所受到的阻碍,其大小取决于流体的性质、管道的几何尺寸和流动的条件。

在实际工程中,准确计算管路阻力对于流体输送和工艺设计至关重要。

下面将介绍管路阻力的计算公式。

1.法氏公式法氏公式是计算管道流动阻力最常用的公式之一、它适用于圆形截面的水平、直立管道以及部分较短的水平、上升弯头。

其计算公式如下:ΔP=λ(L/D)(ρV^2/2)其中,ΔP为管道中的压力损失,单位为帕斯卡(Pa);λ为摩擦阻力系数,根据管道的材料及条件可以查表或参考标准值;L为管道的长度,单位为米(m);D为管道的内径,单位为米(m);ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。

2.公因数法公因数法是另一种计算管道阻力的常用方法,适用于两端是同一直径的水平、上升和下降的圆管。

其计算公式如下:ΔP=KρV^2/2其中,ΔP为压力损失,单位为帕斯卡(Pa);K为公因数,其具体数值根据管道的条件可查表或参考标准值;ρ为流体的密度,单位为千克/立方米(kg/m^3);V为流体的流速,单位为米/秒(m/s)。

3.长度加速度法长度加速度法适用于水平直管或上升/下降弯头的计算中。

其计算公式如下:ΔP=1/2ρv^2(fL+g)其中,ΔP为压力损失,单位为帕斯卡(Pa);ρ为流体的密度,单位为千克/立方米(kg/m^3);v为流体的流速,单位为米/秒(m/s);f为管道长度与管径之比;L为管道长度,单位为米(m);g为液体的头压。

4.简化法式对于实际工程中的一些简化计算,可以采用以下常见的简化公式:-窄圆管公式:ΔP=32μLV/D^2,其中μ为动力黏度;-多种流状态公式:ΔP=αρV^2/2,其中α为系数;-工程系数法式:ΔP=βρV^2/2,其中β为系数。

需要注意的是,以上列出的公式都是针对一些特定条件下的近似计算公式,实际计算中需要结合具体的工程情况和流体参数,选择合适的公式进行计算。

管道压力损失计算word精品

管道压力损失计算word精品

管道压力损失计算管道总阻力损失hw=£hf + E hj,hw —管道的总阻力损失(Pa);刀hf —管路中各管段的沿程阻力损失之和(Pa );刀hj —T路中各处局部阻力损失之和(Pa )ohf=RL 、hf—管段的沿程损失(Pa);R—每米管长的沿程阻力损失,又称比摩阻(Pa / m);L —管段长度(m),R 的值可在水力计算表中查得。

也可以用下式计算,hf=[入/d) X Y X (v A2)] *,(2 X g)L —管段长度(m);d —管径(m);入—沿程阻力因数;Y—介质重度(N/m2 );v—断面平均流速(m /s );g —重力加速度(m / s2 )。

管段中各处局部阻力损失hj=[ZX Y X (V A2)] ,*(2 X g)hj —管段中各处局部阻力损失(Pa );Z—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。

(引自《简明管道工手册》.P.56—57)管道压力损失怎么计算其实就是计算管道阻力损失之总和。

管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。

局阻系数可以根据附件种类,开度大小通过查手册得出, 动压和流速的平方成正比。

2、沿程阻力是比摩阻乘以管道长度, 比摩阻由管道的管径,内壁粗糙度,流体流速确定总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。

它的计算复杂、分类繁多,误差也大。

如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。

管道主要损失分为沿程损失和局部损失。

△ h=S入L/d*v72g)v2g2其中的入和E都是系数,这个是需要在手册上查询的。

L ----------------- 管路长度。

d ---- 管道内径。

v ---- 有效断面上的平均流速,一般v=Q/s ,其中Q 是流量, S 是管道的内截面积。

管道压力损失计算

管道压力损失计算

管道压力损失计算
管道总阻力损失hw=∑hf+∑hj,
hw—管道的总阻力损失(Pa);
∑hf—管路中各管段的沿程阻力损失之和(Pa);
∑hj—管路中各处局部阻力损失之和(Pa)。

hf=RL、
hf—管段的沿程损失(Pa);
R—每米管长的沿程阻力损失,又称比摩阻(Pa/m);
L—管段长度(m),
R
L—
d—管径(m
λ—
γ—
v—
g—
hj—
ζ—
成正比。

“流体力学”
和ξ都
有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。

希望你能看懂
液体压力计算公式是什么
1mm水柱=10pa
10m=100000pa=0.1mpa
1毫米汞柱(mmHg)=133.322帕(Pa)
1工程大气压=98.0665千帕(kPa)
对静止液体,就是初中的公式
压强P=ρgh
压力F=PS
如果受力表面不规则,需要积分计算
——仅供参考
常用两种方法计算:
1.液体在柱形器具中,且放在水平面上,此时:F=G液=m液g=ρ液gV液
2.普遍计算:
P=ρgh
F=PS=ρghS
液体:P=ρgh
其中ρ是液体密度,
F=ps
——仅供参考。

阻力损失的计算方法

阻力损失的计算方法

阻力损失的计算方法
阻力损失(或称为压力损失)是指在流体流动过程中,由于流体流动过程中的摩擦以及其他因素的影响,使得流体的动能转化为热能或其他形式的能量损失。

阻力损失是流体力学中一个重要的概念,对于流体流动的分析和设计都具有重要的意义。

计算阻力损失的方法主要有以下几种:
1.临界雷诺数法:该方法适用于圆管内的层流流动,基于雷诺数(流体的速度与管道内液体的黏性之比)来计算阻力损失。

具体计算公式为:f=16/Re,其中f为摩擦系数,Re为雷诺数。

2.涡旋方法:该方法适用于高雷诺数下的紊流流动,使用实验数据建立涡流管道的阻力系数曲线。

通过读取曲线上的点来计算阻力损失。

3.动量方程法:根据流体力学基本方程动量守恒定律,考虑流体流动中的摩擦损失,可以建立动量方程。

然后通过求解动量方程,计算出阻力损失。

4. Navier-Stokes 方程法:该方法适用于复杂的流动情况,通过求解Navier-Stokes方程组(非线性偏微分方程),可以得到流体速度和压力的分布,从而计算阻力损失。

5.管道描述方法:该方法将管道分成若干小段,每段内均匀流动,根据流体力学基本方程和能量方程,在每段管道内分别计算压力损失,然后累加得到总的阻力损失。

需要注意的是,不同的计算方法适用于不同的流动条件和管道形状。

在实际应用中,根据流体的性质、流动情况和管道的几何形状等因素,选
择合适的计算方法进行阻力损失的计算和分析。

在工程和实验研究中,为了计算阻力损失,通常还需要知道一些相关
参数,如管道内径、管道长度、流速、流体的性质、管道壁面的光滑度等。

这些参数可以通过实测、实验或者理论计算等方法得到。

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算

管道内的局部阻力及损失计算1.突然变宽或变窄的管道段:当管道内的截面突然变宽或变窄时,会引起阻力的增加。

根据连续性方程,流过突变截面的流量必须相同,所以流速也会随之改变。

可以使用Venturi公式来计算突变截面的压力损失:ΔP=(ρ*v^2/2)*(1/A1^2-1/A2^2)其中,ΔP是压力损失,ρ是流体的密度,v是流体的速度,A1和A2分别是突变前后的截面面积。

2.弯头、三通和四通管道:弯头和管道的交叉处会造成流体流动方向的改变,从而引起阻力。

不同类型的弯头、三通和四通管道有不同的阻力特性。

常用的计算方法是使用阻力系数来计算压力损失:ΔP=K*(ρ*v^2/2)其中,ΔP是压力损失,ρ是流体的密度,v是流体的速度,K是阻力系数,根据实际情况选择合适的数值。

3.收缩和扩张截面:当管道内的截面收缩或扩张时,流速会相应地增加或减小,并引起一定的压力损失。

hL=K*(v^2/2g)其中,hL是单位长度的压力损失,K是阻力系数,v是流体的速度,g是重力加速度。

4.管道内的阀门和节流装置:阀门和节流装置会在管道内引起阻力,其大小与装置类型、开关程度和流速等因素有关。

一般来说,可以使用阻力系数来计算阀门和节流装置的压力损失。

以上介绍了常见的管道内局部阻力的计算方法,通过选择合适的阻力系数和计算公式,可以对管道内局部阻力进行准确的评估。

在实际应用中,还应注意对其它特殊构造或结构的局部阻力进行适当的调整和考虑。

最后要注意的是,管道内局部阻力会导致流体能量损失,这会造成管道系统的能量耗散,所以在设计和选择管道系统时,需要合理估算管道的压力损失,以保证流体的正常运行和系统的高效性。

管道阻力损失计算

管道阻力损失计算

R(压损) L(管线 Pa/m 长度)m 2.054 45.000 2.129 45.000
管线沿程损失 Pa
92.444 95.805
ξ(局部阻 力系数)
局部阻力 损失Pa
弯头阀门 总数
总损失Pa
0.880 38.506 5.000 284.975
0.880 39.906 5.000 295.334
过热蒸汽热网管道
d(内径) mm
K(粗糙度)
ν比容 λ(阻力 G(流量) v(流速) R(压损)
m3/kg 系数)
t/h
m/s
Pa/m
630
0.2
0.41 0.0147
120
43.8420 54.6313
426
0.2
0.41 0.0162 22.68 18.1223 15.2231
133
0.2
0.41 0.0217
0.020 5000.000 9.744
烟气
0.426 110.000 0.955
0.020 5000.000 9.744
非圆管用当量直 径计算d=4F/u,
F为管道截面 积,u为管道截
面周长
金属道管取 0.02,砖砌或 混凝土管道取
0.04
说明:浅黄色区域为需要填写设定的数值
道 管道
L(管线长 管线沿程 低压蒸汽管道局
#DIV/0! #DIV/0!
#DIV/0! #DIV/0!
#DIV/0! #DIV/0!
#DIV/0! #DIV/0!
总的压损 MPa
0.3278 0.0110 0.1922 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

管道阻力损失计算

管道阻力损失计算

管道阻力损失计算 The manuscript was revised on the evening of 2021管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

?图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中 K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=、温度t0=20℃、宽气密度ρ0=m3、运动粘度v0=×10-6m2/s、管壁粗糙度K=、圆形风管等条件下得出的。

管道压头损失计算式

管道压头损失计算式

管道阻力损失计算式一、雷若数Re 的计算 Re =d u ρ/μ =(m )(m/s )(kg/m 3)/(N.s/m 2)=m 0kg 0s 0 式中:d 管径,u 流速,μ流体粘度,ρ流体密度。

流体粘度μ的计算式:μ=469.0R(00158.0460.0s11)φη--= (mPa.s )式中:溶剂(水)密度η1(g/cm 3),纯溶质密度η2(g/cm 3), R =η1/η2 , 固体体积分率Φs 。

(备注:20℃时,水密度η1=1g/cm 3,石灰密度η2=0.64g/cm 3,石灰浆液中质量浓度为5%,8%,10%,15%,20%的石灰浆液密度ρ(g/cm 3)和固体体积分率Φs 分别为:1.031,1.055,1.061,1.093,1.126;0.05,0.08,0.1,0.15,0.2。

)二、湍流时的摩擦损失因数 λ (一)光滑管 1. 柏拉修斯式:λ=0.316/Re 0.25其适用范围为Re =5×103~105 2. 顾袖珍式:λ=0.0056+0.5/ Re 0.32其适用范围为Re =3×103~3×106 3. 尼库拉则与卡门式1/λ0.5=2 logRe λ0.5-0.8此式可用于更广的湍流范围,但由于式两边都含有待求的λ,计算较为不便。

(二)粗糙管 1. 顾袖珍式:λ=0.01227+0.7543/ Re 0.38上式适用范围为Re =3×103~3×106。

此式所指的粗糙管为内径50~200mm 的新钢铁管。

2. 柯尔布鲁克式:1/λ0.5=1.14-2 log[ e/d + 9.35/ (Re λ0.5)]其适用范围甚广(Re =4×103~108,e/d =5×10-2~10-6),但由于算式两边都含有待求的λ,计算较为不便。

(e/d为管壁粗糙度与管径之比,即相对粗糙度)三、阻力损失计算直管(管径一至)损失:h f = λL/d×u2/2g = (m)90°弯头损失:h f = ∑ξu2/2g =λ∑Le/d×u2/2g = (m)式中:ξ为90°弯头阻力系数,ξ=0.75,λ为管道摩擦因数,L/d为管长与管径之比,Le为当量长度,90°弯头的当量长度与管径之比Le/d=35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
查《锅炉房设 计手册》表35
管道 R(压损) Pa/m 2.054 2.129
d(内径) mm 630 426 133
参数 气体种类
空气 烟气
过热蒸汽热网管道 v(流速) R(压损) K(粗糙度) m/s Pa/m 0.2 43.8420 54.6313 0.2 18.1223 15.2231 0.2 16.3952 53.3895 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 烟气管道 t(气体 ρ (密 λ (阻力系 V(流量) v(流速) d(内径)m 温度)℃ 度)kg/m3 数) m3/h m/s 0.426 110.000 0.922 0.020 5000.000 9.744 0.426 110.000 0.955 0.020 5000.000 9.744 ν 比容 m3/kg 0.41 0.41 0.41 λ (阻力 G(流量) 系数) t/h 0.0147 120 0.0162 22.68 0.0217 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
非圆管用当量直 径计算d=4F/u, F为管道截面 积,u为管道截 面周长 金属道管取 0.02,砖砌或 混凝土管道取 0.04
说明:浅黄色区域为需要填写设定的数值
道 L(管线长 度)km 5 0.6 3 管线沿程 低压蒸汽管道局 损失 MPa 部阻力损失MPa 0.2732 0.0546 0.0091 0.0018 0.1602 0.0320 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! L(管线 长度)m 45.000 45.000 管线沿程损失 Pa 92.444 95.805 总的压损 MPa 0.3278 0.0110 0.1922 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! ξ (局部阻 局部阻力 弯头阀门 总损失Pa 力系数) 损失Pa 总数 0.880 38.506 5.000 284.975 0.880 39.906 5
相关文档
最新文档