管道阻力计算表格

合集下载

管道阻力损失计算

管道阻力损失计算
查《锅炉房设 计手册》表35
管道 R(压损) Pa/m 2.054 2.129
d(内径) mm 630 426 133
参数 气体种类
空气 烟气
过热蒸汽热网管道 v(流速) R(压损) K(粗糙度) m/s Pa/m 0.2 43.8420 54.6313 0.2 18.1223 15.2231 0.2 16.3952 53.3895 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 烟气管道 t(气体 ρ (密 λ (阻力系 V(流量) v(流速) d(内径)m 温度)℃ 度)kg/m3 数) m3/h m/s 0.426 110.000 0.922 0.020 5000.000 9.744 0.426 110.000 0.955 0.020 5000.000 9.744 ν 比容 m3/kg 0.41 0.41 0.41 λ (阻力 G(流量) 系数) t/h 0.0147 120 0.0162 22.68 0.0217 2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
非圆管用当量直 径计算d=4F/u, F为管道截面 积,u为管道截 面周长 金属道管取 0.02,砖砌或 混凝土管道取 0.04
说明:浅黄色区域为需要填写设定的数值
道 L(管线长 度)km 5 0.6 3 管线沿程 低压蒸汽管道局 损失 MPa 部阻力损失MPa 0.2732 0.054

管道阻力损失计算

管道阻力损失计算
(1)比摩阻法

称Rm为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:
(6-1-13)
为了便于工程设计计算,人们对Rm的确定已作出了线解图,设计时只需根据管风 量、管径和管壁粗糙度由线解图上即可查出Rm值,这样就很容易由上式算出摩擦阻力。
(2)综合摩擦阻力系数法
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制
成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、 阻力四个参数中的任意两个, 即可利用线解图求得其余的两个参数。线解图是按过渡区 的入值,在压力B0=101.3kPa、温度t0=20C、宽气密度p0=1204kg/m3、运动粘度v0=15.06 >10—6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用 条件下上述条件不相符时,应进行修正。
入擦阻力系数;
v――风秘空气的平均流速,m/s;
P――气的密度,kg/m3;
l――风管长度,m;
Rs――风管的水力半径,m;
f——管道中充满流体部分的横断面积,m2;
P——湿周,在通风、空调系统中即为风管的周长,m;
D——圆形风管直径,m。
摩擦阻力系数入与空气在风管的流动状态和风管管壁的粗糙度有关。在通风和空调
(1)密度和粘度的修正
(6-1-5)
式中Rm——实际的单位长度摩擦阻力,Pa/m;
Rmo——图上查出的单位长度摩擦阻力,Pa/m;
p――际的空气密度,kg/m3;
v——实际的空气运动粘度,m2/s。
(2)空气温度和大气压力的修正
(6-1-6)

管道阻力计算

管道阻力计算

通风管道沿程阻力计算选用表:08K508-1《通风管道沿程阻力计算选用表》国家建筑标准设计图集适用于工业及民用建筑低、中、高压通风空调工程常用风管的沿程阻力计算选用。

本图集主要包括各类风管、如薄钢板法兰矩形风行风管、螺旋风管、玻纤复合风管、聚氨酯风管、玻镁风管的实测数据经拟合推导出的沿程阻力计算公式,及上述风管在不同风速及断面组合下的沿程阻力计算表。

目录:编制总说明钢板风管计算表钢板风管特性及选用要点薄钢板法兰矩形风管绝对粗糙度薄钢板法兰矩形风管沿程阻力计算表(1~3.4m/s)薄钢板法兰矩形风管沿程阻力计算表(3.6~6.0m/s)薄钢板法兰矩形风管沿程阻力计算表(6.5~13.0m/s)薄钢板法兰矩形风管沿程阻力计算表(13.5~20.0m/s)螺旋风管沿程阻力计算表(1~3.4m/s)螺旋风管沿程阻力计算表(3.6~6.0m/s)螺旋风管沿程阻力计算表(6.5~13.0m/s)螺旋风管沿程阻力计算表(13.5~20.0m/s)玻纤风管计算表玻纤风管特性及选用要点玻纤风管(一)绝对粗糙度玻纤风管(一)沿程阻力计算表(1~3.4m/s)玻纤风管(一)沿程阻力计算表(3.6~6.0m/s)玻纤风管(一)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(一)沿程阻力计算表(13.5~20.0m/s) 玻纤风管(二)绝对粗糙度玻纤风管(二)沿程阻力计算表(1~3.4m/s)玻纤风管(二)沿程阻力计算表(3.6~6.0m/s)玻纤风管(二)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(二)沿程阻力计算表(13.5~20.0m/s) 玻纤风管(三)绝对粗糙度玻纤风管(三)沿程阻力计算表(1~3.4m/s)玻纤风管(三)沿程阻力计算表(3.6~6.0m/s)玻纤风管(三)沿程阻力计算表(6.5~13.0m/s) 玻纤风管(三)沿程阻力计算表(13.5~20.0m/s) 聚氨酯复合风管计算表聚氨酯复合风管特性及选用要点聚氨酯复合风管绝对粗糙度聚氨酯复合风管沿程阻力计算表(1~3.4m/s) 聚氨酯复合风管沿程阻力计算表(3.6~6.0m/s) 聚氨酯复合风管沿程阻力计算表(6.5~13.0m/s)聚氨酯复合风管沿程阻力计算表(13.5~20.0m/s) 玻镁风管计算表玻镁风管特性及选用要点玻镁风管(一)绝对粗糙度玻镁风管(一)沿程阻力计算表(1~3.4m/s)玻镁风管(一)沿程阻力计算表(3.6~6.0m/s)玻镁风管(一)沿程阻力计算表(6.5~13.0m/s)玻镁风管(一)沿程阻力计算表(13.5~20.0m/s) 玻镁风管(二)绝对粗糙度玻镁风管(二)沿程阻力计算表(1~3.4m/s)玻镁风管(二)沿程阻力计算表(3.6~6.0m/s)玻镁风管(二)沿程阻力计算表(6.5~13.0m/s)玻镁风管(二)沿程阻力计算表(13.5~20.0m/s) 土建风道计算表土建风道特性及选用要点土建风道沿程阻力计算表(1~3.4m/s)土建风道沿程阻力计算表(3.6~8.0m/s)土建风道沿程阻力计算表(8.5~15.0m/s)图集编制方法。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气自己的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时 (如三通、弯优等 ),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力依照流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:v2R m4R s2(5— 3)式中Rm——单位长度摩擦阻力,Pa/m;υ——风管内空气的平均流速,m/ s;ρ——空气的密度,kg/ m3;λ——摩擦阻力系数;Rs——风管的水力半径,m。

对圆形风管:R s D4(5— 4)式中D——风管直径, m。

对矩形风管R sab2(a b)(5— 5)式中a, b——矩形风管的边长, m。

所以,圆形风管的单位长度摩擦阻力R mv2D 2(5— 6)摩擦阻力系数λ与空气在风管内的流动状态细风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式以下:1 2 lg(K 2.51)3.7D Re(5— 7)式中K ——风管内壁粗糙度,mm;Re——雷诺数。

Revd(5—8)式中υ——风管内空气流速,m/ s;d——风管内径,m;ν——运动黏度,m2/ s。

在实质应用中,为了防备烦杂的计算,可制成各种形式的计算表或线解图。

图5— 2 是计算圆形钢板风管的线解图。

它是在气体压力B=101. 3kPa、温度 t=20 ℃、管壁粗糙度K = 0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/ d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力 4 个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图 5— 2圆形钢板风管计算线解图[例 ]有一个10m长薄钢板风管,已知风量L = 2400m3/ h,流速υ= 16m/ s,管壁粗糙度 K = 0. 15mm,求该风管直径 d 及风管摩擦阻力R。

管道阻力计算表格

管道阻力计算表格

2.25 0.15 Re=υdρ/η Re=υd/ν
19.6 圆面积公式:πr2 圆周长公式:πd
19
沿程阻力损失(Pa)P=λ×L/d×ρυ2/2
20
管道长度(L)
m
100
N/kg
21
重力系数(g)
(m/s2)
9.8
地球表面附近
22
沿程阻力损失(m)
m
1.4970
23
非圆管道内沿程损失:水力半径:R=A/χ[A:过流断面面积;χ:过流断面接 触即润湿固体壁面部分的周长]
24 圆管水力半径:R=d/4[d:管道直径];矩形管水力半径:R=ab/2(a+b);
25 当量直径de=4R。当量直径应用到沿程阻力计算和雷诺数计算的公式中。
26
沿程阻力:H=λ×L/de×υ2/2g
27
雷诺数:Re=υde/ν
注:1、铝管和铜管当量粗糙度K≤0.01;2、玻璃管当量粗糙度K≤0.01;3、普通钢 管当量粗糙度K=0.02~0.1;4、镀锌钢管当量粗糙度K=0.15;5、生锈钢管当量粗糙 度K=0.5~1.0;6、铸铁管当量粗糙度K=0.25;7、塑料管当量粗糙度K=0.05;8、具 有轻度腐蚀的无缝钢管K=0.2~0.3;9、具有腐蚀的无缝钢管K=0.5以上;
紊流
7 工业管道当量糙粒高度(K)
mm
0.15
查的
8
工业管道相对粗糙度
/
0.001
9 查莫迪图沿程阻力系数(λ)
0.020
查的
10
紊流下限Biblioteka m/s 0.035053333 和流速比较
11
紊流上限
m/s 1.418066667 和流速比较

管道阻力计算

管道阻力计算

(3)三通汇流要防止出现引射现象, 尽可能做到各分支管内流速相等. 分支管道中心线夹角要尽可能小, 一般要求不大于30°。
如图6-1-3。三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成涡流是造成局部阻力的原因。两股气流在汇合过程中的能量损失一般是不相同的,它们的局部阻力应分别计算。


(6-1-11)
Dv称为边长为a×b的矩形风管的流速当量直径。
(2)流量当量直径
设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以DL表示。根据推导,流量当量直径可近似按下式计算。
(6-1-2)
圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3)
以上各式中
λ——摩擦阻力系数;
v——风秘内空气的平均流速,m/s;
ρ——空气的密度,kg/m3;
(3)管壁粗糙度的修正
在通风空调工程中,常采用不同材料制作风管,各种材料的粗糙度K见表6-1-1。
当风管管壁的粗糙度K≠0.15mm时,可按下式修正。
Rm=KrRmo Pa/m (6-1-9)
Kr=(Kv)0.25 (6-1-10)
(6-1-4)
式中 K——风管内壁粗糙度,mm;
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。

管道摩擦阻力计算

管道摩擦阻力计算

长距离输水管道水力计算公式的选用之马矢奏春创作1. 经常使用的水力计算公式:供水工程中的管道水力计算一般均依照均匀流计算,目前工程设计中普遍采取的管道水力计算公式有: 达西(DARCY )公式:gd v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C lQ h h f ***= (3) 式中hf------------沿程损失,m λ―――沿程阻力系数 l――管段长度,m d-----管道计算内径,m g----重力加速度,m/s2 C----谢才系数 i----水力坡降; R―――水力半径,mQ―――管道流量m/s2 v----流速 m/sCn----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。

海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。

三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。

2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对分歧的设计条件,推荐采取的水力计算公式也有所差别,见表1:表1 各规范推荐采取的水力计算公式4. 公式的适用范围:3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。

公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采取经验公式计算得出。

舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。

舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果标明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不但包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用. 布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采取)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式自己而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包含反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包含流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m≤R≤3m;0.011≤n≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与分歧管材的管壁概况粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106. 通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采取谢才公式外,其它管材大多推荐采取达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采取达西公式,但未明确要求计算λ值采取的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采取的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁概况均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采取舍维列夫公式显然也就会发生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采取柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采取适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此,《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》其实不矛盾.海澄-威廉公式可以适用于各种分歧材质管道得水力计算,其中海澄-威廉系数Ch得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采取达西公式,谢才公式或者海澄-威廉公式计算,分歧管材得差别均表示在管内壁概况当量粗糙程度得分歧上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采取分歧得加工工艺,其内概况得粗糙度也可能有所差别,这一因素在设计过程种也应重视(经常使用管材得粗糙度系数参考值见表2)表2 罕见管材粗糙度相关系数参考值根据雷诺数计算公式vVd Re ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得分歧设计条件应对所使用计算公式得适用范围进行复核.包管计算得准确性.大多说供水工程得设计依照水温10℃,运动粘度1.3*10-5 m2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采取布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采取布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采取《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏平安,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采取塑料内衬管不宜采取布拉修斯公式计算,而更宜于采取如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采取谢才公式计算时,如果管道内径大于2m 时则不采取曼宁公式计算谢才系数.如果采取巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS和HAZEN在大量工业管道现场或试验丈量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外很多管道水力计算软件均采取该公式编制.由此可见,对于口径大于2m得管道应尽量防止采取海澄-威廉公式计算以策平安.6.值得提出得是,上述所有水力计算公式中采取得管径均为计算内径,各种管道均应采取管道净内空直径计算,对于采取水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量防止采取海澄-威廉公式,建议采取柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才干得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。

管路阻力计算和水泵选型

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择a)确定管径一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。

根据能力查下面《能力比摩阻速查估算表》,选定管型。

b)沿程阻力计算根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为7.5kW,范围属于“6<Q≤11”能力段,K r=39.4,进行插值计算。

R=104+(7.5-6)×39.4=163.1 pa/m第二步:根据所需管长计算沿程阻力,假设管长L=28m,则H y= R×L=163.1×28=4566.8 pa=4.57 kpac)局部阻力计算作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。

实际计算采用如下公式:Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:d)水路总阻力计算及水泵选型水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。

计算式为:H q=H y+H j+H z+H m+H fH z——室外主机换热器阻力,一般取7m水柱H m——室内末端阻力H f——水系统余量,一般取5m水柱;总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。

选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。

水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。

管道阻力计算表

管道阻力计算表

管径:65mm 物性资料体积流量:18m3/h 密度ρ:流速: 1.51m/s 粘度μ:管道直径d :流速u:雷诺准数Re:管径:50mm 流体类型:流速: 1.7m/s 管道绝对粗糟度体积流量:12.011m3/h 相对粗糟度流体密度: 2.1618kg/m3摩擦系数λ:质量流量:25.964kg/h每米直管阻力损失△P 直管长度L 体积流量3m3/h直管总压降质量流量kg/h流体密度kg/m3适宜流速(参考流速范围) 1.2m/s每米直管阻力损失△P 直管长度L 初选计算管径29.74mm直管总压降90度弯头当量长度Le145度弯头当量长度Le2标准三通当量长度Le3截止阀(垂直型)当量长度Le4升降式止回阀(垂直型)当量长度Le4旋启式止回阀(Y型)当量长度Le4管道进入容器的进口阻力系数管道直接排放的出口阻力系数管件(包括进出口)总的压力损失△P'总压力损失=保护密码:123管径初选 (参考HG/T 20570-6-95)根据计算管径,选择合适的管径!或者查下表!!!求流速求流量999.5kg/m30.0013077Pa.s50mm1.77m/s67642湍流0.15mm 蒸汽,压缩空气,纯水取0.2mm ,未处理0.0030水取0.3~0.5mm 。

0.031查右图表滞流29.627Pa/m50m 1481.4Pa湍流970.71Pa/m60m 58242.80Pa4个6000mm0个0mm2个2000mm2个34000mm1个闸阀30000mm2个10000mm0.5请选择1请选择79671.3Pa 137914.1Pa 1.3791Bar 管道阻力计算表232d Lu μ=22u d l ρλ=2)(2ud le e ρξλ+∑=。

(完整版)管道阻力的基本计算方法

(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:242v R R s m(5—3) 式中Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4D R s(5—4)式中D ——风管直径,m 。

对矩形风管)(2b a ab R s(5—5)式中a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力22v D R m (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21D K (5—7)式中K ——风管内壁粗糙度,mm ;Re ——雷诺数。

vd Re(5—8) 式中υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

(完整版)管道阻力的基本计算方法.doc

(完整版)管道阻力的基本计算方法.doc

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时 (如三通、弯头等 ),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:v2R m4R s 2 (5— 3)式中Rm——单位长度摩擦阻力,Pa/m;υ——风管内空气的平均流速,m/ s;ρ——空气的密度,kg/ m3;λ——摩擦阻力系数;Rs——风管的水力半径,m。

对圆形风管:R s D4 (5— 4)式中D——风管直径, m。

对矩形风管R sab2(a b) (5— 5)式中a, b——矩形风管的边长, m。

因此,圆形风管的单位长度摩擦阻力R mv2D 2 (5— 6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:1 2 lg( K 2.51 )3.7D Re (5— 7)式中K ——风管内壁粗糙度,mm;Re——雷诺数。

Re vd(5—8)式中υ——风管内空气流速,m/ s;d——风管内径,m;ν——运动黏度,m2/ s。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5— 2 是计算圆形钢板风管的线解图。

它是在气体压力B=101. 3kPa、温度 t=20 ℃、管壁粗糙度K = 0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/ d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力 4 个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图 5— 2 圆形钢板风管计算线解图[例 ]有一个10m长薄钢板风管,已知风量L = 2400m3/ h,流速υ= 16m/ s,管壁粗糙度 K = 0. 15mm,求该风管直径 d 及风管摩擦阻力R。

管道阻力计算表格

管道阻力计算表格
序号 1 2 3 4 5
名称 管内水的流速(υ)
管道直径(d) 运动粘度(ν) 动力粘度(η)
密度(ρ)
单位 m/s mm 10-6m2/s 10-6pa·s kg/m³
数值 1.5 150 0.478 469.9 983.2
备注
50℃水查的 50℃水查的 50℃水查的
6
雷诺数(Re)
/
470711
紊流
7 工业管道当量糙粒高度(K)
mm
0.15
查的
8
工业管道相对粗糙度
/
0.001
9 查莫迪图沿程阻力系数(λ)
0.020
查的
10
紊流下限
m/s
和流速比较
11
紊流上限
m/s
和流速比较
12
管内流水的流速大于紊流上限值:λ=0.11*(K/d)0.25
13
管内流水的流速上下限值之间:λ=0.11*(K/d+68/Re)0.25
m
100
N/kg
21
重力系数(g)
(m/s2)
9.8
地球表面附近
22
沿程阻力损失(m)
m
1.4970
23
非圆管道内沿程损失:水力半径:R=A/χ[A:过流断面面积;χ:过流断面 接触即润湿固体壁面部分的周长]
24 圆管水力半径:R=d/4[d:管道直径];矩形管水力半径:R=ab/2(a+b);
25 当量直径de=4R。当量直径应用到沿程阻力计算和雷诺数计算的公式中。
14
管内流水的流速小于下限值:λ=0.3164/Re0.25
15
沿程阻力系数(λ)
/
0.020

水管阻力计算简表+水管流量估算表

水管阻力计算简表+水管流量估算表

直管段
公称管径DN(mm) R1—闭式系统、R2—开式系统 (Pa/m)
32
40
50
65
1821
1523
1092
793
2415
2006
1421
1021
2825
2363
1694
1230
3761
3124
2214
1590
1036
867
621
451
1365
1134
803
577
水管系统配件的局部阻力系数ζ值
ζ
25 0.8 0.25 0.16 1.50 0.47 0.30 0.17 1.00 0.31 0.20 0.11 9.00 2.81 1.80 1.01 0.50 0.16 0.10 0.06
32 0.8 0.25 0.16 1.50 0.47 0.30 0.17 1.00 0.31 0.20 0.11 9.00 2.81 1.80 1.01 0.50 0.16 0.10 0.06
水泵扬程P=(1.1~1.2)H max
1.63 1.04 0.59
管路 阻力 管长
主机
阀门 弯头 变径 三通 水泵入口 止回阀 过滤器
DN20 0.2 10 2
7 0.1 0.6 0.15 1 0.11 0.3 0.79
DN25 0.15 20
3
DN32 0.1 20
2 末端
螺杆机冷冻水系统水泵扬程计算表
缩小 0.1 0.03 0.02 0.01 1.00 0.31 0.20 0.11 7.50 2.34 1.50 0.84
扩大 0.3 0.09 0.06 0.03
hf(局部阻力)=ξPd(动压)

第4章 制冷系统管道设计计算

第4章 制冷系统管道设计计算
22
ln
D dw
1
D 2
思考题
1.写出密封系统单相流体总阻力的计算式并说明每个 符号的意义。
2.怎样计算两相流体的阻力?
3.选择《600吨水产冷库制冷工艺设计》中的管道直 径。
5.确定管道内径有哪两种方法?试作简要说明。
6.什么叫管件的当量长度?在选定管径时有何意义? 7.已知氨液分离器至压缩机吸入管道负荷为:
4-4 管道的隔热
4-4 管道的隔热
•一、低温管道隔热的目的
•主要是为了减少冷量损耗和回气过热,其次是为了
防止管壁表面凝水结霜。
•二、低温管道隔热层的计算原则
•应使求得的隔热层厚度能保证隔热层外表面的温度
不低于当地露点温度,以防止管道外表凝结滴水或结
霜。
计算式:tw tw
tn tb
D 2
1
• (二)壁厚 表4-2-4、表4-2-5
• 壁厚的确定与管道可以承受的压力有关。 目前设计手册或五金手册给出的管道均 可以满足压力要求。
• (三)管道的规格表示法 表4-2-6
DN
Øδ DN Øδ
6
10
15
20
25
32
40
50
1/4’ 3/8’ ½’
¾’
1” 1” 1/4’ 1”1/2’ 2”
102.0 102.0 102.0 102.0 102. 102.0 102.0 102.0
(二)辅助管道:根据经验确定管径
名称
热氨管
排液管 放油管 安全管 放空气管 均压管 降压管 冲霜水管
Øδ
382.2~573.5 252.0~382.2 322.2~382.2 252.0~322.2 252.0~382.2 252.0~382.2 252.0~322.2 252.0~553.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紊流
7 工业管道当量糙粒高度(K)
mm
0.15
查的
8
工业管道相对粗糙度
/
0.001
9 查莫迪图沿程阻力系数(λ)
0.020
查的
10பைடு நூலகம்
紊流下限
m/s 0.035053333 和流速比较
11
紊流上限
m/s 1.418066667 和流速比较
12
管内流水的流速大于紊流上限值:λ=0.11*(K/d)0.25
13
管内流水的流速上下限值之间:λ=0.11*(K/d+68/Re)0.25
14
管内流水的流速小于下限值:λ=0.3164/Re0.25
15
沿程阻力系数(λ)
/
0.020
大于上限值
16
沿程阻力系数(λ)
/
0.020
上限值之间
17
沿程阻力系数(λ)
/
0.01208
小于下限值
18
沿程阻力损失(m)H=λ×L/d×υ2/2g
序号 1 2 3 4 5
名称 管内水的流速(υ)
管道直径(d) 运动粘度(ν) 动力粘度(η)
密度(ρ)
单位 m/s mm 10-6m2/s 10-6pa·s kg/m³
数值 1.5 150 0.478 469.9 983.2
备注
50℃水查的 50℃水查的 50℃水查的
6
雷诺数(Re)
/
470711
25 当量直径de=4R。当量直径应用到沿程阻力计算和雷诺数计算的公式中。
26
沿程阻力:H=λ×L/de×υ2/2g
27
雷诺数:Re=υde/ν
注:1、铝管和铜管当量粗糙度K≤0.01;2、玻璃管当量粗糙度K≤0.01;3、普通钢 管当量粗糙度K=0.02~0.1;4、镀锌钢管当量粗糙度K=0.15;5、生锈钢管当量粗糙 度K=0.5~1.0;6、铸铁管当量粗糙度K=0.25;7、塑料管当量粗糙度K=0.05;8、具 有轻度腐蚀的无缝钢管K=0.2~0.3;9、具有腐蚀的无缝钢管K=0.5以上;
2.25 0.15 Re=υdρ/η Re=υd/ν
19.6 圆面积公式:πr2 圆周长公式:πd
19
沿程阻力损失(Pa)P=λ×L/d×ρυ2/2
20
管道长度(L)
m
100
N/kg
21
重力系数(g)
(m/s2)
9.8
地球表面附近
22
沿程阻力损失(m)
m
1.4970
23
非圆管道内沿程损失:水力半径:R=A/χ[A:过流断面面积;χ:过流断面接 触即润湿固体壁面部分的周长]
24 圆管水力半径:R=d/4[d:管道直径];矩形管水力半径:R=ab/2(a+b);
相关文档
最新文档