管道阻力计算
管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。
图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。
摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。
在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。
通常,高速风管的流动状态也处于过渡区。
只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。
计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。
只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。
线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。
管道阻力计算

管道阻力计算:管道阻力计算公式:R=(λ/D)*(ν^2*γ/2g)。
ν-流速(m/s);λ-阻力系数;γ-密度(kg/m3);D-管道直径(m);P-压力(kgf/m2);R-沿程摩擦阻力(kgf/m2);L-管道长度(m);g-重力加速度=9.8。
压力可以换算成Pa,方法如下:1帕=1/9.81(kgf/m2)。
管路内的流体阻力流体在管路中流动时的阻力可分为摩擦阻力和局部阻力两种。
摩擦阻力是流体流经一定管径的直管时,由于流体的内摩擦产生的阻力,又称为沿程阻力,以hf表示。
局部阻力主要是由于流体流经管路中的管件、阀门以及管道截面的突然扩大或缩小等局部部位所引起的阻力,又称形体阻力,以hj表示。
流体在管道内流动时的总阻力为Σh=hf+hj。
流体阻力的类型如下:由于空气的粘性作用,物体表面会产生与物面相切的摩擦力,全部摩擦力的合力称为摩擦阻力。
与物面相垂直的气流压力合成的阻力称压差阻力。
在不考虑粘性和没有尾涡(见举力线理论)的条件下,亚声速流动中物体的压差阻力为零(见达朗伯佯谬)。
在实际流体中,粘性作用下不仅会产生摩擦阻力,而且会使物面压强分布与理想流体中的分布有别,并产生压差阻力。
对于具有良好流线形的物体,在未发生边界层分离的情形(见边界层),粘性引起的压差阻力比摩擦阻力小得多。
对于非流线形物体,边界层分离会造成很大的压差阻力,成为总阻力中的主要部分。
当机翼或其他物体产生举力时,在物体后面形成沿流动方向的尾涡,与这种尾涡有关的阻力称为诱导阻力,其数值大致与举力的平方成正比。
在跨声速(见跨声速流动)或超声速(见超声速流动)气流中会有激波产生,经过激波有机械能的损失,由此引起的阻力称为波阻,这是另一种形式的阻力。
作加速运动的物体会带动周围流体一起加速,产生一部分附加的阻力,通常用某个假想的附连质量与物体加速度的乘积表示。
船舶在水面上航行时会产生水波,与此有关的阻力称为兴波阻力。
通风阻力计算公式汇总

通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。
在工程中,通风阻力的计算对于设计和优化通风系统至关重要。
下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。
下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。
-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。
2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。
以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。
-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。
-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。
这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。
3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。
以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。
暖通系统管道阻力计算

暖通系统管道阻力计算暖通系统管道阻力是指流体在管道中运动时所遇到的阻碍,该阻碍取决于管道的几何形状、内壁粗糙度以及流体的流动速度等因素。
管道阻力计算是设计和优化暖通系统的重要一环,合理估计管道阻力可以帮助确定合适的管道尺寸和泵的功率,以保证系统运行稳定且能耗低。
管道阻力的计算通常有两种方法:经验公式法和修正阻力系数法。
1.经验公式法:经验公式法是通过已有的实验数据和理论研究得出的不同管道类型的阻力计算公式。
这些公式通常是经过大量试验和比较验证得出的,适用于一定范围内的具体情况。
常见的经验公式有:Darcy-Weisbach公式、Chézy公式、Manning公式等。
以Darcy-Weisbach公式为例,其计算公式为:Hf=f*(L/D)*(V^2/2g),其中,Hf为管道阻力(Pa),f为阻力系数,L为管道长度(m),D 为管道直径(m),V为流速(m/s),g为重力加速度(m/s^2)。
2.修正阻力系数法:修正阻力系数法通常通过实验和计算得到,相对于经验公式法,其精度更高。
该方法将管道阻力计算分为局部阻力和整体阻力两部分。
局部阻力主要是指管道弯头、三通、放大收缩、扩大变径等构件引起的阻力,通常使用修正阻力系数进行计算;整体阻力主要是指管道直线段的阻力,通常使用经验公式法进行计算。
在计算管道阻力时,还需要考虑何种流体流动,是属于层流或者湍流。
层流流动是指流速低、流体粘性大、流线无交叉的流动状态;湍流流动是指流速高、流体粘性小、流线交叉的流动状态。
不同流动状态下,管道阻力计算公式也不同,一般通过雷诺数(Re)判断。
当Re<2000时,流动属于层流状态,可使用层流管道阻力计算公式;当2000<Re<4000时,流动处于过渡状态,可使用过渡区阻力计算公式;当Re>4000时,流动属于湍流状态,可使用湍流管道阻力计算公式。
综上所述,暖通系统管道阻力计算需要考虑管道的几何形状、内壁粗糙度、流体流动状态等因素,并结合经验公式法和修正阻力系数法进行计算。
管道阻力损失计算

风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻 力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图 6-1-1)。
(6-1-10)
式中 Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表 6-1-1 各种材料的粗糙度 K
风管材料15~0.18 塑料板
0.01~0.05 矿渣石膏板
1.0 矿渣混凝土板
1.5 胶合板
1.0 砖砌体
3~6 混凝土
1~3 木板 0.2~1.0
矩形风管的水力半径
令
则 (6-1-11)
Dv 称为边长为 a×b 的矩形风管的流速当量直径。 (2)流量当量直径 设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以 DL 表示。根据推 导,流量当量直径可近似按下式计算。
图 6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3) 以上各式中
λ——摩擦阻力系数; v——风秘空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m;
(1) 比摩阻法 令
称 Rm 为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:
(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
关于阻力计算的公式

关于阻力计算的公式一、圆形直管内的流动阻力:1)计算水平圆管内阻力的一般公式—范宁(Fanning )公式:22u d l f p ρ⋅⋅λ=∆①其中λ为摩擦系数,量纲为一;l 为管长;d 为管径;ρ为流体密度;u 为流速。
本式表明流体流动阻力Δp f 与流动管道长度呈正比;与管道直径呈反比,与流体动能ρu 2/2呈正比。
层流时摩擦系数有准确计算公式,是将式①和式②联立计算,完全靠理论推导方法得出。
公式如下:ρη=λu d 64由此式可见,圆形直管内流体层流流动时,摩擦系数与流体黏度呈正比,与管径、流速、流体密度呈反比。
湍流流动摩擦系数是根据实验得到的公式,最为常用是莫狄(Moody )摩擦系数图。
2)层流时直圆管内的阻力计算公式—哈根-泊谡叶(Han gen-Poiseuille )公式:2f lu 32p η=∆②由该式可见,层流时支管阻力Δp f 与管长l 、速度u 、黏度η的一次方成正比,与管径d 的平方呈反比。
二、局部阻力流体在管内流动时,还要受到管件、阀门等局部阻碍而增加的流动阻力,称为局部阻力。
它还包括由于流通截面的扩大或缩小而产生的阻力。
局部阻力可按式③计算:2u d l p 2e f ρλ=∆③或2u p 2f ρζ=∆④其中l e 为当量长度,即将局部阻力折合成相当长度的直管来计算;ζ成为局部阻力系数。
l e 和ζ都是由实验来确定的。
三、总阻力若将流体在管路中流动阻力归结为直管阻力和局部阻力之和,对于流体流动等直径管路,如果将局部阻力以当量长度表示,则阻力计算式为:g2u )d l l (g R h 2u )d l l (R p 2e f 2e f ∑+λ=∑=∑ρ∑+λ=∑ρ=∆或式中l —管路中直径为d 的直管长度,m;Σl e —管路上全部管件与阀门等的当量长度之和,m;u —流体流经管路的速度,m/s如果还有部分局部阻力必须用阻力系数表示,则阻力计算式为:g2u )d l l (g R h 2u )d l l (R p 2e f 2e f ζ∑+∑+λ=∑=∑ρζ∑+∑+λ=∑ρ=∆或式中Σζ—管路上部分管件和阀门等的阻力系数之和。
(完整版)管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道阻力计算
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
以上各式中
λ――――摩擦阻力系数
ν――――风管内空气的平均流速,m/s;
ρ――――空气的密度,Kg/m3;
l ――――风管长度,m
Rs――――风管的水力半径,m;
Rs=f/P f――――管道中充满流体部分的横断面积,m2;
P――――湿周,在通风、空调系统中既为风管的周长,m;D――――圆形风管直径,m。
矩形风管的摩擦阻力计算
我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;
流速当量直径:Dv=2ab/(a+b)
流量当量直径:DL=1.3(ab)0.625/(a+b)0.25
在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力
当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:
Z=ξν2ρ/2
ξ――――局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:
1. 弯头布置管道时,应尽量取直线,减少弯头。
圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。
2. 三通三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。
为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。
在管道设计时应注意以下几点:
1. 渐扩管和渐缩管中心角最好是在8~15o。
2. 三通的直管阻力与支管阻力要分别计算。
3. 尽量降低出风口的流速。