2020年河南省中考数学压轴题及详细解析
2020年(河南)中考数学压轴题全揭秘精品专题17 函数动点问题中平行四边形存在性(含答案解析)
专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性结论:A C B DA CB Dx x x x y y y y +=+⎧⎨+=+⎩类型二、特殊平行四边形存在性 1. 矩形存在性常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.2. 菱形存在性常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解. 3. 正方形存在性常用解题思路:兼具矩形和菱形二者.【例1】(2018·郑州预测卷)如图,直线y =334x -+与x 轴交于点C ,与y 轴交于点B ,抛物线y =234ax x c ++经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一个动点,当△BEC 的面积最大时,求出点E 的坐标和最大值; (3)在(2)条件下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)△直线y=334x-+与x轴交于点C,与y轴交于点B,△B(0,3),C(4,0),将B(0,3),C(4,0)代入y= 234ax x c++得:16303a cc++=⎧⎨=⎩,解得:383ac⎧=-⎪⎨⎪=⎩,△抛物线的解析式为:233384y x x=-++.(2)过点E作EF△x轴于F,交BC于M,设E(x,233384x x-++),则M(x,334x-+),△ME=233384x x-++-(334x-+)=23382x x-+△S△BEC=12×EM×OC=2EM=2(23382x x-+)=()23234x--+,△当x=2时,△BEC的面积取最大值3,此时E(2,3).(3)由题意得:M (2,32),抛物线对称轴为:x =1,A (-2,0), 设P (m ,y ),y =233384m m -++,Q (1,n )△当四边形APQM 为平行四边形时,有:212m -+=+,解得:m =-3, 即P (-3,218-); △当四边形AMPQ 为平行四边形时,有:-2+m =2+1,即m =5 即P (5, 218-); △当四边形AQMP 为平行四边形时,有:2-2=1+m ,得:m =-1,即P (-1,158); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-),(5, 218-),(-1,158).【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的解析式与顶点M 的坐标; (2)求△BCM 的面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ △AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:9303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得:a =1,b =-2,c =-3,即抛物线的解析式为:y =x 2-2x -3,顶点M 的坐标为:(1,-4); (2)连接BC ,BM ,CM ,过M 作MD △x 轴于D ,如图所示,S△BCM=S梯形ODMC+S△BDM-S△BOC=3,S△ACB=6,△S△BCM:S△ACB=1:2;(3)存在.△当点Q在x轴上方时,过Q作QF△x轴于F,如图所示,△四边形ACPQ为平行四边形,△QP△AC,QP=AC△△PFQ△△AOC,△FQ=OC=3,△3=x2﹣2x﹣3,解得x或x=1,△Q,3)或(1,3);△当点Q在x轴下方时,过Q作QE△x轴于E,如图所示,同理,得:△PEQ△△AOC,△EQ=OC=3,△﹣3=x2﹣2x﹣3,解得:x=2或x=0(与C点重合,舍去),△Q(2,﹣3);综上所述,点Q 的坐标为:,3)或(1,3)或(2,﹣3).【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y =ax 2+bx -5与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图2所示,CE △x 轴与抛物线相交于点E ,点H 是直线CE 下方抛物线上的动点,过点H 且与y 轴平行的直线与BC 、CE 分别交于点F 、G ,试探究当点H 运动到何处时,四边形CHEF 的面积最大,求点H 的坐标及最大面积;(3)点M 是(1)中所求抛物线对称轴上一动点,点N 是反比例函数y =kx图象上一点,若以点B 、C 、M 、N 为动点的四边形是矩形,请直接写出满足条件的k 的值.【答案】见解析.【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:5025550a b a b --=⎧⎨+-=⎩,解得:14a b =⎧⎨=-⎩, 即抛物线的解析式为:y =x 2-4x -5.(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5), △CE △x 轴,则C 、E 关于直线x =2对称, △E (4,-5), CE =4,由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5, 设H (m ,m 2-4m -5), △FH △CE , △F (m ,m -5),△FH = m -5-(m 2-4m -5)= -m 2+5m ,S四边形CHEF=12·FH·CE=12(-m2+5m)×4=-2(m-52)2+252,当m=52时,四边形CHEF的面积取最大值252,此时H(52,354-).(3)设M(2,m),N(n,kn),B(5,0),C(0,-5),△当BC为矩形对角线时,此时:2+n=5+0,m+kn=0-5,即n=3,设BC与MN交于点H,则H(52,52-),MH=12BC△22255222m⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:m=1或m=-6,当m=1时,k=-18;m=-6时,k=3,△当BC为矩形边时,分两种情况讨论:(i)当点M在直线BC下方时,即四边形BCMN为矩形,则△BCM=90°,2+5=n+0,m=kn-5,过M作MH△y轴于H,则由OB=OC知,△OCB=45°,△△MCH=△CMH=45°,即CH=MH,△-5-m=2,解得:m=-7,n=7,k=-14;(ii)当点M在直线BC上方时,即四边形BCNM为矩形,则△CBM=90°,n+5=2,kn=m-5,设对称轴与x 轴交于点H ,同理可得:BH =MH , △3=m ,n =-3,k =6;综上所述,k 的值为:-18,3,-14或6.【变式2-1】(2019·驻马店二模)如图,抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,且与 y 轴交于点 C ,点 D 是抛物线的顶点,抛物线的对称轴 DE 交 x 轴于点 E ,连接BD .(1)求经过 A ,B ,C 三点的抛物线的函数表达式.(2)点 P 是线段 BD 上一点,当 PE =PC 时,求点 P 的坐标.(3)在(2)的条件下,过点 P 作 PF △x 轴于点 F ,G 为抛物线上一动点,M 为 x 轴上一动点,N 为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.【答案】见解析.【解析】解:(1)△抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点, △10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3.(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4), 可得直线BD 的解析式为:y =-2x +6,设P (m ,-2m +6),由勾股定理得:PE 2=()()22126m m -+-+,PC 2=()22263m m +-+-,由PE =PC ,得:()()22126m m -+-+=()22263m m +-+-, 解得:m =2,即P (2,2).(3)△M 在x 轴上,N 在直线PF 上, △△NFM =90°,由四边形MFNG 是正方形,知MF =MG , 设M (n ,0),则G (n ,-n 2+2n +3), MG =|-n 2+2n +3|,MF =|n -2|, △|-n 2+2n +3|=|n -2|, 解得:nn或n或n, 故点M 的坐标为:(32+,0),(320),(12+,0),(12-,0). 【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .(1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分△PMO ,求t 的值. (3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.图1 图2【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),△31640ca b ca b c=⎧⎪++=⎨⎪-+=⎩,解得:39434cba⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,即抛物线的解析式为:y=34-x294-x+3.(2)由A(-4,0),C(0,3)得直线AC的解析式为:y=334x+,△点P的横坐标为t,△M(t, 334t+),△PN△y轴,△△PMC=△MCO,△MC平分△PMO,△△PMC=△OMC,△△MCO=△OMC,即OM=OC=3,△OM2=9,即223394t t⎛⎫++=⎪⎝⎭,解得:t=0(舍)或t=7225,△当MC平分△PMO时,t=72 25.(3)设P(t,34-t294-t+3),△当CE为菱形的边时,四边形CEPD为菱形,则PD△y轴,CD=PD,则D(t,33 4t+),△PD =34-t 294-t +3-(334t +)=34-t 23-t , 由勾股定理得:CD=54t -,△34-t 23-t =54t -,解得:t =0(舍)或t =73-, 即PD =3512,菱形面积为:3512×73=24536;△当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,则D (-t , 34-t 294-t +3),将D 点坐标代入y =334x +,得: 34-t 294-t +3=()334t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12×4×3=6;综上所述,菱形的面积为:24536或6.1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)△矩形OBDC的边CD=1,△OB=1,由AB=4,得OA=3,△A(﹣3,0),B(1,0),△抛物线y=ax2+bx+2与x轴交于A,B两点,△a+b+2=0,9a-3b+2=0,解得:a=23-,b=43-,△抛物线解析式为y=23-x243-x+2;(2)以AC为边或对角线分类讨论:A(﹣3,0),C(0,2),抛物线y=23-x243-x+2的对称轴为x=﹣1,设M(m, y M),N(-1,n),y M=23-m243-m+2△当四边形ACMN为平行四边形时,有:312Mmy n-+=-⎧⎨=+⎩,解得:m=2,y M=103-,即M(2,103-);△当四边形ACNM为平行四边形时,有:312Mmy n --=⎧⎨+=⎩,解得:m=-4,y M=103-,即M(-4,103-);△当四边形AMCN为平行四边形时,有:312Mmy n -=-⎧⎨=+⎩,解得:m=-2,y M=2,即M(-2,2);综上所述,点M的坐标为(2,103-)或(﹣4,103-)或(﹣2,2).2.(2019·开封模拟)如图,直线y=﹣x+4与抛物线y=﹣12x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得△ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,即点A、B的坐标分别为(0,4)、(4,0),将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,抛物线的解析式为:y=﹣12x2+x+4;(2)△OA=OB=4,△△ABO=45°,△△ABP=90°,则△PBO=45°,若直线PB交y轴于点M,则OM=OB=4,可得直线BP的解析式为:y=x-4,联立:y=x-4,y=﹣12x2+x+4,得:x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).(3)存在;由y=﹣12x2+x+4知抛物线的对称轴为:x=1,设E(1,m),F(n,﹣12n2+n+4),O(0,0),B(4,0),△当四边形OBEF是平行四边形时,有:EF=4,△n-1=-4,即n=-3,F点坐标为(-3,72 -);△当四边形OBFE是平行四边形时,有:EF=4,n-1=4,即n=5,F点坐标为(5,72 -);△当四边形OFBE是平行四边形时,有:41Fnm y=+⎧⎨=+⎩,即n=3,F点坐标为(3,52);综上所述:点F的坐标为(5,72-),(﹣3,72-),(3,52).3.(2019·开封二模)如图,抛物线y=ax2+bx+2与直线y=﹣x交第二象限于点E,与x轴交于A(﹣3,0),B 两点,与y轴交于点C,EC△x轴.(1)求抛物线的解析式;(2)如果点N是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N为顶点的四边形是平行四边形,请直接写出所有满足条件的点M的坐标.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC △x 轴 △点E 的纵坐标为2, △点E 在直线y =﹣x 上, △点E (﹣2,2),△将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+; (2)由224233y x x =--+知,抛物线的对称轴为x =-1, 设N (-1,n ),M (m ,224233m m --+),△A (﹣3,0),C (0,2),(1)当四边形ACNM 是平行四边形时,有:312Mm n y --=⎧⎨=+⎩,得:m =-4,y M = 103-; 即M (-4,103-). (2)当四边形ACMN 是平行四边形时,有:312Mm n y -+=-⎧⎨+=⎩,得:m =2,y M = 103-; 即M (2,103-). (3)当四边形ANCM 是平行四边形时,有:312Mmn y -=-+⎧⎨=+⎩,得:m =-2,y M = 2; 即M (-2,2).综上所述,M 点的坐标是(-4,103-),(2,103-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF △x 轴,交抛物线于点F(1)求抛物线的解析式;(2)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.【答案】见解析.【解析】解:(1)将y=0代入y=x+3,得x=﹣3.△A(﹣3,0).△抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,△109310a ba b+-=⎧⎨--=⎩,解得:1323ab⎧=⎪⎪⎨⎪=⎪⎩抛物线的解析式为y=13x2+23x﹣1;(2)点G的坐标为(2,1),(﹣,﹣﹣1),(,﹣1),(﹣4,3).△当四边形DCEG是菱形时,CD=CE=EG=4,设E(m,m+3),则G(m,m+7),由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,此时G(-4,3);△当四边形DCGE是菱形时,CG2=16,设E(m,m+3),则G(m,m-1),即m2+ m2=16,解得:m=m=-此时,G(1)或G(--1);△当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,即m+3=1,m=-2,此时G(2,1);综上所述,点G的坐标为:(-4,3)、(1)、(--1)、(2,1).5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y 轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求抛物线的解析式;(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】见解析.【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:-1-b+c=0,c=3,解得:b=2,c=3,即抛物线的解析式为:y=﹣x2+2x+3.(2)由y=﹣x2+2x+3知,点M(1,4),分两种情况讨论,△当四边形MAPQ是矩形时,过M作MH△x轴于H,则MH=4,AH=2,易证得:△APO=△MAH,△tan△APO= tan△MAH,即OA MHOP AH=2,△OP=12,即P(0,-12),由A(-1,0)、M(1,4),P(0,-12)得:点Q坐标为(2,72),△点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,△T(0,92 );△当四边形AMPQ是矩形时,同理可得:T(0,12 -);综上所述,点T的坐标为(0,92),(0,12-).6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数k yx =(x>0)的图象交于点B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN△x轴,交反比例函数kyx=(x>0)的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.【答案】见解析.【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,即一次函数的解析式为:y=x+2,将B(a,4)代入y=x+2,得:a=2,即B(2,4),将B(2,4)代入kyx=得:x=8,即反比例函数的解析式为:8 yx =.(2)设M(m,m+2),则N(82m+,m+2),由题意知,MN△OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,△82mm-+=2,解得:m=2或m=-2(舍)或m=或m=-,△点M的坐标为:(2,+2).7.(2019·许昌月考)如图1,二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).图1 图2【答案】见解析.【解析】解:(1)△二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),△493034103b cb c⎧⨯++=⎪⎪⎨⎪⨯-+=⎪⎩,解得:834bc⎧=-⎪⎨⎪=-⎩,即抛物线的解析式为:y =43x 2﹣83x ﹣4; (2)过点D 作DM △y 轴于点M ,y =43x 2﹣83x ﹣4 =43(x ﹣1)2﹣163, △点D (1,﹣163)、点C (0,﹣4),S △ACD =S 梯形AOMD ﹣S △CDM ﹣S △AOC=12×(1+3)×163﹣12×(163﹣4)×1﹣12×3×4 =4;(3)四边形APEQ 为菱形,理由如下:E 点关于PQ 与A 点对称,过点Q 作QF △AP 于F ,由折叠性质知: AP =EP ,AQ =EQ △AP =AQ =t , △AP =AQ =QE =EP , △四边形AQEP 为菱形, △FQ △OC ,△AF FQ AQOA OC AC ==, △345AF FQ t ==△AF =35t ,FQ =45t ,Q (3﹣35t ,﹣45t ),E (3﹣35t ﹣t ,﹣45t ), △E 在二次函数y =43x 2﹣83x ﹣4上, △﹣45t =43(3﹣85t )2﹣83(3﹣85t )﹣4, △t =14564或t =0(舍去), △E (﹣58,﹣2916). 8.(2018·新乡一模)如图,一次函数122y x =-+分别交y 、x 轴于A 、B 两点,抛物线2y x bx c =-++过A ,B 两点.(1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N . 求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A ,M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.【答案】见解析【解析】解:(1)在122y x =-+得,当x =0时,y =2;y =0时,x =4, 即A (0,2),B (4,0),把A (0,2),B (4,0)代入2y x bx c =-++,得:21640c b c =⎧⎨++=⎩-,解得722b c ⎧=⎪⎨⎪=⎩, △抛物线解析式为2722y x x =-++. (2)由题意知,1(,2)2M t t -+,27(,2)2N t t t -++, △MN =2712(2)22t t t -++--+ =2(2)4t --+,△当t =2时,MN 有最大值4.(3)根据平行四边形的性质,得:D 点坐标为:(0,6),(0,-2)或(4,4).9.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH △x 轴于点H ,再过点F 作FG △x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)△抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,△4016440a b a b -+=⎧⎨++=⎩, 解得:13a b =-⎧⎨=⎩, 即抛物线的解析式为:y =-x 2+3x +4.(2)△四边形EFGH 是矩形,△当EF =EH 时,四边形EFGH 是正方形,设E (m , -m 2+3m +4),则F (3-m ,-m 2+3m +4),m >32, △EF =2m -3,EH =|-m 2+3m +4|,△2m -3=|-m 2+3m +4|,解得:m或m(舍)或m或m(舍) △正方形的边长EF2,综上所述,正方形EFGH 的边长为:2.10.(2019·郑州一中模拟)如图所示,平面直角坐标系中直线y =x +1交坐标轴于点A 、D 两点,抛物线y =ax 2+bx -3经过A 、C 两点,点C 坐标为(a ,5). 点M 为直线AC 上一点,过点M 作x 轴的垂线,垂足为F ,交抛物线于点N .(1)求抛物线解析式;(2)是否存在点M ,使得以点D 、E 、M 、N 为顶点的四边形为平行四边形,如果有,求点M 的坐标,如果没有,请说明理由.【解析】解:△直线y =x +1交坐标轴于点A 、D 两点,△A (-1,0),D (0,1),△点C (a ,5)在直线y =x +1上,△a =4,即C (4,5),将A (-1,0),C (4,5)代入y =ax 2+bx -3得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩, △抛物线的解析式为:y =x 2-2x -3.(2)存在,E (0,-3),△DE =4,由题意知:DE △MN ,△当DE =MN =4时,四边形DENM 是平行四边形,设N (m , m 2-2m -3),则M (m , m +1),△| m +1-(m 2-2m -3)|=4,解得:m =0(舍)或m =3或m = 或m = ,综上所述,点M 的坐标为:(3,4),(32,52),(32,52). 11.(2019·郑州模拟)如图,已知二次函数23234y ax a x ⎛⎫=--+ ⎪⎝⎭的图象经过点A (4,0),与y 轴交于点B ,在x 轴上有一动点C (m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF △AB 于点F ,设△ACE ,△DEF 的面积分别为S 1,S 2,若S 1=4S 2,求m 的值;(3)点H 是该二次函数图象上第一象限内的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且平行四边形DEGH 的周长取最大值时,求点G 的坐标.【答案】见解析.【解析】解:(1)将A (4,0)代入23234y ax a x ⎛⎫=--+ ⎪⎝⎭得:a =34-, △抛物线的解析式为:239344y x x =-++, 设直线AB 的解析式为:y =kx +b , △4k +b =0,b =3,即k =34-,b =3, △直线AB 的解析式为:y =34-x +3. (2)△点C 的横坐标为m ,△D (m , 239344m m -++),E (m , 34-m +3), AC =4-m ,DE =239344m m -++-(34-m +3)= 2334m m -+, △BC △y 轴, △43AC OA CE OB ==,即443m CE -=, △CE =()344m -,AE =()544m -, △△DF A =△DCA =90°,△DBF =△AEC ,△△DFE △△ACE ,△S 1=4S 2,△AE =2DE , 即()544m -=2(2334m m -+),解得:m =4(舍)或m =56, 即m 的值为56. (3)如图,过点G 作GM △DC 于M ,设G 、H 点横坐标为n ,由DE =2334m m -+,得GH =2334n n -+, 2334m m -+=2334n n -+,得:m =n (舍)或n =4-m ,△MG =4-2m , 由45MG EG =得:EG =()5424m -, △C 四边形DEGH =2()25342344m m m ⎡⎤--+⎢⎥⎣⎦=23102m m -++ =23161236m ⎛⎫--+ ⎪⎝⎭,△当m=13时,C最大,此时n=113,即G(113,14),E(13,114),由图象可知当E、G互换位置时满足题意,即G(13,114),E(113,14),综上所述,G点坐标为:(13,114),(113,14).13.(2018·郑州模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.△当△MBA=△BDE时,求点M的坐标;△过点M作MN△x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【答案】见解析.【解析】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,并解得:b=2,c=3,△抛物线的解析式为y=﹣x2+2x+3.顶点D(1,4).(2)△过点M作MG△x轴于G,连接BM.则△MGB=90°,设M(m,﹣m2+2m+3),△MG=|﹣m2+2m+3|,BG=3﹣m,△DE△x轴,D(1,4),B(3,0),△△DEB=90°,DE=4,OE=1,BE=2,△△MBA=△BDE,△tan△MBA=tan△BDE=12,△2233m mm-++-=12解得:m=12-或m=32-或m=3(舍)△满足条件的点M坐标(12-,74)或(32-,94-);△△MN△x轴,△点M、N关于抛物线的对称轴对称,△四边形MPNQ是正方形,△OP=1,由△QPM=△MPO=45°,得:GM=GP,即|﹣m2+2m+3|=|1﹣m|,解得:m或m或m m即满足条件的m.14.(2017·信阳二模)如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,点O为对称中心做菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N,试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣2,0)、B(8,0)代入y=ax2+bx﹣4并解得:a=14,b=32-,即抛物线的解析式为:y=14x232-x-4.(2)由y=14x232-x-4知,C(0,-4),由菱形的性质可知:D(0,4),设直线BD的解析式为:y=kx+n,将点B(8,0)、D(0,4)代入得:k=12-,n=4,即直线BD的解析式为:y=12-x+4,由M(m,12-m+4),Q(m,14m232-m-4).当MQ=DC时,四边形CQMD为平行四边形.∴12-m+4﹣(14m232-m-4)=8,解得m=4或m=0(舍去).∴MD∥CQ,MD=CQ,M(4,2),∴M为BD的中点,∴MD=MB.∴CQ=MB,又∵MB∥CQ,∴四边形CQBM为平行四边形.。
河南省2020年中考考前名师押题压轴卷 数学试题+答案+全解全析
河南省2020年中考考前名师押题压轴卷数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.12的相反数等于A.2B.–2C.2D.–22.2020年是具有里程碑意义的一年,我们将全面建成小康社会,全面建设小康社会的基本标准包括:人均国内生产总值超过3000美元、城镇居民人均可支配收入1.8万元等十个方面.数据“1.8万元”用科学技术法表示为.A.1.8×103元B.1.8×104元C.0.18×105元D.18000元3.如图所示为一个几何体的三视图,那么这个几何体是A .B .C .D .4.下列计算正确的是A .235x y xy +=B .()2239m m +=+C .()326xy xy =D .1055a a a ÷= 5.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是年龄13 14 15 16 人数2 3 4 1 A .15,14.5 B .14,15 C .14,14.5 D .15,156.关于x 的方程220--=x x k 有实数根,则k 的值的范围是A .1k >-B .1k ≥-C .1k <-D .1k ≤-7.抛物线y =4(x +3)2+12的顶点坐标是A .(4,12)B .(3,12)C .(﹣3,12)D .(﹣3,﹣12)8.如图,4×2的正方形的网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为A .12B .13C .14D .19.某小区准备新建50个停车位,已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元,求该小区新建1个地上停车位和1个地下停车位各需多少万元?设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,列二元一次方程组得 A .632 1.3x y x y +=⎧⎨+=⎩ B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩10.如图①,在矩形ABCD 中,AB AD <,对角线,AC BD 相交于点O ,动点P 由点A 出发,沿AB BC CD →→向点D 运动.设点P 的运动路程为x ,AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AD 边的长为A .3B .4C .5D .6第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:()02180.52----=___________________.12.一副直角三角板如上图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,则∠DBC =_____°.13.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 14.⊙O 的半径OA =4,以OA 为直径作⊙O 1交⊙O 的另一半径OB 于点C ,当C 为OB 的中点时,图中阴影部分的面积S =________.15.如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)。
河南省商丘市,2020~2021年中考数学压轴题精选解析
河南省商丘市,2020~2021年中考数学压轴题精选解析河南省商丘市中考数学压轴题精选~~第1题~~(2020商丘.中考模拟) 如图,抛物线y =ax +bx+c 经过O 、A (4,0)、B (5,5)三点,直线l 交抛物线于点B ,交y 轴于点C (0,﹣4).点P 是抛物线上一个动点.(1) 求抛物线的解析式;(2) 点P 关于直线OB 的对称点恰好落在直线l 上,求点P 的坐标;(3) M 是线段OB 上的一个动点,过点M 作直线MN ⊥x 轴,交抛物线于点N.当以M 、N 、B 为顶点的三角形与△OBC 相似时,直接写出点N 的坐标.~~第2题~~(2019天门.中考模拟) 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax +bx 过A 、C 两点.(1) 直接写出点A 的坐标,并求出抛物线的解析式;(2) 动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.~~第3题~~(2018柘城.中考模拟) 如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点、、抛物线过A 、C 两点.(1) 直接写出点A 的坐标,并求出抛物线的解析式;22(2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒过点P作交AC于点E.过点E作于点F,交抛物线于点当t为何值时,线段EG最长?连接在点P、Q运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的t值.~~第4题~~(2017柘城.中考模拟) 如图,抛物线y=ax+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣5),C(6,0)(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若点Q为抛物线的对称轴上的一个动点,试指出使△QAB为等腰三角形的点Q一共有几个?并请你求出其中一个点Q的坐标.~~第5题~~(2017柘城.中考模拟) 如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.22~~第6题~~(2017商丘.中考模拟) 将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.~~第7题~~(2017虞城.中考模拟) 如图①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,点P从点A出发,以3cm/s的速度沿AB运动;同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.~~第8题~~2(2017柘城.中考模拟) 如图,抛物线y=ax +bx 过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H.(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P 的坐标;(4)若点M 在直线BH 上运动,点N 在x 轴上运动,当以点C 、M 、N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.~~第9题~~(2017商丘.中考模拟) 已知△ABC 和△ADE 是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 中点,连接DF 、CF .(1) 如图1,当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2) 如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3) 如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD=1,AC=,求此时线段CF 的长(直接写出结果).~~第10题~~(2016江汉.中考模拟) 如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=4 ,则△CEF 的周长为________.2河南省商丘市中考数学压轴题答案解析~~第1题~~答案:解析:答案:解析:~~第3题~~答案:解析:答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:答案:解析:答案:解析:。
2020年(河南)中考数学压轴题全揭秘精品专题10 一次函数与反比例函数综合题(含答案解析)
专题10一次函数与反比例函数综合题【例1】(2019·偃师一模)如图,直线l:y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),交反比例函数y=k x于第一象限的点P,点P的横坐标为4.(1)求反比例函数y=kx的解析式;(2)过点P作直线l的垂线l1,交反比例函数y=kx的图象于点C,求△OPC的面积.【答案】见解析.【解析】解:(1)△y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),△3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y=kx得:k=4,即反比函数的解析式为:y=4x;(2)设直线l1与x轴、y轴分别交于点E,D,△OA=OB=3,△△OAB=△OBA=45°,△l△l1,△△DPB=90°,△△ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y=4x,解得:x=1,y=4或x=4,y=1,即C(1,4),△S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=15 2.【变式1-1】(2018·河南第一次大联考)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)△B(4,2),四边形OABC为矩形,△OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,△反比例函数的解析式为:4 yx =.(2)在4yx=中,当x=4时,y=1,即CN=1,△S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,△S△OPM=4,即12·OP·OA=4,△OA=2,△OP=4,△点P的坐标为(4,0)或(-4,0).【例2】(2019·济源一模)已知:如图,一次函数y=kx+3 的图象与反比例函数y=mx(x>0)的图象交于点P,P A△x轴于点A,PB△y轴于点B,一次函数的图象分别交x轴、y轴于点C,D,且S△DBP=27,12 OCCA=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出x 取何值时,一次函数 y =kx +3 的值小于反比例函数y =mx的值.【答案】见解析.【解析】解:(1)△一次函数y =kx +3与y 轴相交, △令x =0,解得y =3, △D 的坐标为(0,3);(2)△OD △OA ,AP △OA ,△DCO =△ACP ,△DOC =△CAP =90°, △Rt △COD △Rt △CAP , △12OD OC AP AC ==,OD =3, △AP =OB =6, △DB =OD +OB =9, △S △DBP =27, 即2DP BP⋅=27, △BP =6, △P (6,-6),把P 坐标代入y =kx +3,得到k =32-, 则一次函数的解析式为:y =32-x +3; 把P 坐标代入反比例函数解析式得:m =-36,则反比例解析式为:y =−36x; (3)联立y =−36x,y =32-x +3得:x =-4,y =9或x =6,y =-6,即直线与双曲线两个交点坐标为(-4,9),(6,-6),△当x >6或-4<x <0时,一次函数的值小于反比例函数的值.【变式2-1】(2019·洛阳三模)如图,在平面直角坐标系中,菱形 ABDC 的顶点 D ,C 在反比例函数y =kx上(k >0,x >0),横坐标分别为12和2,对角线 BC △x 轴,菱形ABDC 的面积为 9. (1)求 k 的值及直线 CD 的解析式; (2)连接 OD ,OC ,求△OCD 的面积.【答案】见解析.【解析】解:(1)连接AD ,△菱形 ABDC 的顶点D ,C 在反比例函数y =k x 上,横坐标分别为12和2, △D (12,2k ),C (2, 2k), ∵BC ∥x 轴, ∴B (-1,2k ),A (12,-k ), ∴BC =3,AD =3k , ∵S 菱形ABCD =9,∴12×3×3k=9,解得:k=2,△D(12,4),C(2, 1),设直线CD的解析式为y=mx+n,∴12m+n=4,2m+n=1,解得:m=-2,n=5,即直线CD的解析式为y=-2x+5.(2)设直线y=-2x+5交x轴、y轴于点F,E,则F(52,0),E(0,5),∴S△OCD=S△EOF-S△OED-S△OCF=12×5×52-12×5×12-12×1×52=154,即△OCD的面积为:15 4.【例3】(2019·西华县一模)如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EF A的面积最大,最大面积是多少?【答案】见解析.【解析】解:(1)∵矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx的图象上,∴k=3,即函数的解析式为y =3x; (2)E ,F 两点坐标为:E (2k ,2),F (3,3k ), ∴S △EF A =12AF •BE =12×3k (3﹣2k ), =()2133124k --+, ∴当k =3时,S △EF A 有最大值,最大值34. 【变式3-1】(2019·中原名校大联考)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A ,B 两点,与x 轴交于点C (﹣2,0),点A 的纵坐标为6,AC =3CB .(1)求反比例函数的解析式; (2)请直接写出不等式组mx<kx +b <4的解集; (3)点P (x ,y )是直线y =k +b 上的一个动点,且满足(2)中的不等式组,过点P 作PQ ⊥y 轴交y 轴于点Q ,若△BPQ 的面积记为S ,求S 的最大值.【答案】见解析.【解析】解:(1)过点A 作AD ⊥x 轴于D ,过B 作BE ⊥x 轴于E ,则∠ADC =∠BEC =90°, ∵∠ACD =∠BCE , ∴△ACD ∽△BCE , ∴AD AC CD BE BC CE ==,即623CE BE CE+==,解得:BE=2,CE=1,∴A(1,6),∴反比例函数解析式为y=6x;(2)将A(1,6),C(﹣2,0)代入y=kx+b,得:620k bk b+=⎧⎨-+=⎩,解得:24kb=⎧⎨=⎩,即直线解析式为:y=2x+4,由B(﹣3,﹣2),得不等式组6x<2x+4<4的解集为:﹣3<x<0;(3)设P(m,2m+4)(﹣3<m<0),则PQ=﹣m,△BPQ中PQ边上的高为2m+4﹣(﹣2)=2m+6,∴S=12•(﹣m)(2m+6)=﹣m2﹣3m=﹣(m+32)2+94,∴当m=﹣32时,S取得最大值,最大值为94.1.(2019·郑州外国语测试)如图所示,在平面直角坐标系中,直线l1:y=12-x与反比例函数y=kx的图象交于A、B两点,点A在点B左侧,已知A点的纵坐标为2.(1)求反比例函数的解析式;(2)根据图象直接写出12-x>kx的解集;(3)将直线y=12-x沿y轴向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.【答案】见解析.【解析】解:(1)在y=12-x中,y=2时,x=-4,即A(-4,2),△反比例函数y=kx的图象过点A,△k=-8,即反比例函数的解析式为:y=8x -;(2)联立y=8x-,y=12-x,解得:x=-4,y=2(点A);或x=4,y=-2,即B(4,-2),∴12-x>kx的解集为:x<-4或0<x<4;(3)设平移后的直线与x轴交于点D,连接AD、BD,△CD△AB,△△ABC的面积等于△ABD的面积,等于30,△S△AOD+S△BOD=30,△12·OD·|y A|+12·OD·|y B|=30,△OD=15,即D(15,0),设平移后直线的解析式为:y=12-x+m,将D(15,0)代入得:m=152,即平移后的直线函数表达式为:y=12-x+152.2.(2018·河师大附中模拟)如图,已知函数y=kx(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC△y轴,AC=1(点C在A点的下方),过点C作CD△x轴,与函数y=kx(x>0)的图象交于点D,过点B作BE△CD于E,E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE =12AC 时,求CE 的长.【答案】见解析.【解析】解:(1)将A (1,2)代入y =kx得:k =2, △AC △y 轴,AC =1, △C (1,1),△CD △x 轴,D 在y =2x上, △D (2,1),△S △OCD =12×1×1=12. (2)△BE =12AC ,△BE =12,△BE △CD , △点B 的纵坐标为32, △B 点在函数y =2x上, △B (43,32), △CH =43-1=13,△DH =1.5,△CD =+1.5,在Rt △CDE 中,△CED =60°,△CE =°sin60CD(米).3.(2018·洛阳三模)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(不与A 、B 重合),过点F 的反比例函数y =kx(k >0)的图象与BC 边交于点E . (1)当F 为AB 边的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积为23?【答案】见解析.【解析】解:(1)由题意知,AB =OC =2,BC =OA =3, △F 是AB 中点, △F (3,1),将F (3,1)代入y =kx得:k =3, 即反比例函数的解析式为:y =3x.(2)由图象知,点F 位于B 点下方,B (3,2), △当x =3时,y <2, 即k <6, △0<k <6,由题意知,F 点横坐标为3,即F (3, 3k ), 同理,得E 点坐标为(2k,2), △S △EF A =12AF BE ⋅⋅ 13232k k ⎛⎫=⨯⨯- ⎪⎝⎭△2313232k k ⎛⎫=⨯⨯- ⎪⎝⎭解得:k =2,或k =4,当k 为2或4时,△EF A 的面积为23.4.(2019·洛阳二模)如图,A ,B 分别在反比例函数y =kx(x <0)和y =x (x >0)的图象上,AB △x 轴,交 y 轴于点C .若△AOC 的面积是△BOC 面积的2倍.(1)求k 的值;(2)当△AOB =90°时,直接写出点A ,B 的坐标.【答案】见解析.【解析】解:(1)△AB △x 轴,△S △AOC =2k ,S △BOC ,△△AOC 的面积是△BOC 面积的2倍,△2k,△k (舍)或k =-.即k 的值为:-.(2)△△AOB =90°,△ACO =90°, △△A +△ABO =△B +△BOC =90°, △△A =△BOC , △△AOC △△OBC ,△△AOC 的面积是△BOC 面积的2倍,△OCBC=设B (a ),△aa ,解得:a a =(舍),即B (1,),△A (-2).5.(2019·周口二模)如图,点A (-2,a ),C (3a -10,1)是反比例函数my x=(x <0)图象上的两点. (1)求m 的值;(2)过点A作AP⊥x轴于点P,若直线y=kx+b经过点A,且与x轴交于点B,当∠P AC=∠P AB时,求直线AB的解析式.【答案】见解析.【解析】解:(1)∵点A(-2,a),C(3a-10,1)是反比例函数myx上,∴-2a=3a-10,解得:a=2,∴A(-2,2),C(-4,1),∴m=-4;(2)分两种情况讨论:①当点B在AP左侧时,∵∠P AC=∠P AB,∴A、C、B三点共线,将A(-2,2),C(-4,1)代入y=kx+b,并解得:k=12,b=3,即直线AB的解析式为:y=12x+3;②当点B在AP右侧时,∵∠P AC=∠P AB,∴此时直线AB与①中的直线AB关于直线AP成轴对称,此时k=-12,将(-2,2)代入y=-12x+b,得:b=1,即直线AB的解析式为:y=-12x+1;综上所述,直线AB的解析式为:y=12x+3,y=-12x+1.6.(2017·新野一模)如图,已知双曲线y =kx经过点B (1),点A 是双曲线第三象限上的动点,过B 作BC ⊥y 轴,垂足为C ,连接AC .(1)求k 的值;(2)若△ABC 的面积为,求直线AB 的解析式;(3)在(2)的条件下,写出反比例函数值大于一次函数值时x 的取值范围.【答案】见解析.【解析】解:(1)把B (1)代入y =kx中得,∴k ,(2)设△ABC 中BC 边上的高为h ,∵BC ⊥y 轴,B (1)∴BC ,∵△ABC 的面积为∴12BC •h , 解得:h =4,∴点A 的纵坐标为﹣3,把y =﹣3代入y ,得:x =,即A 3),设直线AB 的解析式为:y =mx +n ,把A 3)和B (,1)代入y =mx +n ,并解得:m,b=-2,∴直线AB的解析式为y x﹣2.(3)由图象可得:x或0<x<7.(2018·焦作一模)如图,一次函数y=﹣12x+b与反比例函数y=kx(x>0)的图象交于点A(2,6)和B(m,1)(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.【答案】(1)y=﹣12x+7,y=12x;(2)见解析.【解析】解:(1)把点A(2,6)代入y=kx,得k=12,即反比函数解析式为:y=12x.∵点B(m,1)在y=12x上,∴m=12,即B(12,1).∵直线y=﹣12x+b过点A(2,6),∴b=7,∴一次函数的表达式为y=﹣12x+7.∴答案为:y=﹣12x+7,y=12x.(2)设直线AB与y轴交于点P,点E的坐标为(0,a),连接AE,BE,则点P的坐标为(0,7),∵S△AEB=S△BEP﹣S△AEP=5,∴12×|a﹣7|×(12﹣2)=5,∴|a﹣7|=1,解得:a=6或a=8,即点E的坐标为(0,6)或(0,8).8.(2018·信阳一模)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣12x+3交AB,BC分别于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,在y=﹣12x+3中,当y=2时,x=2,∴M(2,2),将x=4代入y=﹣12x+3得:y=1,∴N(4,1),∵反比例函数y=kx的图象经过点M(2,2),∴k=4,∴反比例函数的解析式是y=4x;(2)S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣12×2×2﹣12×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴12OP×AM=4,而AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).9.(2019·南阳毕业测试)如图,直线y=kx+b与反比例函数y=mx的图象分别交于点A(﹣1,2),点B(﹣4,n),与x轴,y轴分别交于点C,D.(1)求此一次函数和反比例函数的解析式;(2)求△AOB的面积.【答案】见解析.【解析】解:(1)将点A(﹣1,2)代入y=mx,得m=﹣2,∴反比例函数解析式为:y=2x -.将B(﹣4,n)代入y=2x-中,得:n=12;B点坐标为(﹣4,12).将A(﹣1,2)、B(﹣4,12)代入y=kx+b中,得:-k+b=2,-4k+b=12,解得:k=12,b=52,∴一次函数的解析式为y=12x+52;(2)在y=12x+52中,当y=0时,x=﹣5,∴C(﹣5,0),即OC=5.S△AOC=S△AOC﹣S△BOC=12•OC•|y A|﹣12•OC•|y B|=154.10.(2019·开封二模)如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.【答案】见解析.【解析】解:(1)∵点A(4,3)在反比例函数y=kx的图象上,∴k=12,即反比例函数解析式为:y=12x;(2)如上图,过点A作AC⊥x轴于点C,则OC=4,AC=3,在Rt△OAC中,由勾股定理得:OA=5,∵AB∥x轴,AB=OA=5,∴点B的坐标为(9,3);(3)∵B(9,3),∴可得OB所在直线解析式为y=13 x,联立:y=13x,y=12x,解得:x=6,y=2或x=-6,y=-2(舍),∴P(6,2),如上图所示,过点P作PD⊥x轴于D,∴S△OAP=S梯形PDCA=5.11.(2019·安阳一模)如图,在平面直角坐标系中,反比例函数kyx=(k≠0)与一次函数y=ax+b(a≠0)交于第二、四象限的A,B两点,过点A作AD⊥y轴于点D,OD=3,S△AOD=3,点B的坐标为(n,-1).(1)求反比例函数和一次函数的解析式;(2)请根据图象直接写出kax bx+≥的自变量x的取值范围.【答案】见解析.【解析】解:(1)∵AD⊥y轴,OD=3,∴S△AOD=12OD·AD,S△AOD=3∴AD=2,即A(-2,3),将A(-2,3)代入kyx=中,得:k=-6,即反比例函数解析式:6 yx =-.当y=-1时,x=6,即B(6,-1),将A(-2,3), B(6,-1)代入y=ax+b得:-2a+b=3,6a+b=-1,解得:a=12-,b=2,即一次函数的解析式为:y=12-x+2.(2)观察图象可知,kax bx+≥的解集为:x≤-2或0<x≤6.12.(2019·三门峡二模)如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=kx(k≠0)相交于A,B两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=kx(k≠0)交于点N,若点M在N右边,求n的取值范围.【答案】见解析.【解析】解:(1)在y=x﹣2中,当x=3时,y=1,∴A(3,1),∵点A(3,1)在双曲线y=kx上,∴k=3;(2)联立y=x﹣2,y=3x,解得:31xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,即B(﹣1,﹣3),如下图所示:当点M在N右边时,n的取值范围是n>1或﹣3<n<0.13.(2019·濮阳二模)如图,已知反比例函数y=mx(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【答案】见解析.【解析】解:(1)反比例函数y=mx图象经过点(1,4),∴m=4,即反比例函数的表达式为:y=4 x .∵反比例函数的图象过点Q(﹣4,n),∴n=-1,∵一次函数y=﹣x+b的图象过点Q(﹣4,-1),∴b=-5,即一次函数的表达式为:y=﹣x﹣5;(2)联立y=﹣x﹣5,y=4x,解得:x=-4,y=-1或x=-1,y=-4,∴P(﹣1,﹣4),在一次函数y=﹣x﹣5中,当y=0时,x=﹣5,∴点A (﹣5,0), ∴S △OPQ =S △OP A ﹣S △OAQ=11545122⨯⨯-⨯⨯=152. 14.(2019·商丘二模)如图,一次函数y =k 1x +b 与反比例函数y =2k x的图象交于A (2,m ),B (n ,﹣2)两点.过点B 作BC ⊥x 轴,垂足为C ,且S △ABC =5.(1)求一次函数与反比例函数的解析式. (2)根据所给条件,请直接写出不等式k 1x +b >2k x的解集; (3)若P (p ,y 1),Q (﹣2,y 2)是函数y =2k x图象上的两点,且y 1≥y 2,求实数p 的取值范围.【答案】见解析.【解析】解:(1)∵S △ABC =12•BC •(x A -x B ) =12×2×(2﹣n ), ∴12×2×(2﹣n )=5, 即n =-3,∴A (2,3),B (﹣3,﹣2), ∴k 2=6,即反比例函数的解析式是y =6x. 把A (2,3),B (﹣3,﹣2)代入y =k 1x +b 得:112332k b k b +=⎧⎨-+=-⎩,解得:k 1=1,b =1,即一次函数的解析式是y =x +1;(2)∵当﹣3<x <0或x >2时,一次函数图象在反比例函数图象上方,∴不等式k 1x +b >2k x的解集是﹣3<x <0或x >2; (3)在y =6x中,当x >0时,y 随x 增大而减小;当x >0时,y >0, 当x =-2时,y 2=-3,即Q (-2,-3)∴若y 1≥y 2,实数p 的取值范围是:p ≤﹣2或p >0.15.(2019·开封模拟)如图,在平面直角坐标系xOy 中,已知正比例函数y 1=﹣2x 的图象与反比例函数y 2=kx的图象交于A (﹣1,n ),B 两点.(1)求出反比例函数的解析式及点B 的坐标; (2)观察图象,请直接写出满足y ≤2的取值范围;(3)点P 是第四象限内反比例函数的图象上一点,若△POB 的面积为1,请直接写出点P 的横坐标.【答案】见解析. 【解析】解:解:(1)把A (﹣1,n )代入y 1=﹣2x ,得n =2, ∴A (﹣1,2),把A (﹣1,2)代入y 2=kx,可得k =﹣2, ∴反比例函数的表达式为y 2=﹣2x,由反比例函数图象性质,知点B 与点A 关于原点对称, ∴B (1,﹣2).(2)由图象可知,y ≤2时自变量x 的取值范围是:x <﹣1或x >0; (3)过B 作BM ⊥x 轴于M ,过P 作PN ⊥x 轴于N ,∵S梯形MBPN=S△POB=1,设P(m,﹣2m),则12(2+2m)|m﹣1|=1,解得:m=12或m=12,综上所述,P.16.(2019·开封二模)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=kx(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=kx(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.【答案】见解析.【解析】解:(1)过点D作DE⊥y轴于E,∵点D的坐标为(4,3),∴DE=4,OE=3,由勾股定理得:OD=5,∴AD=5,∴点A坐标为(4,8),∵点A在反比例函数y=kx的图象上,∴k=32;(2)由D(4,3)知,当平移后落在y=32x的图象上,则y=3,即32x=3,即x=323,∴平移的距离为:323-4=203,即菱形ABCD沿x轴正方向平移的距离为20 3.17.(2019·郑州联考)如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数k yx =的图象过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.(1)求反比例函数kyx=和直线OE的函数解析式;(2)求四边形OAFC的面积?【答案】见解析.【解析】解:(1)由题意得:点B(3,4),点D(3,2),将D(3,2)代入kyx=,得k=6.即反比例函数的解析式为6yx =;在6yx=中,当y=4时,x=32,即E(32,4),设直线OE的解析式为:y=mx,将(32,4)代入得:m=83,即直线OE的解析式为y=83 x;(2)连接AC,在Rt△OAC中,OA=3,OC=4,由勾股定理得:AC=5,∵AF=12,CF=13.∴AC2+AF2=CF2,∴∠CAF=90°,∴S四边形OAFC=S△OAC+S△CAF=12×3×4+12×5×12=36.18.(2019·安阳二模)如图,直线y=12x与反比例函数y=kx(x>0)的图象交于点A,已知点A的横坐标为4.(1)求反比例函数的解析式;(2)将直线y=12x向上平移3个单位后的直线l与y=kx(x>0)的图象交于点C;①求点C的坐标;②记y=kx(x>0)的图象在点A,C之间的部分与线段OA,OC围成的区域(不含边界)为W,则区域W内的整点(横,纵坐标都是整数的点)的个数为.【答案】见解析.【解析】解:(1)将x=4代入y=12x,得:y=2,∴A(4,2),将A点代入y=kx,得:k=8,∴反比例函数的解析式y=8x;(2)①l的解析式为y=12x+3,联立:y=12x+3,y=8x得:∴x=2,y=4或x=-8,y=-1(舍),∴C(2,4);②4个;19.(2019·名校模考)在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=kx(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(﹣2,3)(1)求一次函数和反比例函数的解析式;(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.【答案】见解析.【解析】解:(1)将(﹣2,3)代入y=﹣x+b,得:b=1,将(﹣2,3)代入y=kx,得:k=-6,即:一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=6x;(2)在y=﹣x+1中,当x=0时,y=1,即C(0,1),由平移知:CF=4.联立y=﹣x+1,y=6x,解得:x=3,y=-2或x=-2,y=3,∴B(3,-2),A(-2,3),∴S△ABF=12×4×(2+3)=10.20.(2019·枫杨外国语三模)如图,一次函数y=﹣x+b与反比例函数y=kx(k≠0)的图象相交于A、B两点,其中A(﹣1,4),直线l⊥x轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC.(1)求出b和k;(2)判定△ACD的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣1,4)代入一次函数y=﹣x+b,得:b=3,将A(﹣1,4)代入反比例函数y=kx,得k=﹣4;(2)△ACD是等腰直角三角形.∵直线x=﹣4与一次函数y=﹣x+3交于点D,∴D(﹣4,7),同理,可得:C(﹣4,1),∵A(﹣1,4),C(﹣4,1),D(﹣4,7)∴CD=6,∵∠AFD=∠AFC=90°,由勾股定理得:AC=AD=32,∵AD2+AC2= 36,CD2=36∴AD2+AC2=CD2∴△ACD是直角三角形,∵AD=AC∴△ACD是等腰直角三角形.。
2020届河南中考数学押题密卷参考答案
2020届河南中考数学押题密卷参考答案【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
答题:gbl210老师一、选择题(每小题3分,共30分)1.B2.C3.B4.D5.B6.A7.C8.A9.A 10.D二、填空题(每小题3分,共15分)11.2(a-1)² ; 12.m<1/5 ; 13.3π;14.﹣.15.2或5三、解答题(本题共8个小题,满分75分)16.(8分)解:(+)÷=[+]×x=(+)×x=2x﹣3--------5分∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5--------8分17. (9分)解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b=×100%=40%,故答案为:12,40;-------4分(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;--------6分(3)用A、B表示男生,用a、b表示女生,列表得:A B a b A AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.---------9分18.(9分)解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;--------5分(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.--------------9分19.(9分)解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;--------4分(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).-------9分20.(9分)解:如图,作FG⊥AB于G,DH⊥AB于H.设AG=x.在Rt△AFG中,FG===x,--------3分在Rt△ADH中,DH==,---------6分∵FG﹣DH=EB﹣CB=EC,∴x ﹣=10,解得x=20.8,∴AB=AG+BG=AG+EF=20.8+1.8=22.6米,答:灯塔AB 的高度为22.6米.------------9分21.(10分)解:(1)设该果农今年收获樱桃x千克,根据题意得:400-x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;------5分(2)由题意可得:100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y )+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0解得:y1=0,y 2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.-----10分22.(10分)(1)AF=CF(2)仍成立。
河南省信阳市,2020~2021年中考数学压轴题精选解析
河南省信阳市,2020~2021年中考数学压轴题精选解析河南省信阳市中考数学压轴题精选~~第1题~~(2020信阳.中考模拟) 如图,抛物线y =ax +bx+c 经过A (﹣1,0)、C (0,3)、B (2,3)(1) 求抛物线的解析式;(2) 线段AB 上有一动点P ,过点P 作y 轴的平行线,交抛物线于点Q ,求线段PQ 的最大值;(3) 抛物线的对称轴上是否存在点M ,使△ABM 为直角三角形?如果存在,求出点M 的坐标;如果不存在,说明理由(4个坐标).~~第2题~~(2020潢川.中考模拟) 如图,抛物线 与直线AB 交于点A(-1,0),B(4, ).点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD.(1) 求抛物线的解析式;(2) 设点D 的横坐标为m ,则用m 的代数式表示线段DC 的长;(3) 在(2)的条件下,若△ADB 的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标;(4) 当点D 为抛物线的顶点时,若点P 是抛物线上的动点,点Q 是直线AB 上的动点,判断有几个位置能使以点P ,Q ,C ,D 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.~~第3题~~(2020淮滨.中考模拟) 如图,直线与x 轴交于点A (3,0),与y 轴交于点B ,抛物线经过A,B.(1) 求抛物线解析式;(2) E (m ,0)是x 轴上一动点,过点E 作轴于点E ,交直线AB 于点D ,交抛物线于点P ,连接PB.①点E 在线段OA 上运动,若△PBD 是等腰三角形时,求点E 的坐标;②点E 在x 轴的正半轴上运动,若 ,请直接写出m 的值. 2~~第4题~~(2020商城.中考模拟) 如图,在平面直角坐标系中,直线y =kx﹣ 与抛物线y =ax +bx+ 交于点A 、C ,与y 轴交于点B ,点A 的坐标为(2,0),点C 的横坐标为﹣8.(1) 请直接写出直线和抛物线的解析式;(2) 点D 是直线AB 上方的抛物线上一动点(不与点A 、C 重合),作DE ⊥AC 于点E.设点D 的横坐标为m.求DE 的长关于m 的函数解析式,并写出DE 长的最大值;(3) 平移△AOB ,使平移后的三角形的三个顶点中有两个在抛物线上,请直接写出平移后的点A 对应点A′的坐标.~~第5题~~(2019信阳.中考模拟) 如图所示,已知抛物线y=ax +bx+c (a≠0)经过点A (﹣2,0)、B (4,0)、C (0,﹣8),与直线y=x ﹣4交于B ,D 两点(1) 求抛物线的解析式并直接写出D 点的坐标;(2) 点P 为直线BD 下方抛物线上的一个动点,试求出△BDP 面积的最大值及此时点P 的坐标;(3) 点Q 是线段BD 上异于B 、D 的动点,过点Q 作QF ⊥x 轴于点F ,交抛物线于点G ,当△QDG 为直角三角形时,直接写出点Q 的坐标.~~第6题~~(2018信阳.中考模拟) 如图,在矩形OABC 中,点O 为原点,边OA 的长度为8,对角线AC=10,抛物线y=x+bx+c 经过点A 、C ,与AB 交于点D .(1) 求抛物线的函数解析式;(2) 点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CP Q 的面积为S .①求S 关于m 的函数表达式并求出S 最大时的m 值;②在S 最大的情况下,在抛物线y= x +bx+c 的对称轴上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符2222合条件的点F 的坐标;若不存在,请说明理由.~~第7题~~(2017信阳.中考模拟) 如图,抛物线y=ax +bx ﹣4与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点C ,连接BC ,以BC 为一边,点O 为对称中心做菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1) 求抛物线的解析式;(2) 当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N ,试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由.(3) 当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.~~第8题~~(2017信阳.中考模拟) 如图,已知抛物线y= (x+2)(x ﹣4)与x 轴交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C ,CD ∥x 轴交抛物线于点D ,M 为抛物线的顶点.(1) 求点A ,B ,C 的坐标;(2) 设动点N (﹣2,n ),求使MN+BN 的值最小时n 的值;(3) P 是抛物线上一点,请你探究:是否存在点P ,使以P ,A ,B 为顶点的三角形与△ABD 相似(△PAB 与△ABD 不重合)?若存在,求出点P 的坐标;若不存在,说明理由.~~第9题~~(2017罗山.中考模拟) 如图,在平面直角坐标系中,已知矩形OABC 的三个顶点A (0,10),B (8,10),C (8,0),过O 、C 两点的抛物线y=ax +bx+c 与线段AB 交于点D ,沿直线CD 折叠矩形OABC的一边BC ,使点B 落在OA 边上的点E 处.22(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒.请问当t为何值时,以P、Q、C为顶点的三角形是等腰三角形?(3)若点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M、N、C、E为顶点四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.河南省信阳市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:答案:解析:~~第5题~~答案:解析:答案:解析:~~第7题~~答案:解析:答案:解析:答案:解析:。
河南省2020年中考数学压轴题全揭秘专题20几何与代数综合性及易错问题含解析
专题20 几何与代数综合性及易错问题题型一:几何与代数综合性问题尺规作图、利用代数方法解决图形存在性(最值、性质)问题等题型二:易错题型基于分类讨论的题型.【例1】(2019·洛阳二模)如图,直线y=-43x+4与x轴、y轴的交点为A,B.按以下步骤作图:①以点A为圆心,适当长度为半径作弧,分别交AB,x轴于点C,D;②分别以点C,D为圆心,大于12CD的长为半径作弧,两弧在∠OAB内交于点M;③作射线AM,交y轴于点E.则点E的坐标为【答案】(0,32).【解析】解:过点E作EF⊥AB于F,如图所示,在y=-43x+4中,当x=0时,y=4;当y=0时,x=3,即A(3,0),B(0,4),在Rt△AOB中,由勾股定理得:AB=5,由题意的尺规作图方法可知,AM为∠BOA的平分线,∴EO=EF,∴△OAE≌△FAE,∴OA=AF=3,∴BF=AB-AF=2,设OE=x,则EF=x,BE=4-x,在Rt△BEF中,由勾股定理得:(4-x)2=x2+22,解得:x=32,即OE=32,∴答案为:(0,32).【变式1-1】(2019·偃师一模)如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA,AB于点M,N,再以M,N为圆心,大于12MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为【答案】0).【解析】解:由题意知,AP为∠OAB的平分线,∴∠OAP=∠BAP,∵△OPA与△OAB相似,∴∠OPA=∠OAB=2∠OAP,∴∠OAP=30°,∵OA=2,∴OP=OA·tan30°=3,即P,0).【变式1-2】(2018·河南第一次大联考)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交1y x =的图象于点C ,连接AC .若△ABC 是等腰三角形,则k 的值是__________.. 【解析】解:联立y =kx ,1y x=,得:x,y A ),同理,得点B 的坐标为), ∵BD ⊥x 轴,∴C),∴BC -3,BC -6∴A 不在BC 的垂直平分线上,即AB ≠AC ,(1)当AB =BC 时,即AB 2=BC 2,(2223⎛+= ⎝⎭,解得:k =7或k =7-(舍); (2)当AC =BC 时,即AC 2=BC 2,22233⎛⎛+= ⎝⎝⎭,解得:k 或k =(舍);. 【例2】(2019·偃师一模)当-2≤x ≤1时,二次函数 y =-(x -m )2+m 2+1有最大值4,则实数m 的值为2.【解析】解:①当-2≤m ≤1时,x =m 时,y =4,即m 2+1=4,解得:m m =②当m <-2时, x =-2时,y =4,即-(-2-m )2+m 2+1=4,解得:m =74-(舍); ③当m >1时,x =1时,y =4,即-(1-m )2+m 2+1=4,解得:m =2,综上所述,m 2.【变式2-1】 (2019·洛阳二模)四张背面相同的扑克牌,分别为红桃 1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为 a ,再在剩余的扑克中抽取一张点数记为 b ,则点(a ,b )在直线 y =x +1 上方的概率是 【答案】14. 【解析】解:抽到的点数有序数对为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12中可能,只有(1,2),(2,3),(3,4)三个点在直线y =x +1上,即点(a ,b )在直线 y =x +1 上方的概率是31=124, 故答案为:14.【变式2-2】(2018·信阳一模)如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2D.以上都有可能【答案】A.【解析】解:由图甲可知,黑色方砖6块,共有16块方砖,∴在乙种地板上最终停留在黑色区域的概率为P1=63 168=,由图乙可知,黑色方砖3块,共有9块方砖,∴在乙种地板上最终停留在黑色区域的概率为P2=31 93 =,∴P1>P2;故答案为:A.1.(2018·焦作一模)如图,在直角坐标系中,正方形ABCO的点B坐标(3,3),点A、C分别在y轴、x轴上,对角线AC上一动点E,连接BE,过E作DE⊥BE交OC于点D.若点D坐标为(2,0),则点E坐标为.【答案】(1,2).【解析】解:过点E作EH⊥OC于H,延长HE交AB于F,连接OE,∵四边形ABCO是正方形,∴AB∥OC,∠OAB=∠AOC=90°,∠OAC=∠BAC=∠OCA=45°,OA∥BC,∴FH∥OA,∴∠HEC=∠OAC=∠OCA= 45°,∠BFH=∠OAB=90°,∠DHE=∠AOC=90°,∴EH=CH=BF,∠EBF=∠DEH,∴△BEF≌△EDH,∴BE=DE,∵点D坐标为(2,0),即OD=2,由正方形性质得:OE=BE=DE,∵FH⊥OC,∴OH=DH=12OD=1,∴EF=DH=1,∵FH=OA=3,∴EH=2,∴点E的坐标为(1,2),∴答案为:(1,2).2.(2018·焦作一模)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.图1 图2 【答案】(1)等边三角形;(2)(3)见解析. 【解析】解:(1)∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=CE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM= 12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;答案为等边三角形;(2)△PMN的形状不发生改变,理由如下:连接CE、BD,∵AB=AC,AE=AD,∠BAC=∠DAE=60°,由旋转性质得:BD=CE,∠ABD=∠ACE,∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠BCE+∠CBD=∠BCA+∠ACE+∠CBD=∠BCA+∠ABD+∠CBD=∠BCA+∠ABC=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12 BD,∴当BD的值最大时,PN的值最大,当A、B、D共线时且A在B、D之间时,BD取最大值,此时BD=1+3=4,∴PN的最大值为2,即△PMN的周长的最大值为6.3.(2019·三门峡二模)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD,BC分别与x轴交于E,F,连接BE,DF,若正方形ABCD的顶点B,D在双曲线y=ax上,实数a满足1aa-=1,则四边形DEBF的面积是()A.12B.32C.1 D.2【答案】D.【解析】解:∵实数a满足1aa-=1,∴a=±1,又∵a>0,∴a=1,∵正方形ABCD的顶点B,D在y=ax上,∴S矩形BGOF=1,∵正方形ABCD的对称中心在坐标原点,∴S平行四边形DEBF=S矩形ABFEF=2S矩形BGOF=2×1=2,故答案为:D.4.(2019·省实验一模)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于12 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.如果CD=AC,∠ACB=105°,那么∠B的度数为()A.20° B.25° C.30°D.35°【答案】B.【解析】解:由尺规作图可得:MN垂直平分BC,∴DC=BD,∴∠DCB=∠DBC,∵DC=AC,∴∠A=∠CDA,设∠B为x,则∠BCD=x,∠A=∠CDA=2x,∴x+2x+105°=180°,解得:x=25,即∠B=25°,故答案为:B.5.(2019·省实验一模)如图,点A(m,5),B(n,2)是抛物线C1:y=12x2﹣2x+3上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A .y =12(x ﹣5)2+1 B .y =12(x ﹣2)2+4 C .y =12(x +1)2+1 D .y =12(x +2)2﹣2 【答案】C .【解析】解:∵y =12x 2﹣2x +3 =12(x ﹣2)2+1, ∵阴影部分的面积为9,A (m ,5),B (n ,2),∴3BB ′=9,∴BB ′=3,即将C 1沿x 轴向左平移3个单位长度得到C 2的图象,∴C 2的函数表达式是y =12(x +1)2+1. 答案为:C .6.(2019·省实验一模)如图,网格线的交点称为格点.双曲线y =1k x 与直线y =k 2x 在第二象限交于格点A .(1)填空:k 1= ,k 2= ;(2)双曲线与直线的另一个交点B 的坐标为 ;(3)在图中仅用直尺、2B 铅笔画△ABC ,使其面积为2|k 1|,其中点C 为格点.【答案】(1)﹣2;﹣2;(2)(1,﹣2);(3)见解析.【解析】解:(1)由图可得:A (﹣1,2),将点A (﹣1,2)分别代入双曲线y =1k x和直线y =k 2x , 可得:k 1=﹣2,k 2=﹣2,(2)由对称性可知,两函数图象的另一个交点与A (﹣1,2)关于坐标原点对称,∴B (1,﹣2);(3)∵k 1=﹣2,∴2|k 1|=4,∴满足条件的点C 有四个,如图所示.7.(2019·叶县一模)有两张完全重合的矩形纸片,将其中一张绕点A 顺时针旋转90°后得到矩形AMEF (如图1),连接BD ,MF ,若BD =16cm ,∠ADB =30°.(1)如图1,试探究线段BD 与线段MF 的数量关系和位置关系,并说明理由;(2)把△BCD 与△MEF 剪去,将△ABD 绕点A 顺时针旋转得△AB 1D 1,边AD 1交FM 于点K (如图2),设旋转角为β(0°<β<90°),当△AFK 为等腰三角形时,求β的度数;(3)若将△AFM 沿AB 方向平移得到△A 2F 2M 2(如图3),F 2M 2与AD 交于点P ,A 2M 2与BD 交于点N ,当NP ∥AB时,求平移的距离.图1 图2 图3 【答案】见解析.【解析】解:(1)结论:BD=MF,BD⊥MF.理由:延长FM交BD于点N,由题意得:△BAD≌△MAF.∴BD=MF,∠ADB=∠AFM.∵∠DMN=∠AMF,∴∠ADB+∠DMN=∠AFM+∠AMF=90°,∴∠DNM=90°,∴BD⊥MF.(2)由题意知,∠KAF<90°,①当AF=AK时,∠AKF=∠F=30°,此时∠KAF=120°,不符题意,此种情况不存在;②当AK=FK时,∠KAF=∠F=30°,则∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,即β=60°;③当AF=FK时,∠FAK=75°,∴∠BAB1=90°﹣∠FAK=15°,即β=15°;综上所述,β的度数为60°或15°;(3)由题意得四边形PNA2A是矩形,设A2A=PN=x,在Rt△A2M2F2中,F2M2=FM=16,∠F=∠ADB=30°,∴A2M2=8,A2F2=∴AF2=﹣x.同理,AP=8x,∴PD=AD﹣AP=x.∵NP∥AB,∴PN DP AB AD=,∴88xx,解得x=12﹣∴平移距离为:12﹣8.(2019·濮阳二模)若函数y=(m﹣1)x2﹣6x+32m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3 B.﹣2或﹣3 C.1或﹣2或3 D.1或﹣2或﹣3 【答案】C.【解析】解:(1)当m=1时,函数解析式为:y=﹣6x+32,是一次函数,图象与x轴有且只有一个交点,(2)当m≠1时,函数为二次函数,∴62﹣4×(m﹣1)×32m=0,解得:m=﹣2或3,故答案为:C.9.(2019·濮阳二模)如图,点A在双曲线y=kx(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于12OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A .2B .3225CD 【答案】B .【解析】解:设OA 交CF 于K .由作图方法可知,CF 垂直平分线段OA ,∴OC =CA =1,OK =AK ,在Rt △OFC 中,由勾股定理得:CF ,由三角形的面积知:AK =OK∴OA , 由△FOC ∽△OBA ,可得:OF OC CF OB AB AO ==,∴21OB AB ==, ∴OB =85,AB =45, 即A (85,45), ∴k =3225.∴答案为:B .10.(2019·商丘二模)如图,平面直角坐标系中,矩形OABC 绕原点O 逆时针旋转30°后得到矩形OA ′B ′C ′,A ′B ′与BC 交于点M ,延长BC 交B ′C ′于N ,若A ,0),C (0,1),则点N 的坐标为( )A .1)B .(2,1)C .-2,1)D .(1,1)【答案】B .【解析】解:连接ON ,取∠ONE =∠NOC ,由旋转性质得:C 'O =CO ,∠COC '=30°∵CO =C 'O ,NO =NO∴Rt △CON ≌Rt △C 'ON (HL )∴∠NOC =∠NOC '=15°∴∠ONE =∠NOC =15°∴∠NEC =30°,NE =EO∵NC ⊥OC ,∠NEO =30°∴NC =12NE ,CE∵CE +OE =1∴2NC NC =1∴NC=2即点N坐标(21)所以答案为:B.11.(2019·开封模拟)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.【答案】12.【解析】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF DG=2,∴AF=2GF=4,∴AG=6.由题意得:CG为△EAB的中位线,∴AE=2AG=12.所以答案为:12.12.(2019·新乡一模) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;②连接MN分别交AB、AC于点E、F;③连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【答案】D.【解析】解:由作图方法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理,DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,由DE∥AC,得:BD BE CD AE=,∵BD=6,AE=4,CD=3,∴BE=8,故答案为:D.13.(2017·西华县一模)如图,在△ABC中,AB=AC,∠A=36°,且BC=2,则AB= .1.【解析】解:作∠ABC的平分线交AC于D,∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∴∠ABD =∠CBD =36°,∴DA =DB ,∴∠BDC =∠A +∠ABD =72°,∴BD =BC =2,∴AD =BC =2,∵∠CBD =∠A ,∠BCD =∠ACB ,∴△BCD ∽△ABC ,∴BC :AC =CD :BC ,∴BC 2=AC •CD ,即:()222AC AC =⋅-,解得:AC AC =1即AB 14.(2019·省实验一模)如图,点A (m ,5),B (n ,2)是抛物线C 1:y =12x 2﹣2x +3上的两点,将抛物线C 1向左平移,得到抛物线C 2,点A ,B 的对应点分别为点A ',B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则抛物线C 2的解析式是( )A .y =12(x ﹣5)2+1B .y =12(x ﹣2)2+4C.y=12(x+1)2+1 D.y=12(x+2)2﹣2【答案】C.【解析】解:y=12x2﹣2x+3=12(x﹣2)2+1,∵曲线段AB扫过的面积为9,A(m,5),(n,2)∴四边形ABB’A’为平行四边形,且BB’边上的高为3,即3BB′=9,∴BB′=3,新函数图象是将函数y=12(x﹣2)2+1的图象沿x轴向左平移3个单位长度得到,∴新图象的函数表达式是y=12(x+1)2+1.故答案为:C.15.(2019·郑州联考)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【答案】B.【解析】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,由作图方法可知:DE是AC的垂直平分线,∴AD=CD,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故答案为:B.16.(2019·郑州联考)如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为cm2.【答案】41.【解析】解:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,∴S△EFC=S△BCF,S△EFQ=S△BCQ,S△EFD=S△ADF,S△EFP=S△ADP,∵S△APD=16cm2,S△BQC=25cm2,∴S四边形EPFQ=41cm2,故答案为:41.17.(2019·安阳二模)如图,在△ABC中,∠C=50°,∠B=35°,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点M,N,直线MN交BC于点D,连接AD.则∠DAC的度数为()A.85°B.70°C.60°D.25°【答案】C.【解析】解:在△ABC中,∠B=35°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=95°,由作图可知MN为AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=35°,∴∠CAD=∠BAC﹣∠DAB=60°,故答案为:C.18.(2019·枫杨外国语三模)如图,已知矩形AOBC的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交OC,OB于点D,E;②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为( )A.(4,43) B.(43,4) C.(53,4) D.(4,53)【答案】A.【解析】解:由作图方法知,OG是∠BOC的平分线,过G作GH垂直AC于H,∴GH=BG,由题意知:∠CBO=90°,BC=3,OB=4,由勾股定理知:OC=5,∵OG=OG,GH=BG,∴Rt△OGH≌Rt△OGB,∴OB=OH=4,∴CH=1,设G(4,m),则BG=m,CG=3-m,CH=1,∴(3-m)2=m2+1,解得:m=43,即G(4, 43),答案为:A.19.(2019·中原名校大联考)如图,在△ABC中,AD平分∠BAC,按如下步作图:①分别以点A,D为圆心,以大于12AD的长为半径在AD两侧作弧,两弧交于两点M,N;②作直线MN分别交AB,AC于点E,F;③连接DE,DF,若BD=6,AE=4,CD=3,则CF的长是()A.1 B.1.5 C.2 D.3【答案】C.【解析】解:由作图方法知:EF垂直平分AD,设AD、EF交于O,∴AE=DE,AF=DF,EF⊥AD,∵AD平分∠BAC,得:△AEO≌△AFO,∴AE=AF,∴AE=AF=DE=DF=4,∴四边形AEDF为菱形,∴DF∥AB,∴CF CD AF BD,∴CF=2.故答案为:C.20.(2019·许昌月考)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【答案】B.【解析】解:由作图方法知,GH是线段EF的垂直平分线,∵EG=EH,∴△EGH是等腰三角形.即A正确;∵EG=GF,∴△EFG是等腰三角形,由图知,EF不一定等于EG,即B错误.∵EG=EH=HF=FG,∴四边形EHFG是菱形.即C正确.∵EH=FH,∴△EFH是等腰三角形.即D正确.故答案为:B.。
河南省2020年中考数学压轴题全揭秘专题11实际问题中的方程(组)与函数题型(含解析)
专题11 实际问题中的方程(组)与函数题型【例1】(2019·郑州外国语测试)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%,在试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售,设每天销售量为y 本,销售单价为x元.(1)请直接写出y与x直接的函数关系式及x的取值范围;(2)当每本足球纪念册的销售单价是多少元时,商店每天获利2400元?(3)当每本足球纪念册的销售单价是多少元时,商店每天的利润w最大?最大利润是多少元?【答案】见解析.【解析】解:(1)y=300-10(x-44),整理得:y=-10x+740,(44≤x≤52);(2)由题意得:(x-40)(-10x+740)=2400,解得:x=50,x=64(舍),即当每本足球纪念册的销售单价是50元时,商店每天获利2400元.(3)由题意得:w=(x-40)(-10x+740)=-10(x-57)2+2890∵-10<0,对称轴为x=57,∴当x<57时,w随x增大而增大,∵44≤x≤52,∴当x=52时,w取最大值,最大为2640元,即当每本足球纪念册的销售单价是52元时,商店每天的利润最大,最大利润是2640元.【例2】(2018·河师大附中模拟)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?【答案】见解析.【解析】解:(1)设甲种牲畜的单价为x元,由题意得:3x+2x+3000=7500,解得:x=1100,2×1100+200=2400,即甲种牲畜的单价为1100元,乙种牲畜的单价为2400元.(2)设购买甲种牲畜m头时,总购买费用为w元,则w=1100m+2400(50-m)=-1300m+120000,由题意知:95%m+99%(50-m)≥97%×50,解得:m≤25,即0≤m≤25,∵-1300<0,∴w随m的增大而减小,当m=25时,w取最小值,即费用最低,∴购买两种牛各25头时,费用最低.【变式2-1】(2019·三门峡二模)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y (千克)与销售单价x (元/千克)满足如图所示的一次函数关系.①求y 与x 之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)【答案】见解析.【解析】解:(1)设现在实际购进这种水果价格为每千克a 元,则原来价格为每千克(a +2)元,由题意,得:80(a +2)=88a ,解得:a =20.即现在实际购进这种水果每千克20元;(2)①设y 与x 之间的函数关系式为:y =kx +b ,将(25,165),(35,55)代入y =kx +b 得,251653555k b k b +=⎧⎨+=⎩, 解得:11440k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式为:y =﹣11x +440;②设这种水果的销售价格为x 元/千克时,利润为w 元,则w =(x ﹣20)y=(x ﹣20)(﹣11x +440)=﹣11(x ﹣30)2+1100,∵﹣11<0,∴当x=30时,w有最大值,最大值为1100.即这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.【例3】(2018·洛阳三模)在江苏卫视《最强大脑》节目中,搭载百度大脑的机器人小度以3:1的总成绩,,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】见解析.【解析】解:(1)设该商家第一次购进机器人x个,由题意得:1100024000102x x+=,解得:x=100.经检验,x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a元.由题意得:a﹣11000﹣24000≥×20%,解得:a≥140.答:每个机器人的标价至少是140元.【变式3-1】(2019·周口二模)由于技术更新,智能电视的功能越来越强大,价格也逐渐下降,某电器商行经营的A款40英寸智能电视去年销售总额为5万元,今年每台销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A款40英寸智能电视每台售价多少元?(用列方程的方法解答)(2)该电器商行计划新进一批A 款40英寸智能电视和新款B 款40英寸智能电视共60台,且B 款40英寸智能电视的进货数量不超过A 款40英寸智能电视数量的两倍,应如何进货才能使这批智能电视获利最多?A ,B 两款40英寸智能电视的进货和销售价格如下表:【答案】见解析.【解析】解:设今年A 款40英寸智能电视每台售价为x 元,则去年每台售价为(x +400)元,由题意得: ()50000120%50000400x x⨯-=+, 解得:x =1600,经检验,x =1600是原方程的解,符合题意,∴今年A 款40英寸智能电视每台售价为1600元.(2)设购进A 款电视a 台,则购进B 款(60-a )台,此时获利y 元,y =(1600-1100)a +(2000-1400)(60-a )=-100a +36000,其中:60-a ≤2a ,0≤a ≤60,即20≤a ≤60,且a 为整数;∵-100<0,∴y 随a 的增大而减小,当a =20时,y 取最大值,即当进A 款电视20台,B 款电视40台时,获利最大.【例4】(2018·河南第一次大联考)紫石中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树3棵香樟树共需360元,购买3棵桂花树2棵香樟树共需340元.(1)桂花树香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.【答案】见解析.【解析】解:(1)设桂花每棵x 元,香樟树每棵y 元,由题意得:2336032340x y x y +=⎧⎨+=⎩, 解得:x =60,y =80,答:桂花树每棵60元,香樟树每棵80元.(2)设桂花树购买x 棵,则香樟树购买(150-a )棵,由题意得:()608015010840150 1.5x x x a ⎧+-≤⎨-≥⎩, 解得:58≤x ≤60,∴有三种购买方案:桂花树58棵,香樟树92棵;桂花树59棵,香樟树91棵;桂花树60棵,香樟树90棵.【变式4-1】(2019·偃师一模)冬季来临,某网店准备在厂家购进 A ,B 两种暖手宝共 100 个用于销售,若购买 A 种暖手宝 8 个,B 种暖手宝 3 个,需要 950 元;若购买 A 种暖手宝 5 个,B 种暖手宝 6 个,则需要 800 元.(1)购买 A ,B 两种暖手宝每个各需多少元?(2)①由于资金限制,用于购买这两种暖手宝的资金不能超过 7 650 元,设购买 A 种暖手宝 m 个,求 m 的取值范围;②在①的条件下,购进 A 种暖手宝不能少于 50 个,则有哪几种购买方案?(3)购买后,若一个 A 种暖手宝运费为 5 元,一个 B 种暖手宝运费为 4 元, 在第(2)问的各种购买方案中,购买 100 个暖手宝,哪一种购买方案所付的运费最少?最少运费是多少元?【答案】见解析.【解析】解:(1)设A 、B 两种暖手宝的价格分别为x 元/个、y 元/个,由题意得:8395056800x y x y +=⎧⎨+=⎩, 解得:x =100,y =50,即A 、B 两种暖手宝的价格分别为100元/个,50元/个.(2)①由题意得:100m +50(100-m )≤7650,解得:m ≤53,∴m 的取值范围是:0≤m ≤53,且m 为整数;②∵50≤m ≤53,∴共有以下四种购买方案,A 种50个,B 种50个;A 种51个,B 种49个;A 种52个,B 种48个;A 种53个,B 种47个;(3)设总运费为w 元,则:w =5m +4(100-m )=m +400,∵1>0,∴w 随m 的增大而增大,当m =50时,运费最少,最少为450元,∴当购买A 种产品50个,B 种产品50个时,总运费最少,最少为450元 .1.(2019·济源一模)为支持国家南水北调工程建设,小王家由原来养殖户变为种植户, 经市场调查得知,种植草莓不超过 20 亩时,所得利润 y (元)与种植面积 m (亩)满足关系式 y =1 500 m ;超过20亩时,y =1380m +2400.而当种植樱桃的面积不超过 15 亩时,每亩可获得利润 1800 元;超过 15 亩时,每亩获得利润 z (元)与种植面积 x (亩)之间的函数关系式为 z =-20x +2 100.(1)设小王家种植 x 亩樱桃所获得的利润为 P 元,直接写出 P 关于 x 的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40 亩荒山种植草莓和樱桃,当种植樱桃面积(x 亩)满足0<x <20时,求小王家总共获得的利润w (元)的最大值.【答案】见解析.【解析】解:(1)由题意得:()()2180001520210015x x p x x x ⎧<≤⎪=⎨-+>⎪⎩(2)种植樱桃面积x 亩,则种植草莓面积(40-x )亩,由题意知,①当0<x ≤15时,w =1800x +1380(40-x )+2400=420x +57600,∵420>0,∴w随x的增大而增大,当x=15时,w最大,最大值为63900,②当15<x≤20时,w=-20x2+2100x+1380(40-x)+2400=-20(x-18)2+64080,∵-20<0,∴当x=18时,w取最大值,最大值为64080,∵64080>63900,∴当x=18时,小王家总共获得的利润w取最大值,最大值为64080元.2.(2019·洛阳二模)某游乐园的门票销售分两类:一类个人门票,分为成人票,儿童票;一类为团体门票(一次购买门票 10 张及以上),每张门票在成人票价格基础上打 6 折.已知一个成人带两个儿童购门票需 80 元;两个成人带一个儿童购门票需 100 元.(1)每张成人票和儿童票的价格分别是多少元?(2)光明小学 4 名老师带领x名儿童到该游乐园,设购买门票需y元.①若每人分别购票,求y与x之间的函数关系式;②若购买团体票,求y与x之间的函数关系式,并写出自变量x的取值范围;③请根据儿童人数变化设计一种比较省钱的购票方案.【答案】见解析.【解析】解:设成人票每张a元,儿童票每张b元,由题意得:a+2b=80,2a+b=100,解得:a=40,b=20,即成人票每张40元,儿童票每张20元;(2)①y=4×40+20x=160+20x②y=40×0.6(x+4)=24x+96,由x+4≥10,得x≥6,且x为整数.③(i)当160+20x>24x+96,即x<16,∴当6≤x<16且x为整数时,应全部购买团体票较为优惠;(ii)当160+20x=24x+96,即x=16,∴当x=16时,购买团体票或分别购买均可以;(iii)当160+20x<24x+96,即x>16,∴当x>16且x为整数时,应分别购买较为优惠.3.(2019·洛阳三模)近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共 80 台,其中B型空气净化器的进货量不多于A 型空气净化器的 2 倍,为使该公司销售完这 80 台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为 200 m3/小时,B型空气净化器的净化能力为 300 m3/小时,某长方体室内活动场地的总面积为 200 m2,室内墙高 3 m,该场地负责人计划购买 5 台空气净化器每天花费 30 分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?【答案】见解析.【解析】解:(1)设每台A型空气净化器和B型空气净化器的销售利润分别是x元,y元,由题意得:5395034900x yx y+=⎧⎨+=⎩,解得:x=100,y=150,∴每台A型空气净化器和B型空气净化器的销售利润分别是100元,150元. (2)设购买A型m台,则购进B型(80-x)台,利此时润为w元,由题意知:80-m≤2m,0≤m≤80,m为整数可得:803≤m≤80,m为整数,W=100m+150(80-m)=-50m+12000,∵-50<0,∴w随m的增大而减小,当m=27时,w取最大值,80-27=53,即购进A型27台,B型53台时,售完后获利最大.(3)设购买A型a台,则够买B型(5-a)台,∴12×200a+12×300(5-a)≥200×3,解得:a≤3,∵0≤a≤5,∴0≤a≤3,且a为整数,即至多要购买A型空气净化器3台.4.(2017·新野一模)某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【答案】见解析.【解析】解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,45),∴15k1=45,解得k1=3,∴y=3x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,45),(20,0)在y=k2x+b的图象上,∴15k2+b=45, 20k2+b=0解得:k2=-9,b=180∴y=﹣9x+180(15<x≤20);∴y与x之间的函数关系式为:y=3015 91801520x xx x≤≤⎧⎨-+<≤⎩.①当0≤x<10时,p=25,当10≤x≤20时,设销售单价p与销售时间x之间的函数解析式为:p=mx+n,∵点(10,25),(20,15)在p=mx+n的图象上,∴10m+n=25,20m+n=15,解得:m=-1,n=35,∴p=﹣x+35(10≤x≤20),∴p=25010351020xx x≤<⎧⎨-+≤≤⎩;(2)若日销售量不低于36千克,即y≥36.当0≤x≤15时,y=3x,3x≥36,解得:x≥12;当15<x≤20时,y=﹣9x+180,﹣9x+180≥36,解得:x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+35(10≤x≤20),k=﹣1<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣12+35=23.∴此次销售过程中“最佳销售期”共有5天,在此期间销售金额最高是第12天.5.(2018·焦作一模)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B品牌计算器超出10个以上超出的部分按原价的八折销售.①设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.【答案】见解析.【解析】解:(1)设A品牌计算器的单价为m元,B品牌计算器的单价为n元,由题意得:2m+n=122,m+2n=124,解得:m=40,n=42,即A品牌计算器的单价为40元,B品牌计算器的单价为42元.(2)①由题意:y1=0.9×40x=36x,当0<x≤10时,y2=42x;当x>10时,y2=42×10+42(x﹣10)×0.8=33.6x+84.∴y2=42010 33.68410x xx x≤≤⎧⎨+>⎩.②当购买数量超过10个时,y2=33.6x+84.(i)当y1<y2时,36x<33.6x+84,即x<35,当10<x<35时,购买A品牌的计算器更合算;(ii)当y1=y2时,36x=33.6x+84,即x=35,∴当x=35时,购买两种品牌的计算器花费一样多;(iii)当y1>y2时,36x>33.6x+84,即x>35.∴当x>35时,购买B品牌的计算器更合算.6.(2018·信阳一模)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.【答案】见解析.【解析】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:2x+y=56,x+2y=82,解得:x=10,y=36,即一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)由m≤3(50﹣m),得:m≤37.5,∴0≤m≤37,且m为整数,设购进A型跳绳m根,总费用为W元,根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,∵﹣26<0,∴W随m的增大而减小,∴当m=37时,W最小=838,即当购买A型跳绳37根,B型跳绳13根时,最省钱.7.(2019·南阳毕业测试)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,由题意得:80x+60(17﹣x)=1220,解得:x=10,即购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:17-a<a,即a>8.5,∴8.5<a≤17,且a为整数,由(2)知,W=20a+1020,W随a的增大而增大,∴a=9时,即购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,即购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.8.(2019·开封二模)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【答案】见解析.【解析】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:25600 3380x yx y+=⎧⎨+=⎩,解得:10080xy=⎧⎨=⎩,答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,有a≥3(100﹣a),解得:a≥75.设实际花费金额是y元,则:y=0.9[100a+80(100﹣a)]=18a+7200.∵18>0,∴y随a的增大而增大,∴当a=75时,y取最小值,即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.9.(2019·安阳一模)某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(1)如果在线下购买甲、乙两种书架共30个,花费8 280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.【答案】见解析.【解析】解:(1)设线下购买甲种书架x个,乙种书架y个,由题意得:30 2403008280x yx y+=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩,即线下购买甲种书架12个,乙种书架18个.(2)设购买甲种书架a个,则购买乙种书架(30-a)个,总花费为w元,∵30-a≥3a,即a≤7.5(其中a为正整数),W=(210+20)a+(250+30)(30-a)=-50a+8400,∵-50<0,∴w随a的增大而减小,当a=7时,w最小,最小值为8050元,即当购买7个甲种书架,23个乙种书架时,总费用最低,最低为8050元.10.(2019·省实验一模)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【答案】见解析.【解析】解:(1)设y与x之间的函数解析式为y=kx+b,由题意得:50100 6080k bk b+=⎧⎨+=⎩,解得:2200kb=-⎧⎨=⎩,y与x之间的函数表达式是:y=﹣2x+200;(2)由题意得,W=(x﹣40)(﹣2x+200)=﹣2(x﹣70)2+1800,(3)∵W=﹣2(x﹣70)2+1800,40≤x≤80,∵﹣2<0,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,且当x=70时,W取得最大值,此时W=1800.11.(2019·叶县一模)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】见解析.【解析】解:(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解得:x =15,y =20,即生产一件甲产品需要15分钟,生产一件乙产品需要20分钟.(2)设生产甲种产品共用x 分钟,则生产乙种产品用(25×8×60﹣x )=(12000-x )分钟,收入为w 元, 则生产甲种产品15x 件,生产乙种产品1200020x -件. ∴w =1.5×15x +2.8×1200020x - =﹣0.04x +1680, ∵15x ≥60,即:x ≥900, w =﹣0.04x +1680中,∵﹣0.04<0,∴w 随x 的增大而减小,∴当x =900时,w 取得最大值,最大值为:1644元,则小王该月收入最多是1644+1900=3544元,此时生产甲60件,乙555件,∴小王该月最多能得3544元,此时生产甲、乙两种产品分别60件,555件.12.(2019·濮阳二模)“京东电器”准备购进A 、B 两种品牌台灯,其中A 每盏进价比B 每盏进价贵30元,A 售价120元,B 售价80元已知用1040元购进的A 数量与用650元购进B 的数量相同.(1)求A 、B 的进价;(2)超市打算购进A 、B 台灯共100盏,要求A 、B 的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A 台灯进行降价促销,A 台灯每盏降价m (8<m <15),B 的售价不变,超市如何进货获利最大?【答案】见解析.【解析】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,由题意得:104065030x x=-,解得:x=80,经检验x=80是原分式方程的解,80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是 80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得:40≤a≤55.∵a为整数,55-40+1=16,∴该超市有 16 种进货方案(3)设超市销售台灯所获总利润为w元,w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15①当 8<m<10 时,即 10﹣m>0,w随a的增大而增大,当a=55 时,所获总利润w最大,此时进货方案为:A品牌台灯 55 盏、B品牌台灯 45 盏;②当m=10 时,w=3000;当A品牌台灯数量满足 40≤a≤55时,利润均为 3000元;③当 10<m<15 时,即 10﹣m<0,w随a的增大而减小,当a=40 时,所获总利润w最大,此时进货方案为:A品牌台灯 40 盏、B品牌台灯 60 盏.13.(2019·商丘二模)为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【答案】见解析.【解析】解:(1)设种植A,B两种蔬菜,每亩各需分别投入x万元,y万元,由题意得:203036 302034 x yx y+=⎧⎨+=⎩解得:0.60.8xy=⎧⎨=⎩,即种植A,B两种蔬菜,每亩各需分别投入0.6万元,0.8万元. (2)由题意得:w=0.8m+1.2×1000.60.8m-=﹣0.1m+150 ∵1000.6m-≥0,∴0≤m≤5003,(3)∵m≥2×1000.60.8m-解得:m≥100在w=﹣0.1m+150中,∵﹣0.1<0,∴w随m的增大而减小,∴当m=100时,w取最大值为:140万元,∴1000.60.8m-=50即当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.14.(2019·开封模拟)2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】见解析.【解析】解:(1)设甲种、乙种商品的销售单价分别是x元,y元,由题意,得:23 321500x yx y=⎧⎨-=⎩解得:x=900,y=600,.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品a万件,则销售乙种商品(8﹣a)万件,由题意,得:900a+600(8﹣a)≥5400解得:a≥2,即至少销售甲种商品2万件.15.(2019·开封二模)某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【答案】见解析.【解析】解:(1)设每部A型手机的销售利润为x元,则每部B型手机的销售利润为(x-50)元,根据题意,得:3000200050x x=-,解得:x=150,经检验:x=50是原方程的解,150-50=100,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n =﹣50n+16500,∵110﹣n≤2n,∴3623≤n≤110且n为整数,∴y关于n的函数关系式为y=﹣50n+16500 (3623≤n≤110且n为整数);②∵﹣50<0,∴y随n的增大而减小,∴当n=37时,y取得最大值,最大值为14650元,答:购进A型手机73部、B型手机37部时,销售总利润最大;(3)y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,3623≤n≤80,且n为整数),①当30<m<50时,y随n的增大而减小,当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,n取3623≤n≤80的整数时,获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.16.(2019·西华县一模)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】见解析.。
河南省2020年中考数学压轴题全揭秘专题03折叠与落点有迹性(含解析)
专题03 折叠与落点有迹性【例题】(2018·河师大附中模拟)如图,在Rt △ABC 中,∠ABC =90°,AB =5,BC =8,点P 是射线BC 上一动点,连接AP ,将△ABP 沿AP 折叠,当点B 的对应点B ’落在线段BC 的垂直平分线上时,则BP 的长等于【答案】10或52. 【解析】解:点B ’的运动轨迹是以点A 为圆心以AB 的长为半径的圆,圆与BC 的垂直平分线的交点即为所求的落点B ’,如图作出图形,B分两种情况计算:①连接BB ’,过B ’作B ’E ⊥BC 于E ,如下图所示,由题意知,BB ’=B ’C ,BP =B ’P ,BE =EC =4,BB ’⊥AP ,∴∠B ’BC =∠B ’CB ,∠B ’BC +∠APB =90°,∠B ’CB +∠CB ’E =90°,∴∠APB =∠CB ’E ,∴△CB ’E ∽△APB , ∴'AB BP CE B E=,即54'BP B E =, 设BP =x ,则B ’P =x ,EP =4-x ,B ’E =45x , 在Rt △B ’PE 中,由勾股定理得:()222445x x x ⎛⎫=+- ⎪⎝⎭, 解得:x =10(舍)或x =52, 即BP =52; ②过A 作AH ⊥MN 于H ,如图所示,∵AB =AB ’=5,AH =4,GH =5,∴B ’H =3,B ’G =8,设BP =x ,则B ’P =x ,PG =x -4,在Rt △PGB ’中,由勾股定理得:()22284x x =+-,解得:x =10,即BP =10;综上所述,答案为:10或52. 【变式】(2019·偃师一模)如图,在边长为 3 的等边三角形ABC 中,点D 为AC 上一点,CD =1,点E 为边AB 上不与A ,B 重合的一个动点,连接DE ,以DE 为对称轴折叠△AED ,点 A 的对应点为点 F ,当点 F 落在等边三角形ABC 的边上时,AE 的长为 .【答案】1或5.【解析】解:第一步:确定落点,点F 在以D 为圆心,以线段AD 的长为半径的弧上,如下图所示,第二步,根据落点确定折痕(对称轴)MNB(1)∵AD =DF =2,∠A =60°,∴△ADF 是等边三角形,∵DE 平分∠ADF ,∴AE =EF =1;(2)如下图所示,由对称知,∠EFD =∠A =60°,∴∠EFB +∠DFC =120°,∵∠DFC +∠FDC =120°,∴∠EFB =∠FDC ,∵∠B =∠C =60°,∴△BEF ∽△CFD , ∴BE EF BF CF DF CD==, 设AE =x ,则BE =3-x , 即321x x BF CF -==, ∴BF =2x ,CF =()23x x -, ∵BF +CF =3, 即2x +()23x x -=3, 解得:xx =5,BB综上所述,答案为:1或51.(2019·洛阳二模)如图,P是边长为 3 的等边△ABC的边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于点E,点D是AC的一个三等分点,PB的长为.【答案】1或5.【解析】解:第一步确定落点,AC的三等分点有两个,所以有两种情况;第二步根据落点确定折痕,方法:作BD的垂直平分线即为折痕所在的直线;(1)如下图所示,由折叠性质得:∠B=∠EDP=60°,∴∠CDE+∠ADP=120°,∵∠A=∠C=60°,∴∠ADP+∠APD=120°,∴∠APD=∠CDE,∴△CED∽△ADP,∴CE CD DE AD AP DP==,设BP=DP=x,则AP=3-x,∴213CE DEx x==-,∴CE=23x-,DE=23xx-,B∵DE =BE ,∴CE +DE =CE +BE =3, 即23x -+23x x-=3, 解得:x =75; (2)如下图所示,当CD =1时,同理可得: ∴CE CD DE AD AP DP==, 设BP =DP =x ,则AP =3-x , ∴123CE DE x x==-, ∴CE =23x -,DE =3x x-, ∴23x -+3x x-=3, 解得:x =74; 综上所述,PB 的长为75或74. 2.(2017·新野一模)如图,在矩形ABCD 中,AB =2,AD =6,E .F 分别是线段AD ,BC 上的点,连接EF ,使四边形ABFE 为正方形,若点G 是AD 上的动点,连接FG ,将矩形沿FG 折叠使得点C 落在正方形ABFE 的对角线所在的直线上,对应点为P ,则线段AP 的长为 .【答案】4或4﹣.【解析】解:如图1所示:B由翻折的性质可知PF=CF=4,∵ABFE为正方形,边长为2,∴AF.∴PA=4﹣.如图2所示:由翻折的性质可知PF=FC=4.∵ABFE为正方形,∴BE为AF的垂直平分线.∴AP=PF=4.故答案为:4或4﹣.3.(2018·信阳一模)如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE F在AD 上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为.【答案】4或【解析】解:第一步,确定落点,以E 为圆心,AE 的长为半径画弧,与BC 的垂直平分线的交点即为A ’,第二步,作出折痕,求解.(1) 如下图所示,由折叠性质知:A ′E =AE,AF =A ′F ,∠FA ′E =∠A =90°,AM =12AD =3, 过E 作EH ⊥MN 于H ,则四边形AEHM 是矩形,∴MH =AE由勾股定理得:A ′H∴A ′M由MF 2+A ′M 2=A ′F 2,得(3﹣AF )2+)2=AF 2,解得:AF =2,在Rt △AEF 中,由勾股定理得:EF =4;(2)如下图所示,可得:A′E=AE AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,则四边形AGHD是矩形,∴DH=AG,HG=AD=6,A′H=A′G=3,在Rt△A’EG中,由勾股定理得:EG∴DH=AG=AE+EG在Rt△A’HF中,由勾股定理得:A′F=6,在Rt△AEF中,由勾股定理得:EF;故答案为:4或4.(2019·三门峡二模)在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为.【答案】8+,8-【解析】解:由折叠的性质得,∠EC′D′=∠C=90°,C′E=CE,∵点B、C′、D′在同一直线上,∴∠BC′E=90°,∵BC=12,BE=2CE,∴BE=8,C′E=CE=4,在Rt△BC′E中,∠C′BE=30°,①当点C′在B、D’之间时,过E作EG⊥AD于G,延长EC′交AD于H,则四边形ABEG是矩形,∴EG=AB=6,AG=BE=8,∵∠C′BE=30°,∠BC′E=90°,∴∠BEC′=60°,由折叠的性质得,∠C ′EF =′CEF ,∴∠C ′EF =∠CEF =60°,∵AD ∥BC∴∠HFE =∠CEF =60°,∴△EFH 是等边三角形,∴在Rt △EFG 中,EG =6,GF =∴AF②当点D ′在B 、C ’之间时,过F 作FG ⊥AD 于G ,D ′F 交BE 于H ,同理可得:AF =8﹣故答案为:8+或8-5.(2019·南阳模拟)如图,在矩形ABCD 中,AB =5,BC =3,点E 为射线BC 上一动点,将△ABE 沿AE 折叠,得到△AB ′E .若B ′恰好落在射线CD 上,则BE 的长为 .【答案】15或53. 【解析】解:第一步:确定落点,以A 为圆心,AB 的长为半径画弧,交射线CD 于B ’,分两种情况讨论;第二步,根据落点作出折痕,求解;(1)如下图所示,由折叠知:AB ′=AB =5,B ′E =BE ,∴CE =3﹣BE ,∵AD =3,∴DB ′=4,B ′C =1,由勾股定理知:B ′E 2=CE 2+B ′C 2,∴BE 2=(3﹣BE )2+12,∴BE =53; (2)如下图所示,AB ′=AB =5,∵CD ∥AB ,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∵AE 垂直平分BB ′,∴AB =BF =5,∴CF =4,∵CF ∥AB ,∴△CEF ∽△ABE ,ACE∴CF CE AB BE=, 即453CE CE =+, ∴CE =12,∴BE =15, 故答案为:53或15.6.(2019·开封模拟)如图,在等边三角形ABC 中,AB =,点M 为边BC 的中点,点N 为边AB 上的任意一点(不与点A ,B 重合),若点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边上,则BN 的长为 cm .【解析】解:∵N 不与A 重合,∴B 落点不会在BC 上,分两种情况讨论:(1)当B 关于直线MN 的对称点B '落在AB 边上时,此时,MN ⊥AB ,即∠BNM =90°,∵△ABC 是等边三角形,AB =M 是BC 中点,∴∠B =60°,BM∴BN =12BM ; (2)当点B 关于直线MN 的对称点B '落在边AC 上时,则MN ⊥BB ′,可得:四边形BMB ′N 是菱形,∴BN =BM =12BC.7.(2019·开封二模)在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A 落在矩形对角线上的A′处,则AP的长为.【答案】32或94.【解析】解:矩形对角线有两条,AC、BD,所以先以D为圆心以AD的长为半径作弧,与对角线AC、BD 的交点即为A’点;再作出AA’的垂直平分线即为折痕;(1)点A落在矩形对角线BD上时,由AB=4,BC=3,得:BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,由勾股定理得:BP2=BA′2+PA′2,(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,根据折叠的性质可知:DP⊥AC,易证:∠ACB=∠APD,∴tan∠ACB= tan∠APD,∴AP=AD BCAB=94.故答案为:32或94.8.(2019·枫杨外国语三模)如图,在▱ABCD 中,∠A =60°,AB =8,AD =6,点 E 、F 分别是边 A B 、CD 上的动点,将该四边形沿折痕 E F 翻折,使点 A 落在边 B C 的三等分点处,则 A E 的长为 .【答案】32或94. 【解析】解:第一步确定落点,因为BC 的三等分点有两个,所以分两种情况讨论,第二步,确定落点后,画出折痕EF ,求解.(1)如下图所示过点A ’作A ’H ⊥AB 交AB 的延长线于H ,则∠A ’BH =60°,∵A ’B =2,∴BH =1,A ’H设AE =A ’E =x ,则BE =8-x ,EH =9-x ,在Rt △A ’EH 中,由勾股定理得:()2229x x =-+,解得:x =143, 即AE =143; (2)如下图所示,过点A ’作A ’H ⊥AB 交AB 的延长线于H ,则∠A ’BH =60°,∵A ’B =4,∴BH =2,A ’H ,设AE =A ’E =x ,则BE =8-x ,EH =10-x ,在Rt △A ’EH 中,由勾股定理得:()(22210x x =-+,解得:x =5.6,即AE =5.6; 综上所述,答案为:143或5.6. 9.(2019·中原名校大联考)如图,边长为1的正方形ABCD ,点P 为边AD 上一动点(不与点A 重合).连接BP ,将△ABP 沿直线BP 折叠,点A 落在点A ′处,如果点A ′恰好落在正方形ABCD 的对角线上,则AP 的长为 .1.【解析】解:由题意知,A ’落在对角线BD 上,连接A 'D ,则B 、A ’、D 在同一直线上,∴∠A =∠PA 'B =∠PA 'D =90°,AP =A 'P ,AB =A 'B =1,∴BD ,∴DA '=BD ﹣BA '=BD ﹣AB 1,由正方形性质知,∠PDA ’=∠A ’PD =45°,∴AP=A’P=A’D﹣1,﹣1.10.(2017·禹州一模)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3).【解析】解:∵四边形A0CD为矩形,D(10,8),∴AD=BC=10,DC=AB=8,由折叠性质知:AD=AF=10,DE=EF,在Rt△AOF中,由勾股定理得:OF=6,∴FC=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,∴点E的坐标为(10,3),故答案为:(10,3).。
河南省2020年中考数学压轴题全揭秘专题19动点问题与几何图形综合题型含解析
专题19 动点问题与几何图形综合题型题型一、动点问题与几何图形最值问题主要有:线段最值;点到直线距离的最值;周长最值;面积最值等等.题型二、动点问题与几何问题相结合主要有:相似三角形的存在性;角平分线存在性;角度间的关系问题;面积关系问题等等.【例1】(2018·河南第一次大联考)如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为( ).A.4 B.C.7 D.8【答案】D.【分析】如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,利用勾股定理及直角三角形中斜边上的中线等于斜边的一半分别求出PE与AE的长,由AE+EP求出AP的最大值即可.【解析】解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=12MN=3,根据勾股定理得:PE=5,在Rt△AMN中,AE为斜边MN上的中线,∴AE=12MN=3,则AP的最大值为:AE+PE=3+5=8,故选D.【点评】此题考查了勾股定理,直角三角形斜边上的中线性质,以及矩形的性质,熟练掌握勾股定理是解本题的关键.【变式1-1】(2019·济源一模)如图,△ABC 是等边三角形,AB =3,E 在 AC 上且 AE =23AC ,D 是直线 BC 上一动点,线段 ED 绕点 E 逆时针旋转 90°,得到线段 EF ,当点 D 运动时, 则线段 AF 的最小值是 .【答案】22. 【解析】解:先确定F 点的轨迹,过E 作的直线BC 的平行线,分别过D 、F 作该平行线的垂线,垂足为G ,H ,如图所示,由折叠性质,知△DEG ≌△EFH ,∴EH =DG ,∵△ABC 是等边三角形,AE =2,CE =1,∴DG =CE ·sin60°=2, 即EH 为定值,∴点F 落在直线FH 上,且FH ⊥BC ,根据垂线段最短,当AF ⊥FH 时,AF 的值最小,如下图所示,过A 作AN ⊥FH ,延长AC 交FH 于点M ,BAN 的长即为所求线段AF 的最小值,∵EH =DG,∠AMN =30°, ∴EM =2EH∴AM,∴AN =12AM,【例2】(2019·开封二模)如图1,在平面直角坐标系中,直线y =43x ﹣4与抛物线y =43x 2+bx +c 交于坐标轴上两点A 、C ,抛物线与x 轴另一交点为点B ;(1)求抛物线解析式;(2)若动点D 在直线AC 下方的抛物线上,如图2,作DM ⊥直线AC ,垂足为点M ,是否存在点D ,使△CDM 中某个角恰好是∠ACO 的一半?若存在,直接写出点D 的横坐标;若不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)在y =43x ﹣4中, 当x =0, y =﹣4,即C (0,﹣4);当y =0, x =3,即A (3,0);B NM把点A、C坐标代入y=43x2+bx+c,并解得:b=83-,c=-4,∴抛物线解析式为:y=43x283-x-4;(2)存在,作∠ACO的平分线CP交x轴于点P,过P作PH⊥AC于点H,则CH=CO=4,OP=PH,设OP=PH=x,则PA=3﹣x,∵OC=4,OA=3,∴AC=5,AH=1,在Rt△PHA中,PH2+AH2=AP2,即x2+12=(3﹣x)2,解得:x=43,∴tan∠PCH=tan∠PCO=13,①过点D作DG⊥x轴于点G,过点M作ME∥x轴,与y轴交于点E,与DG交于点F.设M(m,43m﹣4),则ME=m,FG=OE=4﹣43m,CE=43m,可得:△CEM∽△MFD,①当∠DCM=12∠ACO时,可得:3CE ME CM MF DF DM===, 即MF =49m ,DF =13m , ∴DG =DF +GF =13m +4﹣43m =4-m ,EF =EM +FM =139m , 即点D (139m , m -4),将其坐标代入y =43x 283-x -4得: 2413813443939m m m ⎛⎫⨯-⨯-=- ⎪⎝⎭, 解得:m =0(舍)或m =1179676, ∴D 点横坐标为:139m =13152. ②当∠MDC =12∠ACO =∠PCH 时, 同理可得:MF =4m ,DF =3m ,∴EF =EM +MF =m +4m =5m ,DG =DF +FG =3m ﹣43m +4=53m +4, ∴D (5m ,﹣53m ﹣4), ∴﹣53m ﹣4=()()24855433m m ⨯-⨯-, 解得m =0(舍去)或m =720, 此时D 点横坐标为:5m =74; 综上所述,点D 横坐标为13152或74. 【变式2-1】(2019·洛阳模拟)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (0,1),B (9,10)代入y =13x 2+bx +c 得: 127810c b c =⎧⎨++=⎩,解得:12c b =⎧⎨=-⎩ ∴抛物线的解析式为:y =13x 2-2x +1. (2)由y =13x 2-2x +1知,抛物线的对称轴是x =3, ∵AC ∥x 轴,A (0,1),∴A 与C 关于对称轴对称,C (6,0),AC =6由A (0,1),B (9,10)得直线AB 的解析式为:y =x +1,设P (m ,13m 2-2m +1),则E (m ,m +1), ∴PE =-13m 2+3m , ∴S 四边形AECP =S △AEC +S △APC =12·AC ·EF +12·AC ·PF =12×6×(-13m 2+3m )l=298124m ⎛⎫--+ ⎪⎝⎭, ∴当m =92时,四边形AECP 的面积取最大值814,此时点P (92,54-). (3)存在,点Q 坐标为(4,1)或(-3,1).由y =13x 2-2x +1知点P (3, -2), ∴PF =3,CF =3,∴∠PCF =45°,同理,∠EAF =45°,即∠PCF =∠EAF ,由勾股定理得:AB =AC =6,PC =设Q (n ,1),①当△CPQ ∽△ABC 时,CQ PC AC AB=,即66n -=t =4, 即Q (4,1).②当△CQP ∽△ABC 时,CQ PC AB AC=,=,解得:t =-3, 即Q (-3,1).综上所述,符合题意的点Q 坐标为:(4,1)或(-3,1).1.(2019·济源一模)如图1,在平面直角坐标系中,直线3944y x =-+与x 轴交于点A ,与y 轴交于点B ;抛物线294y ax bx =++(a ≠0)过A ,B 两点,与x 轴交于另一点C (-1,0),抛物线的顶点为D . (1)求抛物线的解析式;(2)在直线AB 上方的抛物线上有一动点E ,求出点E 到直线AB 的距离的最大值;(3)如图2,直线AB 与抛物线的对称轴相交于点F ,点P 在坐标轴上,且点P 到直线 BD ,DF 的距离相等,请直接写出点P 的坐标.图1 图2【答案】见解析. 【解析】解:(1)在3944y x =-+中,当x =0时,y =94;当y =0时,x =3, 即A (3,0),B (0,94), 将A (3,0),C (-1,0)代入294y ax bx =++得: 99304904a b a b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:2339424y x x =-++. (2)过点E 作EM ⊥x 轴交AB 于M ,过E 作EN ⊥AB 于N ,点E 到AB 的距离为EN ,可得△ENM ∽△AOB , ∴EN EM OA AB=, 在Rt △AOB 中,OA =3,OB =94, 由勾股定理得:AB =154,∴1534EN EM =, 即EN =45EM , 设E (m ,2339424m m -++),M (m ,3944m -+), 则EM =2339424m m -++-(3944m -+)=23944m m -+, ∴EN =45EM =2439544m m ⎛⎫-+ ⎪⎝⎭=233275220m ⎛⎫--+ ⎪⎝⎭, ∴当m =32时,E 到直线AB 的距离的最大值为2720. (3)∵点P 到直线BD ,DF 的距离相等,∴点P 在∠BDF 或∠BDF 邻补角的平分线上,如图所示,由2339424y x x =-++知D 点坐标为(1,3), ∵B (0,94), ∴BD =54, ∵DP 平分∠BDF ,∴∠BDP =∠PDF ,∵DF ∥y 轴,∴∠BPD =∠PDF ,∴∠BPD=∠BDP,∴BD=DP,∴P(0,1),设直线PD的解析式为:y=kx+n,∴n=1,k+n=3,即直线PD的解析式为:y=2x+1,当y=0时,x=12 -,∴当P在∠BDF的角平分线上时,坐标为(0,1)或(12-,0);同理可得:当P在∠BDF邻补角的平分线上时,坐标为:(0,72)或(7,0),综上所述,点P的坐标为:(0,1),(12-,0),(0,72),(7,0).2.(2019·洛阳二模)如图,抛物线y=ax2+5x+c交x轴于A,B两点,交y轴于点C.直线y=x-4经过点B,C. 点P是直线BC上方抛物线上一动点,直线PC交x轴于点D.(1)直接写出a,c的值;(2)当△PBD的面积等于△BDC面积的一半时,求点P的坐标;(3)当∠PBA= 12∠CBP时,直接写出直线BP的解析式.【答案】见解析.【解析】解:(1)∵直线y=x-4经过点B,C,∴B(4,0),C(0,-4),将B(4,0),C(0,-4)代入y=ax2+5x+c得:c=-4,a=-1,(2)抛物线解析式为:y=-x2+5x-4,过点P作PH⊥x轴于H,如图所示,设P(m, -m2+5m-4),∵△PBD的面积等于△BDC面积的一半,∴PH=12OC=2,即-m2+5m-4=2,或-m2+5m-4=-2,解得:m=2或m=3或m或m,∵0<m<4,∴m=2或m=3或m(3)y=-x+4或y=(2)x8,理由如下:①当点P在x轴上方时,此时由∠PBA= 12∠CBP可得:∠PBA=∠ABC=45°,可得直线BP的解析式为:y=-x+4;②当点P在x轴下方时,此时∠PBA= 13∠ABC=15°,∠CBP=30°,设直线BP交y轴于点Q,过点Q作QE⊥BC于E,如图所示,设Q(0,m),则OQ=-m,QC=4+m,∴QE=CE=2(4+m),BE(4+m),∵CE+BE,(4+m)(4+m)解得:m8,即Q(0,8),由B(4,0),可得直线BP的解析式为:y=(2)x8,综上所述,直线BP的解析式为:y=-x+4或y=(2)x8.3.(2019·洛阳三模)在平面直角坐标系中,直线y=12x-2与x轴交于点B,与y轴交于点C,二次函数y=12x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的解析式;(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;【答案】见解析.【解析】解:(1)∵直线y =12x -2与x 轴交于点 B ,与 y 轴交于点 C , ∴B (4,0),C (0,-2),∵B 、C 在抛物线y =12x 2+bx +c 上, ∴8402b c c ++=⎧⎨=-⎩,解得:b =32-,c =-2, 即抛物线解析式为:y =12x 232-x -2. (2)过点D 作DF ⊥x 轴于F ,交BC 于E ,∴D (m ,12m 232-m -2),E (m ,12m -2),F (m ,0),其中0<m <4, ∴DE =12-m 2+2m , ∵DM ⊥BC ,∴∠DME =∠BFD =90°,∴∠BOC =∠DME =90°,∴△OBC ∽△MDE , ∴DM OB DE BC =,即DM OB DE BC =∴DM=)2255m --+,∵<0,∴当m=2时,DM4.(2019·周口二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求这个抛物线的解析式;(2)若D(2,m)在该抛物线上,连接CD,DB,求四边形OCDB的面积;(3)设E是该抛物线上位于对称轴右侧的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点E作EH⊥x轴于点H,再过点F作FG⊥x轴于点G,得到矩形EFGH.在点E的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)∵抛物线y=ax2+bx+4与x轴交于A(-1,0),B(4,0)两点,∴40 16440a ba b-+=⎧⎨++=⎩,解得:a=-1,b=3,即抛物线的解析式为:y=-x2+3x+4. (2)∵抛物线y=-x2+3x+4与y轴交于点C ∴C(0,4),∵D(2,m)在抛物线上,∴m=6,即D(2,6),S四边形OCDB=S△OCD+S△OBD= 12×4×2+12×4×6=16,即四边形OCDB的面积为16.(322,理由如下:∵EFGH为正方形,∴EF=EH,设E(n,-n2+3n+4),则F(3-n,-n2+3n+4),∵抛物线的对称轴为x=32,∴n>32,∴n-(3-n)=-n2+3n+4或n-(3-n)=-(-n2+3n+4),解得:n或n(舍)或n或n(舍)∴边长EF=2n-3,得:EF22.5.(2019·濮阳二模)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的动点,当S△PAB=2S△AOB时,求点P的坐标.【答案】见解析.【解析】解:(1)将A(1,0)代入y=﹣3x+c,得:c=3,即B(0,3),将A(1,0),B(0,3)代入y=﹣x2+bx+c,得:-1+b+c=0,c=3,解得:b =-2,c =3,∴抛物线解析式为:y =﹣x 2﹣2x +3;(2)连接OP ,抛物线的对称轴为:x =﹣1,设P (m ,﹣m 2﹣2m +3),其中m <﹣1, S △PAB =S △POB +S △ABO ﹣S △POA ,∵S △PAB =2S △AOB ,∴S △POB ﹣S △POA =S △ABO , ∴()2111312313222m m m ⨯⨯--⨯⨯--+=⨯⨯, 解得:m =-2或m =3(舍),即P 点坐标为(-2,3).6.(2019·商丘二模)如图.在平面直角坐标系中.抛物线y =12x 2+bx +c 与x 轴交于A 两点,与y 轴交于点C ,点A 的坐标为(﹣1,0),点C 的坐标为(0,﹣2).已知点E (m ,0)是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE ⊥x 轴交抛物线于点P .交BC 于点F .(1)求该抛物线的表达式;(2)当线段EF ,PF 的长度比为1:2时,请求出m 的值;(3)是否存在这样的m ,使得△BEP 与△ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将点A (﹣1,0)、C (0,﹣2)代入y =12x 2+bx +c 得: 2102c b c =-⎧⎪⎨-+=⎪⎩,解得:b =32-,c =-2, ∴抛物线的表达式为:y =12x 232-x ﹣2; (2)在y =12x 232-x ﹣2中,当y =0时,x =-1或x =4, 即B (4,0),设直线BC 的解析式为:y =kx +n ,将点C (0,﹣2)、B (4,0)代入y =kx +n ,得: 2420n k =-⎧⎨-=⎩,解得:212n k =-⎧⎪⎨=⎪⎩ ∴直线BC 的表达式为:y =12x ﹣2, ∵E (m ,0),∴P (m ,12m 232-m ﹣2),F (m ,12m ﹣2) ①当E 在线段AO 上时,EF >PF ,不符合题意;②当E 在线段OB 上时,EF =2-12m ,PF =12m ﹣2-(12m 232-m ﹣2)=-12m 2+2m , ∵2EF =PF ,∴2(2-12m )=-12m 2+2m , 解得:m =2或m =4,∵E 不与A 、B 重合,∴m ≠4,即m =2;(3)∵A (﹣1,0)、C (0,﹣2)、B (4,0),∴AB 2=25,AC 2=5,BC 2=20,∴AB 2=AC 2+BC 2∴△ABC 是直角三角形,当△BEP 与△ABC 相似,则∠EPB =∠CAB 或∠EPB =∠ABC ,∴tan ∠EPB =tan ∠CAB ,或tan ∠EPB =tan ∠ABC ,①当tan ∠EPB =tan ∠CAB 时, 即:24213222m m m -=⎛⎫--- ⎪⎝⎭, 解得:m =0或4(舍去),②当tan ∠EPB =tan ∠ABC , 即:241132222m m m -=⎛⎫--- ⎪⎝⎭, 解得:m =3或4(舍去),综上所述,m 的值为0或3.7.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC ∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y =﹣x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC ∥x 轴∴点E 的纵坐标为2,∵点E 在直线y =﹣x 上,∴点E (﹣2,2),∵将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得: 93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+; (2)∵OC =CE =2,∴∠ECO =∠CEO =45°,∵PG ⊥x 轴,PH ⊥EO ,∴∠PGH =45°,即△PGH 为等腰直角三角形,P (m ,224233m m --+),G (m ,﹣m ), ∴lPG=2(224233m m --++m )=214m ⎫++⎪⎝⎭∵3-<0, ∴当m =-14时,l. 8.(2019·西华县一模)如图,在平面直角坐标系中,直线y =﹣2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动;同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA =QA ?【答案】见解析.【解析】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),设抛物线解析式为y=ax2+bx+c,∵抛物线过点B(0,10),C(8,4),O(0,0),∴c=0,25a+5b=0,64a+8b=4,∴a=16,b=56-,c=0抛物线解析式为y=16x256-x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)由(1)知BC=10,AC=5,OA=5,OP=2t,BQ=t,CQ=10﹣t,∵AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,AC=OA,PA=QA,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,即2t=10﹣t,解得:t=103,即当运动时间为103s时,PA=QA.9.(2019·中原名校大联考)如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)(1)求抛物线的解析式;(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.【答案】见解析.【解析】解:(1)在y=﹣x+5中,当x=0, y=5,当y=0, x=5,点B、C的坐标分别为(5,0)、(0,5),将(5,0)、(0,5),代入y=﹣x2+bx+c,并解得:b=4,c=5即二次函数表达式为:y=﹣x2+bx+5.(2)在y=﹣x2+bx+5中,当y=0时, x=﹣1或5,∴A(﹣1,0),OB=OC=2,∴∠OCB=45°;过点D分别作x轴和直线BC的对称点D′(0,﹣3)、D″,∵∠OCB=45°,∴CD″∥x轴,点D″(2,5),连接D′D″交x轴、直线BC于点N、M,此时△DMN的周长最小,设直线D’D’’的解析式为:y=mx+n将D′(0,﹣3),D″(2,5),代入解得:m=4,n=-3,直线D’D’’的解析式为:y=4x﹣3,∴N(34,0).联立y=4x﹣3,y=﹣x+5得:x=85,y=175,即M(85,175).10.(2019·郑州模拟)如图,二次函数y=x2+bx+c 的图象与x 轴交于A,B 两点,与y 轴交于点C,OB=OC.点D 在函数图象上,CD∥x 轴,且CD=2,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b,c的值.(2)如图 1,连接BE,线段OC 上的点F 关于直线l 的对称点F′恰好在线段BE 上,求点F 的坐标.(3)如图 2,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN 与△APM 的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.图1 图2【答案】见解析.【解析】解:(1)∵CD∥x轴,CD=2,C在y轴上,∴抛物线的对称轴为:x=1,即b=-2,∵OB=OC,C(0,c),∴B(-c,0),即c2+2c+c=0,解得:c=0(舍)或c=-3,即b=-2,c=-3,(2)抛物线的解析式为:y= x2-2x-3,可得:E(1,-4),A(-1,0),B(3,0),C(0,-3),则直线BE的解析式为:y=2x-6,设F(0,m),则其关于直线l对称点为F’(2,m),∵F’在直线BE上,∴m=-2,即F(0,-2).(3)存在,理由如下:过点Q作QD⊥PN于D,连接PQ、NQ,设点P(x,0),由B(3,0),C(0,-3)得直线BC的解析式为:y=x-3 则M(x,x-3),N(x,x2-2x-3),AP=x+1,PM=3-x,PN= -x2+2x+3∵S△PQN=S△APM,∴PN·DQ=AP·PM,∴(-x2+2x+3)DQ=(x+1)(3-x),即DQ=1,①当点D在直线PN右侧时,D(x,x2-4),Q(x+1,x2-4),则DN=|2x-1|,在Rt△DNQ中,由勾股定理得:NQ2=(2x-1)2+12=4212x⎛⎫-⎪⎝⎭+1,当x=12时,NQ取最小值,此时Q(32,154-);②当点Q在直线PN的左侧时,由对称性求得:此时Q(12,154-);11.(2019·郑州模拟)如图,抛物线y=-x2+bx+c和直线y=x+1交于A、B两点,点A在x轴上,点B 在直线x=3上,直线x=3与x轴交于点C.(1)求抛物线的解析式.(2)点P从点A AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.【答案】见解析.【解析】解:(1)∵B点横坐标为3,在y=x+1上,∴B(3,4),∵A点在y=x+1上,∴A(﹣1,0),将A(﹣1,0),B(3,4)代入y=﹣x2+bx+c得:10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y =﹣x 2+3x +4(2)①过点P 作PE ⊥x 轴于点E ,由题意得:E (﹣1+t ,0),Q (3﹣2t ,0),∴EQ =4﹣3t ,PE =t∵∠PQE +∠NQC =90°,∠PQE +∠EPQ =90°,∴∠EPQ =∠NQC ,∴△PQE ∽△QNC , ∴12PQ PE NQ CQ ==, ∴S 矩形PQNM =PQ •NQ =2PQ 2∵PQ 2=PE 2+EQ 2∴S =20t 2﹣36t +18 =26162055t ⎛⎫-+ ⎪⎝⎭当t =65时,S 最小为165. ②由①知:△PQE ∽△QNC ,C (3﹣2t ,0),P (﹣1+t ,t ),∴NC =2QO =8﹣6t ,∴N (3,8﹣6t ),∴M (3t ﹣1,8﹣5t ),(i )当M 在抛物线上时,可得:8﹣5t=﹣(3t﹣1)2+3(3t﹣1)+4解得:t或t;(ii)当点Q到A时,Q在抛物线上,此时t=2,(iii)当N在抛物线上时,8﹣6t=4,∴t=23,综上所述,当t2,23时,矩形PQNM的顶点落在抛物线上.12.(2019·郑州模拟)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是【答案】14-≤b≤1.【解析】解:当点A与点N重合时,MN⊥AC,B、M、N共线,∵N(3,1)∴b=1;当点A与点M重合时,延长NM交y轴于E,易知∠CAN=∠BAE,即tan∠CAN=tan∠BAE,∴11252BE=,∴BE=54,即b=14-,∴b的取值范围是:14-≤b≤1.。
2020年(河南)中考数学压轴题全揭秘精品专题13 击破类比、探究类综合题利器之相似知识含答案
专题13 击破类比、探究类综合题利器之相似知识模型一、A 字形(手拉手)及其旋转模型二、K 字型及其旋转【例1】(2019·洛阳二模)如图 1,在 Rt △ABC 中,∠ABC =90°,AB =BC =4,点 D ,E 分别是边 AB ,AC 的中点,连接 DE ,将△ADE 绕点 A 按顺时针方向旋转,记旋转角为 α,BD ,EC 所在直线相交所成的锐角为 β.(1)问题发现 当 α=0°时,CEBD= ,β=(2)拓展探究试判断:当0°≤α<360°时,CEBD和β的大小有无变化?请仅就图2的情形给出证明. (3)在△ADE 旋转过程中,当 DE ∥AC 时,直接写出此时△CBE 的面积.图1 图2【答案】见解析.ACCCBC【解析】解:(1)由题意知,AC,CE =AE,BD =AD =2, ∴CEBD,β=∠A =45°, (2)无变化,理由如下: 延长CE 交BD 于F ,∵△ABC 、△ADE 是等腰直角三角形,∴AC AEAB AD==DAE =∠BAC =45°, ∴∠DAB =∠CAE , ∴△ABD ∽△ACE ,∴CE ACBD AB== ∠ABD =∠ACE , ∴∠CFB =45°, 即β=∠CFB =45°. (3)①如图所示,S =12BC ·BE =12×4×(4-)=8-; ②如下图所示,ADS =12BC ·BE =12×4×(); 综上所述,在△ADE 旋转过程中,DE ∥AC 时,此时△CBE 的面积为8-或.【变式1-1】(2019·洛阳三模)如图 1,在 Rt △ABC 中,∠C =90°,AC =8,AB =10,D ,E 两点分别是 AC ,CB 上的点,且 CD =6,DE ∥AB ,将△CDE 绕点 C 顺时针旋转一周,记旋转角为 α.(1)问题发现 ①当 α=0°时,ADEB = ; ②当 α=90°时,ADEB= .(2)拓展探究请你猜想当△CDE 在旋转的过程中,ADEB是否发生变化?根据图2证明你的猜想. (3)问题解决在将△CDE 绕点 C 顺时针旋转一周的过程中,当 AD时,BE = ,此时α= .图1 图2【答案】(1)43,43;(2)见解析;(360或300.【解析】解:(1)∵AB =10,AC =8, ∴由勾股定理得:BC =6, ①∵DE ∥AB ,∴CD CEAC BC =, 即686CE =, ∴CE =92,∴BE =32,∴AD EB =43; ②由勾股定理得:AD =10,BE =152, ∴AD EB =43; (2)不变化,理由如下: 由题意知:△DCE ∽△ACB , ∴CD CEAC BC=, 由旋转性质得:∠ACD =∠BCE , ∴△ACD ∽△BCE , ∴AD ACBE BC =, 即8463AD BE ==. (3)由(2)知43AD BE =,∵AD ,∴BE如图,过D作DF⊥AC于F,设AF=x,则CF=8-x,由勾股定理得:()2-x2=62-(8-x)2,解得:x=5,即AF=5,CF=3,由CD=6,得∠FDC=30°,∴∠DCF=60°,即α=60°;同理可得,当α=300°时,AD60°或300°.【例2】(2019·南阳毕业测试)如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;图1 图2 图3 备用图【答案】(1)1;(2)①mn;②见解析.【解析】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DEDF=ADCD,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴ADCD=ACBC=1,即DEDF=1,(2)①由(1)中方法可证得:△ADE∽△CDF,△ADC∽△CDB,∴DEDF=ADCD=ACBC=nm,即DEDF=nm,②成立.∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DEDF=ADCD,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴ADCD=ACBC=nm,∴DEDF=nm.【变式2-1】(2019·开封二模)如图1,在矩形ABCD中,AB=6,BC=8,点E是边CD上的点,且CE =4,过点E作CD的垂线,并在垂线上截取EF=3,连接CF.将△CEF绕点C按顺时针方向旋转,记旋转角为a.(1)问题发现当a=0°时,AF=,BE=,AEBE=;(2)拓展探究试判断:当0°≤a°<360°时,AEBE的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△CEF旋转至A,E,F三点共线时,直接写出线段BE的长.图1 图2 备用图【答案】(1)54;(2)(3)见解析;【解析】解:(1)当a=0°时,过点F作FG⊥AD于G,∵四边形ABCD是矩形,∴∠ADC=∠BCE=90°,AD=BC=8,AB=CD=6,由∠G=∠EDG=∠DEF=90°,知四边形DEFG是矩形,∴DG=EF=3,AG=11,∵CE=4,CD=6,∴FG=DE=2,Rt△AGF中,由勾股定理得:AF=同理,BE=∴AEBE=54.(2)AEBE的大小无变化,理由如下:连接AC,∵AB=6,BC=8,EF=3,CE=4,∴12EFAB=,12CEBC=,∴EFAB=CEBC,∵∠CEF=∠ABC=90°,∴△CEF∽△CBA,∴CF CEAC BC=,∠ECF=∠ACB,∴54CF ACCE BC==,∠ACF=∠BCE,∴△ACF∽△BCE,∴54AE CFBE CE==,即AEBE的大小无变化;(3)当△CEF旋转至A,E,F三点共线时,存在两种情况:①E在A、F之间,如图,连接AC,Rt△ABC中,由勾股定理得:AC=10,同理得:CF=5,由(2)知:54 AE CFBE CE==,Rt△AEC中,由勾股定理得:AE=∴AF =AE +EF =,∴BE =45AF =45(2;②点F 在A 、E 之间时,如图所示,连接AC ,同理得:AF =AE ﹣EF =3,∴BE =45AF =45(23)=125;综上所述,BE .1.(2018·河师大附中模拟)如图①,在Rt △ABC 中,∠BAC =90°,=1ABAC. 点P 是边BC 上一个动点(不与B 重合),∠P AD =90°,∠APD =∠B ,连接CD .填空:①PBCD= ;②∠ACD 的度数为 .(2)拓展探究如图②,在Rt △ABC 中,∠BAC =90°,=ABk AC. 点P 是边BC 上一个动点(不与B 重合),∠P AD =90°,∠APD =∠B ,连接CD . 请判断∠ACD 与∠B 的数量关系以及PB 与CD 之间的数量关系,并说明理由.(3)解决问题如图③,在△ABC 中,∠B =45°,AB ,BC =12,P 是边BC 上一动点(不与B 重合),∠P AD =∠BAC ,∠APD =∠B ,连接CD . 请直接写出所有CD 的长.① ② ③【答案】见解析.【解析】解:(1)∵AB =AC ,∠BAC =90°,∠P AD =90°, ∴∠BAP =∠CAD ,∠B =45°, ∵∠APD =∠B , ∴∠APD =∠ADP =45°, ∴AP =AD , ∴△ABP ≌△ACD ,∴BP =CD ,∠ACD =∠B =45°, 即PBCD=1,∠ACD =45°, 故答案为:1,45°. (2)∠ACD =∠B ,PBCD=k ,理由如下: ∵∠BAC =90°,∠P AD =90°,∠APD =∠B , ∴△ABC ∽△APD , ∴=AB APAC AD=k , 由∠BAP +∠P AC =∠P AC +∠CAD =90°,得: ∠BAP =∠CAD , ∴△ABP ∽△CAD , ∴∠ACD =∠B , ∴=PB ABCD AC=k . (3)①过A 作AH ⊥BC 于H ,如图所示,∵∠B =45°,∴△BAH 是等腰直角三角形,∵AB , ∴AH =BH =4, ∵BC =12, ∴CH =8,在Rt △ACH 中,由勾股定理得:AC在Rt △APH 中,由勾股定理得:PH =3,∴BP =1,∵∠P AD =∠BAC ,∠APD =∠B ,∴△ABC ∽△APD , ∴=AB AP AC AD, 由∠BAP +∠P AC =∠P AC +∠CAD ,得:∠BAP =∠CAD ,∴△ABP ∽△CAD , ∴=PB AB CD AC,即1CD解得:CD , ②如图所示,过A 作AH ⊥BC 于H ,同理可得:△ABP ∽△CAD , ∴=PB AB CD AC,即7CD解得:CD =2综上所述,CD 2.(2018·河南第一次大联考)如图1,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB 的位置关系为__________;(2)深入探究:如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN,试求EF的长.【答案】见解析.【解析】解:(1)NC∥AB;(2)∠ABC=∠ACN,理由如下:∵AB=BC,AM=MN,即AB:BC=AM:MN=1,又∠ABC=∠ACN,∴△ABC∽△AMN,∴AB AC AM AN=,∴∠BAC=12(180°-∠ABC),∵AM=MN,∴∠MAN=12(180°-∠AMN),由∠ABC=∠AMN,得∠BAC=∠MAN,∴∠BAM=∠CAN,又AB AC AM AN=,∴△ABM∽△ACN,∴∠ABC=∠ACN,(3)连接AB,AN,∵四边形ADBC ,AMEF 为正方形,∴∠ABC =∠BAC =45°,∠MAN =45°,∴∠BAM =∠CAN ,由AB AM BC AN =, ∴AB BC AC AM AN AN==, ∴△ABM ∽△ACN , ∴BM AB CN AC=,=, ∴BM =2,∴CM =BC -BM =10-2=8,在Rt △AMC 中,由勾股定理得:AM∴EF =AM =3.(2017·新野一模)如图①,在△ABC 中,∠ACB =90°,BC =2,∠A =30°,点E ,F 分别是线段BC ,AC 的中点,连接EF .(1)说明线段BE 与AF 的位置关系和数量关系;(2)如图②,当△CEF 绕点C 顺时针旋转α(0°<α<90°)时,连接AF ,BE ,(1)中的结论是否仍然成立?如果成立,请证明;如果不成立,请说明理由;(3)如图③,当△CEF 绕点C 顺时针旋转α(0°<α<180°)时,延长FC 交AB 于点D ,如果AD =6﹣α的度数.【答案】见解析.【解析】(1)解:BE ⊥AF ,AF ;理由如下:在△ABC 中,∠ABC =90°,BC =2,∠A =30°,∴AC∵点E ,F 分别是线段BC ,AC 的中点,∴BE ⊥AF ,BE =CE ,AF =CF ,∴AEACBE BC =∴AF ;(2)解:(1)中的结论仍然成立,理由如下:∵点E ,F 分别是线段BC ,AC 的中点,∴EC =12BC ,FC =12AC , ∴CE CFBC AC ==12,∵∠BCE =∠ACF ,∴△BEC ∽△AFC ,∴AE ACBE BC =CBE =∠CAF ,延长BE 交AC 于点O ,交AF 于点M ,如图所示:∵∠BOC =∠AOM ,∠CBE =∠CAF ,∴∠BCO =∠AMO =90°,即BE ⊥AF ;(3)解:∵∠ACB =90°,BC =2,∠A =30°,∴AB =2BC =4,∠B =60°,∴DB =AB ﹣AD =4﹣(6﹣)2,过点D 作DH ⊥BC 于点H ,如图所示:∴BH =12DB ﹣1,DH =2DB =3又∵CH =BC ﹣BH =2﹣1)=3∴CH =DH ,∴∠HCD =45°,∴∠DCA =45°,∴α=135°.4.(2019·安阳一模)(1)问题发现:如图1,在等边△ABC 中,点D 为BC 边上一动点,DE ∥AB 交AC 于点E ,将AD 绕点D 顺时针旋转60°得到DF ,连接CF .则AE 与FC 的数量关系是__________,∠ACF 的度数为_________.(2)拓展探究:如图2,在Rt △ABC 中,∠ABC =90°,∠ACB =60°,点D 为BC 边上一动点,DE ∥AB 交AC 于点E ,当∠ADF =∠ACF =90°时,求AE FC 的值. (3)解决问题:如图3,在△ABC 中,BC :AB =m ,点D 为BC 的延长线上一点,过点D 作DE ∥AB 交AC 的延长线于点E ,直接写出当∠ADF =∠ACF =∠ABC 时AEFC 的值.图1 图2图3 【答案】(1)AE =FC ,60;(2)(3)见解析;【解析】解:(1)∵△ABC 是等边三角形,DE ∥AB ,∴△DCE 是等边三角形,∴CD =DE ,∠CDE =60°,由旋转性质知,AD =DF ,∠ADF =60°,∴∠ADE =∠CDF ,∴△ADE ≌△FDC ,∴AE =FC ,∠DCF =∠DEA =120°,∴∠ACF =60°;(2)∵DE ∥AB ,∴∠EDC =∠ABC =90°,∵∠ADF =90°,∴∠ADC =∠CDF ,∵∠ACF =90°,即∠AED =∠EDC +∠ACB ,∠FCD =∠ACF +∠ACB ,∴∠AED =∠FCD ,∴△DAE ∽△DFC , ∴AE DECF CD ,图1A B C D E F图2AB CD E F图3A B C D E F∵DE ∥AB ,∴△EDC ∽△ABC , ∴DE AB CD BC =,∴AE AB CF BC= (3)与(2)证明可得:AE AB CF BC ==1m. 5.(2019·南阳模拟)(1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为 ;(2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明;(3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.图1 图2 备用图【答案】(1)BE AF ;(2)(3)见解析.【解析】解:(1)BE AF .∵△AFC 是等腰直角三角形,∴AC AF∵AB =AC∴BE =AB AF ;(2)BE AF ,理由如下:在Rt △ABC 中,AB =AC ,∴∠ABC =∠ACB =45°,在Rt △EFC 中,∠FEC =∠FCE =45°,∠EFC =90°,∴∠ABC =∠FEC =45°,∴sin ∠ABC =sin ∠FEC ,即:AC CF BC CE= ∵∠FEC =∠ACB =45°,∴∠FEC ﹣∠ACE =∠ACB ﹣∠ACE .即:∠FCA =∠ECB .∴△ACF ∽△BCE ,∴AC BE BC AF==2,∴BE AF ;(3)①当E 在B 、F 之间时,如图2,由(1)知,CF =EF ,在Rt △BCF 中,CF ,BC =,根据勾股定理得,BF∴BE =BF ﹣EF ,∵BE AF ,∴AF 1;②当F 在B 、E 之间时,由(1)可证,△ACF ∽△BCE ,∴BC BE AC AF==∴BE AF ;由①知:CF ,BC =,BF∴BE =BF +EF ,BE AF ,∴AF.当B,E,F三点共线时,线段AF﹣1.6.(2019·商丘二模)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)问题提出:如图1,若AD=AE,AB=AC.①∠ABD与∠ACE的数量关系为;②∠BPC的度数为.(2)猜想论证:如图2,若∠ADE=∠ABC=30°,则(1)中的结论是否成立?请说明理由.(3)拓展延伸:在(1)的条件中,若AB=2,AD=1,若把△ADE绕点A旋转,当∠EAC=90°时,直接写出PB的长.图1 图2 备用图【答案】(1)∠ABD=∠ACE,90°;(2)(3)见解析.【解析】解:(1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∠ABC=∠ACB=45°∴△ADB≌△AEC∴∠ABD=∠ACE,②∠BPC=180°﹣∠ABD﹣∠ABC﹣∠BCP=180°﹣45°﹣(∠BCP+∠ACE)=180°﹣45°﹣45°=90°;(2)(1)中结论成立,理由:在Rt△ABC中,∠ABC=30°,AB AC,同理,AD,∴AD AE AB CE,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB ∽△AEC .∴∠ABD =∠ACE ;∠BPC =180°﹣∠ABD ﹣∠ABC ﹣∠BCP=180°﹣30°﹣60°=90°,(3)解:①当点E 在线段AB 上时,BE =AB ﹣AE =1.在Rt △AEC 中,由勾股定理得:CE , 易证:△ADB ≌△AEC .∴∠DBA =∠ECA .∵∠PEB =∠AEC ,∴△PEB ∽△AEC . ∴PB BE AC CE=, ∴2PB =∴PB =5; ②当点E 在BA 延长线上时,BE =AB +AE =3. 同理得:PB BE AC CE =, ∴32PB CE=∴PB综上所述,PB7.(2019·名校模考)问题发现:(1)如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为.类比探究:(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD,请问(1)中BD,EC的数量关系还成立吗?说明理由.拓展延伸:(3)如图3,在(2)的条件下,将△AED绕点A继续旋转,旋转角为a(a>90°).直线BD,CE交于F点,若AC=1,AB,则当∠ACE=15°时,BF•CF的值为.图1 图2 图3【答案】(1)BD=k•EC;(2)(3)见解析.【解析】解:(1)∵DE∥BC,∴BD CEAB AC=,AD AEAB AC=,即BD AD AB CE AE AC==,∵AB=k•AC,∴BD=k•EC;(2)成立,理由如下:连接BD由旋转的性质可知,∠BAD=∠CAE∵AD ABAE AC==tan∠ADE,∴△ABD∽△ACE,∴BD ABCE AC==k,即:BD=k•EC;(3)BF•CF的值为2或1;由(2)知△ABD∽△ACE∴∠ACE=∠ABD=15°∵∠ABC+∠ACB=90°∴∠FBC+∠FCB=90°∴∠BFC=90°由∠BAC=90°,AC=1,AB,得:∠ABC=30°,∠ACB=60°,BC=2AC=2,分两种情况讨论:①如图,此时,∠CBF=30°+15°=45°,BC=2∴BF=CF=∴BF•CF=2;②如图在BF上取点G,使∠BCG=15°,则∠BCF=75°,∠CBF=∠ABC﹣∠ABD=15°,∴∠CFB=90°,∠GCF=60°∴CG=BG=2CF,GF,BF=(2+ )CF由勾股定理知:CF2+BF2=BC2∴CF2+()CF2=22,∴CF2=2,∴BF•CF=(CF2=1,即:BF•CF=2或1.8.(2019·枫杨外国语三模)已知,在△ABC中,∠ACB=90°,∠B=30°,点D是直线AB上的动点,连接CD,以CD为边,在CD的左侧作等边△CDE,连接EB(1)问题发现:如图(1),当CD⊥AB时,ED和EB的数量关系是 .(2)规律论证:如图(2)当点D在线段AB上运动时,(1)中ED,EB的数量关系是否仍然成立?若成立,请仅就图(2)加以证明;若不成立,请写出新的数量关系,并说明理由.(3)拓展应用:如图(3)当点D在直线AB上运动时,若AC△BCE恰好为等腰直角三角形时,请直接写出符合条件的AD的长.图1 图2 图3【答案】(1)ED=EB;(2)(3)见解析.【解析】解:(1)∵△CDE是等边三角形,∴∠CDE=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BDE=30°,∵∠B=30°,∴∠BDE=∠B,∴ED=EB;(2)成立;过点C作CF⊥AB于F,过E作EH⊥BC于H,则∠CFB=∠EHC=90°,∵∠CBA=30°,∴∠BCF=60°,∵△CED是等边三角形,∴∠DCE=60°,CE=CD,∴∠ECH=∠DCF,∴△CDF≌△CEH,∴CH=CF,在Rt△CBF中,由∠CBF=30°,得:BC=2CF,∴BH=CH=CF,即H为BC中点,∵EH=EH,∠BHE=∠CHE=90°,∴△BEH≌△CEH,∴BE=CE,∵CE=DE,∴BE=DE;(3)过点C作CH⊥AB于H,如下图所示,由题意知:AC,∴AH,CH BC=2CH BE=CE=CD BC在Rt△CDH中,由勾股定理得:DH∴AD=DH-AH;②如图所示,同理可得:DH AH,∴AD=DH+AH;综上所述,符合条件的AD.9.(2017·郑州一模)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB 于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若2AB EFBC BF==,求ANDN的值.【答案】见解析.【解析】解:(1)当F为BE中点时,即BF=EF,∵四边形ABCD是矩形,∴AB=DC,AB∥DC,∴∠MBF=∠CEF,∠BMF=∠ECF,∴△BMF≌△ECF,∴BM=EC.∵E为CD的中点,∴EC=12DC=12AB,∴AM=BM=EC;(2)设MB =x ,∵四边形ABCD 是矩形,∴AD =BC ,AB =DC ,∠A =∠ABC =∠BCD =90°,AB ∥DC , ∴2CE EF BM BF==, ∴EC =2x ,∴AB =CD =2CE =4x ,AM =AB ﹣MB =3x , 由2AB BC=,得BC =AD =2x , ∵MN ⊥MC ,∴∠CMN =90°,∵∠A =90°,∴∠BMC =∠ANM ,∴△AMN ∽△BCM , ∴AN AM BM CB =, ∴32AN x x x=, ∴AN =32x ,ND =AD ﹣AN =12x , ∴AN DN=3. 10. (2019·郑州名校二模) 如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图1 图2【答案】见解析.【解析】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,同理:PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转性质知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ABD=∠ACE,BD=CE,由(1)中知:PN=12BD,PM=12CE,PM∥CE,PN∥BD,∴PM=PN,∠DPM=∠DCE,∠PNC=∠DBC,∴△PMN是等腰三角形,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC=90°,∴△PMN是等腰直角三角形;(3)由(2)知,△PMN是等腰直角三角形,PM=PN=12 BD,∴当PM最大时,即BD最大时,△PMN面积最大,∴点D在BA的延长线上,BD最大,最大值为:BD=AB+AD=14,即PM=7,∴S△PMN最大=12PM2=492。
河南省安阳市,2020~2021年中考数学压轴题精选解析
河南省安阳市,2020~2021年中考数学压轴题精选解析河南省安阳市中考数学压轴题精选~~第1题~~(2020安阳.中考模拟) 如图所示,平面直角坐标系中,直线y =﹣x+3交坐标轴与B 、C 两点,抛物线y =ax +bx+3经过B 、C 两点,且交x 轴于另一点A (﹣1,0).点D 为抛物线在第一象限内的一点,过点D 作DQ ∥CO ,DQ 交BC 于点P ,交x 轴于点Q.(1) 求抛物线解析式;(2) 设点P 的横坐标为m ,在点D 的移动过程中,存在∠DCP =∠ACO ,求出m 值;(3) 在抛物线取点E ,在坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果有请求出点E 的坐标;如果不存在,请说明理由.~~第2题~~(2018安阳.中考模拟) 如图,在平面直角坐标系xOy 中,抛物线y=ax +bx ﹣ 与x 轴交于A (1,0),B (﹣3,0)两点,现有经过点A 的直线l :y=kx+b 与y 轴交于点C ,与抛物线的另个交点为D .(1) 求抛物线的函数表达式;(2) 若点D 在第二象限且满足CD=5AC ,求此时直线1的解析式;在此条件下,点E 为直线1下方抛物线上的一点,求△ACE 面积的最大值,并求出此时点E 的坐标;(3) 如图,设P 在抛物线的对称轴上,且在第二象限,到x 轴的距离为4,点Q 在抛物线上,若以点A ,D ,P ,Q 为顶点的四边形能否成为平行四边形?若能,请直接写出点Q 的坐标;若不能,请说明理由.~~第3题~~(2017安阳.中考模拟) 如图所示,抛物线y=ax +bx ﹣3与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C .(1) 求抛物线的解析式;2212(2) 如图所示,直线BC 下方的抛物线上有一点P ,过点p 作PE ⊥BC 于点E ,作PF 平行于x 轴交直线BC 于点F ,求△P EF 周长的最大值;(3) 已知点M 是抛物线的顶点,点N 是y 轴上一点,点Q 是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P 、M 、N 、Q 为顶点且以PM 为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.~~第4题~~(2017林州.中考模拟) 如图1,抛物线y=ax +bx+3(a≠0)与x 轴、y 轴分别交于点A (﹣1,0)、B (3,0)、点C 三点.(1)试求抛物线的解析式;(2)点D (2,m )在第一象限的抛物线上,连接BC 、BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC=∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC 沿x 轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD 重叠的面积记为S ,设平移的时间为t 秒,试求S 与t之间的函数关系式?河南省安阳市中考数学压轴题答案解析~~第1题~~答案:2解析:答案:解析:答案:解析:答案:解析:。
河南省2020年中考数学压轴题全揭秘专题08圆中证明及计算问题含解析
专题08圆中证明及计算问题【例1】(2019·叶县一模)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5 cm,AC=12 cm时,求线段PC的长.【答案】见解析.【解析】(1)证明:连接OD.∵∠BAD=∠CAD,∴弧BD=弧CD,∴∠BOD=∠COD=90°,∵BC∥PA,∴∠ODP=∠BOD=90°,即OD⊥PA,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴AB BD CD CP,∴AB•CP=BD•CD.(3)∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,由勾股定理得:BC=13,由(1)知,△BCD是等腰直角三角形,∴BD=CD∵AB•CP=BD•CD.∴PC=169 10.【变式1-1】(2018·焦作一模)如图,△ABC内接于⊙O,且AB=AC,延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为.【答案】(1)见解析;(2)60;92.【解析】(1)证明:连接CE,∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD+∠BCE=∠BAE +∠BCE=180°,∴∠ECD=∠BAE,同理,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE;(2)①60;连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=∠AOC=120°,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,AC=CD,∴∠CAD=∠D=30°,∴∠ACE=30°,∴∠OAE=∠OCE=60°,即四边形AOCE是平行四边形,∵OA=OC,∴四边形AOCE是菱形;②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∠D=∠EBC,由∠CED=∠ABC=∠ACB,得△ECD∽△CFB,∴CE CFDE BC==68,∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴EF CF AE BC=,即6 68 EF=,∴EF=92.【例2】(2019·省实验一模)如图,AB为⊙O的直径,点C为AB上方的圆上一动点,过点C作⊙O的切线l,过点A作直线l的垂线AD,交⊙O于点D,连接OC,CD,BC,BD,且BD与OC交于点E.(1)求证:△CDE≌△CBE;(2)若AB=4,填空:①当弧CD的长度是时,△OBE是等腰三角形;②当BC=时,四边形OADC为菱形.【答案】(1)见解析;(2)2;2.【解析】(1)证明:延长AD 交直线l 于点F ,∵AD 垂直于直线l ,∴∠AFC =90°,∵直线l 为⊙O 切线,∴∠OCF =90°,∴∠AFC =∠OCF =90°,∴AD ∥OC ,∵AB 为⊙O 直径,∴∠ADB =90°,∴∠OEB =90°,∴OC ⊥DB ,∴DE =BE ,∠DEC =∠BEC =90°,∵CE =CE ,∴△CDE ≌△CBE ;(2)①如图2,连接OD ,由(1)知∠OEB =90°,当△OBE 是等腰三角形时,则△OEB 为等腰直角三角形,∴∠BOE =∠OBE =45°,∵OD =OB ,OE ⊥BD ,∴∠DOC =∠BOE =45°,∵AB =4,∴OD =2,∴弧CD 的长=452180π⨯=2π; ②当四边形OADC 为菱形时,则AD =DC =OC =AO =2,由(1)知,BC =DC ,∴BC =2.【变式2-1】(2019·河南南阳一模)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则弧AC 的长为( )A . 2πB . πC . 2πD . 3π【分析】根据弧长公式180n r l π=,需先确定弧AC 所对的圆心角∠AOC 的度数,再根据同弧所对的圆心角是圆周角的2倍得到∠AOC =2∠D ,根据圆内接四边形对角互补,求出∠D =180°-∠B =45°,再代入弧长公式求解即可.【解析】解:∵四边形ABCD是⊙O的内接四边形,∴∠D=180°-∠B=45°,∴弧AC所对圆心角的度数为:2×45°=90°,∵⊙O的半径为2,∴弧AC的长为:902180180n rlππ⨯===π,故选B.1.(2018·洛阳三模)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O,与斜边AB交于点D,E 为BC边的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空:①若∠B=30°,AC=23,则BD=②当∠B= 时,以O、D、E、C为顶点的四边形是正方形.【答案】见解析.【解析】解:(1)连接OD,∵AC为直径,∴∠ADC=90°,∠CDB=90°,∵E是BC的中点,∴DE=CE=BE,∴∠DCE=∠EDC,∵OD=OC,∴∠OCD=∠ODC,∴∠ODC+∠CDE=∠OCD+∠DCE=90°,即∠ODE=90°,∴DE是⊙O的切线;(2)3;45°,理由如下:①∵∠B=30°,AC=23,∠BCA=90°,∴BC= AC÷tan30°=6,∴DE=3,②由∠B=∠A=45°,OA=OD,得∠ADO=∠AOD=45°,∴∠AOD=90°,∴∠DOC=90°,又∠ODE=90°,∴四边形ODEC是矩形,∵OD=OC,∴四边形ODEC是正方形.2.(2018·河南第一次大联考)已知△ABC内接于以AB为直径的⊙O,过点C作⊙O的切线交BA的延长线于点D,且DA∶AB=1∶2.(1)求∠CDB的度数;(2)在切线DC上截取CE=CD,连接EB,判断直线EB与⊙O的位置关系,并证明.【答案】见解析.【解析】解:(1)如图,连接OC,∵CD是⊙O的切线,∴∠OCD=90°.∵DA:AB=1:2,∴DA=OC,DO=2OC.在Rt△DOC中,sin∠CDO=12,∴∠CDO=30°,即∠CDB=30°.(2)直线EB与⊙O相切.证明:连接OC,由(1)可知∠CDO=30°,∴∠COD=60°,∵OC=OB,∴∠OBC=∠OCB=30°,∴∠CBD=∠CDB,∴CD=CB,∵CD是⊙O的切线,∴∠OCE=90°,∴∠ECB=60°,又∵CD=CE,∴CB=CE,∴△CBE为等边三角形,∴∠EBA=∠EBC+∠CBD=90°,∴EB是⊙O的切线.3.(2019·偃师一模)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,E 为BC边上一点,且DE是⊙O的切线.(1)求证:BE=EC;(2)填空:①若∠B=30°,AC则DE= ;②当∠B= °时,以O,D,E,C为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②45. 【解析】解:(1)证明:如图,连接OD,∵∠ACB=90°,AC为⊙O的直径,∴EC为⊙O的切线,∵DE为⊙O的切线,∴EC=ED,∵∠EDO=90°,∴∠BDE+∠ADO=90°,∵OD=OA,∴∠ADO=∠A,∴∠BDE+∠A=90°,∵∠A+∠B=90°,∴∠BDE=∠B,∴BE=EC;(2)①3;②45,理由如下:①在Rt△ABC中,∠B=30°,AC3∴BC=6,由(1)知,E是BC中点,∴DE=12BC=3;②∵ODEC为正方形,∴∠DEC=90°,DE=CE=BE,∴∠B=45°,故答案为:3;45.4.(2017·新野一模)如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.(1)求证:△CDE≌△EFC;(2)若AB=4,连接AC.①当AC= 时,四边形OBEC为菱形;②当AC= 时,四边形EDCF为正方形.【答案】见解析.【解析】(1)证明:如图,∵BD⊥CD,∴∠CDE=90°,∵AB是直径,∴∠AEB=90°,∵CD是切线,∴∠FCD=90°,∴四边形CFED矩形,∴CF=DE,EF=CD,∵CE=CE,∴△CDE≌△EFC.(2)解:①当AC=2时,四边形OCEB是菱形.理由:连接OE.∵AC=OA=OC=2,∴△ACO是等边三角形,∴∠CAO=∠AOC=60°,∵∠AFO=90°,∴∠EAB=30°,∵∠AEB=90°,∴∠B=60°,∵OE=OB,∴△OEB是等边三角形,∴∠EOB=60°,∴∠COE=180°﹣60°﹣60°=60°,∵CO=OE,∴△COE是等边三角形,∴CE=CO=OB=EB,∴四边形OCEB是菱形.故答案为2.②当四边形DEFC是正方形时,∵CF=FE,∵∠CEF=∠FCE=45°,∵OC⊥AE,∴弧AC=弧CE,∴∠CAE=∠CEA=45°,∴∠ACE=90°,∴AE是⊙O的直径,∴△AOC是等腰直角三角形,∴AC=22.∴AC=22时,四边形DEFC是正方形.故答案为22.5.(2019·三门峡二模)如图,AB是半圆O的直径,D为半圆上的一个动点(不与点A,B重合),连接AD,过点O作AD的垂线,交半圆O的切线AC于点C,交半圆O于点E.连接BE,DE.(1)求证:∠BED=∠C.(2)连接BD,OD,CD.填空:①当∠ACO的度数为时,四边形OBDE为菱形;②当∠ACO的度数为时,四边形AODC为正方形.【答案】(1)见解析;(2)30;45.【解析】解:(1)证明:设AD,OC交于点P,∵OC⊥AD,∴∠APC=90°.∴∠C+∠CAP=90°∵AC是半圆O的切线,∴∠CAO=∠CAP+∠BAD=90°,∴∠BAD=∠C,∵∠BED=∠BAD,∴∠BED=∠C;(2)①30,理由如下:连接BD,如图:∵AB是半圆O的直径,∴∠ADB=90°,∵∠DAB=∠ACO=30°,∴∠DBA=60°,∵OE⊥AD,∴弧AE=弧AD,∴∠DBE=∠ABE=30°∵∠DEB=∠DAB=30°,∴∠DEB=∠ABE,DE∥AB∵∠ADB=90°,即BD⊥AD,OE⊥AD,∴OE∥BD,∴四边形OBDE是平行四边形∵OB=OE∴四边形OBDE是菱形;故答案为30°;②45,理由如下:连接CD、OD,∵∠BED=∠ACO=45°,∴∠BOD=2∠BED=90°,∴∠AOD=90°,∵OC⊥AD,∴OC垂直平分AD,∴∠OCD=∠OCA=45°,∴∠ACD=90°,∵∠ACO=90°,∴四边形AODC是矩形,∵OA=OD,∴四边形AODC是正方形,故答案为45°.6.(2019·开封模拟)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O 的切线PA、PB,切点分别为A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当弧AB的长为cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.【答案】(1)见解析;(2)23π21.【解析】解:(1)连接AO,∵PA是⊙O的切线,∴∠PAO=90°,∵∠APO=30°,∴∠AOP=60°,∵OA=OC,∴∠C=∠CAO=30°,∴∠C=∠APO=30°,∴△ACP是等腰三角形;(2)①若四边形AOBD是菱形,则AO=AD,∵AO=OD,∴△AOD是等边三角形,∠AOD=60°,∴∠AOB=120°,∵CD=2,∴圆O的半径为1,∴弧AB的长为:21201180π⨯=23π.②若四边形AOBP为正方形时,则PA=AO=1,则OP2,∵OD=1,∴PD2-1,2-1.7.(2019·西华县一模)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.【答案】见解析.【解析】证明:(1)∵F为弦AC(不是直径)的中点,∴AF=CF,OD⊥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC∥DE.(2)连接CD,∵AC∥DE,OA=AE=2,∴OF=FD,∵AF=CF,∠AFO=∠CFD,∴△AFO≌△CFD,∴S△AFO=S△CFD,∴S四边形ACDE=S△ODE∵OD=OA=AE=2,∴OE=4,由勾股定理得:DE3∴S四边形ACDE=S△ODE= 12×OD×OE=12×2×33.8.(2019·郑州联考)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【答案】见解析.【解析】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠BDE=∠DBE+∠BDE=90°,∴∠ADE=∠DBE=∠DAC,∴PD=PA,∵∠DFA+∠DAF=∠ADE+∠BDE=90°,∴∠PDF=∠PFD,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:∵∠CBD=∠DBA,CD=3,∴CD=AD=3,由勾股定理得:AB=5,即⊙O的半径为2.5,由DE×AB=AD×BD,即:5DE=3×4,∴DE=2.4.即DE的长为2.4.9.(2019·安阳二模)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD,AC 分别交于点E,F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=12,BC=4,求⊙O的半径.【答案】见解析.【解析】(1)直线CE与⊙O相切,证明:连接OE,∵OA=OE,∴∠EAO=∠AEO,∵∠ACB=∠DCE,∴∠AEO=∠ACB=∠DCE,∵四边形ABCD是矩形,∴BC∥AD,∴∠ACB=∠DAC,∵∠ACB=∠DCE,∴∠DAC=∠DCE,由∠D=90°,得:∠DCE+∠DEC=90°,∴∠AEO+∠DEC=90°,∴∠OEC=90°,即OE⊥EC,∵OE为半径,∴直线CE与⊙O相切;(2)解:在Rt△ACB中,AB=tan∠ACB×BC=12×4=2,由勾股定理得:AC=25,∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=12,在Rt△DCE中,CD=AB=2,DE=DC×tan∠DCE=2×12=1,由勾股定理得:CE=5,在Rt△COE中,CO2=CE2+OE2,OE=OA,(25﹣OA)2=OA2+(5)2,解得:OA=35,即⊙O的半径是35.10.(2019·平顶山三模)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF=12 AC,(1)求证:△ABF是直角三角形;(2)若AC=6,则直接回答BF的长是多少.中考2020【答案】见解析.【解析】(1)证明:连接CD,则CF=CD,∵AB是⊙C的切线.∴CD⊥AB,∠ADC=∠BDC=90°,在Rt△ACD中,CF=12 AC,∴CD=CF=12 AC,∴∠A=30°∵AC=BC,∴∠ABC=∠A=30°,∴∠ACB=120°,∠BCD=∠BCF=60°,∵BC=BC,∴△BCD≌△BCF,∴∠BFC=∠BDC=90°,∴△ABF是直角三角形.(2)解:由(1)知:AC=BC,CD⊥AB,∴AD=BD=BF,在Rt△ACD中,∠A=30°,AC=6,∴CD=3,∴AD3=3.∴BF=3。
2020年(河南)中考数学压轴题全揭秘精品专题12 击破类比、探究类综合题利器之全等知识
中考数学 专题12 击破类比、探究类综合题利器之全等知识模型一、A 字形(手拉手)及其旋转模型二、K 字型及其旋转【例1】(2019·济源一模)在菱形 ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边∠APE ,点 E 的位置随着点 P 的位置变化而变化.(1)探索发现如图1,当点E 在菱形ABCD 内部或边上时,连接CE .填空:BP 与CE 的数量关系是 ,CE 与 AD 的位置关系是.(2)归纳证明当点E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(选择图2,图3中的一种情况予以证明或说理)(3)拓展应用如图4,当点P 在线段 BD 的延长线上时,连接BE ,若AB=,BE=请直接写出四边形 ADPE 的面积.D图1 图2图3 图4【答案】(1)BP=CE,CE∠AD;(2)(3)见解析.【解析】解:(1)连接AC,延长CE至AD,∠四边形ABCD是菱形,∠ABC=60°,∠∠BAD=120°,∠∠BAC=60°,∠CAD=60°,∠∠ABC是等边三角形,∠AB=AC,∠∠APE是等边三角形,∠AP=AE,∠P AE=60°,∠∠BAP=∠CAE,∠∠BAP∠∠CAE,∠BP=CE,∠∠ABC=60°,∠∠ABP=30°,∠∠BAP∠∠CAE,∠∠ABP=∠ACE=30°,∠∠CAD=60°,∠∠ACE+∠CAD=90°,即CD∠AD.(2)结论仍然成立,理由如下:(以图2为例)连接AC,设CE与AD交于点H,∠四边形ABCD是菱形,∠ABC=60°,∠∠ABC和∠ACD是等边三角形,∠ABD=∠CBD=30°,∠AB=AC,∠BAC=60°,∠∠APE是等边三角形,∠AP=AE,∠P AE=60°,∠∠BAP=∠CAE,∠∠BAP∠∠CAE,∠BP=CE,∠ACE=∠ABP=30°,∠∠CAH=60°,∠∠AHC=90°,即CE∠AD;(3)连接AC交BD于O,连接CE,由(2)知,CE∠BC,∠AB=BE=在Rt∠BCF中,由勾股定理得:CE=8,由∠BAP∠∠CAE,得:BP=CE,BD=6,∠DP=BP-BD=2,AO在Rt∠AOP中,由勾股定理得:AP=∠S=S∠ADP+S∠APE=(2122⨯【变式1-1】(2019·周口二模)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若∠ABC为等腰直角三角形,问题初现:∠当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是_____________,数量关系是______________;深入探究:∠当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP∠CM交线段BN于点P,且∠CBA=45°,BC=,当BM=_________时,BP的最大值为__________.图1图2图3【答案】(1)BN∠AM,BN=AM;(2)见解析,(3)2, 1.【解析】解:(1)由AC=BC,∠ACM=∠BCN,CM=CN,可证∠ACM∠∠BCN,∠BN=AM,∠A=∠CBN=45°,∠∠ABN=90°,即BN∠AM.图1CBMNA BC图2图3CBA MNP(2)BN ∠AM ,BN =AM ;理由如下:∠∠ABC 是等腰直角三角形,∠AC =BC ,∠A =∠ABC =45°,∠ACB =90°, 同理,∠NCM =90°,NC =MC , ∠∠ACM =∠BCN , ∠∠ACM ∠∠BCN ,∠BN =AM ,∠A =∠CBN =45°, ∠∠ABN =90°,即BN ∠AM .(3)过C 作CG ∠BC 交BA 的延长线于G ,过C 作CH ∠AB 于H ,如图所示,易证∠GCM ∠∠BCN , 由(2)知,BN ∠AB , ∠∠CHM ∠∠MBP ,∠CH HMBM BP =, 即44BM BM BP-=, 设BM =x , 则BP =()21214x -+, AG∠当BM=2时,BP取最小值,最小值为1.【例2】(2018·洛阳三模)在正方形ABCD中,动点E、F分别从D、C两点出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边CD上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出∠ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.【答案】见解析.【解析】解:(1)AE=DF,AE∠DF,理由如下:∠四边形ABCD是正方形,∠AD=DC,∠ADE=∠DCF=90°,由题意知:DE=CF,∠∠ADE∠∠DCF,∠AE=DF,∠DAE=∠FDC,∠∠ADE=90°,∠∠ADP+∠CDF=90°,∠∠ADP+∠DAE=90°,∠∠APD=180°﹣90°=90°,∠AE∠DF;(2)(1)中的结论还成立,CE:CD或2,理由如下:∠如图,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=2a,则CE:CD=2a:a=2;∠如图,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE2a,∠四边形ABCD是正方形,∠∠ADC=90°,即AD∠CE,∠DE=CD=a,∠CE:CD=2a:a=2;故,CE:CD2或2;(3)∠点P在运动中∠APD=90°,∠点P的路径是以AD为直径的圆,如图,设AD的中点为Q,连接CQ并延长交圆Q于点P,此时CP的长度最大,在Rt∠QDC中,由勾股定理得:QC5,∠CP=QC+QP5,即线段CP5.【变式2-1】(2019·西华县一模)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG∠DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图1 图2 图3【答案】(1)FG=CE,FG∠CE;(2)(3)见解析.【解析】解:(1)FG=CE,FG∠CE;∠BF=CE,BC=CD,∠FBC=∠DCE=90°,∠∠BCF∠∠CDE,∠∠DEC=∠CFB,∠∠CFB+∠FCB=90°,∠∠DEC +∠FCB=90°,即CF∠DE,∠DE∠EG,∠EG∠CF,∠EG=DE=CF,∠四边形FCEG是平行四边形,∠FG=CE,FG∠CE;(2)∠BF=CE,BC=CD,∠FBC=∠DCE=90°,∠∠BCF∠∠CDE,∠∠DEC=∠CFB,CF=DE,∠∠CFB+∠FCB=90°,∠∠DEC +∠FCB=90°,即CF∠DE,∠DE∠EG,∠EG∠CF,∠EG=DE=CF,∠四边形FCEG是平行四边形,∠FG=CE,FG∠CE;(3)成立.由上可证:∠CBF∠∠DCE,得:∠BCF=∠CDE,CF=DE,∠EG=DE,∠CF=EG,∠DE∠EG∠∠DEC+∠CEG=90°∠∠CDE+∠DEC=90°∠∠CDE=∠CEG,∠∠BCF=∠CEG,∠CF∠EG,∠四边形CEGF平行四边形,∠FG∠CE,FG=CE.1.(2019·河南南阳一模)我们定义:如图1,在∠ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB’,把AC绕点A逆时针旋转β得到AC’,连接B’C’,当α+β=180°时,我们称∠AB’C’是∠ABC的“旋补三角形”,∠AB’C’边B’C’上的中线AD是∠ABC的旋补中线,点A叫旋补中心.特例感知:(1)在图2,图3中,∠AB’C’是∠ABC的“旋补三角形”,∠AB’C’边B’C’上的中线AD是∠ABC的旋补中线,∠如图2,当∠ABC是等边三角形时,AD与BC的数量关系是∠如图3,当∠BAC=90°,BC=8时,则AD的长为猜想论证:(2)如图1,当∠ABC是任意三角形时,猜想AD与BC的数量关系,并给予证明.【分析】(1)∠由∠ABC是等边三角形,得AB=BC=AC=AB’=AC’,∠BAC=60°,∠BAC+∠B’AC’=180°,得∠B’=∠C’=30°,即BC=2AD;∠可利用“直角三角形中,斜边的中线等于斜边的一半”,证得:BC=2AD,AD=4;(2)BC=2AD,利用倍长中线构造全等三角形,延长AD至M使DM=AD,连接B’M,C’M,证得∠ABC∠∠B’AM,得BC=AM,BC=2AD.【解析】解:(1)∠∠∠ABC是等边三角形,∠AB=BC=AC=AB’=AC’,∠BAC=60°,∠DB’=DC’,∠AD∠B’C’,∠BAC+∠B’AC’=180°,∠∠B’AC’=120°,∠∠B’=∠C’=30°,∠BC=2AD,即:答案为BC=2AD.∠∠∠BAC=90°,BAC+∠B’AC’=180°,∠∠B’AC’=∠BAC=90°∠AB=AB’,AC=AC’,∠∠BAC∠∠B’AC’,∠BC=B’C’,∠B’D=DC’,∠BC=2AD,∠BC=8,∠AD=4;(2)结论:BC=2AD,理由如下:如图,延长长AD至M使DM=AD,连接B’M,C’M,∠AD=DM,B’D=DC’,∠四边形AC’MB’是平行四边形,∠AC’=B’M=AC,∠∠BAC+∠B’AC’=180°,∠AB’M+∠B’AC’=180°,∠∠BAC=∠AB’M,∠AB=AB’,∠∠BAC∠∠AB’M,∠BC=AM,即BC=2AD.2.(2019·郑州外国语测试)已知如图1所示,在∠ABC中,∠ACB=90°,AC=BC,点D在AB上,DE∠AB 交BC于E,点F是AE的中点,(1)写出线段FD与线段FC的关系并证明;(2)如图2所示,将∠BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出结论并证明;(3)将∠BDE绕点B逆时针旋转一周,如果BC=4,BE,直接写出线段BF的范围.【答案】见解析.【解析】解:(1)FD=FC,FD∠FC,理由如下:由题意知:∠ADE=∠ACE=90°,AF=EF,∠DF=AF=EF=CF,∠∠F AD=∠FDA,∠F AC=∠FCA,∠∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=2∠F AC,∠CA=CB,∠ACB=90°,∠∠BAC=∠B=45°,∠∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∠FD=FC,FD∠FC.(2)结论不变,理由如下:延长AC至M使得CM=AC,延长ED至N,使DN=DE,连接BN、BM、EM、AN,延长ME交AN于H,交AB于O,如图所示,∠BC∠AM,AC=CM,∠AB=BM,同理得:BE=BN,∠∠ABM=∠EBN,∠NBA=∠EBM,∠∠ABN∠∠MBE,∠AN=EM,∠BAN=∠BME,∠AF=FE,AC=CM,∠CF=12EM,CF∠EM,同理,FD=12AN,FD∠AN,∠FD=FC,∠∠BME+∠BOM=90°,∠BOM=∠AOH,∠∠BAN+∠AOH=90°,∠∠AHO=90°,即AN∠MH,∠FD∠FC.(3)由题意知,当点E落在线段AB上时,BF的长最大,如图所示,此时BF,当点E落在AB的延长线上时,BF的长最小,如图所示,此时,BF,BF.3.(2019·偃师一模)特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB 交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为;②线段BC,DE的位置关系为.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM 上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM与△AFD全等时,请直接写出DE的值.图1 图2 图3【答案】(1)BD=BE,BC∠DE;(2)(3)见解析.【解析】解:(1)由题意知:∠ACM=∠BCM=45°,由旋转知,∠DCE=90°,CD=CE,∠∠ECB=∠DCB=45°,∠BC=BC,∠∠BCD∠∠BCE,∠BD=BE,∠CD=CE,∠BC是线段DE的垂直平分线,∠BC ∠DE ,(2)成立,理由如下,∠CM 平分∠ACB ,∠ACB =α,∠∠ACM =∠BCM =2α,由旋转知,∠DCE =α,CD =CE ,∠∠BCD =∠BCE =2α又∠BC =BC ,∠∠BCD ∠∠BCE ,∠BD =BE ,∠CD =CE ,∠BC 是线段DE 的垂直平分线,∠BC ∠DE .(3)∠如图3,可证得:∠ABE =∠ABD =30°,AB ∠DE ,由∠ADM ∠∠ADF ,得:∠F AD =∠MAD =30°,∠AF =BF =2,∠DE =2DF ,在Rt ∠ADF 中,DF =AF ·tan ∠DAF即DE∠如下图所示,同理,得∠FBD =30°,AB =AD =4,B∠DE=2DF综上所述,DE.4.(2019·省实验一模)观察猜想(1)如图∠,在Rt∠ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF =;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图∠,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图∠,在∠ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论.图1 图2图3【答案】(1)BF∠BE;BC;(2)(3)见解析.【解析】解:(1)∠∠EAF=∠BAC=90°,∠∠EAF-∠BAE=∠BAC-∠BAE,∠∠BAF=∠CAE,∠AF=AE,AB=AC,∠∠BAF∠∠CAE,∠∠ABF=∠C,BF=CE,∠AB=AC,∠BAC=90°,∠∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为: BF∠BE,BC.(2)过D作DH∠AC交BC于H,∠DH∠AC,∠∠BDH=∠A=90°,∠DBH是等腰直角三角形,由(1)可证得:BF∠BE,BF+BE=BH,∠AB=AC=3,AD=1,∠BD=DH=2,∠BH=,∠BF+BE=BH=;(3)过D作DH∠AC交BC的延长线于H,作DM∠BC于M.∠AC∠DH,∠∠ACH=∠H,∠BDH=∠BAC=α,∠AB=AC,∠∠ABC=∠ACB∠∠DBH=∠H,∠DB=DH,∠∠EDF=∠BDH=α,∠∠BDF=∠HDE,∠DF=DE,DB=DH,∠BF =EH ,∠BF +BE =EH +BE =BH ,∠DB =DH ,DM ∠BH ,∠BM =MH ,∠BDM =∠HDM ,∠BM =MH =BD •sin 2α.∠BF +BE =BH =2n •sin 2α.5.(2019·濮阳二模)在∠ABC 中,AC =BC ,∠ACB =α,点D 为直线BC 上一动点,过点D 作DF ∠AC 交AB 于点F ,将AD 绕点D 顺时针旋转α得到ED ,连接BE .(1)特例猜想如图1,当α=90°时,试猜想:∠AF 与BE 的数量关系是 ;∠∠ABE = ;(2)拓展探究如图(2),当0°<α<90°时,请判断AF 与BE 的数量关系及∠ABE 的度数,并说明理由.(3)解决问题如图(3),在∠ABC 中,AC =BC ,AB =8,∠ACB =α,点D 在射线BC 上,将AD 绕点D 顺时针旋转α得到ED ,连接BE ,当BD =3CD 时,请直接写出BE 的长度.图1 图2 图3【答案】(1)AF =BF ,90°;(2)(3)见解析.【解析】解:(1)设AB 交DE 于O .∠∠ACB =90°,AC =BC ,∠DF∠AC,∠∠FDB=∠C=90°,∠∠DFB=∠DBF=45°,∠DF=DB,∠∠ADE=∠FDB=90°,∠∠ADF=∠EDB,∠DA=DE,∠∠ADF∠∠EDB,∠AF=BE,∠∠DAF=∠E,∠∠AOD=∠EOB,∠∠ABE=∠ADO=90°,所以答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∠DF‖AC∠∠ACB=∠FDB=α,∠CAB=∠DFB,∠AC=BC,∠∠ABC=∠CAB,∠∠ABC=∠DFB,∠DB=DF,∠∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,即∠ADF=∠EDB,∠AD=DE,∠∠ADF∠∠EDB,∠AF=BE,∠AFD=∠EBD∠∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∠∠ABE=∠FDB=α.(3)分两种情况讨论:∠当点D在线段BC上时,由(2)可知:BE=AF,∠DF∠AC,∠14 AF CDBA BC==,∠AB=8,∠AF=2,∠BE=AF=2,∠当点D在BC的延长线上时,∠AC∠DF,∠12 AF CDBA BC==,∠AB=8,∠AF=4,即BE=4,综上所述,BE的长度为2或4.6.(2019·开封二模)问题发现如图1,∠ABC是等边三角形,点D是边AD上的一点,过点D作DE∠AC交AC于E,则线段BD与CE有何数量关系?拓展探究如图2,将∠ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决如果∠ABC的边长等于AD=2,直接写出当∠ADE旋转到DE与AC所在的直线垂直时BD的长.图1 图2 备用图【答案】见解析.【解析】解:(1)如图1,BD=CE,理由是:∠∠ABC是等边三角形,∠AB=AC,∠DE∠BC,∠∠ADE是等边三角形,即AD=AE,∠BD=CE;(2)结论仍然成立,由图1得:AD=AE,由旋转性质得:∠BAD=∠CAE,∠AB=AC,∠∠BAD∠∠CAE,∠BD=CE;(3)分两种情况讨论,∠如图所示,过D作DG∠AB,垂足为G,∠AF∠DE,AD=AE,∠∠DAF=∠EAF=30°,∠∠BAD=30°,由AD=2,得:DG=1,AG,由AB=,得:BG由勾股定理得:BD=2.∠如图,由(2)中证明可知:∠BAD∠∠CAE,∠BD=CE,∠AD=AE,DE∠AC,∠ADE=60°∠∠EAF=∠F AD=30°,∠EF=FD=12AD=1,∠AF∠CF=AC+CF=在Rt∠EFC中,由勾股定理得:EC=,∠BD=EC=,综上所述,BD的长为2或.7.(2019·安阳二模)(1)问题发现:如图1,在四边形ABCD中,AB∠DC,E是BC的中点,若AE是∠BAD的平分线,则AB,AD,DC之间的数量关系为.(2)问题探究:如图2,在四边形ABCD中,AB∠DC,E是BC的中点,点F是DC的延长线上一点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,并证明你的结论(3)问题解决:如图3,AB∠CD,点E在线段BC上,且BE:EC=3:4.点F在线段AE上,且∠EFD =∠EAB,直接写出AB,DF,CD之间的数量关系.图1 图2 图3【答案】(1)AD=AB+CD;(2)(3)见解析.【解析】解:(1)结论:AD=AB+CD.理由:∠AB∠CF,∠∠CFE=∠EAB,∠CE=EB,∠CEF=∠AEB,∠∠CEF∠∠BEA,∠AB=CF.∠AF平分∠DAB,∠∠DAF=∠EAB,∠∠EAB=∠CFE,∠∠DAF=∠DF A,∠AD=DF,∠DF=DC+CF=CD+AB,∠AD=AB+CD.(2)结论:AB=AF+CF.理由:延长AE、DC交于G,∠AB∠DG,∠∠G=∠EAB,∠CE=EB,∠CEG=∠BEA,∠∠CEG∠∠BEA,∠AB=CG,∠G=∠EAB,∠AE平分∠F AB,∠∠F AG=∠EAB,∠∠G=∠EAB,∠∠F AG=∠G,∠F A=FG,∠CG=CF+FG=CF+AF,∠AB=AF+CF.(3)结论:AB=34(CD+DF).延长AE、CD交于G.∠CG∠AB,∠34BE ABCE CG==,∠G=∠A,∠AB=34 CG,∠∠DFE=∠A,∠∠DFG=∠G,∠DF=DG,∠CD+DF=CD+DG=CG,∠AB=34(CD+DF).8.(2019·中原名校大联考)如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC 上,AD=AE,连接DC,BE,点P为DC的中点,(1)【观察猜想】图1中,线段AP与BE的数量关系是,位置关系是.(2)【探究证明】把∠ADE绕点A逆时针旋转到图2的位置,(1)中的猜想是否仍然成立?若成立请证明,否请说明理由;(3)【拓展延伸】把∠ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出线段AP长度的最大值和最小值.图1 图2【答案】(1)AP=12BE,P A∠BE;(2)(3)见解析.【解析】解:(1)设P A交BE于点O.∠AD=AE,AC=AB,∠DAC=∠EAB,∠∠DAC∠∠EAB,∠BE=CD,∠ACD=∠ABE,∠∠DAC=90°,DP=PC,∠P A=12CD=PC=PD,∠P A=12BE,∠C=∠P AE,∠∠CAP+∠BAO=90°,∠∠ABO+∠BAO=90°,∠∠AOB=90°,∠P A∠BE,(2)结论成立.理由:延长AP至M,使PM=P A,连接MC,延长P A交BE于O.∠P A=PM,PD=PC,∠APD=∠CPM,∠∠APD∠∠MPC,∠AD=CM,∠ADP=∠MCP,∠AD∠CM,∠∠DAC+∠ACM=180°,∠∠BAC=∠EAD=90°,∠∠EAB=∠ACM,∠AB=AC,AE=CM,∠∠EAB∠∠MCA,∠BE=BM,∠CAM=∠ABE,∠P A=12AM,P A=12BE,∠∠CAM+∠BAO=90°,∠∠ABE+∠BAO=90°,∠∠AOB=90°,∠P A∠BE.(3)∠AC=10,CM=4,∠10﹣4≤AM≤10+4,∠6≤AM≤14,∠AM=2AP,∠3≤P A≤7.∠P A的最大值为7,最小值为3.9.(2018·新乡一模)如图1,在∠ABC与∠ADE中,AB=AC,AD=AE,∠A是公共角.(1)BD与CE的数量关系是:;(2)把图1的∠ABC 绕点A 旋转一定的角度,得到如图2所示的图形.∠求证:BD =CE ;∠BD 与CE 所在直线的夹角与∠DAE 的数量关系是什么?说明理由.(3)若AD =10,AB =6,把图1中的∠ABC 绕点A 顺时针旋转α度(0°<α≤360)直接写出BD 长度的取值范围.图1 图2【答案】(1)=;(2)(3)见解析.【解析】解:∠AD =AE ,AB =BC ,∠AD -AB =AE -AC ,即BD =CE ;(2)∠∠∠DAE =∠BAC ,∠∠DAE +∠BAE =∠BAC +∠BAE .即∠BAD =∠CAE .在∠ABD 和∠ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∠∠ABD ∠∠ACE (SAS )∠BD=CE.∠BD 与CE 所在直线的夹角与∠DAE 的度数相等.延长DB 交CE 于点F .EC∠∠ABD∠∠ACE,∠∠ADB=∠AEC∠∠AOD=∠EOF,∠180°-∠ADB-∠AOD =180°-∠AEC-∠EOF,即∠DAE=∠DFE∠当B在线段AD上时,BD最小,最小值为10-6=4;当B在线段DA延长线上时,BD最大,最大值为10+6=16,即4≤BD≤16.10.(2019·河南模拟)【问题探索】(1)如图1,在Rt∠ABC中,∠ACB=90°,AC=BC,点D,E分别在AC、BC边上,DC=CE,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN. 探索BE与MN的数量关系. 聪明的小华推理发现PM、PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】(2)将∠DEC绕点C逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【答案】见解析.【解析】解:(1)PM=PN,PM∠PM;BE;∠AM=ME,AP=PB,∠PM∠BE,PM=12 BE,同理:PN∠AD,PN=12 AD,∠AC=BC,CD=CE,∠AD=BE,∠PM=PN,∠∠ACB=90°,∠AC∠BC,∠∠PM∠BC,PN∠AC,∠PM∠PN,∠∠PMN的等腰直角三角形,∠MN PM,∠MN×12 BE,∠BE MN.(2)结论仍然成立.连接AD、延长BE交AD于点H.∠∠ABC和∠CDE是等腰直角三角形,∠CD=CE,CA=CB,∠ACB=∠DCE=90°,∠∠ACD=∠ECB,∠∠ECB∠∠DCA,∠BE=AD,∠DAC=∠EBC,∠AHB=180°-(∠HAB+∠ABH)=180°-(45°+∠HAC+∠ABH)=∠180°-(45°+∠HBC+∠ABH)=90°,∠BH∠AD,∠M、N、P分别为AE、BD、AB的中点,∠PM∠BE,PM=12BE,PN∠AD,PN=12AD,∠PM=PN,∠MPN=90°,∠BE=2PM MN.。
【精编版】2020年(河南)中考数学压轴题全揭秘精品专题11 实际问题中的方程(组)与函数题型
专题11 实际问题中的方程(组)与函数题型【例1】(2019·郑州外国语测试)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%,在试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售,设每天销售量为y本,销售单价为x元.(1)请直接写出y与x直接的函数关系式及x的取值范围;(2)当每本足球纪念册的销售单价是多少元时,商店每天获利2400元?(3)当每本足球纪念册的销售单价是多少元时,商店每天的利润w最大?最大利润是多少元?【答案】见解析.【解析】解:(1)y=300-10(x-44),整理得:y=-10x+740,(44≤x≤52);(2)由题意得:(x-40)(-10x+740)=2400,解得:x=50,x=64(舍),即当每本足球纪念册的销售单价是50元时,商店每天获利2400元.(3)由题意得:w=(x-40)(-10x+740)=-10(x-57)2+2890∵-10<0,对称轴为x=57,∵当x<57时,w随x增大而增大,∵44≤x≤52,∵当x=52时,w取最大值,最大为2640元,即当每本足球纪念册的销售单价是52元时,商店每天的利润最大,最大利润是2640元.【例2】(2018·河师大附中模拟)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若购买以上两种牲畜共50头,并使这50头的成活率不低于97%,且要使购买的总费用最低,应如何购买?【答案】见解析.【解析】解:(1)设甲种牲畜的单价为x元,由题意得:3x+2x+3000=7500,解得:x=1100,2×1100+200=2400,即甲种牲畜的单价为1100元,乙种牲畜的单价为2400元.(2)设购买甲种牲畜m头时,总购买费用为w元,则w=1100m+2400(50-m)=-1300m+120000,由题意知:95%m+99%(50-m)≥97%×50,解得:m≤25,即0≤m≤25,∵-1300<0,∵w随m的增大而减小,当m=25时,w取最小值,即费用最低,∵购买两种牛各25头时,费用最低.【变式2-1】(2019·三门峡二模)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y (千克)与销售单价x (元/千克)满足如图所示的一次函数关系.①求y 与x 之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)【答案】见解析.【解析】解:(1)设现在实际购进这种水果价格为每千克a 元,则原来价格为每千克(a +2)元,由题意,得:80(a +2)=88a ,解得:a =20.即现在实际购进这种水果每千克20元;(2)①设y 与x 之间的函数关系式为:y =kx +b ,将(25,165),(35,55)代入y =kx +b 得,251653555k b k b +=⎧⎨+=⎩, 解得:11440k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式为:y =﹣11x +440;②设这种水果的销售价格为x 元/千克时,利润为w 元,则w =(x ﹣20)y=(x ﹣20)(﹣11x +440)=﹣11(x ﹣30)2+1100,∵﹣11<0,∴当x=30时,w有最大值,最大值为1100.即这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.【例3】(2018·洛阳三模)在江苏卫视《最强大脑》节目中,搭载百度大脑的机器人小度以3:1的总成绩,,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【答案】见解析.【解析】解:(1)设该商家第一次购进机器人x个,由题意得:1100024000102x x+=,解得:x=100.经检验,x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a元.由题意得:a﹣11000﹣24000≥×20%,解得:a≥140.答:每个机器人的标价至少是140元.【变式3-1】(2019·周口二模)由于技术更新,智能电视的功能越来越强大,价格也逐渐下降,某电器商行经营的A款40英寸智能电视去年销售总额为5万元,今年每台销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A款40英寸智能电视每台售价多少元?(用列方程的方法解答)(2)该电器商行计划新进一批A 款40英寸智能电视和新款B 款40英寸智能电视共60台,且B 款40英寸智能电视的进货数量不超过A 款40英寸智能电视数量的两倍,应如何进货才能使这批智能电视获利最多?A ,B 两款40英寸智能电视的进货和销售价格如下表:【答案】见解析.【解析】解:设今年A 款40英寸智能电视每台售价为x 元,则去年每台售价为(x +400)元,由题意得: ()50000120%50000400x x⨯-=+, 解得:x =1600,经检验,x =1600是原方程的解,符合题意,∴今年A 款40英寸智能电视每台售价为1600元.(2)设购进A 款电视a 台,则购进B 款(60-a )台,此时获利y 元,y =(1600-1100)a +(2000-1400)(60-a )=-100a +36000,其中:60-a ≤2a ,0≤a ≤60,即20≤a ≤60,且a 为整数;∵-100<0,∴y 随a 的增大而减小,当a =20时,y 取最大值,即当进A 款电视20台,B 款电视40台时,获利最大.【例4】(2018·河南第一次大联考)紫石中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树3棵香樟树共需360元,购买3棵桂花树2棵香樟树共需340元.(1)桂花树香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.【答案】见解析.【解析】解:(1)设桂花每棵x 元,香樟树每棵y 元,由题意得:2336032340x y x y +=⎧⎨+=⎩, 解得:x =60,y =80,答:桂花树每棵60元,香樟树每棵80元.(2)设桂花树购买x 棵,则香樟树购买(150-a )棵,由题意得:()608015010840150 1.5x x x a ⎧+-≤⎨-≥⎩, 解得:58≤x ≤60,∵有三种购买方案:桂花树58棵,香樟树92棵;桂花树59棵,香樟树91棵;桂花树60棵,香樟树90棵.【变式4-1】(2019·偃师一模)冬季来临,某网店准备在厂家购进 A ,B 两种暖手宝共 100 个用于销售,若购买 A 种暖手宝 8 个,B 种暖手宝 3 个,需要 950 元;若购买 A 种暖手宝 5 个,B 种暖手宝 6 个,则需要 800 元.(1)购买 A ,B 两种暖手宝每个各需多少元?(2)①由于资金限制,用于购买这两种暖手宝的资金不能超过 7 650 元,设购买 A 种暖手宝 m 个,求 m 的取值范围;②在①的条件下,购进 A 种暖手宝不能少于 50 个,则有哪几种购买方案?(3)购买后,若一个 A 种暖手宝运费为 5 元,一个 B 种暖手宝运费为 4 元, 在第(2)问的各种购买方案中,购买 100 个暖手宝,哪一种购买方案所付的运费最少?最少运费是多少元?【答案】见解析.【解析】解:(1)设A 、B 两种暖手宝的价格分别为x 元/个、y 元/个,由题意得:8395056800x y x y +=⎧⎨+=⎩, 解得:x =100,y =50,即A 、B 两种暖手宝的价格分别为100元/个,50元/个.(2)∵由题意得:100m +50(100-m )≤7650,解得:m ≤53,∵m 的取值范围是:0≤m ≤53,且m 为整数;∵∵50≤m ≤53,∵共有以下四种购买方案,A 种50个,B 种50个;A 种51个,B 种49个;A 种52个,B 种48个;A 种53个,B 种47个;(3)设总运费为w 元,则:w =5m +4(100-m )=m +400,∵1>0,∵w 随m 的增大而增大,当m =50时,运费最少,最少为450元,∵当购买A 种产品50个,B 种产品50个时,总运费最少,最少为450元 .1.(2019·济源一模)为支持国家南水北调工程建设,小王家由原来养殖户变为种植户, 经市场调查得知,种植草莓不超过 20 亩时,所得利润 y (元)与种植面积 m (亩)满足关系式 y =1 500 m ;超过20亩时,y =1380m +2400.而当种植樱桃的面积不超过 15 亩时,每亩可获得利润 1800 元;超过 15 亩时,每亩获得利润 z (元)与种植面积 x (亩)之间的函数关系式为 z =-20x +2 100.(1)设小王家种植 x 亩樱桃所获得的利润为 P 元,直接写出 P 关于 x 的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40 亩荒山种植草莓和樱桃,当种植樱桃面积(x 亩)满足0<x <20时,求小王家总共获得的利润w (元)的最大值.【答案】见解析.【解析】解:(1)由题意得:()()2180001520210015x x p x x x ⎧<≤⎪=⎨-+>⎪⎩(2)种植樱桃面积x 亩,则种植草莓面积(40-x )亩,由题意知,∵当0<x ≤15时,w =1800x +1380(40-x )+2400=420x +57600,∵420>0,∵w随x的增大而增大,当x=15时,w最大,最大值为63900,∵当15<x≤20时,w=-20x2+2100x+1380(40-x)+2400=-20(x-18)2+64080,∵-20<0,∵当x=18时,w取最大值,最大值为64080,∵64080>63900,∵当x=18时,小王家总共获得的利润w取最大值,最大值为64080元.2.(2019·洛阳二模)某游乐园的门票销售分两类:一类个人门票,分为成人票,儿童票;一类为团体门票(一次购买门票10 张及以上),每张门票在成人票价格基础上打 6 折.已知一个成人带两个儿童购门票需80 元;两个成人带一个儿童购门票需100 元.(1)每张成人票和儿童票的价格分别是多少元?(2)光明小学4 名老师带领x名儿童到该游乐园,设购买门票需y元.∵若每人分别购票,求y与x之间的函数关系式;∵若购买团体票,求y与x之间的函数关系式,并写出自变量x的取值范围;∵请根据儿童人数变化设计一种比较省钱的购票方案.【答案】见解析.【解析】解:设成人票每张a元,儿童票每张b元,由题意得:a+2b=80,2a+b=100,解得:a=40,b=20,即成人票每张40元,儿童票每张20元;(2)∵y=4×40+20x=160+20x∵y=40×0.6(x+4)=24x+96,由x+4≥10,得x≥6,且x为整数.∵(i)当160+20x>24x+96,即x<16,∵当6≤x<16且x为整数时,应全部购买团体票较为优惠;(ii)当160+20x=24x+96,即x=16,∴当x=16时,购买团体票或分别购买均可以;(iii)当160+20x<24x+96,即x>16,∴当x>16且x为整数时,应分别购买较为优惠.3.(2019·洛阳三模)近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加,某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共80 台,其中B型空气净化器的进货量不多于A 型空气净化器的2 倍,为使该公司销售完这80 台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为200 m3/小时,B型空气净化器的净化能力为300 m3/小时,某长方体室内活动场地的总面积为200 m2,室内墙高3 m,该场地负责人计划购买5 台空气净化器每天花费30 分钟将室内空气净化一新,若不考虑空气对流等因素,至多要购买A型空气净化器多少台?【答案】见解析.【解析】解:(1)设每台A型空气净化器和B型空气净化器的销售利润分别是x元,y元,由题意得:5395034900x yx y+=⎧⎨+=⎩,解得:x=100,y=150,∴每台A型空气净化器和B型空气净化器的销售利润分别是100元,150元.(2)设购买A型m台,则购进B型(80-x)台,利此时润为w元,由题意知:80-m≤2m,0≤m≤80,m为整数可得:803≤m≤80,m为整数,W=100m+150(80-m)=-50m+12000,∵-50<0,∴w随m的增大而减小,当m=27时,w取最大值,80-27=53,即购进A型27台,B型53台时,售完后获利最大.(3)设购买A型a台,则够买B型(5-a)台,∴12×200a+12×300(5-a)≥200×3,解得:a≤3,∵0≤a≤5,∴0≤a≤3,且a为整数,即至多要购买A型空气净化器3台.4.(2017·新野一模)某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.(1)求y关于x和p关于x的函数关系式;(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?【答案】见解析.【解析】解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,45),∴15k1=45,解得k1=3,∴y=3x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,45),(20,0)在y=k2x+b的图象上,∴15k2+b=45,20k2+b=0解得:k2=-9,b=180∴y=﹣9x+180(15<x≤20);∴y与x之间的函数关系式为:y=3015 91801520x xx x≤≤⎧⎨-+<≤⎩.①当0≤x<10时,p=25,当10≤x≤20时,设销售单价p与销售时间x之间的函数解析式为:p=mx+n,∵点(10,25),(20,15)在p=mx+n的图象上,∴10m+n=25,20m+n=15,解得:m=-1,n=35,∴p=﹣x+35(10≤x≤20),∴p=25010351020xx x≤<⎧⎨-+≤≤⎩;(2)若日销售量不低于36千克,即y≥36.当0≤x≤15时,y=3x,3x≥36,解得:x≥12;当15<x≤20时,y=﹣9x+180,﹣9x+180≥36,解得:x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+35(10≤x≤20),k=﹣1<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣12+35=23.∴此次销售过程中“最佳销售期”共有5天,在此期间销售金额最高是第12天.5.(2018·焦作一模)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和1个B品牌的计算器共需122元;购买1个A品牌和2个B品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A品牌计算器按原价的九折销售,购买B品牌计算器超出10个以上超出的部分按原价的八折销售.①设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.【答案】见解析.【解析】解:(1)设A品牌计算器的单价为m元,B品牌计算器的单价为n元,由题意得:2m+n=122,m+2n=124,解得:m=40,n=42,即A品牌计算器的单价为40元,B品牌计算器的单价为42元.(2)①由题意:y1=0.9×40x=36x,当0<x≤10时,y2=42x;当x>10时,y2=42×10+42(x﹣10)×0.8=33.6x+84.∴y2=42010 33.68410x xx x≤≤⎧⎨+>⎩.②当购买数量超过10个时,y2=33.6x+84.(i)当y1<y2时,36x<33.6x+84,即x<35,当10<x<35时,购买A品牌的计算器更合算;(ii)当y1=y2时,36x=33.6x+84,即x=35,∴当x=35时,购买两种品牌的计算器花费一样多;(iii)当y1>y2时,36x>33.6x+84,即x>35.∴当x>35时,购买B品牌的计算器更合算.6.(2018·信阳一模)某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.【答案】见解析.【解析】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据题意,得:2x+y=56,x+2y=82,解得:x=10,y=36,即一根A型跳绳售价是10元,一根B型跳绳的售价是36元;(2)由m≤3(50﹣m),得:m≤37.5,∴0≤m≤37,且m为整数,设购进A型跳绳m根,总费用为W元,根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,∵﹣26<0,∴W随m的增大而减小,∴当m=37时,W最小=838,即当购买A型跳绳37根,B型跳绳13根时,最省钱.7.(2019·南阳毕业测试)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购进A种树苗a棵,所需费用为W,求W与x的函数关系式;(3)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,由题意得:80x+60(17﹣x)=1220,解得:x=10,即购进A种树苗10棵,B种树苗7棵;(2)W与a的函数关系式:W=80a+60(17﹣a)=20a+1020;(3)由题意得:17-a<a,即a>8.5,∴8.5<a≤17,且a为整数,由(2)知,W=20a+1020,W随a的增大而增大,∴a=9时,即购买9棵A种树苗,8棵B种树苗时,费用最少,W=80×9+60×8=1200,即购买9棵A种树苗,8棵B种树苗时,费用最少,需要1200元.8.(2019·开封二模)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A 种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【答案】见解析.【解析】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:25600 3380x yx y+=⎧⎨+=⎩,解得:10080xy=⎧⎨=⎩,答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,有a≥3(100﹣a),解得:a≥75.设实际花费金额是y元,则:y=0.9[100a+80(100﹣a)]=18a+7200.∵18>0,∴y随a的增大而增大,∴当a=75时,y取最小值,即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.9.(2019·安阳一模)某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如下表:(1)如果在线下购买甲、乙两种书架共30个,花费8 280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架共30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.【答案】见解析.【解析】解:(1)设线下购买甲种书架x个,乙种书架y个,由题意得:30 2403008280x yx y+=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩,即线下购买甲种书架12个,乙种书架18个.(2)设购买甲种书架a个,则购买乙种书架(30-a)个,总花费为w元,∵30-a≥3a,即a≤7.5(其中a为正整数),W=(210+20)a+(250+30)(30-a)=-50a+8400,∵-50<0,∴w随a的增大而减小,当a=7时,w最小,最小值为8050元,即当购买7个甲种书架,23个乙种书架时,总费用最低,最低为8050元.10.(2019·省实验一模)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【答案】见解析.【解析】解:(1)设y与x之间的函数解析式为y=kx+b,由题意得:50100 6080k bk b+=⎧⎨+=⎩,解得:2200kb=-⎧⎨=⎩,y与x之间的函数表达式是:y=﹣2x+200;(2)由题意得,W=(x﹣40)(﹣2x+200)=﹣2(x﹣70)2+1800,(3)∵W=﹣2(x﹣70)2+1800,40≤x≤80,∵﹣2<0,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,且当x=70时,W取得最大值,此时W=1800.11.(2019·叶县一模)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【答案】见解析.【解析】解:(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解得:x =15,y =20,即生产一件甲产品需要15分钟,生产一件乙产品需要20分钟.(2)设生产甲种产品共用x 分钟,则生产乙种产品用(25×8×60﹣x )=(12000-x )分钟,收入为w 元, 则生产甲种产品15x 件,生产乙种产品1200020x -件. ∴w =1.5×15x +2.8×1200020x - =﹣0.04x +1680, ∵15x ≥60,即:x ≥900, w =﹣0.04x +1680中,∵﹣0.04<0,∴w 随x 的增大而减小,∴当x =900时,w 取得最大值,最大值为:1644元,则小王该月收入最多是1644+1900=3544元,此时生产甲60件,乙555件,∴小王该月最多能得3544元,此时生产甲、乙两种产品分别60件,555件.12.(2019·濮阳二模)“京东电器”准备购进A 、B 两种品牌台灯,其中A 每盏进价比B 每盏进价贵30元,A 售价120元,B 售价80元已知用1040元购进的A 数量与用650元购进B 的数量相同.(1)求A 、B 的进价;(2)超市打算购进A 、B 台灯共100盏,要求A 、B 的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A 台灯进行降价促销,A 台灯每盏降价m (8<m <15),B 的售价不变,超市如何进货获利最大?【答案】见解析.【解析】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,由题意得:104065030x x=-,解得:x=80,经检验x=80是原分式方程的解,80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得:40≤a≤55.∵a为整数,55-40+1=16,∴该超市有16 种进货方案(3)设超市销售台灯所获总利润为w元,w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15①当8<m<10 时,即10﹣m>0,w随a的增大而增大,当a=55 时,所获总利润w最大,此时进货方案为:A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,当a=40 时,所获总利润w最大,此时进货方案为:A品牌台灯40 盏、B品牌台灯60 盏.13.(2019·商丘二模)为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B 两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元.设种植A种蔬菜m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【答案】见解析.【解析】解:(1)设种植A,B两种蔬菜,每亩各需分别投入x万元,y万元,由题意得:203036 302034 x yx y+=⎧⎨+=⎩解得:0.60.8xy=⎧⎨=⎩,即种植A,B两种蔬菜,每亩各需分别投入0.6万元,0.8万元.(2)由题意得:w=0.8m+1.2×1000.60.8m-=﹣0.1m+150∵1000.6m-≥0,∴0≤m≤5003,(3)∵m≥2×1000.60.8m-解得:m≥100在w=﹣0.1m+150中,∵﹣0.1<0,∴w随m的增大而减小,∴当m=100时,w取最大值为:140万元,∴1000.60.8m-=50即当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.14.(2019·开封模拟)2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?【答案】见解析.【解析】解:(1)设甲种、乙种商品的销售单价分别是x元,y元,由题意,得:23 321500x yx y=⎧⎨-=⎩解得:x=900,y=600,.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品a万件,则销售乙种商品(8﹣a)万件,由题意,得:900a+600(8﹣a)≥5400解得:a≥2,即至少销售甲种商品2万件.15.(2019·开封二模)某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【答案】见解析.【解析】解:(1)设每部A型手机的销售利润为x元,则每部B型手机的销售利润为(x-50)元,根据题意,得:3000200050x x=-,解得:x=150,经检验:x=50是原方程的解,150-50=100,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n =﹣50n+16500,∵110﹣n≤2n,∴3623≤n≤110且n为整数,∴y关于n的函数关系式为y=﹣50n+16500 (3623≤n≤110且n为整数);②∵﹣50<0,∴y随n的增大而减小,∴当n=37时,y取得最大值,最大值为14650元,答:购进A型手机73部、B型手机37部时,销售总利润最大;(3)y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,3623≤n≤80,且n为整数),①当30<m<50时,y随n的增大而减小,当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,n取3623≤n≤80的整数时,获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.16.(2019·西华县一模)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【答案】见解析.。
2020年(河南)中考数学压轴题全揭秘精品专题02 折叠与图形存在性(带答案解析)
专题02 折叠与图形存在性【例1】(2019·郑州外国语模拟)如图,在Rt △ABC 中,△ACB =90°,AC =2,BC =4,CD 是△ABC 的中线,E 是边BC 上一动点,将△BED 沿ED 折叠,点B 落在点F 处,EF 交线段CD 于G ,当△DFG 是直角三角形时,则CE =.【答案】155. 【解析】解:在Rt △ABC 中,由勾股定理得:AB 5, 由折叠性质知△F =△B ≠90°, 分两种情况讨论, (1)当△FDG =90°时,CDG△D 是Rt △ABC 斜边AB 的中点,△CD =BD =AD 5, △△B =△DCE =△F ,△△DCE +△GEC =△F +△FDG , △△GEC =90°, 在Rt △DFG 中,tan △F =DGDF, △DG 5, △CG =CD -DG =52, 在Rt △CEG 中,CE =CG ·cos △GCE 525; (2)当△FGD =90°时,由(1)知△B =△F =△DCB ,BDG DG由BD=DF5△DG=DF·sin△F525,△CG=CD-DG51,△CE=CG÷cos△DCB=51)2555 -,故答案为:155 -.【变式1-1】(2018·洛阳三模)如图,在菱形ABCD中,∠DAB=45°,AB=8,点P为线段AB上一动点,过点P 作PE⊥AB交直线AD于E,沿PE将∠A折叠,点A的对称点为点F,连接EF、DF、CF,当△CDF是直角三角形时,AP=.【答案】22422+【解析】解:①如图,当DF⊥AB时,△CDF是直角三角形,∵在菱形ABCD中,AB=8,∴CD=AD=AB=8,在Rt△ADF中,AD=8,∠DAN=45°,DF=AF2,∴AP 2②如图,当CF ⊥AB 时,△DCF 是直角三角形,在Rt △CBF 中,∠CFB =90°,∠CBF =∠A =45°,BC =8,∴BF =CF 2∴AF =AB +BF 2∴AP =12AF 2 故答案为:4或2【例2】(2019·河南南阳一模)如图,矩形ABCD 中,AB =2,AD =4,点E 在边BC 上,将△DEC 沿DE 翻折后,点C 落在点C ’处. 若△ABC ’是等腰三角形,则CE 的长为.【分析】根据△ABC ’是等腰三角形,分△AB =AC ’=2;△AC ’=BC ’,即C ’落在AB 的垂直平分线上时;△AB =BC ’=2,三种情况讨论,逐一作出图形求解即可.【答案】223【解析】解:分三种情况讨论:CDEC'△AB =AC ’=2,如图所示,可得:四边形CDC ’E 是正方形,即CE =2;△AC ’=BC ’,即C ’落在AB 的垂直平分线MN 上时,如图所示,△DM =1,C ’D =2, △△C ’DM =30°,即得:△C ’DC =60°,△EDC =30°, △CE =CD ·tan △EDC3 =233; △AB =BC ’=2,此时作出C ’的运动轨迹,及以B 为圆心,2为半径的圆,发现二者不相交,如图所示,BC DABCDC'N即此种情况不存在;综上所述,答案为:223【变式2-1】(2019·郑州外外国语测试)如图所示,在△ABC 中,△C =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点,设EF 与AB 、AC 分别交于点E 、F ,如果折叠后△CDF 和△BDE 均为等腰三角形,那么△B =.【答案】45°或30°.【解析】解:若△CDF 是等腰三角形,△△C =90°, △△CDF =△CFD =45°,由折叠性质知,△A =△FDE ,△B =△EFD , 若△BDE 是等腰三角形,则:(1)若DE =BD ,设△B =△DEB =x °,则△A =△FDE =90-x , △△CDE =△B +△DEB , △45+90-x =x +x ,解得:x =45, 即△B =45°,ABCDEC'(2)若DE=BE,△CDE=180°-△BDE=180°-△B,△CDE =45°+△FDE=45°+△A=45°+90°-△B=135°-△B,△不符合题意,(3)若BD=BE,设△B=x,则△BDE=△BED=90°-12 x,△CDE =45°+△A=135°-x,△CDE =△B+△DEB=90°+12 x,△135°-x=90°+12x,解得:x=30,即△B=30°,综上所述,△B的度数为:45°或30°.【例3】(2019·商丘二模)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P 是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EP A′,当折叠后△EP A′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.【答案】2或3【解析】解:∵∠ACB=90°,∠B=30°,AC=2,E为AB的中点,∴AB=4,AE=12AB=2,BC=3(1)若点A’落在BC上方时,连接A′B,由折叠可得S△A′EP=S△AEP,A′E=AE=2,.∵点E是AB的中点,∴S△BEP=S△AEP=12S△ABP.由题可得:S△EFP=14S△ABP,∴S△EFP=12S△BEP=12S△AEP=12S△A′EP,∴EF=BF,PF=A′F.∴四边形A′EPB是平行四边形,∴BP=A′E=2;②若点A’落在直线BC下方时,连接AA′,交EP与H,.可得:GP=BG,EG=1.∵BE=AE,∴EG=12AP=1,∴AP=2∴AP=AC,即此时点P与点C重合,∴BP=BC=3.故答案为:2或3【变式3-1】(2019·安阳二模)如图,在△ABC中,∠C=90°,AB=5,BC=4.点D是边AC的中点,点E在边AB上,将△ADE沿DE翻折,使点A落在点A′处,当线段AE的长为时,A′E∥BC.【答案】12或92.【解析】解:分两种情况:(1)当A'E∥BC时,∠A'EG=∠B,由折叠可得,∠A=∠A',∵∠B+∠A=90°,∴∠A'EG+∠A'=90°,∴∠A'GE=90°,∴△ABC∽△ADG,∴AG AD DG AC AB BC==,∵AD=12AC=32,∴AG=910,DG=65,A'G=310,设AE=A'E=x,则EG=910﹣x,则cos∠GEA’=4 '5 EGA E=,∴x=12,即AE=12;(2)当A'E∥BC时,∠AHE=∠C=90°,A'H⊥CD,设AE=y,由△AHE∽△ACB,得:AH AE EH AC AB BC==∴AH=35y,HE=45y,由折叠可得,A'E=AE=y,AD=A'D=32,∴A'H=15y,DH=35y﹣32,sin∠DA’H=4 '5 DHA D=,可得:y=92,即AE=92,故答案为:12或92.1.(2017·郑州一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD 沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE的长为.【答案】32或34.【解析】解:(1)当点E与点C′重合时,△BC′D是直角三角形,在Rt△ABC中,由勾股定理得:BC=4.由翻折的性质可知;AE=AC=3,DC=DE,EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,由勾股定理得:DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=32.(2)当∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.可得:四边形ACDC′为矩形.∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.DB=BC﹣DC=1.∵DE∥AC,∴14DE BDAC BC==,134DE=.解得:DE=34.(3)∵点D在BC上运动,∴∠DBC′<90°,即∠DBC′不可能为直角.故答案为:32或34.2.(2019·洛阳三模)如图,已知Rt△ABC中,△B=90°,△A=60°,AB=3,点M,N分别在线段AC,AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,若△DCM为直角三角形时,则AM的长为.【答案】2或333.【解析】解:△在△CDM 中,△C =30°,△分两种情况讨论△CDM 为直角三角形的情况,(1)当△CMD =90°时,如图所示,设AM =x ,则DM =x ,CM 3,△x 3=6,解得:x =333;(2)当△CDM =90°时,如图所示,A CDM A CDM N设AM =x ,则CM =2x ,DM =x ,△x +2x =6,解得x =2, 综上所述,答案为:333或2.3.(2019·周口二模)如图,在矩形纸片ABCD 中,已知AB =6,BC =8,E 是边AD 上的点,以CE 为折痕折叠纸片,使点D 落在点F 处,连接FC ,当△AEF 为直角三角形时,DE 的长为_________.【答案】3或6. 【解析】解:由题意知,△EAF ≠90°,(1)当△AEF =90°时,如下图所示,由折叠知,CD =CF =DE =EF =6,即DE =6;(2)当△AFE =90°时,如下图所示,E DC BA B C此时点F 落在对角线AC 上,AC =10,CF =6,AF =4,设DE =x ,则EF =x ,AE =8-x ,在Rt △AEF 中,由勾股定理得:x 2+42=(8-x )2,解得:x =3,故答案为:3或6.4.(2018·焦作一模)如图,在Rt △ABC 中,△A =90°,△B =30°,BC 3+1,点E 、F 分别是BC 、AC 边上的动点,沿E 、F 所在直线折叠△C ,使点C 的落对应点C '始终落在边AB 上,若△BEC '是直角三角形时,则BC '的长为 .33 或2. 【解析】解:△△B =30°,△分两种情况讨论:△当△BEC '=90°时,BC E FBE3'E,△CE=C'E,BC3+1,△BE3C'E=1,△Rt△BEC'中,由勾股定理得:BC'=2;△当△BC'E=90°时,BE=2C'E=2CE,BC3,△BE=23×(3+1),C'E=13(3+1),在Rt△BEC’中,由勾股定理得:BC 33+;综上所述,BC'33+或2.5.(2019·南阳毕业测试)如图,在Rt△ABC中,AC=8,BC=6,点D为斜边AB上一点,DE△AB交AC于点E,将△AED沿DE翻折,点A的对应点为点F.如果△EFC是直角三角形,那么AD的长为.【答案】75或5.【解析】解:在Rt△ABC中,AC=8,BC=6,由勾股定理得:AB=10,按直角顶点位置分类讨论,△若△CFE=90°,△在Rt△ABC中,△ACB=90°,△△CFB+△EFD=△B+△A=90°,由翻折知:△A=△EFD,AE=EF,△△CFB=△B,CF=BC=6,在Rt△CEF中,有CE2=EF2+CF2,即CE2=(8﹣CE)2+62,△CE=254,△AE=74,由△ADE=△ACB=90°,得△ADE△△ACB,△AE AD AB AC,得:AD=75;△当△ECF=90°时,点F与B重合,△AD=12AB=5;△当△CEF=90°时,则EF△BC,△AFE=△B,△△A=△AFE,△△A=△B,△AC=BC(与题设矛盾),这种情况不存在,综上所述:如果△EFC是直角三角形,AD的长为75或5.故答案为:75或5.6.(2019·开封二模)在Rt△ABC中,AC=3,AB=4,D为斜边BC中点,E为AB上一个动点,将△ABC沿直线DE折叠,A、C的对应点分别为A′、C′,EA′交BC于点F,若△BEF为直角三角形,则BE的长度为.【答案】12或54.【解析】解:△△B≠90°,△分两种情况讨论:△当△BEF=90°时,过D作DM△AB于M,则△EMD=90°,DM△AC,D为BC中点,可得:M为AB的中点,△BM=12AB=2,DM=12AC=32,由折叠可得,△MED=12△AEF=45°,△△DEM是等腰直角三角形,△EM=DM=32,△BE=2﹣32=12;△当△BFE=90°时,连接AD,A'D,根据对称性可得:△EAD=△EA'D,AD=A'D Rt△ABC中,AC=3,AB=4,由勾股定理得:BC =5,Rt △ABC 中,D 为BC 的中点,△AD =BD =A 'D =12BC =52, △△B =△EAD =△F A 'D ,设BE =x ,则BF =BE ·cosB =45x , △DF =BD ﹣BF =52﹣45x , 由sin △F A 'D =sinB ,得:54532525x -=⨯, 解得:x =54,即BE =54, 综上所述,BE 的长度为12或54. 7.(2019·安阳一模)如图,在Rt △ABC 中,△C =90°,AC =3BC =4,点D 是AC 的中点,点F 是边AB 上一动点,沿DF 所在直线把△ADF 翻折到△A ′DF 的位置,若线段A ′D 交AB 于点E ,且△BA ′E 为直角三角形,则BF 的长为_________.【答案】285或6. 【解析】解:由分析知△EBA ’≠90°,分两种情况讨论:(1)当△BA ’E =90°时,如图所示,A′A BC DE F连接BD ,过F 作FH △AC 于H ,可得:△BCD △△BA ’D ,△BDF =90°,设FH =x ,则AF =2x ,AH 3,DH 3x ,BF =8-2x ,由勾股定理得:BD 2+DF 2=BF 2,DF 2=DH 2+FH 2,即BD 2+ DH 2+FH 2= BF 2, △()()222282382x x x ++=-, 解得:x =125, 即BF =285; (2)当△BEA ’=90°时,如下图所示,B AC D EF A'A C D EF A'HADE F A'由折叠性质知,△A=△ADF=△EDF=30°,△AD3△DE3AE=3,△EF 3DE=1,△AF=2,即BF=6,综上所述,BF的值为285或6.8.(2019·省实验一模)如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD△BC于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=.【答案】3532或12532.【解析】解:若△APE=90°,则△CPD=△EPD=45°,可得△C=45°,与题意不符,△△APE≠90°,在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5,△当△AEP=90°时,设PC=x,在Rt△PDC中,sinC=35,cosC=45,所以PD=35x,CD=45x,由折叠知DE=CD=45x,△BE=BC﹣CE=4﹣85 x,△△B=△PDE,△BAE+△AEB=90°,△PED+△AEB=90°,△△BAE=△PED=△C,tan△BAE=tan△C,即843534x-=,解得:x=35 32,即PC=35 32;△当△EAP=90°时,如下图,设PC=x,则PE=x,PD=35x,CD=45x,CE=85x,BE=85x-4,可证:△AEB=△C,△tan△AEB= tan△C,△34BEAB=,ABPD即843534x -=, 解得:x =12532即PC =12532, 综上所述,答案为:3532或12532. 9.(2019·叶县一模)如图,矩形ABCD 中,AB =4,AD =6,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,CF ,当△ECF 为直角三角形时,AP 的长为 .【答案】1或94. 【解析】解:由图可知,△ECF ≠90°,所以分两种情况讨论:(1)当△CFE =90°时,由折叠可得,△PFE =△A =90°,AE =FE =DE ,△△CFP =180°,即点P ,F ,C 在一条直线上,△Rt △CDE △Rt △CFE ,△CF =CD =4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=94,即AP=94;(2)当△CEF=90°时,过F作FH△AB于H,作FQ△AD于Q,则△FQE=△D=90°,△△FEQ+△CED=△ECD+△CED,△△FEQ=△ECD,△△FEQ△△ECD,△FQ QE EF DE CD CE==,△3 345 FQ QE==,△FQ=95,QE=125,△AQ=HF=3-QE=35,AH=QE=95,设AP=FP=x,则HP=95﹣x,在Rt△PFH中,HP2+HF2=PF2,即(95﹣x)2+(35)2=x2,解得x=1,即AP=1.综上所述,AP的长为1或94.10.(2019·濮阳二模)如图,已知Rt△ABC中,△B=90°,△A=60°,AC=3+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN 的长为.【答案】234或6.【解析】解:△△C=30°,即C不可能是直角顶点,△分两种情况讨论:(1)当△CDM=90°时,在Rt△ABC中,△B=90°,△A=60°,AC=3+4,由折叠性质知,△MDN=△A=60°,△△BDN=30°,△BN=12DN=12AN,△BN=13AB=323,△AN=2BN 234+,由△DNB=60°,得:△ANM=△DNM=60°,△△AMN是等边三角形,△AN=MN=234+;(2)当△CMD=90°时,由题可得,△CDM=60°,△A=△MDN=60°,△△BDN=60°,△BND=30°,△BD=12DN=12AN,BN3BD,△CD=BC-BD3-BD3,△DM=AM=12CD3,△在Rt△ANH中,AH=12AN=1,NH3△HM=AM-AH3在Rt△HNM中,由勾股定理得:MN6234611.(2019·郑州联考)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.【答案】16或5【解析】解:分三种情况讨论,(1)当B′D=B′C时,过B′作GH△AD交AB、CD于点G、H,则△B′GE=90°,可得:GH是CD、AB的垂直平分线,△AG=DH=12DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.△EG=AG﹣AE=8﹣3=5,在Rt△B’EG中,由勾股定理得:B′G=12,△B′H=GH﹣B′G=16﹣12=4,在Rt△DB’H中,由勾股定理得:DB′=5(2)当DB′=CD时,则DB′=16.(3)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,△EC垂直平分BB′,△EF是线段BB′的垂直平分线,△点F与点C重合,此种情况不存在;故答案为:16或5.12.(2019·西华县二模)如图,在Rt△ABC中,△C=90°,BC=3,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE 的长为.【答案】3或14 5.【解析】解:△△C=90°,BC=3,AC=2,△△B=30°,AB=2AC=4,△点D是BC的中点,△DB=DC3EB′=EB,△DB′E=△B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,由题意知∠B’AF≠90°,分两种情况讨论:(1)当△AFB′=90°时,BF=32,EF=32﹣(4﹣x)=x﹣52,在Rt△B′EF中,△EB′F=30°,△EB′=2EF,即4﹣x=2(x﹣52),解得:x=3,即AE=3;(2)当∠AB’F=90°时,过E作EH⊥AB’于H,△DC=DB′,AD=AD,△Rt△ADB′△Rt△ADC,△AB′=AC=2,△△AB′E=△AB′F+△EB′F=90°+30°=120°,△△EB′H=60°,∠HEB’=30°,∴B′H=12B′E=12(4﹣x),EH3′H3(4﹣x),在Rt△AEH中,EH2+AH2=AE2,△34(4﹣x)2+[12(4﹣x)+2]2=x2,解得x=145,AE=145.故答案为3或145.。