初二数学三角形六大例题
八年级上册《数学》三角形专项练习题(含答案)
八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。
八年级数学三角形应用题
八年级数学三角形应用题一、三角形边长与周长问题。
1. 一个三角形的三条边分别为3x,4x,5x,其周长为36,求x的值。
- 解析:- 已知三角形周长等于三条边之和,可列出方程3x + 4x+5x = 36。
- 合并同类项得12x = 36。
- 解得x = 3。
2. 三角形的一边长为5cm,另外两边长相等且它们的和为12cm,求这个三角形的周长。
- 解析:- 设相等的两边长为x cm,则2x = 12,解得x = 6。
- 三角形周长为5 + 6+6=17cm。
3. 已知三角形的三边长分别为a,a + 1,a+2,且其周长为12,求a的值。
- 解析:- 根据周长定义a+(a + 1)+(a+2)=12。
- 展开式子得a+a + 1+a+2 = 12。
- 合并同类项3a+3 = 12。
- 移项得3a=12 - 3=9。
- 解得a = 3。
二、三角形内角和问题。
4. 在ABC中,∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘,求ABC各内角的度数。
- 解析:- 因为三角形内角和为180^∘,即∠ A+∠ B+∠ C = 180^∘。
- 又因为∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘=∠ B+10^∘+10^∘=∠ B + 20^∘。
- 把∠ A=∠ B + 10^∘,∠ C=∠ B + 20^∘代入∠ A+∠ B+∠ C = 180^∘得:(∠ B + 10^∘)+∠ B+(∠ B + 20^∘)=180^∘。
- 合并同类项得3∠ B+30^∘=180^∘。
- 移项得3∠ B=180^∘-30^∘=150^∘。
- 解得∠ B = 50^∘。
- 则∠ A=∠ B + 10^∘=60^∘,∠ C=∠ A+10^∘=70^∘。
5. 已知ABC中,∠ A = 2∠ B,∠ C=3∠ B,求∠ A、∠ B、∠ C的度数。
- 解析:- 因为∠ A+∠ B+∠ C = 180^∘,又∠ A = 2∠ B,∠ C=3∠ B。
初二数学上册三角形大题专练(含答案)
1、一个正多边形的一个外角等于它的一个内角的1/3,这个正多边形是几边形?解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.2、如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B =50°,求∠A和∠D.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等)3、如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.解:过A沿南向做射线AD交BC于D,由题意∠BAD=57°,∠CAD=15°,∠EBC=82°,∵AD∥BE,∴∠EBA=∠BAD=57°.∴∠ABC=∠EBC-∠EBA=25°.△ABC中,∠ABC=25°,∠BAC=72°,∴∠C=180°-25°-72°=83°.即:∠C的度数为83°.4、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.解:证明:∵ DG⊥BC,AC⊥BC(已知),∴ ∠DGB=∠ACB=90°(垂直定义),∴ DG∥AC(同位角相等,两直线平行).∴ ∠2=∠ACD(两直线平行,内错角相等).∵ ∠1=∠2(已知),∴ ∠1=∠ACD(等量代换),∴ EF∥CD(同位角相等,两直线平行).∴ ∠AEF=∠ADC(两直线平行,同位角相等).∵ EF⊥AB(已知),∴ ∠AEF=90°(垂直定义),∴∠ADC=90°(等量代换)∴ CD⊥AB(垂直定义).5、如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD 与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=50°,则∠P= 65°;。
初二数学上三角形练习题
初二数学上三角形练习题三角形是初中数学中一个重要的概念,它的性质和计算方法需要我们掌握和运用。
下面将给出一些关于三角形的练习题,帮助大家更好地理解和应用相关知识。
1. 题目:已知三角形ABC中,∠C = 90°,边AB = 5cm,AC =12cm,请计算边BC的长度。
解答:根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
设BC = x,则根据勾股定理可得:AB² + BC² = AC²。
代入已知值,得到5² + x² = 12²,即25 + x² = 144。
移项化简,得到x² = 144 - 25,即x² = 119。
求解得到x ≈ 10.92,所以BC的长度约为10.92cm。
2. 题目:已知三角形DEF中,∠E = 45°,∠F = 60°,EF = 8cm,请计算边DE和边DF的长度。
解答:由角度之和性质可知,∠D = 180° - ∠E - ∠F = 180° - 45° - 60° = 75°。
设DE = x,DF = y。
根据正弦定理可得:EF/sin∠D = DE/sin∠F = DF/sin∠E。
代入已知值,得到8/sin75° = x/sin45° = y/sin60°。
可以通过计算器或查表得到sin75° ≈ 0.9659,sin45° ≈ 0.7071,sin60°≈ 0.8660。
继续计算得到:8/0.9659 = x/0.7071,8/0.9659 = y/0.8660。
解得x ≈ 5.57,y ≈ 7.17。
所以DE的长度约为5.57cm,DF的长度约为7.17cm。
3. 题目:已知三角形MNP中,MN = 6cm,MP = 8cm,请计算∠M 的大小。
八年级经典几何题
八年级经典几何题一、三角形全等类。
题1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。
解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目所给条件)。
- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。
- AD = AD(公共边)。
2. 根据SSS(边 - 边 - 边)全等判定定理,可得△ABD≌△ACD。
题2:已知:如图,点B、E、C、F在同一直线上,AB = DE,AC = DF,BE = CF。
求证:∠A = ∠D。
解析:1. 因为BE = CF,所以BE+EC = CF + EC,即BC = EF。
2. 在△ABC和△DEF中:- AB = DE(已知)。
- AC = DF(已知)。
- BC = EF(已证)。
3. 根据SSS全等判定定理,△ABC≌△DEF。
4. 所以∠A = ∠D(全等三角形的对应角相等)。
二、等腰三角形性质类。
题3:等腰三角形的一个角是70°,求它的另外两个角的度数。
解析:1. 当70°角为顶角时:- 因为等腰三角形两底角相等,设底角为x。
- 根据三角形内角和为180°,则2x+70° = 180°。
- 2x = 180° - 70° = 110°,解得x = 55°。
- 所以另外两个角都是55°。
2. 当70°角为底角时:- 则另一个底角也是70°,顶角为180°-70°×2 = 180° - 140° = 40°。
- 所以另外两个角是70°和40°。
题4:已知等腰三角形ABC中,AB = AC,AD⊥BC于D,若∠BAD = 30°,求∠C的度数。
解析:1. 因为AB = AC,AD⊥BC,根据等腰三角形三线合一的性质,AD是∠BAC的平分线。
八年级上册三角形题目
八年级上册三角形题目一、选择题(1 - 10题)1. 若一个三角形的两边长分别为3和7,则第三边长可能是()- A. 6.- B. 3.- C. 2.- D. 11.- 解析:设第三边为x,根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
所以7 - 3<x<7+3,即4<x<10,在给出的选项中只有A选项6满足条件。
2. 三角形的内角和是()- A. 90°.- B. 180°.- C. 360°.- D. 720°.- 解析:三角形内角和定理表明三角形的内角和为180°,所以答案是B。
3. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()- A. 50°.- B. 60°.- C. 70°.- 解析:因为三角形内角和为180°,已知∠A = 50°,∠B = 60°,所以∠C=180° - ∠A - ∠B = 180°-50° - 60° = 70°,答案为C。
4. 以下能判定三角形是等腰三角形的是()- A. 有两个角为30°,60°。
- B. 有两个角为40°,100°。
- C. 有两个角为50°,80°。
- D. 有两个角为20°,140°。
- 解析:等腰三角形的判定是有两个角相等的三角形是等腰三角形。
A选项中两个角不相等;B选项中,180°-100° - 40° = 40°,有两个角相等为40°,所以这个三角形是等腰三角形;C选项中两个角不相等;D选项中180°-140° - 20° = 20°,虽然有两个角相等,但不是等腰三角形的常规判定情况(因为140°是钝角)。
初二数学全等三角形经典题型
专题训练:全等三角形专题一全等三角形的性质及应用1.如图,△ABC ≌△EBD ,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?解析:由三角形全等,得到对应角相等,然后再沟通∠1和∠2之间的关系.2.如图,已知△EAB ≌△DCE ,AB 、EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.专题二全等三角形的探究题3.全等三角形又叫合同三角形, 平面内的合同三角形分为真正合同三角形与镜面合同三角形.假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与A 1对应,点B 与B 1对应,点C 与点C 1对应,当沿周界A →B →C →A 及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形,如图1;若运动方向相反,则称它们是镜面合同三角形,如图2.C 1B 1A 1C B AC 1B 1A 1CB A (1)(2)BA E 21FC D O两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中一个翻折180°,下列各组合同三角形中,是镜面合同三角形的是().DC B A 4.如图所示,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE .(1)试说明BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE ?5.如图所示,△ABC 绕着点B 旋转(顺时针)90°到△DBE ,且∠ABC =90°.(1)△ABC 和△DBE 是否全等?指出对应边和对应角;(2)直线AC 、直线DE 有怎样的位置关系?AB C DE【知识要点】1.能够完全重合的两个图形叫全等形,能够完全重合的两个三角形叫全等三角形.2.全等三角形的对应边相等,对应角相等.【温馨提示】1.利用全等三角形的性质解决问题时,一定要找准对应元素.2.全等三角形的对应边相等、对应角相等、周长相等、面积相等,但周长、面积相等的两个三角形不一定是全等三角形.【方法技巧】1.全等三角形是指能够完全重合的两个三角形,准确的找出两个全等三角形的对应元素是解决全等三角形问题的关键.在表示两个三角形全等时,对应的顶点要写在对应的位置上.2.全等三角形的对应边相等,对应角相等,利用这两个性质可以说明线段或角相等,以及线段的平行或垂直等.3.一个图形经过平移、翻折、旋转后,位置发生了变化,但形状和大小都没有改变,即经过平移、翻折、旋转前后的图形全等.像这样只改变图形的位置而不改变图形的形状和大小的变换叫全等变换,常见的有平移变换,翻折变换,旋转变换.参考答案:1.解:∠1和∠2∵△ABC≌△EBD,∴∠A=∠E(全等三角形对应角相等),又∵∠A+∠AOF+∠1=180°,∠E+∠EOB+∠E=180°(三角形内角和定理),∠AOF=∠BOE(对顶角相等),∴∠1=∠2(等式的性质).2.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.3.B提示:A与C中的两个三角形可以通过旋转,使它们重合.D中的两个三角形可以用平移、旋转相结合的方式使之重合.而B中的两个三角形可以用翻折的方法使之重合,故B 中的三角形是镜面合同三角形.4.解:(1)因为△BAD≌△ACE,所以BD=AE,AD=CE,又因为AE=AD+DE=CE+DE,所以BD=DE+CE.(2)∠ADB=90°,因为△BAD≌△ACE,所以∠ADB=∠CEB,若BD ∥CE,则∠CED=∠BDE,所以∠ADB=∠BDE,又因为∠ADB+∠BDE=180°,所以∠ADB=90°.5.解:(1)由题知可得:△ABC≌△DBE,AC和DE,AB和DB,BC和BE是对应边;∠A和∠D,∠ACB和∠DEB,∠ABC和∠DBE是对应角;(2)延长AC交DE于F.∵△ABC≌△DBE∴∠A=∠D,又∵∠ACB=∠DCF(对顶角相等),∠A+∠ACB=90°,∴∠D+∠DCF=90°,即∠AFD =90°.∴AC与DE是垂直的位置关系.。
八年级三角形练习题
八年级三角形练习题八年级三角形练习题三角形是几何学中的基本概念之一,也是我们在数学学习中经常遇到的题型。
八年级的学生们已经学习了三角形的基本性质和定理,下面我们来练习一些与三角形相关的题目。
题目一:已知三角形ABC中,∠A=60°,AB=3cm,AC=4cm,求BC的长度。
解析:根据余弦定理,可以得到BC的长度。
余弦定理的公式为:c² = a² + b² - 2abcosC。
将已知数据代入公式中,得到BC的长度为:BC² = 3² + 4² - 2×3×4×cos60°= 9 + 16 - 24×0.5= 25 - 12= 13所以,BC的长度为√13 cm。
题目二:在三角形ABC中,∠A=45°,∠B=60°,AB=5cm,求AC和BC的长度。
解析:根据已知角度和边长,我们可以通过正弦定理和余弦定理来求解。
首先,根据正弦定理可以得到:AC/sin60° = 5/sin45°化简得到:AC = 5×sin60°/sin45°然后,根据余弦定理可以得到:BC² = 5² + AC² - 2×5×AC×cos45°将AC的值代入公式中,化简得到:BC² = 5² + (5×sin60°/sin45°)² - 2×5×(5×sin60°/sin45°)×cos45°化简计算后,得到BC的长度为√(75/2) cm,AC的长度为(5√3/2) cm。
题目三:在三角形ABC中,已知∠A=90°,AB=6cm,AC=8cm,求BC的长度。
八年级上册数学三角形经典题型
八年级上册数学三角形经典题型1.如图,图中三角形的个数为(D)A.2 B.18 C.19 D.20解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形 21 个.解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.专题二:根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是(B)A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-2 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有 10 个.∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.若三角形的三边长分别是2、x、8,且x是不等式>的正整数解,试求第三边x的长.原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.一、如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF的度数。
八年级数学三角形经典例题
八年级数学三角形经典例题一、三角形内角和定理相关例题。
1. 在△ABC中,∠A = 50°,∠B - ∠C = 10°,求∠B和∠C的度数。
- 解析:- 因为三角形内角和为180°,即∠A+∠B + ∠C = 180°,已知∠A = 50°,所以∠B+∠C=180° - 50° = 130°。
- 又因为∠B - ∠C = 10°,设∠C=x°,则∠B=(x + 10)°。
- 可得方程x+(x + 10)=130,2x+10 = 130,2x=120,x = 60。
- 所以∠C = 60°,∠B=∠C + 10°=70°。
2. 一个三角形三个内角的度数之比为2:3:4,求这个三角形三个内角的度数。
- 解析:- 设三个内角分别为2x°,3x°,4x°。
- 根据三角形内角和定理,2x+3x + 4x = 180,9x = 180,x = 20。
- 所以三个内角分别为2x = 40°,3x = 60°,4x = 80°。
二、三角形三边关系相关例题。
3. 已知三角形的两边长分别为3cm和5cm,求第三边的取值范围。
- 解析:- 根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
- 设第三边为xcm,则5 - 3<x<5 + 3,即2<x<8。
4. 有四条线段,长度分别为2cm、3cm、4cm、5cm,从中任取三条能组成三角形的概率是多少?- 解析:- 从四条线段中任取三条的组合有:2cm、3cm、4cm;2cm、3cm、5cm;2cm、4cm、5cm;3cm、4cm、5cm共4种情况。
- 根据三角形三边关系判断:- 2cm、3cm、4cm:2+3>4,3 - 2<4,能组成三角形。
八年级数学几何题目
八年级数学几何题目一、三角形相关(1 - 10题)题1:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。
解析:根据三角形内角和为180°,所以∠C=180° - ∠A - ∠B = 180°- 50° - 60° = 70°。
题2:已知等腰三角形的一个底角为40°,求这个等腰三角形的顶角的度数。
解析:等腰三角形两底角相等,所以另一个底角也是40°。
根据三角形内角和为180°,顶角的度数为180° - 40°×2 = 180° - 80° = 100°。
题3:三角形三边分别为3,4,x。
若该三角形是直角三角形,求x的值。
解析:当x为斜边时,根据勾股定理x=√(3^2)+ 4^{2}=√(9 + 16)=√(25) = 5;当4为斜边时,x=√(4^2)-3^{2}=√(16 - 9)=√(7)。
所以x的值为5或√(7)。
题4:在△ABC中,AB = AC,AD是BC边上的中线,若AB = 10,BC = 12,求AD的长。
因为AB = AC,AD是中线,所以AD⊥BC,BD = BC÷2 = 12÷2 = 6。
在直角三角形ABD中,根据勾股定理AD=√(A B^2)-BD^{2}=√(10^2)-6^{2}=√(100 - 36)=√(64) = 8。
题5:一个三角形的三条高的交点恰是三角形的一个顶点,则这个三角形是()A. 锐角三角形。
B. 直角三角形。
C. 钝角三角形。
D. 以上都有可能。
解析:直角三角形的三条高的交点是直角顶点,锐角三角形三条高的交点在三角形内部,钝角三角形三条高所在直线的交点在三角形外部。
所以答案是B。
题6:如图,在△ABC中,∠ACB = 90°,CD是高,∠A = 30°,AB = 4,求BD的长。
初二数学三角形经典题型
三角形的中线、高、角平分线性质
利用三角形的中线、高、角平分线的性质解决问题
识别并应用相关性质,如中线长度公式、高与面积的关系等
8
三角形的相似与全等
证明三角形相似或全等,并求解相关问题
应用相似或全等的判定定理,如SSS、SAS、ASA、AAS等
9
三角形的外接圆与内切圆
利用外接圆与内切圆的性质解决问题
识别并应用外接圆半径、内切圆半径与三角形边长的关系
10
综合应用题
结合多种三角形性质解决实际问题
综合运用上述知识点,分析题意,逐步求解
通过周长公式反推第三边长
4
直角三角形的性质应用
利用勾股定理解决直角三角形问题
验证是否为直角三角形,应用勾股定理
5
等腰三角形的性质应用
利用等腰三角形的性质(如两腰相等、两底角相等)解决问题
识别等腰三角形,应用其性质
6
三角形的内角和与外角和
已知三角形两内角求第三角,或验证三角形内角和为180°
应用三角形内角和定理,或外角和为360°的性质
初二数学三角形经典题型
序号
题型分类
题目描述/示例
解题思路/方法
1
三角形的边与角关系
已知三角形理求解
2
三角形的面积计算
已知三角形三边或两边及夹角,求面积
使用海伦公式或面积公式(如底乘高、两边及夹角公式)
3
三角形的周长与边长关系
已知三角形周长及其中两边长,求第三边长
部编数学八年级上册专题01三角形六大重难题型(期末真题精选)(解析版)含答案
专题01 三角形六大重难题型一.中线分周长(分类讨论)1.如图,已知BD 是△ABC 的中线,AB =5,BC =3,且△ABD 的周长为12,则△BCD 的周长是 10 .试题分析:先根据三角形的中线、线段中点的定义可得AD =CD ,再根据三角形的周长公式即可求出结果.答案详解:解:∵BD 是△ABC 的中线,即点D 是线段AC 的中点,∴AD =CD.实战训练∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.所以答案是:10.2.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC的周长是22,则AD的长为 5 .试题分析:根据三角形的周长公式列式计算即可得解.答案详解:解:∵△ABD与△ACD的周长分别是17和15,∴AB+BC+AC+2AD=17+15=32,∵△ABC的周长是22,∴AB+BC+AC=22,∴2AD=32﹣22=10,∴AD=5.所以答案是:5.3.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为 2 cm.试题分析:根据三角形中线的定义得到BD=CD,求得△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,于是得到结论.答案详解:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.二.中线之等分面积4.如图,已知△ABC 中,点D 、E 分别是边BC 、AB 的中点.若△ABC 的面积等于8,则△BDE 的面积等于( )A .2B .3C .4D .5试题分析:根据三角形的面积公式即可得到结论.答案详解:解:∵点D 是边BC 的中点,△ABC 的面积等于8,∴S △ABD =12S △ABC =4,∵E 是AB 的中点,∴S △BDE =12S △ABD =12×4=2,所以选:A .5.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =4cm 2,则阴影部分的面积为 1 cm 2.试题分析:易得△ABD ,△ACD 为△ABC 面积的一半,同理可得△BEC 的面积等于△ABC 面积的一半,那么阴影部分的面积等于△BEC 的面积的一半.答案详解:解:∵D 为BC 中点,根据同底等高的三角形面积相等,∴S △ABD =S △ACD =12S △ABC =12×4=2(cm 2),同理S △BDE =S △CDE =12S △BCE =12×2=1(cm 2),∴S △BCE =2(cm 2),∵F 为EC 中点,∴S △BEF =12S △BCE =12×2=1(cm 2).所以答案是1.三.三角形的高的辨别6.如图,△ABC中,AD⊥BC于D,点E在CD上,则图中以AD为高的三角形有 6 个.试题分析:由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.答案详解:解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.所以答案是:6.7.如图,△ABC中,BC边所在直线上的高是线段 AD .试题分析:根据三角形的高的概念解答即可.答案详解:解:△ABC中,BC边所在直线上的高是线段AD,所以答案是:AD四.多边形的内角和与外角和8.若一个多边形的内角和是540°,则这个多边形是 五 边形.试题分析:根据多边形的内角和公式求出边数即可.答案详解:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,所以答案是:五.9.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是( )A.240°B.360°C.540°D.720°试题分析:根据四边形的内角和及三角形的外角定理即可求解.答案详解:解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,所以选:B.10.一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是( )A.4B.6C.7D.9试题分析:设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.答案详解:解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).所以选:B.五.三角形的内角和11.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是( )A.115°B.120°C.135°D.105°试题分析:由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.答案详解:解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,所以选:A.12.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD 分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为( )A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°试题分析:分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.答案详解:解:由折叠的性质知:∠BPD=∠APD=12∠BPA,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=12(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠PAC=∠C=70°,则∠APC=40°.∵∠BPD=12(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠PAC,则∠APC=55°.∵∠BPD=12(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.所以选:D.13.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数为( )A.19°B.20°C.22°D.25°试题分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=12(∠A﹣∠D),然后代入数据计算即可得解.答案详解:解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=12(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=12(48°﹣10°)=19°.所以选:A.14.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )A.42°B.46°C.52°D.56°试题分析:根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF =∠2+∠D,求出∠1=∠B+∠2+∠D即可.答案详解:解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,所以选:D.15.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为( )A.49°B.50°C.51°D.52°试题分析:先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.答案详解:解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,所以选:A.16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC交AD于E,求∠4的度数.试题分析:首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.答案详解:解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.17.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于 22.5 度.试题分析:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.由“直角三角形的两个锐角互余”的性质知,x+3x=90°.通过解方程即可求得x的值.答案详解:解:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.则x+3x=90°,即4x=90°,解得,x=22.5°,即这个直角三角形中最小的一个角等于22.5°.所以答案是:22.5.六.新定义类18.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“ 2 倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.试题分析:(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.答案详解:解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,所以答案是:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.19.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为 2 倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为 22.5°<α<30° .(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO 的度数.试题分析:(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.答案详解:解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,所以答案是:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.所以答案是22.5°<α<30°.(3)∵AE平分∠BAO,AF平分∠AOG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=12(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∠F显然大于∠E,∴∠E=14×90°或15×90°,∵AE平分∠BAO,OE平分∠BOQ,∴∠E=12∠ABO,∴∠ABO=2∠E,∴∠ABO=45°或36°.20.在△ABC中,若存在一个内角角度,是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=55°,∠B=25°,则△ABC为 4 倍角三角形;(2)若△DEF是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求△DEF的最小内角;(3)若△MNP是2倍角三角形,且∠M<∠N<∠P<90°,请直接写出△MNP的最小内角的取值范围.试题分析:(1)由∠A=55°,∠B=25°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围.答案详解:解:(1)∵∠A=55°,∠B=25°,∴∠C=180°﹣∠A﹣∠B=100°,∴∠C=4∠B,所以答案是:4(2)设最小的内角为x°,则3倍角为3x°①当最小的内角的度数是3倍内角的余角的度数的13时,即:x=13(90°﹣3x),解得:x=15°②3倍内角的度数是最小内角的余角的度数的13时,即:3x=13(90°﹣x),解得:x=9°,因此,△DEF的最小内角是9°或15°.(3)设∠M的度数为x,则其它的两个角分别为2x,(180°﹣3x),由∠M<∠N<∠P<90°可得:2x<90°且180°﹣3x<90°且2x≠180°﹣3x∴30°<x<45°且x≠36°.答:△MNP的最小内角的取值范围是30°<x<45°且x≠36°.21.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( )A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°试题分析:分设三角形底角为α,顶角为2α或设三角形的底角为2α,顶角为α,根据三角形的内角和为180°,得出答案.答案详解:解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,所以选:C.22.若三角形满足一个角α是另一个角β的3倍,则称这个三角形为“智慧三角形”,其中α称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是 60或90 度.试题分析:根据“智慧三角形”及“智慧角”的意义,列方程求解即可.答案详解:解:在有一个角为60°的三角形中,①当另两个角分别是100°、20°时,“智慧角”是60°;②α+β=120°且α=3β,∴α=90°.,即“智慧角”是90°.所以答案是:60或90.。
8年级数学全等三角形经典例题
8年级数学全等三角形经典例题一、全等三角形经典例题1。
例1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。
解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目中给出的等腰三角形的两腰相等)。
- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。
- AD = AD(公共边)。
2. 根据SSS(边边边)全等判定定理,可得△ABD≌△ACD。
二、全等三角形经典例题2。
例2:已知:如图,AB = AD,∠B = ∠D,∠1=∠2,求证:△ABC≌△ADE。
解析:1. 因为∠1 = ∠2,所以∠1+∠DAC = ∠2+∠DAC,即∠BAC = ∠DAE。
2. 在△ABC和△ADE中:- 已知AB = AD。
- ∠B = ∠D。
- 且∠BAC = ∠DAE(已证)。
3. 根据ASA(角边角)全等判定定理,可得△ABC≌△ADE。
三、全等三角形经典例题3。
例3:如图,在△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC于D,DE⊥AB于E,AB = 6cm,求△DEB的周长。
解析:1. 因为AD平分∠CAB,∠C = 90°,DE⊥AB,根据角平分线的性质,可知CD = DE。
2. 在Rt△ACD和Rt△AED中:- AD = AD(公共边)。
- CD = DE(已证角平分线性质)。
- 根据HL(斜边直角边)定理,可得Rt△ACD≌Rt△AED。
- 所以AC = AE。
3. 因为AC = BC,AB = 6cm,设AC = BC=x,根据勾股定理AC^2+BC^2=AB^2,即x^2+x^2=6^2,2x^2=36,x^2=18,x = 3√(2)。
4. 又因为AE = AC = 3\sqrt{2}\),所以BE=AB - AE = 6 - 3\sqrt{2}\)。
5. 而△DEB的周长为DE+DB+BE,因为CD = DE,BC = BD + CD,所以△DEB的周长为BC+BE = 3\sqrt{2}+6 - 3\sqrt{2}=6cm。
初二数学三角形练习题
初二数学三角形练习题在初二数学的学习中,三角形是一个非常重要的几何概念。
下面是一些三角形的练习题,旨在帮助学生巩固和深化对三角形性质的理解和应用。
练习题1:三角形的内角和已知三角形ABC的三个内角分别为∠A、∠B和∠C,请证明三角形的内角和为180°。
解答提示:1. 画一个三角形ABC。
2. 将三角形ABC的对边延长,形成一个外角。
3. 利用外角的性质,证明内角和为180°。
练习题2:等腰三角形的性质已知等腰三角形ABC,其中AB=AC,求证∠B=∠C。
解答提示:1. 利用等腰三角形的性质,即两边相等的三角形,其对应的底角也相等。
2. 通过全等三角形的判定,证明∠B=∠C。
练习题3:三角形的中线在三角形ABC中,点D是BC的中点,点E是AC的中点。
证明DE是三角形ABC的中线。
解答提示:1. 利用中线的定义,即连接三角形一个顶点和它对边中点的线段。
2. 证明DE平分了AC,并且DE平行于BC。
练习题4:直角三角形的勾股定理在直角三角形ABC中,∠C=90°,AB是斜边。
已知AB=13,BC=12,求AC的长度。
解答提示:1. 应用勾股定理:\( AB^2 = BC^2 + AC^2 \)。
2. 将已知数值代入公式,解出AC。
练习题5:三角形的相似已知三角形ABC和三角形DEF相似,且AB/DE=2/3,求AC/EF的比值。
解答提示:1. 利用相似三角形的性质,即对应边的比值相等。
2. 根据已知比例,求出AC/EF的比值。
练习题6:三角形的外接圆和内切圆在三角形ABC中,O1是外接圆的圆心,O2是内切圆的圆心。
已知AB=7,BC=6,AC=5,求O1到BC的距离。
解答提示:1. 利用三角形的外接圆性质,O1到三角形各边的距离相等。
2. 通过已知边长和三角形的面积,求出O1到BC的距离。
练习题7:三角形的重心在三角形ABC中,G是重心,求证AG=2GD。
解答提示:1. 利用重心的定义,即三角形三条中线的交点。
初二数学上册三角形练习题含答案
初二数学上册三角形练习题含答案题一:已知△ABC中,∠B=90°,AB=5cm,BC=12cm,求AC的长度。
解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
假设AC=x,则AC²=AB²+BC²。
代入已知数据,得到x²=5²+12²,即x²=25+144,x²=169,解方程得x=13。
所以AC的长度为13cm。
题二:已知△DEF中,DE=6cm,DF=8cm,EF=10cm,判断△DEF的形状。
解:根据三角形的边长关系,任意两边之和必须大于第三边。
以DE、DF、EF作为三角形的三条边,计算它们的和:DE+DF=6+8=14cmDE+EF=6+10=16cmDF+EF=8+10=18cm由于DE+DF=14cm小于EF=10cm,所以三边不能构成△DEF。
因此,题目中给出的边长不能构成三角形。
题三:已知△GHI中,∠G=60°,IH=6cm,GH=3cm,求HI的长度。
条边的长度相等,每个角都是60°。
因此,HI的长度等于GH=3cm。
题四:已知△JKL中,∠J=90°,JK=8cm,JL=10cm,求KL的长度。
解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
假设KL=x,则KL²=JK²+JL²。
代入已知数据,得到x²=8²+10²,即x²=64+100,x²=164,解方程得x=√164。
所以KL的长度为√164 cm。
题五:已知△MNO中,MN=15cm,NO=20cm,MO=25cm,判断△MNO的形状。
解:根据三角形的边长关系,任意两边之和必须大于第三边。
以MN、NO、MO作为三角形的三条边,计算它们的和:MN+NO=15+20=35cmMN+MO=15+25=40cmNO+MO=20+25=45cm由于MN+NO=35cm小于MO=25cm,所以三边不能构成△MNO。
初中三角形经典题型
1、在三角形ABC中,若∠A = 60°,∠B = 40°,则∠C的度数为:A. 70°B. 80°C. 90°D. 100°(答案)B2、已知三角形三边长度分别为3、4、5,则该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定(答案)B3、三角形的高线、中线、角平分线:A. 都是线段B. 都是射线C. 都是直线D. 高线是射线,中线、角平分线是线段(答案)A4、在三角形ABC中,D、E分别是AB、AC的中点,则DE是三角形ABC的:A. 高B. 中线C. 角平分线D. 中位线(答案)D5、若三角形的一个外角等于与它不相邻的两个内角之和,则这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形(答案)B6、已知三角形ABC的三边a、b、c满足a²+ b²= c²+ 2ab,则三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形(答案)C(注:原式可改写为a²+ b²- 2ab = c²,即(a - b)²= c²,但此题考察的是三角形的性质,实际上当a²+ b²= c²+ 2ab时,说明∠C为钝角)7、在三角形ABC中,若AB = AC,且∠B = 70°,则∠A的度数为:A. 40°B. 55°C. 70°D. 110°(答案)A8、下列说法中,正确的是:A. 三角形的角平分线、中线和高都在三角形内部B. 直角三角形只有一条高线C. 三角形的三条高线至少有一条在三角形内部D. 三角形的三条角平分线都在三角形外部(答案)C。
初二数学三角形试题
初二数学三角形试题1.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【答案】C【解析】根据内角和定理180°•(n﹣2)即可求得.【考点】多边形内角与外角.2.已知:如图,点E、F分别为▱ABCD的BC、AD边上的点,且∠1=∠2.求证:AE=FC.【答案】详见解析【解析】根据平行四边形的对边相等,对角相等,易得△ABE≌△CDF,即可得AE=CF.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.在△ABE与△CDF中,∴△ABE≌△CDF.∴AE=CF.【考点】1.平行四边形的性质;2.全等三角形的判定与性质.3.如图,在平行四边形ABCD中,过对角线BD上一点P,作EF∥BC,HG∥AB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.不能确定【答案】A.【解析】∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形GBEP、HPFD是平行四边形,∵在△ABD和△CDB中,AB=CD,BD=BD,AD=BC,∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEP和△PGB的面积相等,△HPD和△FDP的面积相等,∴四边形AEPH和四边形CFPG的面积相等,即S1=S2.故选A.【考点】1.平行四边形的判定与性质2.全等三角形的判定与性质.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中.(1)操作发现(4分)如图2,固定△ABC ,使△DEC绕点C旋转。
当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是;设△BDC的面积为,△AEC的面积为。
则与的数量关系是。
(2)猜想论证(4分)当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中与的数量关系仍然成立,并尝试分别作出了△BDC,△AEC中边上的高,请你证明小明的猜想。
初二数学三角形六大经典例 题
1、如图,Rt△ABC中,∠BAC=90°,AB=AC,D是AC的中点,AE⊥BD交BC于E,连接ED,求证;∠ADB=∠CDED2、正三角形△ABC,P是三角形内一点,PA=3,PB=4,PC=5.求∠APB度数。
3、P是等边三角形ABC内一点,∠APC、∠APB、∠BPC之比为5、6、7,以PA,PB,PC为边的三角形三个内角的大小。
4、已知:在三角形ABC中,∠ACB=90°,AC=BC,点D为AB的中点,AE=CF.求证:DE⊥DF?5、△ABC中,E是BC的中点,D是CA延长线上一点,且AD=1/2AC,DE交AB于F,求证:DF=EF。
6、 如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.答案:1、解:过C作CG⊥AC交AE延长线于G∵AE⊥BD于F,所以∠DBA=∠GAC(都与∠EAB互余)又∵AB=CA,∠DAB=∠GCA=90°∴△DAB≌△GCA(角边角)∴∠ADB=∠CGA,AD=CG又∵AD=DC,所以CD=CG又∵∠GCE=∠DCE=45°,CE=CE∴△GCE≌△DCE(边角边)∴∠CGA=∠CDE∴∠ADB=∠CDE2、解:以PA为一边,向外作正三角形APQ,连接BQ,可知PQ=PA=3,∠APQ=60°,由于AB=AC,PA=QA,∠CAP+∠PAB=60°=∠PAB+∠BAQ,即:∠CAP=∠BAQ所以△CAP≌△BAQ 可得:CP=BQ=5,在△BPQ中,PQ=3,PB=4,BQ=5,由勾股定理,知△BPQ是直角三角形。
所以∠BPQ=90°所以∠APB=∠APQ+∠BPQ=60°+90°=150°。
3、解:在AP的一侧以AP长为边作等边△APD,使D位于△ABC外AC 边一侧,易证△ABP≌△ACD(SAS)因此,CD=PB,PD=PA,△APD就是以AP、BP、CP为边的三角形设∠APB=5x,∠BPC=6x,∠APC=7x,由周角为360°,得∠APB+∠BPC+∠APC=18x=360° ∴x=20°,于是,∠APC=140°,∠APB=100°,∠BPC=120°. ∠DPC=∠APC-60°=80°,∠PDC=∠ADC-∠ADP=∠APB-60°=40°,从而∠PCD=180°-(∠DPC+PDC)=60°所以,三内角的比为40°:60°:80°=2:3:44、证明:连接CD∵∠ACB=90°,AC=BC∴△ABC是等腰直角三角形∴∠A=45°∵D是AB中点∴AD=0.5AB,CD=0.5AB∴AD=CD又∵AE=CF∴△ADE≌△CDF(SAS)∴∠AED=∠CFD∴∠CFD+∠CED=180∵∠CFD+∠FDE+∠DEC+∠ACB=360∵∠ACB=90∴∠FDE=90∴DE⊥DF5、证明:连接E和AC的中点G,EG为△ABC的中位线∴EGǁAB∵AD=1/2AC=AG∴AF为△DEG的中位线∴DF=FE6、证明:(1)∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°,∴∠EAD-∠BAD=∠BAC-∠BAD,即:∠EAB=∠DAC,∴△ABE≌△ACD(SAS);(2)证明:∵△ABE≌△ACD,∴BE=DC,∠EBA=∠DCA,又∵BF=DC,∴BE=BF.∵△ABC是等边三角形,∴∠DCA=60°,∴△BEF为等边三角形.∴∠EFB=60°,EF=BF∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC=∠EFB,∴EF∥BC,即EF∥DC,∵EF=BF,BF=DC,∴EF=DC,∴四边形EFCD是平行四边形.。
初二数学三角形练习题推荐
初二数学三角形练习题推荐三角形是初中数学中非常重要的一个概念,掌握好三角形的性质和计算方法对于学好数学至关重要。
为了帮助初二学生更好地巩固和提升自己的三角形知识,以下是一些推荐的练习题,供大家参考。
1. 求三角形边长:已知三角形ABC,∠C=90°,AC=6cm,BC=8cm,求AB的长度。
解析:根据勾股定理,直角三角形斜边的平方等于两直角边的平方和。
AB² = AC² + BC²AB² = 6² + 8²AB² = 36 + 64AB² = 100AB = 10cm2. 求三角形内角:已知三角形ABC,AB=4cm,BC=5cm,∠B=60°,求∠A和∠C的度数。
解析:根据三角形内角和定理,三角形内角的度数之和等于180°。
∠A + ∠B + ∠C = 180°∠A + 60° + ∠C = 180°∠A + ∠C = 180° - 60°∠A + ∠C = 120°又已知 AB=4cm,BC=5cm,根据余弦定理可求出∠C:cosC = (AB² + BC² - AC²) / (2 * AB * BC)cosC = (4² + 5² - 4²) / (2 * 4 * 5)cosC = (16 + 25 - 16) / 40cosC = 25 / 40cosC = 0.625∠C = arccos(0.625)∠C ≈ 51.32°将∠C的度数带入∠A + ∠C = 120°可求出∠A的度数:∠A + 51.32° = 120°∠A = 120° - 51.32°∠A ≈ 68.68°所以,∠A ≈ 68.68°,∠C ≈ 51.32°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴△GCE≌△DCE(边角边)
∴∠CGA=∠CDE
∴∠ADB=∠CDE
2、解:以PA为一边,向外作正三角形APQ,连接BQ,可知
PQ=PA=3,∠APQ=60°,
由于AB=AC,PA=QA,∠CAP+∠PAB=60°=∠PAB+∠BAQ,即:∠CAP=∠BAQ
∴∠ABC=60°,
∴∠ABC=∠EFB,
∴EF∥BC,即EF∥DC,
∵EF=BF,BF=DC,
∴EF=DC,
∴四边形EFCD是平行四边形.
7、(1)求证:△ABE≌△ACD;
8、(2)求证:四边形EFCD是平行四边形.
答案:1、解:过C作CG⊥AC交AE延长线于G
∵AE⊥BD于F,所以∠DBA=∠GAC(都与∠EAB互余)
又∵AB=CA,∠DAB=∠GCA=90°
∴△DAB≌△GCA(角边角)
∴∠ADB=∠CGA,AD=CG
又∵AD=DC,所以CD=CG
∴∠EAD-∠BAD=∠BAC-∠BAD,
即:∠EAB=∠DAC,
∴△ABE≌△ACD(SAS);
(2)证明:∵△ABE≌△ACD,
∴BE=DC,∠EBA=∠DCA,
又∵BF=DC,
∴BE=BF.
∵△ABC是等边三角形,
∴∠DCA=60°,
∴△BEF为等边三角形.
∴∠EFB=60°,EF=BF
∵△ABC是等边三角形,
因此,CD=PB,PD=PA,△APD就是以AP、BP、CP为边的三角形
设∠APB=5x,∠BPC=6x,∠APC=7x,
由周角为360°,得∠APB+∠BPC+∠APC=18x=360°∴x=20°,
于是,∠APC=140°,∠APB=100°,∠BPC=120°.∠DPC=∠APC-60°=80°,∠PDC=∠ADC-∠ADP=∠APB-60°=40°,
4、已知:在三角形ABC中,∠ACB=90°,AC=BC,点D为AB的中点,AE=CF.求证:DE⊥DF
5、△ABC中,E是BC的中点,D是CA延长线上一点,且AD=1/2AC,DE交AB于F,求证:DF=EF。
6、如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接E F、EB.
从而∠PCD=180°-(∠DPC+PDC)=60°
所以,三内角的比为40°:60°:80°=2:3:4
4、证明:连接CD
∵∠ACB=90°,AC=BC
∴△ABC是等腰直角三角形
∴∠A=45°
∵D是AB中点
∴AD=,CD=∴AD=CD
又∵AE=CF
∴△ADE≌△CDF(SAS)
∴∠AED=∠CFD
∴∠CFD+∠CED=180
∵∠CFD+∠FDE+∠DEC+∠ACB=360
∵∠ACB=90
∴∠FDE=90
∴DE⊥DF
5、证明:连接E和AC的中点G,EG为△ABC的中位线
∴EG‖AB
∵AD=1/2AC=AG
∴AF为△DEG的中位线
∴DF=FE
6、证明:(1)∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
所以△CAP≌△BAQ可得:CP=BQ=5,
在△BPQ中,PQ=3,PB=4,BQ=5,由勾股定理,知△BPQ是直角三角形。所以
∠BPQ=90°
所以∠APB=∠APQ+∠BPQ=60°+90°=150°。
3、解:在AP的一侧以AP长为边作等边△APD,使D位于△ABC外AC边一侧,
易证△ABP≌△ACD(SAS)
初二数学三角形六大例题
1、如图,Rt△ABC中,∠BAC=90°,AB=AC,D是AC的中点,AE⊥BD交BC于E,连接ED,求证;∠ADB=∠CDE
24,PC=5.求∠APB度数。
3、P是等边三角形ABC内一点,∠APC、∠APB、∠BPC之比为5、6、7,以PA,PB,PC为边的三角形三个内角的大小。