C-V2X产业化路径和时间表研究白皮书
C-V2X国内现状分析
C-V2X国内现状分析我国C-V2X发展基础与现状近年来,我国在汽车制造、通信与信息以及道路基础设施建设等方面均取得了长足的进步。
汽车产业整体规模保持世界领先,自主品牌市场份额逐步提高,核心技术不断取得突破。
信息通信领域则涌现一批世界级领军企业,通信设备制造商已进入世界第一阵营,在国际C-V2X、5G等新一代通信标准的制定中也发挥了越来越重要的作用。
在国家基础设施建设方面,宽带网络和高速公路网快速发展、规模位居世界首位,北斗卫星导航系统可面向全国提供高精度时空服务。
我国具备推动C-V2X产业发展的基础环境,能够进一步推动C-V2X技术产业化发展和应用推广。
国内各行业协会和标准化组织高度重视我国C-V2X标准的推进工作,包括中国通信标准化协会(CCSA)、全国智能运输系统标准化技术委员会(TC/ITS)、中国智能交通产业联盟(C-ITS)、车载信息服务产业应用联盟(TIAA)、中国汽车工程学会(SAE-China)及中国智能网联汽车产业创新联盟(CAICV)等都已积极开展C-V2X相关研究及标准化工作。
初步形成了覆盖C-V2X标准协议栈各层次、各层面的标准体系。
C-V2X产业链从狭义上来说主要包括通信芯片、通信模组、终端与设备、整车制造、解决方案、测试验证以及运营与服务等环节,这其中包括了芯片厂商、设备厂商、主机厂、方案商、电信运营商等众多参与方。
此外,若考虑到完整的C-V2X应用实现,还需要若干产业支撑环节,主要包括科研院所、标准组织、投资机构以及关联的技术与产业。
1.通信芯片:提供支持C-V2X 的通信芯片。
如华为双模通信芯片Balong 765;大唐的PC5 Mode 4 LTE-V2X 自研芯片;高通的9150 LTE-V2X 芯片组。
2.通信模组:提供将通信芯片及外围器件集成的通信模组。
如华为基于Balong 765芯片的LTE-V2X 商用车规级通信模组ME959;大唐基于自研芯片的PC5 Mode 4 LTE-V2X 车规级通信模组DMD31;移远联合高通发布的LTE-V2X 通信模组AG15;高新兴推出的支持LTE-V2X 的车规级通信模组GM556A。
IMT-2020(5G)推进组C-V2X白皮书
C-V2X概述国际C-V2X发展现状我国C-V2X发展基础与现状我国C-V2X产业发展倡议贡献单位P2 P9 P15 P28 P30目录IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。
推进组是聚合中国产学研用力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
13GPP第三代合作伙伴项目(the 3rd Generation Partnership Project )5GAA5G 汽车协会(5G Automotive Association )CA证书授权(Certificate Authority )C-ITS合作智能交通系统(Cooperative-Intelligent Transportation System )GNSS全球卫星导航系统(Global Navigation Satellite System )缩略语ITS 智能交通系统(Intelligent Transport System )LTE 长期演进(Long Term Evolution )MEC 多接入边缘计算(Multi-access Edge Computing )OBU 车载单元(On Board Unit )RSU 路侧单元(Road Side Unit )2IMT-2020(5G)推进组C -V 2X 白皮书1. C-V2X 内涵车用无线通信技术(V e h i c l e t oEverything, V2X)是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆,X代表任何与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络。
V2X C-V2X 概述交互的信息模式包括:车与车之间(Vehicle to Vehicle,V2V)、车与路之间(Vehicle to Infrastructure,V2I)、车与人之间(Vehicle to Pedestrian, V2P)、车与网络之间(Vehicle toNetwork, V2N)的交互,如图1.1所示。
C-V2X业务演进白皮书
IMT-2020 (5G)推进组
C-V2X业务演进白皮书
2.2.1 车辆汇入汇出 车辆汇入汇出是指主车(HV)与远车(RV)分别位于匝道入口/出口两侧,HV预备从匝道汇入 主道。 · 有路侧单元(RSU)的情况下:RSU广播汇入指令,引导两侧车流通行,HV与RV接收到汇 入指令后按指令要求通行;或者路侧单元广播路侧的感知信息,HV与RV接收感知信息后,自行决策 进行汇入汇出。 · 无路侧单元(RSU)的情况下:HV和RV通过车车通信互相传递车辆信息,由车载单元自行 计算汇入策略并广播汇入指令。
基于AI的智能切片管理 协同白皮
息,并发送给HV; · HV通过路侧RSU获取相关感知信息、其他车辆信息、V2X服务器的云端信息等,自身生成调
度信息。 · HV可按照通行调度信息,结合V2X功能感知的、以及其它车载传感器感知的周边环境信息,
控制HV通过交叉路口。
图2.2.4-1 V2X服务器指挥HV通行或停车 基于车路协同的交叉口通行从全局最优的角度为车辆分配入口车道、出口车道、以及引导车速等信 息,能够提高通行效率,实现辅助驾驶,为智慧交通管理与控制提供助力。该类应用需要部署智能路侧 设备(RSU),车载通信设备等以支持交通基础设施的信息化,交通工具的智能化和网联化,通过边缘 计算平台或者云端平台实现智能交通的业务管控和设备管控,形成车-路-网一体化智慧交通体系。 基于车路协同的交叉口通行涉及的关键技术、设备、部署条件如下:
表1.2-1 车联网业务参与方能够提供的基础支撑能力
C-V2X业务演进涉及信息通信、汽车、交通、自动驾驶平台与应用软件提供企业等,相关方都有 机会根据实际条件提供并发展相应业务。
· 电信运营商与供应商 电信运营商在C-V2X业务的落地中将扮演越来越重要的角色。基于5G+C-V2X+MEC,能够提 供端到端网络通信以及车联网业务使能平台,从而为C-V2X业务演进提供协同通信和网联协同计算能 力。除此之外,网联相关的数据,MEC业务使能相关的数据也有助于使能更丰富和复杂的C-V2X演进 业务。
C-V2X车联网技术赋能车路云协同发展
Cover Story64封面文章 新能源汽车提速C-V2X 车联网技术赋能车路云协同发展文/陈山枝2021年,我国新能源汽车产业实现快速发展,销量达到352.1万辆,连续7年居世界首位,市场占有率达到13.4%。
进入2022年,在严峻的市场环境下,全球新能源汽车上半年销量超过422万辆,同比增长66.38%,再创新高。
其中,我国新能源汽车销量达到260万辆,占全球销量六成以上;市场渗透率超21.6%,保有量突破1100万辆。
中国新能源汽车共出口20.2万辆,同比增长1.3倍,占汽车出口总量的16.6%。
这意味着我国新能源汽车进入规模化发展阶段。
随着5G、大数据、人工智能等信息通信技术与汽车、交通领域深度融合,车联网产业实现新的飞跃,我国确立了依托C-V2X(蜂窝车联网)发展车路云一体化融合的智能网联汽车中国方案。
该方案即依托C-V2X 车联网技术,推动智能化与网联化融合,促进车路云协同发展,支撑中国智能网联汽车产业和智慧交通产业变革。
C-V2X 车联网技术赋能新能源汽车智能网联化新能源汽车作为智能网联汽车技术落地的最佳切入点,为智能网联落地提供了良好的基础。
目前新能源汽车的智能化程度明显优于同级别燃油车,科技感更强。
在智能化方面,国内整车企业、互联网企业积极开展ADAS 智能驾驶技术的研发,推进智能化发展与应用。
在C-V2X 网联化方面,车端渗透率仍然较低。
但随着单车智能路线发展陷入瓶颈,智能化+网联化融合发展路线成为行业共识。
过去,很多车企完全依赖于ADAS 智能驾驶技术,投入了大量精力和财力研究单车智能。
但单车智能存在局限性,包括视距感知的问题、环境的因素等。
以一个复杂场景道路作为案例,如果汽车在高速公路弯道处抛锚,ADAS 技术很难判断这辆车所处状态,极有可能造成严重的交通事故。
另一个常规挑战是自动驾驶的长尾问题需要耗费更多时间精力和更高成本去解决,且未必能得到妥善解决。
如今,各大自动驾驶公司如百度等,早已开始尝试将C-V2X 与自动驾驶技术结合,传统通信运营商如移动、联通等等,也开始了车联网领域的布局。
C-V2X技术演进白皮书(2019)
2.1-1 C-V2X演进业务
2 2 C-V2X演进业务 驾驶安全、交通效率、信息服务三大类业务结合车路协同的发展,在C-V2X业务演进阶段(1-3 年)将集中在如图2.2-1所示新业务。新业务根据C-V2X网联覆盖范围以及网联智能协同程度的不 同,还可以继续细分不同的子场景。
2.2-1 C-V2X业务演进
IMT-2020 (5G)推进组
C-V2X业务演进白皮书
1 C-V2X业务演进趋势
C-V2X业务
演进
随着C-V2X及5G技术发展,与之而来的更大数据吞吐量、更低时延、更高安全性和更海量连接等
特性,极大地促进了智能驾驶和智慧交通发展。通过“车-路-云”协同,一方面推动智能网联汽车快
速发展,提供更安全、更智能的出行方式;另一方面赋能智能路况综合感知、动态协同交通控制等功
IIMMTT--22002200 ((55GG))推推进进组组
CC -- VV 22 XX 业业 务务 演演 进进 白白 皮皮 书书
目录
1 C-V2X业务演进趋势
P1
2 典型的C-V2X演进业务
P4
3 C-V2X业务演进部署推进建议
P18
4 结束语
P21
5 主要贡献单位
P22
IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架 构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。推进组是聚合中国产学研用力 量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
1.2-1
业务
C-V2X业务演进涉及信息通信、汽车、交通、自动驾驶平台与应用软件提供企业等,相关方都有 机会根据实际条件提供并发展相应业务。
MEC与C-V2X融合白皮书终稿
目录IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。
推进组是聚合中国产学研用力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
缩略语MEC与C-V2X融合的内涵MEC与C-V2X融合的特性MEC与C-V2X融合的场景分类单车与MEC交互场景单车与MEC及路侧智能设施交互场景多车与MEC协同交互场景多车与MEC及路侧智能设施协同交互场景未来工作主要贡献单位P1P2P3P4P5P8P10P12P15P1613GPP第三代合作伙伴项目(the 3rd Generation Partnership Project )AR增强现实(Augmented Reality )C-V2X蜂窝车用无线通信技术(Cellular Vehicle to Everything )缩略语MEC 多接入边缘计算(Multi-access Edge Computing )RSU 路侧单元(Road Side Unit )2IMT-2020(5G)推进组MEC与C-V2X融合白皮书MEC 与C-V2X 融合的内涵多接入边缘计算(M u l t i -a c c e s s E d g eC o m p u t i n g ,M E C )概念最初于2013年出现,起初被称为移动边缘计算(Mobile Edge Computing ),将云计算平台从移动核心网络内部迁移到移动接入网边缘。
2016年后,MEC 内涵正式扩展为多接入边缘计算,将应用场景从移动蜂窝网络进一步延伸至其他接入网络。
C-V2X 是基于蜂窝(Cellular )通信演进形成的车用无线通信技术(Vehicle to Everything, V2X )技术,可提供Uu 接口(蜂窝通信接口)和PC5接口(直连通信接口)1 。
车用无线通信技术(Vehicle to Everything, V2X)C-V2X白皮书
C-V2X概述国际C-V2X发展现状我国C-V2X发展基础与现状我国C-V2X产业发展倡议贡献单位P2 P9 P15 P28 P30目录IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。
推进组是聚合中国产学研用力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
13GPP第三代合作伙伴项目(the 3rd Generation Partnership Project )5GAA5G 汽车协会(5G Automotive Association )CA证书授权(Certificate Authority )C-ITS合作智能交通系统(Cooperative-Intelligent Transportation System )GNSS全球卫星导航系统(Global Navigation Satellite System )缩略语ITS 智能交通系统(Intelligent Transport System )LTE 长期演进(Long Term Evolution )MEC 多接入边缘计算(Multi-access Edge Computing )OBU 车载单元(On Board Unit )RSU 路侧单元(Road Side Unit )2IMT-2020(5G)推进组C -V 2X 白皮书1. C-V2X 内涵车用无线通信技术(V e h i c l e t oEverything, V2X)是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆,X代表任何与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络。
V2X C-V2X 概述交互的信息模式包括:车与车之间(Vehicle to Vehicle,V2V)、车与路之间(Vehicle to Infrastructure,V2I)、车与人之间(Vehicle to Pedestrian, V2P)、车与网络之间(Vehicle toNetwork, V2N)的交互,如图1.1所示。
华为5G C-V2X车联网解决方案
【平台直播】华为5G+C-V2X车联网解决方案缪军海华为C-V2X与车路协同领域总经理Security Level:华为是谁:全球领先的ICT基础设施和智能终端提供商华为致力于把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界我们在通信网络、IT 、智能终端和云服务等领域为客户提供有竞争力、安全可信赖的产品、解决方案与服务,与生态伙伴开放合作,持续为客户创造价值,释放个人潜能,丰富家庭生活,激发组织创新。
华为坚持围绕客户需求持续创新,加大基础研究投入,厚积薄发,推动世界进步。
研发员工8万世界500强排名61国家和地区170+品牌排名68员工19万万物互联、万物智能、万物感知重构人们的出行体验车智能网联成为趋势马车汽车智能网联汽车路从无标识走向智能网联没有标识物理标识数字标识我们早已走过了第一阶段,正在第二阶段的结尾,推开第三阶段的大门出行的驱动,交通进入数字化转型爆发期数字化水平高低起步期爆发期引领期医疗交通OTT媒资银行零售农牧业建筑油气电力汽车机械食品饮料矿业与钢铁通信教育车联网是使能汽车交通行业的数字化转型的基础实现车路协同实现道路基础设施数字化化工智慧出行20%80%30%事故降低碳排放减少效率提升工信部2025目标交通领域是数字化程度比较低的领域,即将面临大规模的产业变革,公路交通需要紧跟汽车智能化节奏车侧驱动:新四化引领汽车新时代,智能网联成就未来出行A utonomous基于大数据的AI ,最终实现自动驾驶C onnected车、路、网、人、环境全连接S hared车辆将成为社会化出行服务工具E lectric绿色环保出行网联化电动化自动化共享化智能交通未来出行由单车信息服务逐步向V2X 、ITS 业务演进,将车、路、网及周边环境数据的紧密结合,提高交通资源利用效率,提供更安全、更经济、更便利的出行服务。
聪明的车呼唤智慧的路,共同营造未来智慧大交通自动驾驶技术的发展要求道路进行智能网联数字化转型2015199520252020高无自动驾驶•辅助驾驶•ADAS•部分自动驾驶(人工为主)•自适应巡航、车道保持•特定道路/条件下的自动驾驶、自动停车自动驾驶分级(NHTSA)Level 0Level 1Level 2Level 320052030•全天候、全道路的自动驾驶Level 4NHTSA: National Highway Traffic Safety Administration车路现在物理标识即将数字化网联标识未来智能、感知、网联路道路数字化转型路侧驱动:道路基础设施亟需数字化,构建车-路联网协同桥梁位移路面龟裂护栏损毁边坡塌方速度监控See through(I2V)前方弯道前方施工前方降雨前方限速立交桥位置十字路口自动驾驶车路协同卡车车路协同自动检测智慧的路+聪明的车,是智慧交通和自动驾驶的终极方向智能网联汽车发展路线图C-V2X产业化路径及时间表研究(2019)支持自动驾驶的智慧道路分级(高速公路+全封闭一级道路)网联决策控制网联协同感知辅助信息交互5G+C-V2X车联网包含移动网络和V2X路网,两个管道互补支持车路协同5G网络智能天线RSU摄像头雷达第一层:车载信息娱乐网主要承载:5G网络/4G网络第二层:交通基础设施数字化、智能化主要承载:V2X网络与4G/5G均可第三层:车路协同通信网主要承载:V2X网络V2N: 车到宏网4G/5G V2V: 车到车通信V2I: 车到基础设施(V2X路网)V2V: 车到人通信从车厂和用户视角看车联网对5G 和C-V2X 的需求5G 车联网/5G V2X = 5G eMBB+C-V2X5G 智能座舱交通信息车路交互V2X 协同感知,面向安全和便利的ADAS+V2X 协同控制和增值业务AVP 泊车,ToD ,绿波巡航OTA 系统升级高清地图下载和升级服务C-V2X 智能网联车载AR (导航,自驾分享)远程监控,远程驾驶车载高清视频eMBB+C-V2XBalong5000/5010 T-BoXC-V2X 车联网+ ADAS 驾驶相辅相成,极大提升交通安全+ADAS•长距雷达•中短距雷达•激光雷达•摄像头•超声波雷达C-V2XV2NV2IV2VV2PC-V2X 的优势•恶劣天气•信号灯识别•非视距通信•互联网96%事故预防45%15%36%自动驾驶需要单车智能+车路协同瞬时动态(红绿灯,事件)高度动态(人车实时状态)SL V2X自动驾驶车辆认证和高精地图下发服务是V2X 的重要承载受国家管制的静态高精地图的下发基于感知信息及时捕捉道路状态变化,为基础地图更新提供数据服务基于动态感知信息路侧实时生成T4数据,为安全辅助/自动驾驶提供第三方感知基于车辆签约服务提供差异化图层信息服务基于证书对自动驾驶车辆合法性认证并提供服务Map serverV2X 感知传感器感知高精地图切片半静态更新信息T2~T4基础信息C-V2X 网络的主要作用•下发高精地图:国家管理部门对V2X 运营商授权,下发区域高精地图•道路信息收集:基于V2X 及道路感知及时获取道路环境的变化信息,弥补基础信息更新不足问题;•动态数据生成:基于路侧计算能力提取关键信息,降低对车端处理能力的消耗;•动态信息播报:为道路车辆按需提供分级信息,弥补单车感知不足持续静态(基础地图)瞬时静态(交通标志路标)MBB构建车路协同全方位融合感知,使能自动驾驶三大典型场景智能车辆感知预测决策控制定位& 地图GPS+惯导Camera Radar LiDAR全时路侧感知交管信息实时分片高精地图融合高精定位全工况、无盲区的感知、地图信息实时的交管信息高可靠高精度的定位服务单车智能城市道路高速公路封闭园区C-V2X5G+V2X加速车路协同智能出行典型应用场景自动编队协同自动驾驶远程驾驶利用5G大带宽、低时延,保证现场高清视频实时传送利用5G大带宽、低时延,保证实时传送多传感器获取的大量数据在自动驾驶时代,利用5G大带宽、低时延,保证实时传送不同车辆多传感器获取的大量数据中国产业政策积极推动5G 和C-V2X ,凸显国家意志工信部交通部•未来5年交通数字化投资约1千亿•13个省市区(河北雄安新区、辽宁省、江苏省、浙江省、深圳市等)开展第一批建设试点工作,打造一批先行先试典型样板,并在全国范围内有序推广。
我国C-V2X行业受四大因素驱动前景向好2025年后将步入高速发展期
根据观研报告网发布的《中国C-V2X行业发展现状分析与投资前景研究报告(2022-2029年)》显示,C-V2X是基于蜂窝网络的车用无线通信技术,它在3GPP第14版中被标准化,作为新的协议,支持联网车辆与其他“联网”道路用户和基础设施之间的通信。C-V2X能够和5G、4G网络复用,覆盖范围广,且部署成本较低。由于C-V2X基于3GPP标准,在全球内更就有兼容性。
近年来,得益于国内政策的大力推动,我国对C-V2X的产业布局相对领先,与主流西方国家相比,我国在车联网C-V2X领域的技术专利毫不逊色,在全球C-V2X专利技术中,中国占比达到30%。
数据来源:中国C-V2X行业发展现状分析与投资前景研究报告(2022-2029年)
4、产业化进程日趋成熟
首先,车联网产业链上下游企业围绕LTE-V2X形成了包括通信芯片和模组、车载终端、路侧设备、解决方案、整车制造、测试认证、安全认证、高精度定位、高精度地图、运营服务等完整产业链生态。通过近几年开展的“三跨”、“四跨”、“新四跨”互联互通系列测试及应用实践,越来越多的企业参与到车联网产业,技术与产业日趋成熟。同时,智能网联汽车从测试验证阶段逐步进入示范应用、大规模推广阶段,全国已有数十个车联网示范区,形成了以无锡、长沙、天津、重庆为代表的国家级车联网先导区。各地积极开展相关示范推广和商业化,探索多种场景应用服务。在车端,到2021年底,一汽红旗、上汽、上汽通用、上汽奥迪、广汽、长安福特、长城、比亚迪、蔚来等多家车企已实现C-V2X前装车型量产。车联网产业已从技术验证逐步走向商业化部署。
国内各行业协会和标准化组织高度重视我国cv2x标准的推进工作截止到2020年底我国也已经基本完成了ltev2x国家标准体系和核心标准规范的制定包括总体技术空中接口安全以及网络层与应用消息层等各个部分并且将59ghz的相关通信频段划分给cv2x设备使用
车联网网联化等级划分、主流关键技术及发展现状(2021年)
发展历程 技术
持续演进
标准化流程始于2004年,具有先发优势,产业链相对成熟
基于WiFi技术改进,在碰撞预警相关场景中表现优异,但 难以支持高速移动场景
缺乏持续演进能力,发展前景有限
标准化流程始于2015年,发展较为迅速,生态系统开放
基于蜂窝通信和终端直连通信融合技术,具有更大的带宽,能够更好 地支持短距离传输以及长距离传输,并可同时为网络覆盖内及网络覆
1 车联网网联化等级划分
按照车联网为车辆提供交互信息、参与协同控制的程度,参照车辆智能化分级,网联化可分为以下三个等级,目前处于“网联协同感 知”发展阶段:
网联化等级划分
网联化等级 等级名称
等级定义
典型信息
传输需求
典型场景
车辆控制
1
网联辅助信息 交互
基于车-路、 车-云通信,实现导航、 道路状态、 交通信号灯等辅助信息 的获取以及车辆行驶与驾驶人操作 等数据的上传。
V2X通信场景
V2X具体分类
设备
功能
V2V
车载终端
避免或减少交通事故、车辆监 督管理等
V2I
车载终端、路侧设 实时信息服务、车辆监控管理、
备
不停车收费等
V2P
车载终端、用户设 避免或减少交通事故、信息服
备
务等
V2N
车载终端、接入网 /核心网、云平台
车辆导航、车辆远程监控、紧 急救援、信息娱乐服务等
1
部分示范区、先导区分布图
8
5 发展现状:产业化路径清晰,明确产业部署进展
中国车联网产业发展将经历三大阶段,目前处于第二阶段:
第一阶段(LTE-V2X,4G):在城市道路和高速公路,针对乘 用车和营运车辆,实现辅助驾驶安全、提高交通效率。 第二阶段(LTE-V2X,5G eMBB):在特定区域及场景针对商用 车的中低速自动驾驶。 第三阶段(NR-V2X,5G eMBB):全天候、全场景的无人驾驶 及高速公路车辆编队行驶。
C-V2X产业化路径和时间表研究白皮书
V2I
协作信息分享(危险路段,道路湿滑,大风,大
雾,前方事故等)
√
V2I
闯红灯(黄灯)告警
√
V2I
自适应近/远灯(如会车灯光自动切换)
√
V2V
火车靠近/道口提醒
√
V2I/V2P
限高/限重/限宽提醒
√
V2I
疲劳驾驶提醒
√
V2V
注意力分散提醒
√
V2V
超载告警/超员告警
√
V2N/V2P
交通效率
减速区/限速提醒(隧道限速、普通限速,弯道限速等)
图1C-V2X产业架构图
2.2.
2.2.1.
提升行驶安全是C-V2X最重要的意义。通过C-V2X车载终端设备及智能路侧设备的多源感知融合,对道路环境实时状况进行感知、分析和决策,在可能发生危险或碰撞的情况下,智能网联汽车进行提前告警,为车辆出行提供更可靠、安全、实时的环境信息获取,从而减少交通事故或降低交通致伤亡率,对于汽车行驶安全有十分重要的意义。典型的C-V2X交通安全类应用有交叉路口来车提醒、前方事故预警、盲区监测、道路突发危险情况提醒等。
2.1.
C-V2X的产业架构由C-V2X产业链、产业支撑及产业推进构成,如图1所示。C-V2X产业链主要包括通信芯片、通信模组、终端设备、整车、智能道路、测试验证以及运营与服务环节,其中的参与方包括芯片厂商、设备厂商、主机厂、方案商、电信运营商、交通运营部门和交通管理部门等。C-V2X产业支撑方面包括科研院所、标准组织、投资机构及关联的技术产业。C-V2X产业推进方面包括链接建立、能力增强和应用升级。
基于C-V2X的应用场景可划分为三大类:交通安全类(Safety)、交通效率类(TrafficEfficiency)以及信息服务类(Infotainment/Telematics)。表2给出本报告考虑的智能网联汽车应用场景。
蜂窝车联网(C-V2X)技术与产业发展态势
蜂窝车联网(C-V2X)技术与产业发展态势01 概述随着汽车保有量的增加,道路安全、城市拥堵等问题日益严重,政府管理部门、交通行业、汽车行业一直在探索解决之道。
车联网技术融合了信息通信技术、人工智能技术、车辆控制技术,是多学科交叉的产物。
美、欧、亚等国家和地区高度重视车联网产业发展,均将车联网产业作为战略制高点,通过制定国家政策或通过立法推动产业发展。
车联网(V2X)是实现车辆与周围的车、人、交通基础设施和网络等全方位连接和通信的新一代信息通信技术。
涵盖了车与车之间(V2V)、车与路之间(V2I)、车与人之间(V2P)、车与网络之间(V2N)等的通信,具有低延时、高可靠的特点。
通过V2X将“人、车、路、云”等交通参与要素有机地联系在一起,一方面能够获取更为丰富的感知信息,促进自动驾驶技术发展;另一方面通过构建智慧交通系统,提升交通效率、提高驾驶安全、降低事故发生率、改善交通、减少污染等。
目前我国已将车联网产业上升到国家战略高度,产业政策持续利好。
车联网技术标准体系已经从国家标准层面完成顶层设计。
我国车联网产业化进程逐步加快,围绕LTE-V2X形成包括通信芯片、通信模组、终端设备、整车制造、运营服务、测试认证、高精度定位及地图服务等较为完整的产业链生态。
为推动C-V2X产业尽快落地,包括工业和信息化部、交通运输部、公安部等积极与地方政府合作,在全国各地先后支持建设16个智能网联汽车测试示范区。
C-V2X应用可分为近期和中远期两大阶段。
近期通过车车协同、车路协同实现辅助驾驶,提高驾驶安全,提升交通效率;以及特定场景的中低速无人驾驶,提高生产效率,降低成本。
中长期将结合人工智能、大数据等新技术,融合雷达、视频感知等技术,通过车联网实现从单车智能到网联智能,最终实现完全自动驾驶。
02 全球车联网发展态势美国政府高度重视智能交通和智能网联汽车产业发展,目前已明确将汽车智能化、网联化作为两大核心战略。
美国目前有将近50个DSRC车联网示范项目,各个示范项目的道路长度从几英里到几百英里不等,主要选取典型的V2V、V2I、V2P用例进行示范应用。
C-V2X概述国际C-V2X发展现状
C-V2X概述国际C-V2X发展现状我国C-V2X发展基础与现状我国C-V2X产业发展倡议贡献单位P2 P9 P15 P28 P30目录IMT-2020(5G)推进组于2013年2月由中国工业和信息化部、国家发展和改革委员会、科学技术部联合推动成立,组织架构基于原IMT-Advanced推进组,成员包括中国主要的运营商、制造商、高校和研究机构。
推进组是聚合中国产学研用力量、推动中国第五代移动通信技术研究和开展国际交流与合作的主要平台。
13GPP第三代合作伙伴项目(the 3rd Generation Partnership Project )5GAA5G 汽车协会(5G Automotive Association )CA证书授权(Certificate Authority )C-ITS合作智能交通系统(Cooperative-Intelligent Transportation System )GNSS全球卫星导航系统(Global Navigation Satellite System )缩略语ITS 智能交通系统(Intelligent Transport System )LTE 长期演进(Long Term Evolution )MEC 多接入边缘计算(Multi-access Edge Computing )OBU 车载单元(On Board Unit )RSU 路侧单元(Road Side Unit )2IMT-2020(5G)推进组C -V 2X 白皮书1. C-V2X 内涵车用无线通信技术(V e h i c l e t oEverything, V2X)是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆,X代表任何与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络。
V2X C-V2X 概述交互的信息模式包括:车与车之间(Vehicle to Vehicle,V2V)、车与路之间(Vehicle to Infrastructure,V2I)、车与人之间(Vehicle to Pedestrian, V2P)、车与网络之间(Vehicle toNetwork, V2N)的交互,如图1.1所示。
车联网网联自动驾驶白皮书
车联网白皮书(网联自动驾驶分册)前言车联网是汽车、电子、信息通信、交通运输和交通管理等行业深度融合的新型产业形态,是5G、人工智能等新一代信息通信技术在汽车、交通等行业应用的重要体现。
自动驾驶是汽车智能化、网联化发展的核心应用,也是车联网部署发展的核心服务。
我国在车联网技术创新、应用实践、产业生态构建等方面已经走在了世界前列,将有利于探索实现一条具有我国特色的网联自动驾驶发展路径。
本文聚焦车联网支持实现自动驾驶应用,从“协同感知、协同决策、协同控制”等不同环节,重点研究分析网联需求、典型应用场景、体系架构和核心关键技术。
在此基础上,总结提炼网联自动驾驶发展面临的挑战,包括技术融合、基础设施建设以及商业运营等方面。
最终以协同发展总结全文,希望我国能抓住难得的历史发展机遇,坚持网联自动驾驶的协同发展路径,影响形成全球广泛认同。
目录一、网联自动驾驶的内涵 (1)二、网联自动驾驶的需求及典型应用 (2)(一)单车智能自动驾驶发展现状 (2)1.单车智能自动驾驶应用尚未成熟 (2)2.单车智能自动驾驶仍面临诸多风险 (3)(二)单车智能自动驾驶的挑战和网联需求 (4)1.环境感知的挑战和网联需求 (4)2.计算决策的挑战和网联需求 (5)3.控制执行的挑战和网联需求 (6)(三)网联自动驾驶的典型应用 (7)三、网联自动驾驶的技术体系架构 (10)(一)网联自动驾驶的技术体系视图 (10)1.全局视图下的网联自动驾驶技术体系 (10)2.智能网联汽车视角下的网联自动驾驶技术体系 (12)3.信息通信视角下的网联自动驾驶技术体系 (13)4.交通与交管视角下的网联自动驾驶技术体系 (14)5.网联自动驾驶技术体系的三向视图 (15)(二)网联自动驾驶的协同关键技术 (17)1.车载视觉感知关键技术 (17)2.车载激光雷达感知关键技术 (18)3.车载毫米波雷达感知关键技术 (18)4.感知融合关键技术 (19)5.网联无线通信(C-V2X)关键技术 (19)6.多接入边缘计算(MEC)关键技术 (20)四、网联自动驾驶的挑战 (22)五、网联自动驾驶的协同发展政策现状和展望 (25)(一)美欧日等发达地区或国家持续布局自动驾驶 (25)1.美国政府、产业在网联路径选择上存在差异性考虑 (25)2.欧盟战略高度重视智能化和网联化的协同发展 (26)3.日韩布局基础设施建设,希望抢占商业化普及先机 (26)(二)我国协同发展环境加速形成 (27)1.协同发展政策体系不断完善 (27)2.应用示范,助力网联自动驾驶技术与产业成熟 (29)(三)网联自动驾驶协同发展展望 (31)附录:缩略语 (34)图目录图1 基于智慧基础设施和边缘计算的不停车汇入 (9)图2 网联自动驾驶的体系架构 (11)图3 智能网联汽车视角下的网联自动驾驶技术体系 (12)图4 信息通信视角下的网联自动驾驶技术体系 (13)图5 交通与交管视角下的网联自动驾驶技术体系 (14)图6 网联自动驾驶技术体系的三向视图 (15)图7 MEC 与C-V2X 融合系统的多层系统架构 (21)表目录表1 网联自动驾驶的典型应用场景 (7)一、网联自动驾驶的内涵自动驾驶是车辆作为运载工具智能化、网联化发展的核心应用,也是车联网、智慧交通产业发展的核心应用服务。
C-V2X产业化路径和时间表研究白皮书
值此关键时期,为促进C-V2X跨行业协同发展,为政府部门的政策制定提供参考,加速我国C-V2X产业化健康有序推进,中国智能网联汽车产业创新联盟(CAICV)、IMT-2020(5G)推进组C-V2X工作组、中国智能交通产业联盟(C-ITS)、中国智慧交通管理产业联盟(CTMA)四家单位联合发起,开展《C-V2X产业化路径及时间表研究》的编制工作。国汽智联、中国信通院、清华、北航、华为、大唐、高通、一汽、东风、长安、北汽、上汽、广汽、通用、福特、长城、吉利、奥迪、宝马、中科技、滴滴、首发集团、北京速通科技、启迪云控、奇虎360等参与单位共同执笔编写。
2.3.
按照C-V2X为车辆提供交互信息、参与协同控制的程度,参照车辆智能化分级,尝试将车辆网联化划分为网联辅助信息交互、网联协同感知、网联协同决策与控制三个等级,如表1所示。
2.1.
C-V2X的产业架构由C-V2X产业链、产业支撑及产业推进构成,如图1所示。C-V2X产业链主要包括通信芯片、通信模组、终端设备、整车、智能道路、测试验证以及运营与服务环节,其中的参与方包括芯片厂商、设备厂商、主机厂、方案商、电信运营商、交通运营部门和交通管理部门等。C-V2X产业支撑方面包括科研院所、标准组织、投资机构及关联的技术产业。C-V2X产业推进方面包括链接建立、能力增强和应用升级。
图1C-V2X产业架构图
2.2.
2.2.1.
提升行驶安全是C-V2X最重要的意义。通过C-V2X车载终端设备及智能路侧设备的多源感知融合,对道路环境实时状况进行感知、分析和决策,在可能发生危险或碰撞的情况下,智能网联汽车进行提前告警,为车辆出行提供更可靠、安全、实时的环境信息获取,从而减少交通事故或降低交通致伤亡率,对于汽车行驶安全有十分重要的意义。典型的C-V2X交通安全类应用有交叉路口来车提醒、前方事故预警、盲区监测、道路突发危险情况提醒等。
《车路云一体化融合控制系统白皮书》
车路云一体化融合控制系统白皮书2020年9月1.车路云一体化融合控制系统1.1. 系统定位车路云一体化融合控制系统(SystemofCoordinatedControlbyVehicle-Road-CloudIntegration,SCCVRCI),是利用新一代信息与通信技术,将人、车、路、云的物理层、信息层、应用层连为一体,进行融合感知、决策与控制,可实现车辆行驶和交通运行安全、效率等性能综合提升的一种信息物理系统,也可称为“智能网联汽车云控系统”,或简称“云控系统”。
云控系统定位包括:1.国家《智能汽车创新发展战略》和交通强国战略的有力支撑。
《国家智能汽车创新发展战略》1提出“人–车–路–云”系统协同发展的概念,并将其作为“构建协同开放的智能汽车技术创新体系”的重要任务之一。
“人–车–路–云”系统协同能力建设是未来智能汽车示范应用工作的重要目标,是完善智能汽车技术标准体系建设的重要参考。
云控系统定位于“人–车–路–云”系统,通过系统架构设计和产业生态升级,推动产业相关方完成我国智能汽车强国的目标。
2.国家智能汽车大数据管理平台的典型实现。
我国《智能汽车创新发展战略》要求充分利用现有设施和数据资源,统筹建设智能汽车大数据云控基础平台;重点开发建设逻辑协同、物理分散的云计算中心,标准统一、开放共享的基础数据中心,风险可控、安全可靠的云控基础软件,逐步实现车辆、基础设施、交通环境等领域的基础数据融合应用1。
云控系统响应国家需求,旨在基于开源开放、资源共享的机制,构建一个完整的云控技术体系与生态系统,为国家智能汽车大数据云控基础平台建设提供技术方案和参考。
3.智能网联汽车中国方案的实践路径。
现有单车智能技术路线存在车载感知范围有限、可靠性不足、车间行为存在博弈与冲突、单车依靠局部信息进行的规划与控制难以实现全局优化等问题。
传统车路协同主要强调车与路侧设备之间的协同,虽然可以解决部分单车智能面临的问题,但应用场景有限,且主要功能在于利用车与车、车与路之间的信息交互辅助单车决策;难以实现面向区域级路网大范围网联应用中的群体协同决策,不能满足智能网联汽车组成的交通系统在发展过程中对全局车辆与交通的交互、管控与优化、对交通数据的广泛深度应用等方面的实际要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录0.引言 (1)1.C-V2X概述 (2)1.1.C-V2X产业架构 (2)1.2.C-V2X产业化的意义 (3)1.2.1.提升行驶安全 (3)1.2.2.提高交通效率 (3)1.2.3.提供出行信息服务 (4)1.2.4.支持实现自动驾驶 (4)1.3.车辆网联化分级 (4)2.C-V2X国内发展现状 (6)2.1.应用场景 (6)2.1.1.现状概述 (6)2.1.2.C-V2X基础业务场景 (8)2.1.3.C-V2X增强业务场景 (9)2.1.4.C-V2X应用标准 (10)2.1.5.综合评估 (11)2.2.通信标准/频谱 (11)2.2.1.C-V2X标准 (11)2.2.2.C-V2X频谱 (15)2.2.3.综合评估 (15)2.3.车载终端 (15)2.3.1.现状概述 (15)2.3.2.具体情况 (16)2.3.3.综合评估 (18)2.4.路侧设施 (18)2.4.1.现状概述 (18)2.4.2.具体情况 (19)2.4.3.综合评估 (21)2.5.通信安全 (21)2.5.1.现状概述 (21)2.5.2.具体情况 (22)2.5.3.综合评估 (23)2.6.数据平台 (23)2.6.1.现状概述 (23)2.6.2.具体情况 (24)2.6.3.综合评估 (27)2.7.测试验证 (27)2.7.1.现状概述 (27)2.7.2.具体情况 (27)2.7.3.综合评估 (29)2.8.应用示范 (29)2.8.1.现状概述 (29)2.8.2.具体情况 (30)2.8.3.综合评估 (31)3.C-V2X产业化部署与技术演进 (32)3.1.应用场景 (32)3.1.1.应用场景的重要性 (32)3.1.2.先期产业化应用场景的选择思路 (32)3.1.3.应用场景举例 (36)3.2.通信设备 (39)3.2.1.产业化目标 (39)3.2.2.差距分析 (39)3.2.3.实现路径 (39)3.2.4.时间表 (39)3.3.车载终端 (40)3.3.1.产业化目标 (40)3.3.2.差距分析 (40)3.3.3.实现路径 (40)3.3.4.时间表 (41)3.4.路侧设施 (42)3.4.1.产业化目标 (42)3.4.2.差距分析 (42)3.4.3.实现路径 (42)3.4.4.时间表 (43)3.5.安全保障 (43)3.5.1.产业化目标 (43)3.5.2.差距分析 (44)3.5.3.实现路径 (44)3.5.4.时间表 (45)3.6.数据平台 (45)3.6.1.产业化目标 (45)3.6.2.差距分析 (46)3.6.3.实现路径 (46)3.6.4.时间表 (46)3.7.测试认证 (47)3.7.1.产业化目标 (47)3.7.2.差距分析 (47)3.7.3.实现路径 (47)3.7.4.时间表 (47)4.C-V2X产业化时间表 (48)0.引言以V2X技术为基础的汽车网联化和道路智能化是实现自动驾驶的重要支撑,能大幅度降低道路交通事故、提高交通效率、实现节能减排,近年来在全球呈现出加速发展趋势。
C-V2X涉及到汽车、通信、交通运输和交通管理等多个行业,除LTE-V2X/5G通信、车用通信协议和通信接口、数据平台、信息安全等技术外,还涉及与道路交通基础设施之间的交互和协作。
因此C-V2X需要汽车、通信、交通运输和交通管理等行业进行深度的协同创新。
应尽快形成C-V2X技术、产业共识,促进聚集各界资源,协同攻关,在顶层架构下实施相关技术的研究开发及示范运行,从而推动C-V2X乃至智慧城市交通系统的快速发展。
我国C-V2X经过几年快速发展,标准体系初步建立、产业链初具雏形、相关企业具备了较高的技术实力,已具备大规模部署及产业化的条件。
同时我国具有C-V2X国家战略路径明确、信息通信产业基础强、道路交通基础设施统筹规划部署等优势,极有可能形成全球领先。
应抓住不可多得的战略机遇期,加快推进。
值此关键时期,为促进C-V2X跨行业协同发展,为政府部门的政策制定提供参考,加速我国C-V2X产业化健康有序推进,中国智能网联汽车产业创新联盟(CAICV)、IMT-2020(5G)推进组C-V2X工作组、中国智能交通产业联盟(C-ITS)、中国智慧交通管理产业联盟(CTMA)四家单位联合发起,开展《C-V2X产业化路径及时间表研究》的编制工作。
国汽智联、中国信通院、清华、北航、华为、大唐、高通、一汽、东风、长安、北汽、上汽、广汽、通用、福特、长城、吉利、奥迪、宝马、中兴、移动、电信、联通、东软、诺基亚贝尔、百度、阿里巴巴、星云互联、金溢、易华录、千方科技、滴滴、首发集团、北京速通科技、启迪云控、奇虎360等参与单位共同执笔编写。
《C-V2X产业化路径及时间表研究》梳理了我国C-V2X产业发展基础及现状,综合评估产业化落地条件及差距,提出以应用场景作为跨产业协同的关键节点,分阶段推动其产业化落地部署。
本报告从C-V2X解决交通问题、部署方式、技术优越性和技术成熟度等几个因素出发,推荐了分别适用于高速公路、城市道路的应用场景,从通信设备、安全保障、车辆部署、交管应用、交通应用、数据平台搭建、测试认证等角度分析产业化部署的重点工作和实施路径,最后综合各项工作提出了C-V2X的产业化时间表。
本研究聚焦基于3GPP R14的LTE-V2X技术,未来持续关注3GPP R15/R16及后续演进情况,根据我国C-V2X产业发展情况,及时更新研究内容。
1.C-V2X概述V2X(Vehicle to Everything)是车与外界进行信息交换的一种通信方式,包括:车与车之间的直接通信(V2V);汽车与行人通信(V2P);汽车与道路基础设施通信(V2I);以及车辆通过移动网络与云端进行通信(V2N)。
C-V2X(Cellular-V2X)是基于3GPP全球统一标准的通信技术,包含LTE-V2X、5G-V2X及后续演进。
C-V2X技术基于蜂窝网络,提供Uu接口(蜂窝通信接口)和PC5接口(直连通信接口),可复用蜂窝网的基础设施,部署成本更低、网络覆盖更广,在更密集的环境中,C-V2X支持更远的通信距离、更佳的非视距通信性能、增强的可靠性(更低的误包率)、更高的容量和更佳的拥塞控制。
C-V2X技术旨在将“人-车-路-云”等交通参与要素有机地联系在一起,不仅可以为交通安全和效率类应用提供通信基础,还可以将车辆与其他车辆、行人、路侧设施等交通元素有机结合,弥补了单车智能的不足,推动了协同式应用服务发展。
C-V2X拥有清晰地、具有前向兼容性的5G演进路线,利用5G技术的低延时、高可靠性、高速率、大容量等特点,不仅可以帮助车辆之间进行位置、速度、驾驶方向和驾驶意图的交流,而且可以用在道路环境感知、远程驾驶、编队驾驶等方面。
1.1.C-V2X产业架构C-V2X的产业架构由C-V2X产业链、产业支撑及产业推进构成,如图1所示。
C-V2X 产业链主要包括通信芯片、通信模组、终端设备、整车、智能道路、测试验证以及运营与服务环节,其中的参与方包括芯片厂商、设备厂商、主机厂、方案商、电信运营商、交通运营部门和交通管理部门等。
C-V2X产业支撑方面包括科研院所、标准组织、投资机构及关联的技术产业。
C-V2X产业推进方面包括链接建立、能力增强和应用升级。
图1C-V2X产业架构图1.2.C-V2X产业化的意义1.2.1.提升行驶安全提升行驶安全是C-V2X最重要的意义。
通过C-V2X车载终端设备及智能路侧设备的多源感知融合,对道路环境实时状况进行感知、分析和决策,在可能发生危险或碰撞的情况下,智能网联汽车进行提前告警,为车辆出行提供更可靠、安全、实时的环境信息获取,从而减少交通事故或降低交通致伤亡率,对于汽车行驶安全有十分重要的意义。
典型的C-V2X交通安全类应用有交叉路口来车提醒、前方事故预警、盲区监测、道路突发危险情况提醒等。
1.2.2.提高交通效率提高交通效率是C-V2X的重要作用。
通过C-V2X增强交通感知能力,实现交通系统网联化、智能化,构建智慧交通体系,通过动态调配路网资源,实现拥堵提醒、优化路线诱导,为城市大运量公共运输工具及特殊车辆提供优先通行权限,提升城市交通运行效率,进一步提高交通管理效率,特别是区域化协同管控的能力。
典型的C-V2X交通效率类应用包括前方拥堵提醒、红绿灯信号播报和车速诱导、特殊车辆路口优先通行等。
1.2.3.提供出行信息服务提供出行服务是C-V2X应用的重要组成部分,是全面提升政府监管、企业运营、人民出行水平的手段。
C-V2X信息服务类典型应用包括突发恶劣天气预警、车内电子标牌等。
1.2.4.支持实现自动驾驶车路协同是支撑自动驾驶落地的重要手段,通过本地信息收集、分析和决策,为智能网联汽车提供碰撞预警、驾驶辅助、信息提醒等服务,为自动驾驶提供辅助决策能力,提升自动驾驶的安全性,并降低车辆适应各种特殊道路条件的成本,加速自动驾驶汽车落地。
自动驾驶典型应用场景包括车辆编队行驶、远程遥控驾驶、自主泊车等。
1.3.车辆网联化分级按照C-V2X为车辆提供交互信息、参与协同控制的程度,参照车辆智能化分级,尝试将车辆网联化划分为网联辅助信息交互、网联协同感知、网联协同决策与控制三个等级,如表1所示。
表1智能网联汽车网联化等级网联化等级等级名称等级定义典型信息传输需求典型场景车辆控制1网联辅助信息交互基于车-路、车-云通信,实现导航、道路状态、交通信号灯等辅助信息的获取以及车辆行驶与驾驶人操作等数据的上传地图、交通流量、交通标志、油耗、里程等静态信息传输实时性、可靠性要求较低交通信息提醒、车载信息娱乐服务、eCall等人2网联协同感知基于车-车、车-路、车-人、车-云通信,实时获取车辆周边交通环境信息,与车载传感器的感知信息融合,作为自车决策与控制系统的输入周边车辆/行人/非机动车位置、信号灯相位、道路预警等动态数字化信息传输实时性、可靠性要求较高道路湿滑提、紧急制动预警、特殊车辆避让等人/自车3网联协同决策与控制基于车-车、车-路、车-人、车-云通信,实时并可靠获取车辆周边交通环境信息及车辆决策信息,车-车、车-路等各交通参与者之间信息进行交互融合,形成车-车、车-路等各交通参与者之间的协同决策与控制车-车、车-路、车-云间的协同控制信息传输实时性、可靠性要求最高列队跟驰等人/自车/他车/云目前汽车搭载的T-Box主要用于车载影音娱乐、车辆信息监控与显示、定位服务、运营管理等方面,属于网联化分级里的第1等级。
新一代V2X车载终端可以实现车-车、车-路、车-人、车-云之间全方位连接,提供行驶安全,交通效率和信息服务三大类应用,属于网联化分级里的第2等级。