5.2-休克尔分子轨道法
(整理)休克尔轨道法的分子图.
休克尔轨道法的分子图一、化学家休克尔E.Erich Armand Arthur Josephckel (1896~)联邦德国物理化学家。
1896年8月9日生于柏林夏洛腾堡。
1914年入格丁根大学攻读物理。
曾中断学习,在格丁根大学应用力学研究所研究空气动力学。
1918年重新攻读数学和物理,1921年在P.德拜的指导下获博士学位。
他在格丁根大学工作两年,曾任物理学家M.玻恩的助手。
1922年在苏黎世工业大学再度与德拜合作,任讲师。
1930年在斯图加特工业大学任教。
1937年任马尔堡大学理论物理学教授。
休克尔主要从事结构化学和电化学方面的研究。
他1923年和德拜一起提出强电解质溶液理论,推导出强电解质当量电导的数学表达式。
1931年提出了一种分子轨道的近似计算法即休克尔分子轨道法(HMO 法),主要用于π电子体系。
他在30年代还对芳香烃的电子特性在理论上作出了解释,并总结出:环状共轭多烯化合物中π电子数符合4n+2(n为1,2或3)者,具有芳香性。
二、休克尔分子轨道法(HMO法)的来源分子轨道理论在处理分子时,并不引进明显的价键结构的概念。
它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。
并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x,y,z)来描述。
每个分子轨道ψi都有一个确定的能值Ei 与之相对应,Ei近似地等于处在这轨道上的电子的电离能的负值,当有一个电子进占ψi 分子轨道时,分子就获得Ei的能量。
分子轨道是按能量高低依次排列的。
参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。
根据电子在分子轨道上的分布情况,可以计算分子的总能量。
π键实际上是持有电子的围绕参与组合的原子实的π分子轨道。
1931年,休克尔提出了一种计算π分子轨道及其能值的简单方法,称为休克尔分子轨道法(即HMO 法)。
休克尔轨道法的分子图
休克尔轨道法的分子图一、化学家休克尔E.Erich Armand Arthur Josephckel (1896~)联邦德国物理化学家。
1896年8月9日生于柏林夏洛腾堡。
1914年入格丁根大学攻读物理。
曾中断学习,在格丁根大学应用力学研究所研究空气动力学。
1918年重新攻读数学和物理,1921年在P.德拜的指导下获博士学位。
他在格丁根大学工作两年,曾任物理学家M.玻恩的助手。
1922年在苏黎世工业大学再度与德拜合作,任讲师。
1930年在斯图加特工业大学任教。
1937年任马尔堡大学理论物理学教授。
休克尔主要从事结构化学和电化学方面的研究。
他1923年和德拜一起提出强电解质溶液理论,推导出强电解质当量电导的数学表达式。
1931年提出了一种分子轨道的近似计算法即休克尔分子轨道法(HMO 法),主要用于π电子体系。
他在30年代还对芳香烃的电子特性在理论上作出了解释,并总结出:环状共轭多烯化合物中π电子数符合4n+2(n为1,2或3)者,具有芳香性。
二、休克尔分子轨道法(HMO法)的来源分子轨道理论在处理分子时,并不引进明显的价键结构的概念。
它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。
并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x,y,z)来描述。
每个分子轨道ψi都有一个确定的能值Ei 与之相对应,Ei近似地等于处在这轨道上的电子的电离能的负值,当有一个电子进占ψi 分子轨道时,分子就获得Ei的能量。
分子轨道是按能量高低依次排列的。
参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。
根据电子在分子轨道上的分布情况,可以计算分子的总能量。
π键实际上是持有电子的围绕参与组合的原子实的π分子轨道。
1931年,休克尔提出了一种计算π分子轨道及其能值的简单方法,称为休克尔分子轨道法(即HMO 法)。
5.2 休克尔分子轨道法
● Frost图与4m+2 Hukel规则(休克尔芳香性)
以2β为半径作圆,作一顶点正对最低点的内接正多边形,则各
顶点的位置为单环共轭多烯 分子轨道对应的能级。
E 2
E
E 2
图5-9 环烯烃 轨道能级图 由图看出:电子数为4m+2时,电子全部填充在成键的型分子轨道 上,且都以自旋反平行成对,体系较稳定,这就是休克尔规则的实质.
平面构型的多环芳烃的 HMO 法处理:
(1) 萘(C10H8)
0.555 0.518 1.000 1.000 1.000 0.404 0.104 0.452 0.725
各原子自由价:F1 F4 1.732 0.896 0.836 F2 F3 1.732 0.896 0.448 0.388
ψ2 = 0.602φ1 + 0.372φ2 - 0.372φ3 - 0.602φ4 ψ1 = 0.372φ1 + 0.602φ2 + 0.602φ3 + 0.372φ4
E E E … 0, 0, , 0 c1 c2 cn
H1n ES1n c1 ... H 2 n ES2 n c2 0 ... ... ... ... H nn ESnn cn ...
E 的一元 n 次 代数方程,有n 个解。
久期方程有非零解,则其系数行列式应为零
x 1 0 0 同除以 并令x
E , 得久期行列式
1
x 1 0 x 1 x
0 1
0
0 0 1
求解久期行列式的方法很多,如对称性方法,群论方法,代 数余子式展开法等。代数余子式法是通用的方法。 代数余子式法展开
休克尔分子轨道法.ppt
物理化学性质:
休克尔分子轨道法(HMO法)
●共轭分子以其中有离域的π 键为特征,它有若干特殊的 1. 分子多呈平面构型; 2. 有特殊的紫外吸收光谱; 3. 具有特定的化学性能; 4. 键长均匀化。 ●共轭分子的这些性质,用单、双键交替的定域键难于解释。 ●HMO 法:1931年,E. Hückel 提出。
经验性的近似方法,用以预测同系物的性质、分子稳定性和化学性能,解释 电子光谱等一系列问题。
★优点:具有高度概括能力,应用广泛。 ★缺点:定量结果的精确度不高。
一、 HMO
法的基本内容
●平面型有机共轭分子中,σ 键定域,构成分子骨架,每个 C 余下的一个垂直与
平面的 p 轨道以肩并肩的型式形成多中心离域π 键。
5、 计算下列数据,作分子图
•电荷密度i :第 i个原子上出现的电子数, i 等于离域电子在第 i个碳原 子附近出现的几率: 2
n i kc ki
k
c ki 为分子轨道 k 中第i个原子轨道的组合系 式中 n k 为在 k 中的电子数, 数。 n c c •键级Pij :原子 i和 j 间 键的强度: P ij k ki kj
●用 HMO法处理共轭分子结构时,假定: (1) 假定π 电子是在核和σ 键所形成的整个骨架中运动,可将σ 键和π 键分开处理; (2) 假定共轭分子的σ 键骨架不变,分子的性质由π 电子状态决定; (3) 假定每个π 电子k 的运动状态用k 描述,其Schrödinger方程 为: ˆ H E ● HMO法还假定:
据此可画出轨道示意图和相应的能级图
4
+ +
-
&0.62β E2=0.62β + =0 E4=-1.62β
第11讲 异核双原子分子的结构和休克尔分子轨道
2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
2
∗ 2p y
2
KK:表示两个氟原子内层1s电 子基本上维持原子轨道的性质
成键性:
2s
2s
∗ ∗ σ 2s ↔ σ 2s、π 2p ↔ π 2p 、π 2p ↔ π 2p
z z y
∗
y
σ2s
∗ σ1s
成键轨道和反键轨道均填充电子 作用相互抵消
σ 2p 成键轨道填充电子
复
习
氧分子O 2
分子的电子组态:
(1) (σ 1s ) σ 1s
2
∗
(2)
( ) (σ ) (σ ) (σ ) ( π ) ( π ) ( π ) ( π ) KK σ ( ) (σ ) (σ ) ( π ) ( π ) ( π ) ( π )
2 2
∗
2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
1
∗ 2p y
1
2
∗
2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
1
∗ 2p y
1
KK:表示两个氧原子内层1s电子基本上维持原子轨道的性质
成键性:
σ 2s ↔ σ 2s成键轨道和反键轨道均填充电子,作用相互抵消 σ 2p 、π 2p 、π 2p 成键轨道填充电子
x z y ∗
H2 F2 O2 N2 C2 B2 CO NO HF
Σ
(π ) (π ) ( 2σ )
休克尔分子轨道法ppt课件
在环境化学领域,休克尔分子轨道法可用于评估污染物的电子结构和性质,从而预测其在环境中的行为和归趋。
04
休克尔分子轨道法的局限性
和挑战
计算复杂度问题
计算资源需求高
由于休克尔分子轨道法涉及大量的矩 阵运算和迭代求解,因此需要高性能 的计算资源,如高性能计算机和大内 存。
计算时间长
并行化难度大
通过基组校正和基组完备性的研究, 可以进一步提高基组的描述能力,从 而得到更准确的结果。
06
结论
休克尔分子轨道法的价值和意义
理论价值
休克尔分子轨道法是量子化学中的重要理论工具,它为理解分子结构和性质提供了基础框 架。通过该方法,我们可以深入探究分子的电子结构和化学键的本质。
实际应用
休克尔分子轨道法在化学、材料科学、生物学等领域有着广泛的应用。它为新材料的合成 、药物设计、环境化学等领域提供了理论支持,有助于我们更好地理解物质性质和行为。
适用于具有共轭结构的分子,如烯烃、炔烃、芳香烃等, 可以用于预测分子的稳定性、反应活性以及电子光谱等性 质。
02
休克尔分子轨道法的基本原
理
分子轨道和电子云
分子轨道
描述分子中电子运动的波函数。
电子云
描述电子在分子中的概率分布。
分子中的电子排布
根据泡利不相容原理,每个分子 轨道最多只能填充两个自旋方向
促进科学发展
休克尔分子轨道法的发展推动了相关学科的进步,促进了化学与其他学科的交叉融合,为 科学技术的整体发展做出了贡献。
对未来研究和应用的建议
深入研究
技术革新
进一步深化对休克尔分子轨道法理论的研 究,探索其在更广泛领域的应用,如生物 大分子的结构和性质研究。
休克尔分子轨道理论
0.447
0.838
0.894
H2C 0.894 CH
CH
CH2
1.00
1.00
1.00 分子图
1.00
三、电荷密度、键级、自由价 、分子图
1、电荷密度 :第r个原子上出现的电子数, r 等于离域电子 在第r个碳原子附近出现的几率:
r n j C jr 2
j
2、键级Prs :原子 i和 j 间 键的强度:
Prs n j c j对大小: 原子的总成键度: N r 自由价 F r:
同除以并令x
E , 得久期行列式
3 2 4
x 1 0 0
1 x 1 0
2
0 1 x 1
0 0 0 1 x
展开得,x( x 2x) ( x 1) x 3x 1 0 解得,x 0.618 , 1.618 由E x 得
x1 1.618, x 2 0.618, x3 0.618, x 4 1.618,
-
-
2 . 丁二烯的HMO
法处理
(1) HMO 法确定轨道及能量 丁二烯( H2C CH CH CH2 电子的分子轨道为 c11 c22 c33 c44
c1、c2、c3、c4 满足久期方程:
E 0 0 E 0 0 0 E 0 0 E
可得相应的 4套组合系数
4个碳原子的p轨道线性组合成4个分子轨道:
1 0.372 1 0.602 2 0.602 3 0.372 4
2 0.602 1 0.372 2 0.372 3 0.602 4
3 0.602 1 0.372 2 0.372 3 0.602 4 4 0.372 1 0.602 2 0.602 3 0.372 4
第12讲_休克尔分子轨道
第三章 分子的量子力学处理
不同碳氢化合物中碳原子的杂化形式与C—C键长和键能
Ni Pij
Ni — 分子中第i个原子的成键度
Pij —原子i与其邻接的原子间 键键级之和
(4) 自由价Fi —第i个原子剩余成键能力的相对大小
Fi Fmax- Pij i
Fmax — 碳原子 键键级中最大者,为 3
Pij —原子i与其邻接的原子间 键键级之和 i
(c)画出分子图
把共轭分子由HMO法求得的电荷密度、键级、自由价都标在一张分 子结构图上
第三章 分子的量子力学处理
苯的 轨 道能 级图
电子的 总能量
E总 2E14E2 6 a 8
相减
可见苯的E离的绝对值 比丁二烯的E离要大, 所以可以推知苯比丁二 烯稳定。
E离= 2
定域键电子 总能量
E定 6 a 6
第三章 分子的量子力学处理
对于含n个碳原子的单环共轭烯烃,其休克尔行列式为:
x 1 0 0 0 …0
共轭效应(离域效应)
⑴ 概念
一般包含双键和单键相互交替排列的分子形成离域键,这 时分子的物理性质和化学性质不是各个双键和单键性质的 简单加和,而具有特有的性能,这种现象称为共轭效应或 离域效应。
⑵ 作用 (a)共轭效应为化学中的一种基本效应 (b)影响分子的构型、构象 (c)物质的电性:离域键的形成使物质的导电性增加 (d)物质的颜色:光谱由键的紫外光区移至π键的可见光区 (e)物质的酸碱性和化学反应
HMO 系数
Ej
a
2
cos
j
n 1
1
5.3 休克尔分子轨道理论与共轭分子-精选文档
这里得到的久期方程为:
ES H 11 11 H ES 21 21 ES n 1 n 1 H H ES 12 12 H ES 22 22 H ES n 2 n 2 H ES c 1 n 1 n 1 H ES c 2 n 2 n 2 0 H ES c nn nn n
附:用HMO法求乙烯键的键能和分子轨道
解:分子轨道由两个pz原子轨道线性组合而成:
c c 1 1 2 2
利用变分法得到久期方程为:
E
令: x
E
E
0
久期行列式为:
x 1 1 x 0
得: x 1 x 1 1 2
E E 1 2
1
+ -
+ - - +
相应的波函数为:
1 2
(
1
2) 2)
+
2
1 2
(
1
-
E2 = - 其分子轨道能级图为: E1= +
E=2(+ )=2+2
②电荷密度
i nk c
k
2
ki
第i个原子上出现的π电子 数
i--第i个原子;k--π分子轨道编号;nk--π分子 轨道(Ψ)上的电子数;cki--π分子轨道(Ψ)上第i个原子 轨道的系数。 例如: ρ3 = 2×(0.6015)2 + 2×(-0.3717)2=1.0000 ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4 ψ1 = 0.3717φ1 + 0.6015φ2+ 0.6015φ3 + 0.3717φ4
第12讲_休克尔分子轨道归纳.ppt
i nkck2i
k
nk —k中的电子数;cki —分子轨道k中第i个原子轨道的组合系数
(2) 键级Pij —原子i和j间键的强度
Pij nkckickj k
nk —k中的电子数;cki、ckj —分子轨道k中第i、j原子轨道的组合系数
最新.
7
复习
(3)原子的成键度 分子中某原子与周围其它原子的总键级之和
… … … … … … …
0…… … … 1 x
其解的通式为:
xk
-2
cos
2k
n
k 0,1, 2,3,..., n -1
x1 0 0 0 1 1x 1 0 0 0
Dn(x) = 0 1 x 1 0 0 0
00 1 x 1 0
6
5 4
1 2
3
0 00 1x 1 1 0 0 01 x
展开得:x6 – 6x4 + 9x2 – 4 = 0
或 (x – 1) 2(x + 1) 2(x – 2)(x + 2) = 0
最新.
11
休克尔分子轨道法(HMO法) 的应用
最新.
1
复习
休克尔分子轨道理论
(1)1931年,德国化学家休克尔用分子轨道理 论处理共轭分子体系
(2) HMO法处理共轭分子结构时的假定:
(a) 由于电子在核和 键所形成的整个分子骨 架中运动,可将 键和 键分开处理
Erich Armand Arthur Joseph Hückel (1896-1980)联邦德国物理化学家。
0 0 0 0
…
…
…
0 … … … a-E
… …
… …
讨论休克尔分子轨道法
讨论休克尔分子轨道法(HMO )1.基本假设和基本原理休克尔分子轨道法的基本原理是变分法。
其主要应用于π电子体系,基本假设有如下三点:1.σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
∑==ππn k kH 1ˆH ˆ πn 为π电子数 2.独立π电子近似。
子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
∑='-∇-=N n knn k r 12k Z 21H ˆn Z '是考虑了所有电子及其它p 电子的屏蔽之后的有效核电荷。
kk E ψψ=k H ˆ 由于电子的不可区分性,k 可省略,故单电子方程为ψψE Hˆ= 3.LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道线性组合构成: ∑=ii ki C ϕψk此外,还作出如下的假定:1.库伦积分近似。
即各碳原子的库伦积分都相同,其值为α。
⎰==ατφφd H i i i i ˆH ˆ*,2.交换积分近似。
分子中直接键连碳原子间的交换积分都相同,其值为β。
而非键连碳原子间的交换积分都是零。
⎩⎨⎧±><±==11H ˆj,i j i j i β3.重叠积分近似。
各原子轨道间的重叠积分都取为零。
⎩⎨⎧≠==ij ij j i 01S ,2.基本处理方法、步骤;可从中获得哪些信息(1) 设共轭分子有n 个 C 原子组成共轭体系,每个C 原子提供一个 p 轨道 ,按 LCAO ,得:∑=+++=i i n n c c c c ϕϕϕϕψ 2211 (2) 根据线性变分法,由0E 1=∂∂c ,0E 2=∂∂c , 0=∂∂nc 可得久期方程: 0H H H H H H H H H 21221122222212121121211111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------n nn nn n n n n n n n n c c c ES ES ES ES ES ES ES ES ESE 的一元n 次代数方程,有n 个解。
休克尔分子轨道法(HMO法)chapb
共面的原子间可形成离域p 键
对称性
XY平面
二 p 单电子近似 1 π 电子近似.
π 电子在化学反应中比σ 电子易受到扰动,
在共轭分子的量子化学处理中只讨论π 电子.
2
单电子近似.
分子中每个π 电子的运动状态均可用一个 单电子波函数ψ i来描述,ψ i即π 分子轨道, ˆ 为单个π 电子的哈密顿算符。 H
p
p单电子薛定谔方程为
ˆ E H p
E为p 轨道能
3.LCAO—MO近似
cii
i 1 n
i {各个C原子的2pz 轨道进行线性组合,n为共轭的C原子的个数,每个 C原子提供一个2pz轨道φ i,组合系数由变分法确定。
*ˆ ˆ π( Cφ )dτ Ψ H πΨdτ ( C φ ) H i i i i E * 2 Ψ Ψdτ ( Ciφi) dτ
0 C2 C3 C4 0 0 0 Cn - 2 Cn -1 Cn 0 0 0 Cn -1 Cn 0
线性齐次方程组
非零解休克尔行列式 必须为零
0 0 0 0
1 Dn ( ) 0 0
1
0 1
0 0 0 0 1 0
2
轨道能和MO系数的通解公式
若j为p-MO 的序数 r为碳原子的序数
jp E j 2 cos( ) n 1 1 2 2 jrp C jr ( ) sin( ) n 1 n 1
j,r=1,2,……,n
E1= +2cos(π/5) = +2×0.809 = +1.618
2 4
最高占据轨道(HOMO)
最低空轨道(LUMO) 按定域键的模式
HMO理论的一些粗浅理解
HMO理论的一些粗浅理解休克尔分子轨道法(Hückel molecu lar orbita l method)是用简化的近似分子轨道模型处理共轭分子中的π电子的方法,1931年由E.休克尔(E. Hückel)提出,简称HMO。
这是一种最简单的分子轨道理论,在有机化学中应用得相当广泛,用以解决共轭分子的结构,探讨分子的性质和反应性能的半经验方法。
HMO法的基本内容:1、承认分子轨道理论的全部内容(1)将分子中每一个电子的运动,看作是在各原子核和其余电子的平均势场中运动(即单电子近似),其单电子的空间波函数为分子轨道;(2)分子轨道采用原子轨道的线性组合,用变分法得到分子轨道和能级;(3)分子轨道内电子排布符合能量最低原理、保里原理和洪特规则;组成分子轨道的原子轨道必须符合能量相近、最大重叠和对称性匹配这三个条件。
2、用HMO法处理共轭分子结构的假设(1)由于π电子在核和σ键所形成的整个分子骨架中运动,可将σ键和π键分开处理。
(2)共轭分子有相对不变的σ骨架,而π电子的状态决定分子的性质。
(3)各个碳原子上p轨道的库仑积分都相同,都等于α,相邻原子轨道间的交换积分都相等,用β表示,而非相邻原子轨道间的交换积分都等于零;不同原子轨道间的重叠积分为零;3、共轭烯烃久期行列式的规律全部由C组成的共轭烯烃,从分子骨架直接写久期行列式(1)画出σ骨架,将参与共轭的原子编号;(2)n个原子参加的共轭体系对应着n阶久期行列式;(3)n阶久期行列式主对角元Aij为x,x=(α-E)/β;(4)若ij两原子以π键键连,则Aij及A ji为1,其它元素均为0;(5)久期行列式沿主对角线对称;(6)对同一分子,若编号不一,其写出的久期行列式虽然不同,但求解的结果相同。
结构化学实验-HMO方法
休克尔分子轨道法1 目的要求(1) 运用HMO 程序计算若干平面共轭分子的电子结构。
(2) 通过HMO 程序的具体运算,加强对这一基本原理的理解,培养学生运用分子轨道概念解决实际问题的能力。
(3) 熟悉微型计算机和磁盘操作系统。
2 基本原理(1) HMO 方法的基本原理:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。
该方法主要运用了下列基本假定:①σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
②独立π电子近似。
分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
③LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道i ϕ线性组合构成的,即∑=ii ki k C ϕψ (1)在上述假定下,可列出π体系单电子Schrodinger 方程kk E H ψψκπ=ˆ (2) 将(1)式代入(2)式,利用变分原理,可得久期方程式:()()()0112121211111=-++-+-n n n C ES H C ES H C ES H()()()0222222212121=-++-+-n n n C ES H C ES H C ES H………………………………………………………………()()()0222111=-++-+-nnn nn n n n n C ES H C ES H C ES H此方程组有非零解的充分条件 1121211111n n ES H ES H ES H --- 02222222211112=------nn nn n n nn n n n ES H ES H ES H ES H ES H ES H此行列式亦称为久期行列式。
休克尔分子轨道法实验报告
休克尔分子轨道法1 目的要求(1) 运用HMO 程序计算若干平面共轭分子的电子结构。
(2) 通过HMO 程序的具体运算,加强对这一基本原理的理解。
(3)培养运用分子轨道概念解决实际问题的能力,熟悉微型计算机和磁盘操作系统。
2 基本原理(1) HMO 方法的基本原理:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。
该方法主要运用了下列基本假定:①σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
②独立π电子近似。
分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
③LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道i ϕ线性组合构成的,即∑=iiki k C ϕψ (1)在上述假定下,可列出π体系单电子Schrodinger 方程kk E H ψψκπ=ˆ (2) 将(1)式代入(2)式,利用变分原理,可得久期方程式:()()()0112121211111=-++-+-n n n C ES H C ES H C ES H ()()()0222222212121=-++-+-n n n C ES H C ES H C ES H………………………………………………………………()()()0222111=-++-+-nnn nn n n n n C ES H C ES H C ES H此方程组有非零解的充分条件1121211111n n ES H ES H ES H --- 02222222211112=------nnnn n n n n n n n ES H ES H ES H ES H ES H ES H此行列式亦称为久期行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ψ2 = 0.602φ1 + 0.372φ2 - 0.372φ3 - 0.602φ4 ψ1 = 0.372φ1 + 0.602φ2 + 0.602φ3 + 0.372φ4
DE
分子图
0.836 0.388
0.836 0.388 0.388 0.836
H2C 0.896 CH0.448 CH 0.896 CH2
1.00 1.00 1.00 1.00
分子图
0.896 0.448
C
C
C
C
1.000 1.000
●HMO法的处理结果,与实验结果比较符合,体现在以下方面:
• 电子的离域可降低体系的能量,丁二烯离域比定域低0.48β。
5.2.1 HMO 法的要点
1. HMO 法的基本内容
分子轨道理论 平面型有机共轭分子,σ 键定域,构成分子骨架,每个 C 余下的 一个垂直与平面的 p 轨道往往以肩并肩的型式形成多原子离域π键。 用 HMO法处理共轭分子结构时,假定: (1)π电子是在核和σ 键所形成的整个骨架中运动,可将σ 键和π 键分开处理; (2)共轭分子的σ 键骨架不变,分子的性质由π电子状态决定; (3)第k个π电子的运动状态用k 描述,其Schrödinger方程为:
5.2 休克尔分子轨道法 (HMO 法)
●HMO 法:1931年,E. Hückel 提出。
为处理有机共轭分子, 经验性的近似方法, 用以预测同系物的性质,解释电子光谱等一系列问题, 定量精确度不高。
1. HMO 法的基本内容 2. HMO 法的具体步骤 3. 实例丁二烯的HMO 法处理 4. 实例环状共轭多烯的HMO 法处理
ZnCl2 200 o C
BrH2C CH C H CH2Br
3.3 直链共轭多烯的简单计算公式
Ej
2
cos( j )
nc 1
j=1,2,3···nc;
j表示分子轨道编号;nc为参加共轭的原子轨道数目
E最高E最低=
2[cos( ) cos( nc )] 4
nc 1
-1.62c1 c2 0 c1 -1.62c2 c3 0 c2 -1.62c3 c4 0 c3 -1.62c4 0
结合归一化条件 c12 c22 c32 c42 1 ,可得相应 4套组合系数,从而
丁二烯 1,3 型分子轨道波函数及能级
分子轨道能级
-2
+2
[C2H4] 2
C3H3+ 2
C4H4 [4]
C5H56
C6H6 6
C7H7+ 6
C8H8 [8]
●当 n=4m+2 时,所有成键轨道中充满电子,反键轨道是空的,构成稳定的 π键体系。具有4m+2 个π电子的单环共轭体系为芳香稳定性的结构。
●当 n=4m 时,除成键轨道充满电子外,它还有一对二重简并的非键轨道, 在每一轨道中有一个π电子,从能量上看是不稳定的构型,不具有芳香性。
0
-1.62
0
0
-1.62
0
c1
0
c2
0
-1.62
cc43
-1.62
1
0
0
1 -1.62
1 0
0 1 -1.62 1
0 c1
0
c2
0
-
1 1.62
cc43
子附近出现的几率: i nk ck2i
k
式中 nk 代表在 k 中的电子数,cki为分子轨道 k 中第i个原子轨道的组
合系数。
•键级Pij :原子 i和 j 间 键的强度: Pij nkckickj
k
•自由价 Fi :第 i个原子剩余成键能力的相对大小:
Fi Fmax Pij
一个 p 轨道 ,按 LCAO,得:
c11 c2 2 cn n ci i
i
(2) 根据线性变分法,由 可得久期方程:
E 0,E 0,… , E 0
c1
c2
cn
H11 ES11 H21 ES21
...
H
n1
ESn1
•丁二烯有顺、反异构体
C(1) C(2)
C(2) C(3)
C(3) C(4)
C(1)
C(4)
说明C(2)和C(3)之间有一定的双键成分,不能自由旋转。
•丁二烯的键长均匀化:
C1 134.4 C2 146.8 C3 134.4 C4
•丁二烯具有 1,4 加成的化学反应性能。
H2C CH CH CH2 + Br2
i
Fmax 是碳原子 键键级和中最大者,其值为 3。
Pij 为原子i与其邻接的原子间键键级之和。 i
•分子图:把共轭分子由HMO法求得的电荷密度i ,键级Pij ,自由价 Fi 都标 在一张分子结构图上。
(6) 根据上述结果讨论分子的性质,并对所得结果加以应用。
3. 实例丁二烯的HMO 法处理
H12 ES12 H22 ES22
... Hn2 ESn2
... H1n ES1n c1
...
H
2n
ES2n
c2
0
...
... ...
...
H nn
ESnn
cn
E 的一元 n 次 代数方程,有n 个解。
(3) 引入基本假设:
H11 H 22 ... H nn
● Frost图与4m+2 Hukel规则(休克尔芳香性)
以2β为半径作圆,作一顶点正对最低点的内接正多边形,则各 顶点的位置为单环共轭多烯 分子轨道对应的能级。
E 2
E
E 2
图5-9 环烯烃 轨道能级图
由图看出:电子数为4m+2时,电子全部填充在成键的型分子轨道 上,且都以自旋反平行成对,体系较稳定,这就是休克尔规则的实质.
D 键键级,自由价Fi
相邻原子间的键级:P12 2 0.372 0.602 2 0.602 0.372 0.896 P23 2 0.602 0.602 2 0.372(0.372) 0.448 P34 2 0.602 0.372 2 (0.372)(0.602) 0.896
平面构型的多环芳烃的 HMO 法处理:
(1) 萘(C10H8)
0.555 0.725
1.000
0.518
0.603
1.000
1.000 0.104 0.452
0.404
萘的分子图
142.1
136.1
141.0 142.1
实验测得萘分子键长数据
▲从自由价看, 位自由价为0.452, 位自由价为0.404,桥C原子自由价 为0.104,说明在桥C原子部位不易加成, 位最容易反应。
0.429
▲薁是极性分子,七元环端显 正电性,五元环端显负电性。 它出现极性的原因是 4m+2 规 则,即七元环中移去一个电子 至五元环,可使两个环同时都 为6 个π电子,满足 4m+2 规则。
▲从键长数据看,键长应和π 键键级成反比,键级高,键长短,理论计算 与实验测定基本一致。
(2)薁 (C10H8)
1.173
0.855
1.047 0.420
1.027 0.401
0.656 0.596 0.586
0.986 0.870
0.454 0.639
0.140 0.664 0.480
0.482
01x1
01x
01x
001x
解得,x 0.62, 1.62 由E x 得
E1 1.62 , E2 0.62 , E3 0.62 , E4 1.62
将各E值代回久期方程,以 E1为例:
-1.62
0
3.1 分子轨道波函数及能级
丁二烯(H2C CH CH CH2)电子的分子轨道为 c11 c22 c33 c44
c1、c2、c3、c4 满足久期方程:
E
0
0
E
0
0
E
0 c1
0
c2
0
E
3.2 结果讨论
A 节点数与能量的关系
节点数
3
E4=
E3= 0
2
=0
1
E2=0
0
E1=
丁二烯离域键分子轨道及能级图
B 能量效应
ψ2 = 0.602φ1 + 0.372φ2 - 0.372φ3 - 0.602φ4 ψ1 = 0.372φ1 + 0.602φ2 + 0.602φ3 + 0.372φ4
cc43
久期方程有非零解,则其系数行列式应为零
x1 00
同除以并令x E , 得久期行列式
1
x
1
0 0
01x1
001x
求解久期行列式的方法很多,如对称性方法,群论方法,代 数余子式展开法等。代数余子式法是通用的方法。
代数余子式法展开