数学少年智力开发报浙教版九上第9期答案
2024-2025学年浙江省温州市龙湾区九年级上学期9月考试数学试题及答案
2024学年第一学期九年级学生学科素养检测 (数学试卷) 2024.09一、选择题(每题3分)1. 下列2024年巴黎奥运会的运动图标中,不是中心对称图形的是( )A .B .C .D .甲、乙、丙、丁四名射击运动员参加射击预选赛,每人射击发子弹.他们射击成绩的平均数及标准差如下表所示:若要选一名成绩较好且发挥稳定的运动员参奏,则应选择( )A. 甲 B .乙C .丙D .丁 5.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()247x +=- B .()249x +=-C .()247x +=D .()242x +=6. 如图,数轴上所表示的不等式组的解集是( )A .1->xB . 21≤<-xC. 21≤≤-x D . 2≤x7.据乘用车市场信息联席会数据显示,我国新能源车发展迅速,2024年4月至6月,新能源车月销量由68.3万辆增加到82.7万辆.设2024年4月至6月新能源车销量的月平均增长率为x ,则列( )A.7.82)213.68=+x ( B .7.82)123.68=+⨯x (C .[]7.82)1()1(13.682=++++x x D .7.82)13.682=+x (8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°.如图,在平面直角坐标系中,OABC的边OC个单位的速度向下平移,经过的值为()C.对角线AC与BD交于点D.4(第8题)(第9题)(第10题)二、填空题(每题3分)15.将正方形纸片ABCD对折,展开得到折痕MN,再次折叠,使顶点D与点M重合,折痕交AD于点E,MN交折痕于点H,已知正方形的边长为4,则MH的长度为.(第13题)(第15题)(第16题)三、解答题(17-21每题8分,22、23每题10分,24题12分)18.解方程:(1) 9)12(2=-x (2)0542=--x x .19.如图,在小正方形网格中,△ABC 的顶点均在格点上,仅用无刻度的直尺在给定网格中完成作图.(1)在图1中,过点B 作AC 的平行线BD ,使得AC =BD ; (2)在图2中,找出格点E ,F ,画出正方形BCEF .20. 如图,在ABC ∆中,D,E 分别是边AB,AC 的中点,延长BC 至点F,使得BC CF 21=,连结CD,DE,EF.(1)求证:四边形CDEF 是平行四边形. (2)若四边形CDEF 的面积为8,求BCD ∆的面积.21.某社区开展了一次爱心捐款活动,为了解捐款情况,社区随机调查了部分群众的捐款金额,并用得到的数据绘制了如下不完整的统计图1和图2.请根据相关信息,解答下列问题:(1)本次被调查的有 人,扇形统计图中m = .(2)本次抽取的群众捐款的众数是 元,中位数是 元,并补全条形统计图(无需注明计算过程);(3)若该社区有2000名群众,根据以上信息,试估计本次活动捐款总金额.22. 如图,一次函数 = 2的图象与反比例函数 =( )的图象交于点 ( 1 ) 和点 ( 1).(1)求反比例函数的解析式;(2)当y >y 时,直接写出 的取值范围. (3)求ABO ∆的面积。
数学金试卷九年级上册答案【含答案】
数学金试卷九年级上册答案【含答案】专业课原理概述部分一、选择题1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?()A. 7厘米B. 23厘米C. 17厘米D. 20厘米2. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少厘米?()A. 36厘米B. 42厘米C. 26厘米D. 46厘米3. 一个数的算术平方根是9,那么这个数是()A. 81B. 18C. 162D. 824. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -2x + 3B. y = x^2C. y = 3/xD. y = 2x 15. 一个正方形的对角线长度是10厘米,那么它的面积是多少平方厘米?()A. 50平方厘米B. 100平方厘米C. 200平方厘米D. 80平方厘米二、判断题6. 任何两个等边三角形的面积一定相等。
()7. 一个数的立方根和它的平方根相等。
()8. 两个负数相乘的结果是正数。
()9. 一元二次方程的解可以是两个相等的实数根。
()10. 在直角坐标系中,点(3, 4)和点(4, 3)的距离相等。
()三、填空题11. 一个等差数列的前三项分别是2,5,8,那么第四项是______。
12. 如果一个数的平方是64,那么这个数是______。
13. 一个圆的半径是5厘米,那么这个圆的面积是______平方厘米。
14. 两个函数y = 2x + 3和y = -0.5x + 7的交点坐标是______。
15. 一个正方体的体积是1000立方厘米,那么它的边长是______厘米。
四、简答题16. 请简述勾股定理的内容。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 请解释等差数列和等比数列的区别。
19. 什么是函数的单调性?如何判断一个函数的单调性?20. 请解释直角坐标系中两点之间的距离公式。
五、应用题21. 一个长方形的长是10厘米,宽是6厘米,求它的面积和周长。
浙教版九年级(上)期末数学试卷(含答案)
浙教版九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.(3分)抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.(3分)下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.(3分)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.54.(3分)在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.(3分)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.29.(3分)已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO=r;④AO:OP:P A=1::.A.①④B.②③C.③④D.①③④10.(3分)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m的值约为.12.(4分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.(4分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.(4分)如图,在▱ABCD中,点E在DC边上,若,则的值为.15.(4分)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.(4分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三、解答题(本题有8小题,共66分)17.(6分)计算:2cos30°+sin45°﹣tan260°.18.(6分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△F AG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.【解答】解:∵抛物线y=4x2﹣3,∴该抛物线的顶点坐标为(0,﹣3),故选:B.2.【解答】解:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选:D.3.【解答】解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.4.【解答】解:如图,在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∴cos B===,故选:C.5.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.【解答】解:函数y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.故选:C.7.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.9.【解答】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△P AD是等腰三角形,∠P AD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△P AO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO==r,③正确;∵AO:OP:P A=r:r:r=1::.∴④正确;说法正确的是③④,故选:C.10.【解答】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=2,∴PC+PE的最小值为2,∴点H的纵坐标a=2,∵BC∥AD,∴=2,∵BD=4,∴PD==,∴点H的横坐标b=,∴a+b=2+=;故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.12.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.13.【解答】解:∵扇形的半径是1,弧长是,∴l==,即=,解得:n=60,∴此扇形所对的圆心角为:60°.故答案为:60.14.【解答】解:∵=,∴=;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴;∵==,∴=.15.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.16.【解答】解:y=ax2﹣2ax+a+3=a(x﹣1)2+3,故抛物线的顶点为:(1,3);如图所示,a<0,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间(不含点B),当抛物线过点A(3,1)时,将点A的坐标代入抛物线表达式并解得:a=﹣;同理当抛物线过点B(4,1)时,a=﹣,故答案为:﹣<a<﹣.三、解答题(本题有8小题,共66分)17.【解答】解:2cos30°+sin45°﹣tan260°=2×+×﹣=+1﹣3=﹣218.【解答】证明:(1)∵AD是∠BAC的平分线,∴∠BAD=∠DAE,∵∠ADE=∠B.∴△ABD∽△ADE;(2)∵△ABD∽△ADE,∴∴AD2=AE•AB.19.【解答】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,∵小明投放了一袋垃圾,∴小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为=.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.21.【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得或,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|P y|=4×AB×,∴|P y||=9,P y=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).22.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.23.【解答】解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.24.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.。
四年级数人教版学少年智力开发报
第一部分:少年智力的重要性1. 智力在少年成长中的重要性2. 智力开发对少年的影响3. 数学在智力开发中的作用少年时期是一个人智力发展的重要阶段,而数学作为一门抽象逻辑学科,在智力开发中起着重要的作用。
本文将从少年智力的重要性、智力开发对少年的影响和数学在智力开发中的作用三个方面探讨数人教版四年级数学课程对少年智力开发的意义。
第二部分:智力在少年成长中的重要性1. 智力对少年成长的影响2. 智力与学业成绩的关系智力在少年成长中扮演着至关重要的角色。
一个人的智力水平决定了他在学习、生活中的表现和成就。
良好的智力水平可以帮助少年更好地适应学习和生活的环境,更容易取得优异的学业成绩。
第三部分:智力开发对少年的影响1. 智力开发对少年认知能力的提高2. 智力开发对少年逻辑思维的培养3. 智力开发对少年学习能力的提升智力开发对少年的影响主要体现在认知能力、逻辑思维和学习能力等方面。
良好的智力开发可以帮助少年更好地理解和掌握知识,提高自己的认知能力和逻辑思维能力,从而更顺利地完成学习任务,取得更好的学习成绩。
第四部分:数学在智力开发中的作用1. 数学培养少年逻辑思维的特点2. 数学锻炼少年分析和解决问题的能力3. 数学帮助少年提高心理素质和自信心数学作为一门抽象逻辑学科,具有培养少年逻辑思维、分析和解决问题的能力的特点。
通过学习数学,可以帮助少年们培养良好的思维习惯和解决问题的能力,提高他们的心理素质和自信心。
第五部分:数人教版四年级数学课程对少年智力开发的意义1. 数人教版四年级数学课程的丰富多彩2. 数人教版四年级数学课程的贴近实际3. 数人教版四年级数学课程的启发思维数人教版四年级数学课程以其丰富多彩、贴近实际、启发思维的特点,有利于帮助少年们进行智力开发。
通过深入学习数学课程,少年们可以在实践中提高解决问题的能力,培养自己的逻辑思维和分析能力,为自己的智力开发打下良好的基础。
结论:数人教版四年级数学课程对少年智力开发的重要性经过上述分析可以得出结论:数人教版四年级数学课程对少年智力开发具有重要意义。
【浙教版】九年级数学上期中试卷附答案
一、选择题1.如图,已知在正方形ABCD 中,AD =4,E ,F 分别是CD ,BC 上的一点,且∠EAF =45°,EC =1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,则以下结论:①DE +BF =EF ,②BF =47,③AF =307,④S △AEF =507中正确的是( )A .①②③B .②③④C .①③④D .①②④ 2.下列命题的逆命题是真命题的是( )A .等边三角形是等腰三角形B .若22ac bc >,则a b >C .成中心对称的两个图形全等D .有两边相等的三角形是等腰三角形3.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 4.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A .3B .23C .13D .155.如图,△ABC 的顶点在网格中,现将△ABC 绕格点O 顺时针旋转α角(0°<α<360°),使旋转后所得三角形的顶点也在格点上,则当旋转前后的图形形成轴对称图形时,符合条件的α角的度有( )A .1个B .3个C .6个D .8个6.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的( )A .12B .14C .16D .18 7.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m的值可以是( )A .1B .0C .1-D .2-8.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b+c >0;②3a+b =0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个9.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x 时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤ 10.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-11.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 12.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 13.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣114.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题15.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 16.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .17.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________18.一元二次方程-+=(5)(2)0x x 的解是______________.19.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____20.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.三、解答题21.如图,在四边形ABCD 中,∠ABC =30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB =3,BC =4,求BD 的长?22.在正方形ABCD 中,点E 是BC 上的一点,连结AE .(1)画出△ABE 绕点A 逆时针旋转90°后的图形(点E 的对应点为F );(2)若AB =3,则四边形AECF 的面积为 .23.已知抛物线 ()21y x m x m =-+-+经过点()23, (1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?24.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值;(2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴. 25.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.26.解方程:2420x x ++=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用全等三角形的性质及勾股定理求出BF 的长,再利用勾股定理求出AF 的长,从而求得GF ,即可求解出△AEF 的面积,最终即可判断出所有选项.【详解】∵将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,∴AG =AE ,∠DAE =∠BAG ,DE =BG ,∵∠EAF =45°,∴∠DAE +∠BAF =45°=∠GAB +∠BAF =∠GAF =45°,∵AG =AE ,∠FAE =∠FAG =45°,AF =AF ,∴△AFE ≌△AFG (SAS ),∴EF =FG ,∵DE =BG ,∴EF =FG =BG +FB =DE +BF ,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=47,∴BF=47,AF7,故②正确,③错误,∴GF=3+47=257,∴S△AEF=S△AGF=12AB×GF=507,故④正确,故选:D.【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.2.D解析:D【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据等腰三角形的性质、不等式的性质、中心对称的性质等进行判断.【详解】A、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误;B、逆命题是:如果a>b,则ac2>bc2,是假命题,故本选项错误;C、逆命题为:全等的两个图形成中心对称,是假命题,故本选项错误;D、逆命题为:等腰三角形是有两边相等的三角形,故本选项正确;故选:D【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,并熟悉课本中的性质定理.3.C解析:C【分析】计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.【详解】解:∵点1P与点O关于点A成中心对称,∴P 1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵20136=335…3, ∴点P 2013的坐标为(0,-2).故选C .【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.4.C解析:C【分析】连接BM.证明△AFE ≌△AMB 得FE=MB ,再运用勾股定理求出BM 的长即可.【详解】连接BM ,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=2222+=+=BC CM3213∴FE=13.故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.5.B解析:B【分析】画出图形,利用图象法解决问题即可.【详解】观察图象可知,满足条件的α的值为90°或180°或270°,故选B.【点睛】本题考查了旋转变换,轴对称的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.6.D解析:D【分析】设正方形B的面积为S,正方形B对角线的交点为O,标注字母并过点O作边的垂线,根据正方形的性质可得OE=OM,∠EOM=90°,再根据同角的余角相等求出∠EOF=∠MON,然后利用“角边角”证明△OEF和△OMN全等,根据全等三角形的面积相等可得阴影部分的面积等于正方形B的面积的14,再求出正方形B的面积=2正方形A的面积,即可得出答案.【详解】解:设正方形B对角线的交点为O,如图1,设正方过点O作边的垂线,则OE=OM,∠EOM=90°,∵∠EOF+∠EON=90°,∠MON+∠EON=90°,∴∠EOF=∠MON,在△OEF和△OMN中EOF MONOE0MOEF OMN90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△OEF≌△OMN(ASA),∴阴影部分的面积=S四边形NOEP+S△OEF=S四边形NOEP+S△OMN=S四边形MOEP=14S正方形CTKW,即图1中阴影部分的面积=正方形B的面积的四分之一,同理图2中阴影部分烦人面积=正方形A的面积的四分之一,∵图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,∴正方形B的面积=正方形A的面积的2倍,∴图2中重叠部分面积是正方形B面积的18,故选D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.7.D解析:D【分析】当k <0时,抛物线对称轴为直线432k x k +=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k +=-2-32k >-2,可确定m 的范围, 【详解】 对称轴:直线433222k x k k+=-=--, 0k <, 3222k∴-->-, x m <时,y 随x 的增大而增大,322m k∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D .【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键. 8.C解析:C【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线顶点坐标为(1,n ),∴抛物线的对称轴为直线x=1,∵与x 轴的一个交点在点(3,0)和(4,0)之间,∴当x=-1时,y >0,即a-b+c >0,故①正确;∵抛物线的对称轴为直线x=1,即-2b a =1, ∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c (a≠0)与直线y=n 有唯一一个交点,即方程ax 2+bx+c=n 有两个相等的实数根,∴△=b 2-4a (c-n )=0,∴b 2=4a (c-n ),故③正确;∵抛物线的开口向下,∴y 最大=n ,∴直线y=n-1与抛物线有两个交点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,故④正确;故选:C .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.B解析:B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可;【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.10.D解析:D【分析】首先观察表格可得二次函数2y ax bx c =++过点(4,3)-与(2,3)-,则可求得此抛物线的对称轴,然后由对称性求得答案.【详解】 解:二次函数2y ax bx c =++过点(4,3)-与(2,3)-,∴此抛物线的对称轴为:直线4(2)32x -+-==-, ∴横坐标为1x =的点的对称点的横坐标为7x =-,∴当1x =时,27y =-.故选:D .【点睛】此题考查了二次函数的对称性,根据表格中的数据找到对称轴是解题的关键. 11.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.12.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 13.C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.14.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题15.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.16.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.17.【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 18.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 19.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 20.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围.【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m >0,解得m <920且m≠0, 故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题21.5【分析】连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=4,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.【详解】解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=4,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,223+4=5,∴BD=5.故答案为:5.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.22.(1)见解析;(2)9【分析】(1)根据旋转的性质即可画出△ABE绕点A逆时针旋转90°后的图形(点E的对应点为F);(2)根据AB=3和旋转的性质可得四边形AECF的面积即为正方形ABCD的面积.【详解】(1)如图,△ADF即为△ABE绕点A逆时针旋转90°后的图形;(2)根据旋转可知:四边形AECF 的面积=正方形ABCD 的面积=AB 2=9.故答案为:9.【点睛】本题考查了作图-旋转变换、正方形的性质、旋转的性质,解决本题的关键是掌握旋转的性质.23.(1)m=3,(1,4);(2)当x >1时,y 随x 的增大而减小.【分析】(1)将已知点的坐标代入函数解析式,建立关于m 的方程,解方程求出m 的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y 随x 的增大而减小时自变量x 的取值范围.【详解】(1)解:由题意得-4+2(m-1)+m=3解之:m=3,∴抛物线的解析式为y=-x 2+2x+3∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4);(2)解:∵a=-1<0,∴当x >1时,y 随x 的增大而减小.【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键.24.(1)94a =;(2)2x = 【分析】(1)由根的判别式进行计算,即可求出答案;(2)先求出k 的值,然后代入计算,即可求出对称轴.【详解】解:(1)抛物线23y x x a =++与x 轴只有一个交点, 0∴∆=,即940a -=, ∴94a =. (2)点()3,0在抛物线()233y x k x k =-++-上, ()203333k k ∴=-⨯++-,9k ∴=,∴抛物线的解析式为:23129y x x =-+-,∴对称轴为:1222(3)x =-=⨯-. 【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,解题的关键是掌握所学的知识,正确的求出参数的值.25.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8,整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.26.12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.。
浙教版数学九年级(上)及参考答案
一、选择题(每小题3分,共30分. 每小题给出的四个选项中, 只有一个是正确的). 1.下列函数中,图象经过点(-2,1)的反比例函数解析式是( ) A .1y x=B .1y x-= C .2y x= D .2y x-=2.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π 3.如图,AB 和CD 都是⊙O 的直径,∠AOC=52°,则∠C 的度数是( ) A .22° B .26° C .38° D .48°4.已知⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,O 1O 2长为3cm ,则⊙O 1和⊙O 2的位置关系是( ) A .内切 B .外切 C .相交 D .内含5.把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h (米)与时间t (秒),满足关系 h =20t -5t 2,当小球达到最高点时,小球的运动时间为( )A .1秒B . 2秒C .4秒D .20秒6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )7.如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( ) A .160° B .130° C .120° D .100°8.如图,已知△ABC ,P 是边AB 上的一点,连结CP ,以下条件中不能..确定△ACP 与△ABC 相似的是( ) A .∠ACP=∠B B .∠APC=∠ACBC .AC 2=AP·ABD .BCAB CPAC =9.如图,在□ABCD 中,AB ∶ AD = 3∶2,∠ADB=60°,那么cos A的值等于( )A.6 B.6233+ C.663+ D.610.若二次函数c bx ax y ++=2的顶点在第一象限,且经过点(0,1)、(-1,0),则Y c b a ++= 的取值范围是( )A .Y >1B .-1<Y <1C .0<Y <2D .1<Y <2 二、填空题(每小题4分,共24分. 结果中保留根号或π)11.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC 于E ,交⊙O 于D .在图中有许多相等的量,例如OA =OB ,请再写出两个等式(用原有字母表示): .12.已知二次函m x x y +--=22的部分图象如图所示,则关于x 的一元二次方程022=+--m x x 的解13.如图,从P 点引⊙O 的两条切线PA 、PB ,A 、B 为切点,已知⊙O 的半径为1,∠P =60°,则图中阴影部分的面积为 .14.如图,小明晚上由路灯A 下的B 处走到C 处时,测得影子CD •的长为1米,从C 处继续往前走2米到达E 处时,测得影子EF 的长为2米,B、C、D、E、F在同一条直线上,已知小明的身高是1.6米,那么路灯A 的高度等于 米.15.如图,在直角坐标系中,已知点P 0的坐标为(1,0),进行如下操作: 将线段OP 0按逆时针方向旋转45 ,再将其长度伸长为OP 0的2倍,得到线段OP 1 ;又将线段OP 1按逆时针方向旋转45 ,长度伸长为OP 1的2倍,得到线段OP 2,如此重复操作下去,得到线段OP 3,OP 4, , 则:(1)点P 5的坐标为 ;(2)落在x 轴正半轴上的点P n 坐标是 ,其中n 满足的条件是 .16.如图,正方形ABCD 的中心为O ,面积为1856cm 2,P 为正方形内的一点,且∠OPB=45 ,连结PA 、PB ,若PA ∶PB=3∶7,则PB= cm.三、解答题(共8个小题,66分,解答题应写出必要的演算步骤或推理过程,凡题目中没有要求取精确值的,结果中应保留根号或π) 17.(6分)求下列各式的值:(1)︒-︒30cos 245sin 2+2)60tan 1(︒- (2)已知32=yx ,求yx y x 22+-的值.18.(6分)如图,陈华同学从学校的东大门A 处沿北偏西54°方向走100m 到达图书馆B 处,再从B 处向正南方向走200m 到达操场旗杆下C 处,计算从旗杆下C 到东大门A 的距离是多少?(精确到0.1)19.(6分)已知在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线, 以AD 为弦作⊙O ,使圆心O 在AB 上.(1)用直尺和圆规在图中作出⊙O (不写作法,保留作图痕迹) ; (2)求证:BC 为⊙O 的切线.20.(8分)如图,已知点A(-4,2)、B( n ,-4)是一次函数b kx y +=的图象与反比例函数xm y =图象的两个交点.(1) 求此反比例函数的解析式和点B 的坐标;(2) 根据图象写出使一次函数的值小于反比例函数值的x 的取值范围.21.(8分)如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90 的扇形BAC .(1)求这个扇形的面积;(2)若将扇形BAC 围成一个圆锥的侧面,这个圆锥的底面直径是多少? 能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.22.(10分)如图,在矩形ABCD 中,AB =4,AD =10.一把三角尺的直角顶点P 在AD 上滑动时(点P 与A 、D 不重合),一直角边始终经过点C ,另一直角边与AB 交于点E .(1)证明△DPC ∽△AEP ;(2)当∠CPD =30°时,求AE 的长; (3)是否存在这样的点P ,使△DPC 的周长等于△AEP 周长的2倍?若存在,求出DP 的长;若不存在,请说明理由.23.(10分)如图,抛物线y =-21x 2+25x -2与x 轴相交于点A 、B ,与y 轴相交于点C .(1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D .若点P 在线段AB 上以每秒1个单位的速度由点A 向点B 运动,同时点Q 在线段CD 上以每秒1.5个单位的速度由点D 向点C 运动,问:经过几秒后,PQ =AC .24.(12分)如图,等边△ABC 的边长为6,BC 在x 轴上,BC 边上的高线AO 在y 轴上,直线l 绕点A 转动(与线段BC 没有交点). 设与AB 、l 、x 轴相切的⊙O 1的半径为1r ,与AC 、l 、x 轴相切的⊙O 2半径为2r . (1)求两圆的半径之和;(2)探索直线l 绕点A 转动到什么位置时两圆的面积之和最小?最小值是多少? (3)若321=-r r ,求经过点O 1、O 2的一次函数解析式.数学参考答案(评分意见)一、选择题(每小题3分,共30分.DCBAB CBDAC二、填空题(每小题4分,共24分)11.答案不唯一,写出正确的一个得2分,两个得4分. 12.3,121-==x x 13.33π- 14.4.815.(1))216,216(--; (2))0,2(n, ),2,1,0(8 ==k k n [2分、1分、1分] 16.282三、解答题(共8个小题,66分) 17. (6分)(1)︒-︒30cos 245sin 2+2)60tan 1(︒-=1-3+3-1=0 --------3分 (2)由已知得y x 32=,代入yx y x 22+- 得8123234=+-y y y y -------------------------3分(以上两题如结论错,过程有部分对可得1分)18. (6分)过A 作AD ⊥BC ,∵∠BAD =90°-54°=36°-------1分∴BD =100sin36°≈58.8 -------1分 AD =100cos36°≈80.9 -------1分 CD =200-58.8=141.2 -------1分∴AC =222.1419.80+≈162.7(m ) -------2分19. (6分)(1)作图有垂直平分线痕迹,圆心是AB 与垂直平分线的交点-----3分 (2)连结OD, ∵AD 是∠CAB 的平分线,∴∠1=∠2=∠3, ∠4=∠2+∠3=∠1+∠2=∠CAB -------1分, ∠C =∠ODB------1分 ∴△BOD ∽△BAC-------1分 ∴OD ⊥BC ,BC 为⊙O 的切线.-------1分20. (8分)(1)反比例函数的解析式为xy 8-=,------2分,点B (2,-4)------2分(2)一次函数的值小于反比例函数值的x 的取值范围是: -4<x <0或x >2(两个解集各2分,共4分 ) 21. (8分)(1)∵∠A 为直角,BC =2,∴扇形半径为2------2分 ∴S 扇=2360)2(902ππ=------2分(2)设围成圆锥的底面半径为r ,则2πr =22π⇒222=r -------2分延长AO 分别交弧BC 和⊙O 于E 、F ,而EF =22- <22 ---------1分∴不能从最大的余料③中剪出一个圆做该圆锥的底面. ------------------1分 22. (10分)(1)在△DPC 、△AEP 中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3 --------1分又∠A =∠D =Rt ∠,------1分, ∴△DPC ∽△AEP ---------1分(2)∵∠2=30°,CD =4,∴PC =8,------1分,PD =34 ------1分,由(1)得:=⇒=⇒=-AE AE CDAP PDAE4341034103-12 ------------2分(3)存在这样的点P ,使△DPC 的周长等于△AEP 周长的2倍, -------1分 ∵相似三角形周长的比等于相似比,设DPAPDC -=104=2,解得DP =8 -------2分23. (10分)(1)A (1,0)、B (4,0)、C (0,-2)、S △ABC =3 -------各1分(共4分)(2)设运动时间t 秒后PQ =AC =5,--------1分, 由CD//x 轴解得D(-2,5)-------1分则由(CQ -OP )2+22=5 得()225 1.5(1)25t t --++= -------2分 解得t 56=或t=2 ---------2分,所以经过56 秒或2秒PQ =AC24. (12分)(1)设切点分别为M 、N 、E 、F 、P 、Q ,由切线定义,可得AM=AP ,AN=AQ ,EB=BP ,FC=CQ ,MN=EF ,∴MN +EF=18,MN=EF ,∴EF=9,∴EB +FC=9-6=3 ∵∠EBP =120°,∴∠E B O 1=60°,∴r 1=3EB , 同理r 2=3CF ,∴r 1+r 2=3(EB+FC )=33解法2:∵∠EBP =120°,∴∠E B O 1=60°,∴EB =PB =133r ,同理CF =CQ =233r ,∴由EF =MN 得:133r +6+233r =(6-133r )+(6-233r ) ∴r 1+r 2=33评分参考:①利用Rt △解得r 与切线关系-----2分;②得出结果r 1+r 2=33-----2分(2)两圆面积之和S =222271114)2[(]r r r πππ+=-+---------------------2分∴当2331=r 时,面积之和最小,这时21r r =,直线l ∥x 轴, --------------1分面积和的最小值为π227 -------------------------------------------------------------1分 (3)由r 1+r 2=33,r 1-r 2=3 解得)32,5(1-O ,)3,4(2O --------2分直线21O O 解析式为931393+-=x y ---------------------------------------------2分。
少年智力开发报-小学数学
乘法
07.6.1
第7期
乘法
07.6.1
第8期
期中测试
07.6.1
第9期
周长
07.7.1
第10期
周长
07.7.1
第11期
除法
07.7.1
第12期
除法
07.7.1
第13期
乘除法的复习
07.8.1
第14期
年、月、日
07.8.1
第15期
可能性
07.8.1
第16期
期末复习
07.8.1
第17期
期末复习
07.9.1
06.6.1
第6期
乘法(42~50页)
06.6.1
第7期
乘法的复习
06.6.1
第8期
图形的变换
06.6.1
第9期
期中测试
06.7.1
第10期
除法
06.7.1
第11期
除法
06.7.1
第12期
乘法和除法的复习
06.7.1
第13期
方向与位置
06.8.1
第14期
生活中的负数
06.8.1
第15期
统计
06.8.1
07.6.1
第8期
方向与位置
07.6.1
第9期
时、分、秒
07.7.1
第10期
乘法口诀(二)
07.7.1
第11期
乘法口诀(二)
07.7.1
第12期
除法
07.7.1
第13期
除法
07.8.1
第14期
乘除法的复习
07.8.1
第15期
统计与猜测
初三数学第二学期教学工作计划5篇
初三数学第二学期教学工作计划5篇写工作计划实际上就是对我们自己工作的一次盘点。
让自己做到清清楚楚、明明白白。
计划是我们走向积极式工作的起点。
这篇关于初三数学第二学期教学工作计划,对于各位来说大有好处,一起看看吧。
初三数学第二学期教学工作计划1 一、课堂教学“活学活用”,想方设法调动学生的思维活动,努力营造人文色彩的教学氛围,不断提高教学的艺术水平。
鉴于课改教材,注重了联系生活实际,注重学生体验数学,注重合作交流的意识,我决定实施有目的预习新课,再让学生根据教材内容,自己设计问题,合作解答,再针对不同的课时内容,设计不同的教学方法,“扬弃”和“继承”相协调,目的是有利于教学,有利于学生掌握知识,有利于培养学生的各种能力。
同时做到“提前3分钟候课”,“下课铃响不拖堂”等教学校长在课堂常规方面提出的各方面要求。
二、教案更新为了更好的促进教学,在数学的教案格式上,进行重点改革,由原来的教学目标,教学重点、难点、关键、教学程序中的复习提问,导入新课。
巩固练习,反馈教学,检测布置作业,板书设计。
更新教学目标为思想目标、能力目标、知识目标、教学重点、难点、关键。
教学程序更改为问题情境引入、探所新知、应用新知、巩固所学、综合运用、探究创新、课堂反馈、作业设计、板书设计。
在教案上,根据学校课改的实际情况,和学生的层次性,教案设计为:基础课教案和综合拔高课教。
适合因地制宜,因材施教的原则,在备课上,体现合作精神和集体主义的团体精神。
按照学校的要求提前一周备课,备学生、备教学内容,做到充分了解学生的认知情况,了解教材内容的层次性,更深的了解《新课程标准》的教学要求,实现教案的创新化。
三、总结教学争取拿出一部分时间品味教学,更新和梳理课堂教学中的不足,希望自己能坚持写教学日志,积极主动的投入课改,探究课标,领悟课改精神,立意创新,改善教学中出现的问题,由教育者向教研型教师转变。
坚持写作,坚持和学生沟通教学,和同行沟通教学方法,改变陈腐的教学观念。
培智数学九年级试卷【含答案】
培智数学九年级试卷【含答案】专业课原理概述部分培智数学九年级试卷一、选择题(每题1分,共5分)1. 若一个正方形的边长为4厘米,那么它的对角线长度是多少厘米?A. 4厘米B. 8厘米C. 4√2厘米D. 2√2厘米2. 下列哪个数是质数?A. 21B. 29C. 35D. 393. 一个等差数列的前三项分别是2, 5, 8,那么第四项是多少?A. 11B. 10C. 9D. 84. 若sinθ = 1/2,且θ是锐角,那么cosθ等于多少?A. 1/2B. √3/2C. √2/2D. 15. 下列哪个图形是正八面体?A. 立方体B. 八角柱C. 八角锥D. 正八面体二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 平方根和立方根都是唯一的。
()3. 在直角三角形中,正弦函数的值总是小于1。
()4. 任何实数都有立方根。
()5. 对角线互相垂直的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 平方根定义:如果一个数x的平方等于a,那么x是a的______。
2. 等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d 表示______。
3. 若一个圆的半径为r,那么它的面积是______。
4. 在直角坐标系中,点(3, 4)到原点的距离是______。
5. 若sinA = 3/5,且A是锐角,那么cosA = ______。
四、简答题(每题2分,共10分)1. 解释等差数列和等比数列的区别。
2. 什么是算术平方根?如何计算一个数的算术平方根?3. 简述勾股定理的内容。
4. 什么是锐角三角函数?举例说明。
5. 解释正多面体的概念,并给出一个例子。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2, 5, 8,求这个数列的第10项。
2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的对角线长度。
3. 若sinA = 4/5,且A是锐角,求cosA和tanA的值。
浙教版九年级上册数学期中考试试卷含答案
浙教版九年级上册数学期中考试试题一、单选题1.把一枚均匀的骰子抛掷一次,朝上面的点数为3的概率是()A .0B .13C .16D .12.将抛物线y =3x 2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A .y =3(x ﹣2)2﹣5B .y =3(x ﹣2)2+5C .y =3(x+2)2﹣5D .3(x+2)2+53.已知⊙O 半径为6,圆心O 在坐标原点上,点P 的坐标为(3,4),则点P 与⊙O 的位置关系是()A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定4.若58a b=,则b a a-等于()A .35B .53C .85D .585.下列关于正多边形的叙述,正确的是()A .正九边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720°C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形6.若点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,则()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 3<y 1<y 27.CD 是圆O 的直径,弦AB ⊥CD 于点E ,若OE=3,AE=4,则下列说法正确的是()A .AC 的长为B .CE 的长为3C .CD 的长为12D .AD 的长为108.小凯在画一个开口向上的二次函数图象时,列出如下表格:x …-1012…y…1211…发现有一对对应值计算有误,则错误的那一对对应值所对的坐标是()A .(-1,1)B .(0,2)C .(1,1)D .(2,1)9.如图所示,以AD 为直径的半圆O 经过Rt ABC △的斜边AB 的两个端点,交直角边AC于点E ,点B 、E 是半圆弧的三等分点, BE的长为2π3,则图中阴影部分的面积为()A .π9B .9C .2π23-D .3π22-10.已知二次函数y =2mx 2+(4﹣m )x ,它的图象可能是()A .B .C .D .二、填空题11.从标有1到20号的卡片中任意抽取一张,记事件“抽到2的倍数”发生的可能性为P (A),事件“抽到5的倍数”发生的可能性为P(B),事件“抽到13的倍数"发生的可能性为P(C),请用“>”连接P(A),P(B),P(C)为_______.12.线段2cm AB =,点P 为线段AB 的黄金分割点(AP BP >),则AP 的长为______cm .13.如图,在⊙O 中,弦BC 垂直于半径OA ,点D 是优弧BC 上儿一点,连结BD ,AD ,OC ,∠ADB =30°,若弦BC =,则图中弦BC 所对的弧长是___cm .14.如图抛物线y =ax 2+bx+c 的对称轴是x =﹣1,与x 轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为_____.15.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.16.已知二次函数y=x2﹣2(m﹣1)x+2m2﹣m﹣2(m为常数),若对一切实数m,k均有y≥k,则k的取值范围为___.三、解答题17.如图,直线l1∥l2∥l3,若AB=6,BC=10,EF=9,求DE的长.18.在平面直角坐标系中,函数y=a(x+1)(x﹣3)(a≠0)的图象经过点(2,3).(1)求a的值;(2)求该函数图象的顶点坐标和对称轴;(3)自变量x在什么范围内时,y随x的增大而增大?19.有一个圆形转盘,分黑色、白色两个区域.(1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:实验次数n(次)10100200050001000050000100000白色区域次数m(次)334680160034051650033000落在白色区域频率mn0.30.340.340.320.340.330.33请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________.(精确到0.01);(2)若该圆形转盘白色扇形的圆心角为120度,黑色扇形的圆心角为240︒,转动转盘两次,求指针一次落在白色区域,另一次落在黑色区域的概率.20.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.21.如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E ,D ,连结ED ,BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =12,AB =10,求BE 的长.22.在平面直角坐标系中,函数2y x bx c =-++图象过点(,0)A m ,(3,0)B m +(1)当1m =时,求该函数的表达式(2)证明该函数的图像必过点(m+1,2)(3)求该函数的最大值23.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+1125 x.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.已知,如图,⊙O中两条弦AB、CD相交于点E,且AB=CD.(1)求证: AC= BD;(2)若∠AEC=100°,求∠A的度数;(3)过点B作BH⊥AD于点H,交CD于点G,若AE=2BE,求证:EG=GD.参考答案1.C【解析】【分析】根据概率公式直接求解即可.【详解】解:∵任意抛掷一次骰子共有6种等可能的结果,其中朝上面的点数为3的只有1种,∴朝上面的点数恰为3的概率是1 6,故选:C.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.2.B【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式为:()2325y x=-+,故选B【点睛】本题考查了二次函数图象的平移,解题的关键是掌握平移的规律:左加右减,上加下减.3.A【解析】【分析】本题应先由勾股定理求得点P到圆心O的距离,再根据点P与圆心的距离与半径的大小关系,来判断出点P与⊙O的位置关系.当d>r时,点在圆外;当d=r时,点在圆上;当d <r时,点在圆内.【详解】点P的坐标为(3,4),5OP∴=56<∴点P在⊙O内故选A【点睛】本题考查了点与圆的位置关系:①点P 在⊙O 上;②点P 在⊙O 内;③点P 在⊙O 外,求得点到圆心的距离是解题的关键.4.A 【解析】【分析】由题意易得58ba =,进而代入求解即可.【详解】解:58a b = ,∴58b a =,∴原式=538558bb b -=;故选A .【点睛】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.5.C 【解析】【分析】根据正多边形、轴对称、中心对称的性质分析,即可判断选项A ;根据多边形外角和的性质,即可判断选项B ;根据正多边形与圆的性质分析,即可判断选项C ;根据正多边形和外角的性质分析,即可判断选项D ,从而得到答案.【详解】正九边形是轴对称图形,不是中心对称图形,故选项A 不正确;任何多边形的外角和都为360°,故选项B 不正确;任何正多边形都有一个外接圆,故选项C 正确;等边三角形的每个外角都是对应每个内角两倍,故选项D 不正确;故选:C .【点睛】本题考查了正多边形、轴对称、中心对称、正多边形与圆、外角的知识;解题的关键是熟练掌握正多边形、轴对称、中心对称、正多边形与圆、外角的性质,从而完成求解.6.B 【解析】【分析】把横坐标代入解析式,求出纵坐标,比较大小即可.【详解】解:∵点A (﹣4,y 1),B (﹣1,y 2),C (1,y 3)都是二次函数y =x 2+4x +k 的图象上的点,把横坐标代入解析式得,21(4)4(4)y k k =-+⨯-+=,22(1)4(1)3y k k =-+⨯-+=-,231415y k k =+⨯+=+,所以y 2<y 1<y 3,故选:B .【点睛】本题考查了二次函数比较函数值大小,解题关键是把横坐标代入解析式求出函数值,直接比较大小.7.A 【解析】【分析】连接AO ,分别在Rt △AOE 中,Rt △ACE 中,Rt △ADE 中,根据勾股定理即可求得相应线段的长度,依此判断即可.【详解】解:连接AO ,∵AB ⊥CD 于点E ,OE=3,AE=4,∴在Rt △AOE 中,根据勾股定理5AO ===,∵CD 为圆O 的直径,∴OC=OD=OA=5,∴CD=10,CE=OC-OE=2,故B 选项和C 选项错误;在Rt △ACE 中,根据勾股定理AC==A选项正确;在Rt△ADE中,根据勾股定理AD===,故D选项错误;故选:A.【点睛】本题考查勾股定理,同圆半径相等.正确作出辅助线,构造直角三角形是解题关键.注意圆中半径相等这一隐含条件.8.A【解析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y值发现y=1时x有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线03 2x=,根据二次函数的增减性,当开口向上时,在对称轴的左边,y随x的增大而减小,所以1x=-时,y一定是大于1的,故选A.9.C【解析】连接BD、BE、BO、EO,由三等分点定义求出∠EOA=∠EOB=∠BOD=60°,根据 BE的长为2π3,求出R=2,分别求出AB、BC,勾股定理求出AC,得到△ABC的面积,由△BOE和△ABE 同底等高,得到图中阴影部分的面积为ABC BOE S S - 扇形,代入数值计算可得.【详解】解:连接BD 、BE 、BO 、EO ,∵点B 、E 是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠EAB=∠BAD=∠EBA=30°,∴BE AD ∥,∵ BE的长为2π3,∴6021803R ππ⨯=,解得R=2,∴cos30AB AD =⋅︒=,∴12BC AB ==∴AC ==3,∴113222ABC S BC AC =⨯⨯==,∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为233602332236023ABC BOE S S ππ⨯-=-=- 扇形,故选:C .【点睛】此题考查了圆的三等分点的定义,弧长公式,扇形面积公式,直角三角形30度角的性质,勾股定理,根据余弦定理求边长,熟记各知识点并熟练应用是解题的关键.10.B 【解析】【分析】利用排除法,抛物线过原点,判定A 不正确,再分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可.【详解】解:∵()224y mx m x =+-,∴抛物线一定经过原点,∴选项A 排除;∵()224y mx m x =+-,∴对称轴为直线x=44224m m m m ---=⨯,∵44m m --14=44m m m--=1m -,当m >0时,抛物线开口向上,1m -<0,∴对称轴在直线x=14的左边,B 选项的图像符合;C 选项的图像不符合;当m <0时,抛物线开口向下,1m ->0,∴对称轴在直线x=14的右边,D 选项的图像不符合;故选B .【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.11.P(A)>P(B)>P(C)【解析】【分析】事件共发生20次,分别找到“2的倍数,5的倍数,13的倍数”发生的次数,即可得到P(A),P(B),P(C)的值,再进行比较即可.【详解】事件共发生20次,其中“抽到2的倍数”的有10次,∴P(A)=101202=,∵“抽到5的倍数”的有5、10、15、20共4次,∴P(B)=41205=,∵“抽到13的倍数"的有13、26共2次,∴P(C)=212010=,∴P(A)>P(B)>P(C),故填:P(A)>P(B)>P(C).【点睛】此题考查求事件发生的概率,需确定事件发生的总次数及所求事件的次数,再求该事件发生的概率.12.1)【解析】【分析】根据黄金分割的定义得到AP AB =,把2AB cm =代入计算即可.【详解】解: 线段2AB cm =,点P 是线段AB 的黄金分割点()AP BP >,21)AP cm cm ∴===,故答案为:1).【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.13.163π【解析】【分析】连接OB ,根据垂径定理得到»»AB AC =,得到∠AOC=∠AOB ,根据圆周角定理解答;根据垂径定理求出BE ,根据正弦的定义求出OB ,根据弧长公式计算,得到答案.【详解】解:连接OB ,∵OA ⊥BC ,∴»»AB AC =,∴∠AOC=∠AOB ,由圆周角定理得,∠AOB=2∠ADB=60°,∴∠AOC=∠AOB=60°;∵OA ⊥BC ,∴BE=12BC=43cm ,在Rt △BOE 中,∠AOB=60°,∴8()sin 60BE OB cm ︒==,∴劣弧BC 的长=1208()180163cm ππ⨯=,故答案为:163π【点睛】本题考查的是弧长的计算、垂径定理,掌握垂径定理和弧长公式是解题的关键.14.﹣5<x <3【解析】【分析】先根据抛物线的对称性得到A 点坐标(3,0),由y =ax 2+bx+c >0得函数值为正数,即抛物线在x 轴上方,然后找出对应的自变量的取值范围即可得到不等式ax 2+bx+c >0的解集.【详解】解:根据图示知,抛物线y =ax 2+bx+c 图象的对称轴是x =﹣1,与x 轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y =ax 2+bx+c 图象与x 轴的两个交点关于直线x =﹣1对称,即抛物线y =ax 2+bx+c 图象与x 轴的另一个交点与(﹣5,0)关于直线x =﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为﹣5<x<3.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.15.15【解析】【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=1801807055 22D-Ð-==,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【点睛】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.16.k≤-13 4【解析】【分析】求出函数的最小值的取值范围即m2+m-3=(m+12)2-134≥-134,由已知可知对于一切实数m和k均有y≥k,即k≤w.【详解】解:y=x2-2(m-1)x+2m2-m-2=(x-m+1)2+m2+m-3,当x=m-1时,y有最小值m2+m-3,令w=m2+m-3=(m+12)2-134≥-134,∵对于一切实数m和k均有y≥k,即k≤w,(只要不大于原函数的最小值即可)∵w≥-13 4,∴k≤-13 4,故答案为k≤-13 4.【点睛】本题考查了二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.17.275 DE=【解析】【分析】由平行线分线段成比例定理得出比例式,即可得出DE的长.【详解】解:∵直线l1∥l2∥l3,∴AB DE BC EF=,而AB=6,BC=10,EF=9,∴6109DE=,解得:275 DE=.【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,并能进行推理计算是解决问题的关键.18.(1)1a =-;(2)对称轴为直线1x =,顶点坐标为(1,4);(3)当1x <时,y 随x 的增大而增大【解析】【分析】(1)将点代入函数表达式,即可求得答案;(2)将二次函数的解析式化成顶点式,即可知道答案;(3)根据抛物线开口方向和对称轴即可分析得到答案.【详解】解:(1)∵函数(1)(3y a x x =+-)的图象经过点()2,3∴将点()2,3代入(1)(3y a x x =+-)中,得(21)(23)3a +-=解得:1a =-(2)∵22(1)(3)23(1)4y x x x x x =-+-=-++=--+∴对称轴为直线1x =,顶点坐标为(1,4)(3)∵10a =-<∴抛物线开口向下又∵对称轴为直线1x =∴当1x <时,y 随x 的增大而增大【点睛】本题考查抛物线的性质,根据表达式求抛物线的顶点坐标和对称轴等知识点,灵活转化抛物线的三种表达式是解题关键.19.(1)0.33;(2)49.【解析】【分析】(1)根据实验得到的数据,可以求这几次实验概率的平均值,即可估算出来;(2)根据红白所对应的圆心角度数,可以知道红白分别所占圆心角的比例,并按照比例划分,列举出所有情况,根据概率=所求情况数与总情况数之比,即可求解.【详解】(1)根据7次实验的结果,落在白色区域的概率分别是0.3、0.34、0.34、0.32、0.34、0.33、0.33,所以这几次实验的平均数是(0.3+0.34+0.34+0.32+0.34+0.33+0.33)÷7≈0.33,故转动该转盘指针落在白色区域的概率为0.33.(2) 白色扇形的圆心角为120°,占一个圆的三分之一,黑色扇形的圆心角为240︒,占一个圆的三分之二,因此,把一个圆平均分成三份;从列表可知:共有9种等可能的结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种,分别为:(白,黑1),(白,黑2),(黑1,白),(黑2,白).P ∴(一白一黑)49=.答:指针一次落在白色区域,另一次落在黑色区域的概率为49.【点睛】本题主要考查列表法求解概率的方法,列表法可不重复不遗漏的列出所有可能的结果,列表法适合两步完成的事件,而树状图法适合两步或者两步以上完成的事件,掌握:概率=所求情况数与总情况数之比是解第二问的关键.20.(1)11m 6;(2)22米;(3)不会【解析】【分析】(1)求雕塑高OA ,直接令0x =,代入()21566y x =--+求解可得;(2)可先求出OD 的距离,再根据对称性求CD 的长;(3)利用()21566y x =--+,计算出10x =的函数值y ,再与EF 的长进行比较可得结论.【详解】解:(1)由题意得,A 点在图象上.当0x =时,21(05 )66y =--+2511666=-+=11(m)6OA ∴=.(2)由题意得,D 点在图象上.令0y =,得21(5)606x --+=.解得:1211,1x x ==-(不合题意,舍去).11OD ∴=222(m)CD OD ∴==(3)当10x =时,21(105)66y =--+,25116 1.866=-+=>,∴不会碰到水柱.【点睛】本题考查了二次函数的图像与性质及图像关于y 轴对称问题,解题的关键是:掌握二次函数的图像与性质.21.(1)DE BD =,理由见解析;(2)9.6【解析】【分析】(1)根据直径所对的圆周角是直角,可得AD BC ⊥,由AB AC =根据三线合一可得CAD BAD ∠=∠,圆周角和弧之间的关系可得 EDBD =,进而可得DE BD =;(2)根据直径所对的圆周角是直角,可得90AEB ADB ∠=∠=︒,勾股定理求得AD ,进而分别以,AC BC 为底,,AD BE 为高,根据三角形的面积公式计算即可求得BE 的长【详解】(1)DE BD =,理由如下,AB 为⊙O 的直径,AD BC∴⊥ AB =AC ,CAD BAD∴∠=∠ EDBD =DE BD∴=(2) AB 为⊙O 的直径,∴90AEB ADB ∠=∠=︒BC =12,AB =10,,AD BC AC AB⊥= 162BD BC ∴==在Rt ABD △中,8AD ===10AB AC == 1122AC BE BC AD ∴⋅⋅=⋅⋅1289.610BC AD BE AC ⋅⨯∴===【点睛】本题考查了直径所对的圆周角是直角,等腰三角形的性质,用三线合一的性质得出圆周角相等是解题的关键.22.(1)254y x x =-+-;(2)见解析;(3)94【解析】【分析】(1)由已知可得AB 两点坐标,根据待定系数法将点坐标代入解析式中求出bc 即可;(2)由AB 两点坐标可得函数的交点式,再将1x m =+代入可得2y =,即可证明;(3)根据二次函数的顶点坐标公式求出该函数的最大值.【详解】解:(1)把1m =代入得:A (1,0)、B (4,0)∴2210440b c b c ⎧-++=⎨-++=⎩,解得54b c =⎧⎨=-⎩,故函数表达式为254y x x =-+-,(2)由题意得()(3)y x m x m =----,把1x m =+代入得:(1)(13)2y m m m m =-+-+--=,∴该函数的图像必过点(m+1,2);(3)由(2)知2()(3)(23)(3)y x m x m x m x m m =----=-++-+,当2322b m x a +=-=时,函数最大值为:23239()(3)224m m y m m ++=----=.【点睛】本题考查待了定系数法求二次函数解析式;二次函数图象上点的特征.熟练掌握二次函数的性质是解决本题的关键.23.(1)销售量p件与销售的天数x的函数表达式为p=﹣2x+120;(2)当1≤x<25时,y=﹣2x2+80x+2400,当25≤x≤50时,y=135000x﹣2250;(3)这50天中第20天时该超市获得利润最大,最大利润为3200元.【解析】【详解】(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解:(1)p=120-2x(2)y=p·(q-40)=22802400(125) 1350002250(2550)x x xxx⎧-++<⎪⎨-⎪⎩(3)当1≤x<25时,y=-2(x-20)2+3200,∴x=20时,y的最大值为3200元;当25≤x≤50时,y=135000x-2250,∴x=25时,y的最大值为3150元,∵3150<3200,∴该超市第20天获得最大利润为3200元.【点睛】本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(1)见解析;(2)50°;(3)见解析【解析】【分析】(1)圆心角、弧、弦的关系即可证明结论;(2)结合(1)根据三角形的外角定义即可求得结果;(3)根据题意画出图形,结合(1)根据直角三角形两个锐角互余,即可证明结论.【详解】解:(1)∵AB=CD ,∴ AB CD =,∴ AB BC CD BC -=-,即 AC BD =;(2)∵ AC BD =,∴∠D=∠A ,∵∠AEC =100°,∴1502A AEC ∠=∠=︒;(3)如图,∵∠D=∠A ,∴AE=DE ,∵AE =2BE ,∴DE=2BE ,∵BH ⊥AD ,∴∠AHB=90°,∴∠A+∠ABH=90°,∠D+∠DGH=90°,∵∠D=∠A ,∴∠ABH=∠DGH ,∵∠DGH=∠BGE ,∴∠ABH=∠BGE ,∴BE=EG ,∴DE=2EG ,∵DE=EG+GD ,∴EG=GD.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,解决本题的关键是综合掌握圆心角、弧、弦的关系.。
九上数学作业本答案浙教版
九上数学作业本答案浙教版
导语:初三数学复习课牵扯到一个系统化、完善化的关键环节,这个环节既关系到学生巩固、消化、归纳数学基础知识,提炼分析、解决问题的水平,又关系到学生对所学知识的实际使用,更是对学习基础较差的学生起到查漏补缺的作用。
以下是###整理的九上数学作业本答案浙教版,仅供大家参考。
1、S=1/16C²
2、B
3、(1)开口向上,顶点坐标是(2,-7),对称轴是直线x=2
(2)开口向下,顶点坐标是(1,-1),对称轴是直线x=1
4、(1)y=½x²-2x-1,即y=½(x-2)²-3.图象略
(2)y=-5/2
(3)当x≥2时,y随x的增大而增大;当x≤2时,y随x的增大而减小
5、y=x²-x-2
6、有解,x1≈5.2,x2≈0.8
7、D
得m=-4,则y=-6x²-4x=-6(x+1/3)²+2/3,该抛物线能够由抛物线y=-6x²先向左平移1/3个单位,再向上平移2/3个单位得到
9、(1)y=-1/90(x-60)²+60
(2)由-1/90(x-60)²+60=0,解得x-60+300,
∴m-2。
《少年智力开发报》数学四年级2021~2022学年第二学期期
《少年智力开发报》数学四年级2021~2022学年第二学期一、填空。
(第二题2分,其余每空1分,共20分)1、用0—9这十个数字组成最小的十位数是(),四舍五入到万位,记作()万。
2、北京时间2008年9月25日至28日,中国成功实施了神舟七号载人航天飞行。
17时30分:航天员出征仪式;21时10分:神舟七号飞船升空。
航天员出征仪式到神舟七号飞船升空共用了()时()分,合()时。
3、地球上海洋的面积大约是三亿六千一百万平方千米,写作()平方千米,省略亿后面的尾数约是()亿平方千米。
4、线上的A点用分数表示是(),再添上()个它的分数单位是最小的质数。
把这个分数改写成百分数是()。
5、要把502.4升水倒入一个底面半径是4分米的圆柱体水箱内,这时箱内水深()分米。
6、将一个底面积为6平方分米高为12分米的圆柱体木料削成一个最大的圆锥,削去部分的体积是(),削成的圆锥体的体积是()。
7、文具店新进魔笔a枝,每枝卖2、5元,已经卖出b枝。
用式子表示剩下的'魔笔能卖的钱数是()。
如果a=100,b=20, 剩下的魔笔能卖的钱数是()元。
8、在比例尺1:4500000的地图上,量得嘉兴和上海两地的距离为2厘米,嘉兴和上海的实际距离约为()千米。
9、大、小两个圆的半径分别是5厘米和3厘米,大小两个圆的周长的比是(),面积的比是()。
10、汽车站的1路车20分钟发一次车,5路车15分钟发一次车,车站在80同时发车后,再遇到同时发车至少再过()。
二、判断。
(正确的打上√,错误的打上×)(共5分)1、长方形有四条对称轴。
()2、一个角是40度的等腰三角形一定是钝角三角形。
()3、乘积是1的两个数一定互为倒数。
()4、中国北京获得2008年奥运会主办权,这一年有366天。
()5、王师傅生产102个零件,100个合格,合格率是102%。
()三、选择。
(共5分)1、15分解质因数是()。
A、15×15B、15=3×5C、3×5=152、某班男、女生人数的比是5:3,女生占男生的()。
少年智力开发报-小学数学
少年智力开发报-小学数学北师大新课标版二年级2007~2008上学期二三版编辑计划期数三版北师大内容截稿日期第1期数一数与乘法07.4.1第2期乘法口诀(一)07.5.1第3期乘法口诀(一)07.5.1第4期观察物体07.5.1第5期分一分与除法07.6.1第6期分一分与除法07.6.1第7期期中测试07.6.1第8期方向与位置07.6.1第9期时、分、秒07.7.1第10期乘法口诀(二)07.7.1第11期乘法口诀(二)07.7.1第12期除法07.7.1第13期除法07.8.1第14期乘除法的复习07.8.1第15期统计与猜测07.8.1第16期期末复习07.8.1第17期期末复习07.9.1第18期期末测试07.9.1第19期寒假乐园07.9.1第20期寒假乐园07.9.1北师大新课标版三年级2007~2008上学期二三版编辑计划期数三版北师大内容截稿日期第1期乘除法07.4.1第2期乘除法07.5.1 第3期观察物体07.5.1 第4期千克、克、吨07.5.1 第5期千克、克、吨07.6.1 第6期乘法07.6.1 第7期乘法07.6.1 第8期期中测试07.6.1 第9期周长07.7.1 第10期周长07.7.1 第11期除法07.7.1 第12期除法07.7.1 第13期乘除法的复习07.8.1 第14期年、月、日07.8.1 第15期可能性07.8.1 第16期期末复习07.8.1 第17期期末复习07.9.1 第18期期末测试07.9.1 第19期寒假乐园07.9.1 第20期寒假乐园07.9.1 北师大新课标版四年级2007-2008上学期二三版编辑计划期数三版北师大内容截稿日期第1期认识更大的数06.4.1第2期认识更大的数06.5.1第3期线与角06.5.1第4期线与角06.5.1第5期乘法(33~41页)06.6.1第6期乘法(42~50页)06.6.1第7期乘法的复习06.6.1 第8期图形的变换06.6.1 第9期期中测试06.7.1 第10期除法06.7.1 第11期除法06.7.1 第12期乘法和除法的复习06.7.1 第13期方向与位置06.8.1 第14期生活中的负数06.8.1 第15期统计06.8.1 第16期期末复习06.8.1 第17期期末复习06.9.1 第18期期末测试06.9.1 第19期寒假乐园06.9.1 第20期寒假乐园06.9.1。