沥青混合料碎石集料级配图
沥青混合料目标配合比设计(SMA-13).
沥青SMA 混合料配合比设计(SMA-13)一、基本情况杭浦高速公路,拟采用改性沥青SMA-13作为面层。
原材料产地如下:二、设计依据1.《公路沥青路面施工技术规范》(JTG F40-2004) 2.《公路工程集料试验规程》(JTG E42-2005)3.《公路工程沥青及沥青混合料试验规程》(JTJ052-2000) 4.《高速公路沥青路面规范化施工与质量管理指导意见》 5.《杭浦高速公路道路养护工程招标文件》 三、设计过程 1、原材料本次室内目标配合比设计所用集料产地为湖州西园坞(辉绿岩)和闲林(石灰岩),沥青采用韩国SK 生产的SBS-改性沥青,外加剂为木质素纤维,密度为0.6g/cm 3表1 集料及沥青密度试验结果,掺量比例为沥青混合料总质量的0.3%,试验所用原材料均由委托方提供。
各档集料、矿粉及SBS 改性沥青的密度试验结果见表1。
各档集料及矿粉的筛分结果见表2。
表2 各种矿料的筛分结果2、混合料级配根据委托要求,SMA-13型沥青混合料工程设计级配范围见表3。
表3 SMA-13沥青混合料工程设计级配范围3、矿料配合比设计计算根据各档集料的筛分结果,结合混合料级配要求,首先调试选出粗、中、细三个级配,根据工程经验确定三个级配的初始油石比为6.2%,然后用初始油石比成型试件。
表4为三种级配的设计组成结果,表5为初试级配的体积分析结果。
表4 三种级配的设计组成结果)的质量百分率(%)1.18 0.6 0.3 0.15 0.075表5 初试级配的沥青混合料性能指标分析结果根据各组级配体积指标结果分析,结合以往工程经验选择级配3为设计级配,级配曲线见图1所示。
0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 13.2 161.000 1.5002.000 2.5003.000筛孔尺寸(mm)图1 SMA-13设计级配曲线图4、马歇尔稳定度试验按设计的矿料比例配料,采用三种油石比,进行马歇尔稳定度试验,试验结果见表6,设计级配合成毛体积相对密度2.705,级配合成表观相对密度2.751。
1-1沥青玛蹄脂碎石混合料路面(SMA)
木质素纤维要求
项目
单位 指标
纤维长度,不 mm 大于
灰分含量
%
PH值
-
6
18±5 7.5±1.0
吸油率,不小 于
含水率,不大 % 于
纤维质量的5倍 5
路用木质素纤维
颗粒状
(3)矿物纤维
在矿物纤维中,最早使用的是石棉纤维, 北京市公路局在修建首都机场高速公路、 八达岭高速公路和东西长安街时,由于缺 乏合适的纤维,一直使用国产的石棉纤维。 据了解,国外一开始也曾使用过石棉纤维, 现在已经很少使用了,一些工业发达国家 已经禁止使用石棉纤维。为了环保及保护 人体健康,将来,石棉纤维终将为其他纤 维所代替。
集料一般不用天然砂,宜采用坚硬的人工砂; 矿粉必须是磨细石灰石粉,最好不使用回收粉 尘。
(6)SMA的施工与普通沥青混凝土相比,拌和 时间要适当延长,施工温度要提高,压实不宜 采用轮胎碾。
综合SMA的特点,可以归纳为三多一少:粗 集料多、矿粉多、沥青结合料多、细集料少, 掺纤维增强剂,材料要求同,使用性能全面提 高。
比例和排列的不同,可以有两种类型: ⑴一种是根据连续级配的原理组成的密
级配沥青混合料,矿料级配基本上是按照富 勒曲线的指数原理构成的,即0.45次方的规 律。
我国的AC 型密级配沥青混凝土基本上符合此 规律,这种级配的混合料属于悬浮式密实结 构。
悬浮式密实沥青混合料的结构源于粗细集 料之间的嵌挤(内摩擦力)和沥青矿粉结合料的 粘结力的支撑。
(2) 另一种是基本上依靠集料嵌挤作用的混合 料,我国以前常用的贯入式沥青碎石、沥青表 面处治,以及拌和式沥青碎石混合料都属于此 类型。这种混合料实际上是一种骨架空隙结构。
SMA则是一种全新意义上的沥青混合料,它 是由沥青玛蹄脂填充碎石骨架组成的骨架嵌挤 型密实结构混合料.接近于我国的沥青碎石混 合料的空隙中用丰富的沥青玛蹄脂填充的情况。 顾名思义,SMA的组成有以下特点。
沥青混合料的一些基本概念
2、沥青混合料的表观密度
单位体积(含混合料实体体积与不吸收水分的内 部闭口孔隙之和)压实沥青混合料的干质量,又称 视密度,由水中重法测定(仅适用于几乎不吸水的 密实试件)。
3、沥青混合料的毛体积密度
单位体积(含混合料的实体矿物成分及不吸收水分的 闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线 所包围的全部毛体积)压实沥青混合料的干质量,由 表干法、蜡封法或体积法测定。 4、沥青混合料试件的沥青体积百分率 压实沥青混合料试件内沥青部分的体积占试件总体积 的百分率,以VA表示。 5、沥青混合料试件的空隙率 沥青混合料内矿料及沥青以外的空隙(不包括矿料自 身内部已被沥青封闭的孔隙)的体积占试件总体积的 百分率,以VV表示。
半开级 配
沥青 稳定 碎石 —
公称 最大 粒径 (mm )
最大 粒径 (mm )
37.5
53.0
—
ATB-30
—
ATPB-30
—
31.5
37.5
粗粒式
AC-25 AC-20 ATB-25 — — — — — 3~6 — SMA-20 SMA-16 SMA-13 SMA-10 — 3~4 — ATPB-25 — — — — — >18 — AM-20 AM-16 AM-13 AM-10 AM-5 6~12 26.5 19.0 16.0 13.2 9.5 4.75 — 31.5 26.5 19.0 16.0 13.2 9.5 —
VMA VV VA
(a) (b)
f VMA 1 P s 100 sb
(3)新规范的计算公式-即Superpave的计算公式(b)
19
3、沥青饱和度(VFA) (1)定义:按照试验规程定义总有
沥青混合料配合比设计
生产配合比设计时(生产配合比如何取料),取样
至少应在干拌5次以后进行。
▪ (三)矿料配比设计
▪
矿料配合比设计建议借助电子计算机的电子表
格用试配法进行。
▪ 对主干道、高速公路和一级公路,宜在工程设 计级配范围内计算1~3组粗细不同的配比,绘制设 计级配曲线,分别位于工程设计级配范围的上方、 中值及下方。设计合成级配不得有太多的锯齿形交 错,且在0.3mm~0.6mm 范围内不出现“驼峰”。 当反复调整不能满意时,宜更换材料设计。
饱 和 度
(%)
(%)
规范要 求
70~85%
油石比 a4无法确定
(2)确定最佳沥青用量OAC1
①从上述图上找出毛体积密度最大值对应沥青用量 a1、稳定度最大值对应沥青用量a2、
目标空隙率(或中值)对应沥青用量a3、沥青 饱和度范围内的中值对应沥青用量a4
a1=5.9%; a2=5.28%; a3=5.32%; a4无法确定 (2)计算OAC1=( a1 +a2+ a3+ a4 )/4
交通多的路段,宜选用粗型密级配沥青混合料
(AC—C型),并取较高的设计空隙率。对冬季温
度低、且低温持续时间长的地区,或者重载交通
较少的路段,宜选用细型密级配沥青混合料
(AC—F型),并取较低的设计空隙率。
▪ (2) 为确保高温抗车辙能力配合比设计时宜适 当减少公称最大粒径附近的粗集料用量,减少 0.6mm以下部分细粉的用量,使中等粒径集料较多, 形成S型级配曲线,并取中等或偏高的设计空隙率。
(4)最佳沥青用量OAC=(OAC1+OAC2)/2 OAC=(OAC1+OAC2)/2 = 5.54%
(五)目标配合比设计检验
沥青稳定碎石混合料的介绍
五、沥青稳定碎石混合料马歇尔指 五、沥青稳定碎石混合料马歇尔指 标
试验指标 单位 密级配基层(ATB) 半开级配面层 (AM) 排水式开级配 基层 (ATPB) 所有尺寸
公称最大粒径
mm
26.5mm
等于或大于 31.5mm ф152.4mmx 95.3mm 112
等于或小于 26.5mm ф101.6mmx 63.5mm 50
四、沥青稳定碎石混合料配合比设计 四、沥青稳定碎石混合料配合比设计 1.沥青试验 1.沥青试验 2.集料试验 2.集料试验 3.级配选择 3.级配选择 4.最佳沥青用量的确定方法 4.最佳沥青用量的确定方法 a.传统的马歇尔法 a.传统的马歇尔法 b.力学指标法 b.力学指标法
a.传统的马歇尔法 a.传统的马歇尔法。
马歇尔试验尺 寸 击实次数(双 面) 空袭率VV 稳定度,不小 于 流值 沥青饱和度 VFA
mm
ф101.6mmx 63.5mm 75
ф152.4mmx 95.3mm 75
次
% KN 7.5
3-6 15
6-10 3.5
不小于18 -
mm测
40-70
-
谢
谢
三、沥青稳定碎石混合料的分类 三、沥青稳定碎石混合料的分类
•
根据最新的沥青路面施工技术规范,沥 根据最新的沥青路面施工技术规范,沥 青稳定碎石混合料可以分为三类, 青稳定碎石混合料可以分为三类,分别是 密级配沥青稳定碎石混合料,简称ATB, 密级配沥青稳定碎石混合料,简称ATB, 空隙率3 %,一般用在基层 一般用在基层; 空隙率3-6%,一般用在基层;半开级配 沥青稳定碎石混合料,简称AM,空隙率6 沥青稳定碎石混合料,简称AM,空隙率6 10%,一般用在面层; %,一般用在面层 -10%,一般用在面层;开级配沥青稳定 碎石混合料,简称ATPB,空隙率大于18 碎石混合料,简称ATPB,空隙率大于18 %,一般用在基层 一般用在基层。 %,一般用在基层。
沥青路面结构层_图文
二级、三级公路
其他应用
用于柔性基层、调 平层
沥青贯入式 (含上拌下贯沥青碎石)
二级、三级公路
用于柔性基层、调 平层
沥青表面处治与稀浆封 层
三级、四级公路
各级公路的上、下 封层
2012-冷2-29拌沥青混合料 11三级、四级公路 旧路修补工程
(1)沥青表面处治
• 定义:用沥青和集料按层铺 • 作用:抵抗车轮磨耗,增 强抗滑和防水能力,提高
3.查浸水马歇尔试验残留稳定度
2012-2-29
9
1.3沥青面层类型
沥青表面处治 沥青贯入碎石 沥青碎石混合料 沥青混凝土
2012-2-29
10
详见表1.10
沥青面层类型
表1.10 各类路面面层适用公路的等级
沥青面层类型 沥 高速公路、 一、二、三、四
悬浮一密实结构
2012-2-29
特点:含细集料多,粗集料少,粗集 料彼此互相不接触,悬浮在细集料中。 密级配沥青混合料通常采用此种结构, 强度形成原理:沥青材料的粘结力为 主,骨料的内摩阻力为辅。 使用特点: ➢矿料级配密实、不透水性好、耐久性 好; ➢由于粗骨料形成骨架不稳定,受沥青 材料性质影响较大,它的热稳定性差。
沥青贯入式路面的厚度宜为40~80㎜;采用上拌下贯 式沥青路面时,拌和层的厚度宜为25~40㎜,其总厚 度宜为70~100mm。沥青贯入式路面的结合料宜用石油 沥青。
2012-2-29
15
(3)沥青混合料
1.按材料组成与结构分类 连续级配 间断级配
2.按矿料组成与空隙率 密级配:3%~6% 开级配:>18% 半开级配:6%~12%
沥青路面结构层_图文.ppt
[工学]道路工程材料-第3章沥青混合料.ppt
规定:高速公路,不宜小于800次/mm
一级公路、城市主干道,不宜小于600次/mm
影响混合料高温稳定性的因素:
沥青用量、沥青的粘度、矿料的级配、矿料尺寸、形状
道路工程材料
第三章沥青混合料
2 沥青混合料的技术性能
2.1 高温稳定性
车辙实验方法首先是英国运输与道路研究试验所(TRRL) 开发的,并经过了法国、日本等道路工作者的改进与完善。
沥青混合料的抗剪强度与形变速率也有关,粘聚力 C 值随 形变速率的增加而显著提高,内摩阻角随形变速率的变化很 小。
道路工程材料
第三章沥青混合料
2 沥青混合料的技术性能
高温稳定性 低温抗裂性 疲劳特性 耐久性 水稳定性 抗滑性 施工和易性
道路工程材料
第三章沥青混合料
2 沥青混合料的技术性能
在沥青用量固定的情况下,矿粉的用量多少也直接影响沥
青混合料的密实程度及粘结力,矿粉用量不能过多,否则使沥
青混合料结团成块,不易施工。
道路工程材料
第三章沥青混合料
1 沥青混合料的类型与组成结构
1.6 沥青混合料的结构强度理论 影响抗剪强度τ的因素 矿料的级配类型及表面性质对沥青混合料抗剪强度的影 响
粗、细骨料及填料 较稀沥青分布其间
密实级配的矿质骨架 沥青混合料
道路工程材料
第三章沥青混合料
1 沥青混合料的类型与组成结构
1.5 沥青混合料的组成结构类型
胶浆理论:(现代理论) 将高稠度沥青加到矿粉中形成胶浆-微分散体系 将细骨料添加到胶浆中形成沥青砂浆-细分散体系 将粗骨料添加到沥青砂浆中形成沥青混合料-粗分散体系
特点: 高稠度沥青 / 沥青用量大 / 间断级配
道路工程材料
沥青路面用沥青混合料的分类
第七章沥青混合料的组成设计沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。
然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。
沥青混凝土与碎石的主要区别如下:●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很少量的中等大小的集料组成。
●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。
●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。
●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。
从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。
图7-1 各种沥青混合料的典型级配曲线§7.1道路沥青混合料的种类与性质7.1.1沥青混凝土用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。
这种混合料的矿料部分应有严格的级配要求。
它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。
沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。
沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。
从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。
道路建筑材料 沥青混合料组成设计精品PPT课件
Z10 X 0Y
• (4)按上述步骤可以计算混合料中的配合比,经校核如不在要求的级配范围内,应调整配 合比重新计算和复核,直到符合要求为止,如经计算确不能满足级配要求时,可调整或增 加集料数量。
• 例题:P95
3.1 矿质混合料组成设计
• 图解法
1.绘制矩形图框 2.连接对角线,表示设计级配中值(即平均值)
1.2 粗集料(技术要求、规格)
粗集料对破碎面的要求
1.2 粗集料(技术要求、规格)
沥青混合料用粗集料规格
1.3 细集料(技术要求、规格)
沥青混合料用细集料质量技术要求
1.3 细集料(机制砂技术要求、规格)
天然砂规格要求
机制砂或石屑规格要求
1.4 填料(技术要求)
沥青混合料用矿粉技术要求
二、 沥青混合料的技术要求
筛孔 16
13.2
9.5
4.75
2.36
1.18
0.6
级配 100 范围
级配 100 中植
95~100 70~88
98
79
48~68 57
36~53 24~41 18~30
45
33
24
0.3 12~22
0.15 0.075 8~16 4~8
17
12
6
3.绘制级配曲线坐标图 纵坐标:通过百分率(%) 绘制横坐标,表示筛孔尺(mm),由级配中值确定筛孔位置
沥青与集料 相对密度测定
生产配合比 验证阶段
2020/10/6
交通科学与工程学院
23
3.1 矿质混合料组成设计
•目的:确定各档集料的掺配比例
•依据:
沥青路面市政图集
轻交通 压实度 (%) ≥97 ≥96 ≥96 ≥95 抗压强度 ( MPa) 2.5~ 3.5 2.5~ 3.5 ≥1.5 ≥1.5
基层 细粒土 底基 层 集料 细粒土
特重、重、中交通 层位 稳定类型 压实度(%) 集料 基层 细粒土 集料 底基层 细粒土 ≥ 96 ≥0.6 ≥ 95 - ≥ 97 - ≥0.6 ≥ 96 ≥ 96 ≥ 98 抗压强度 ( MPa) ≥0.8
0 . 2 l 600 N A A d e A c s b
道路分类 Ac
快速路 1.0
主干道 1.0
次干道 1.1
支路 1.2
非机动车道 1.2
基层骨架密实型 基层连续级配型 底基层、垫层 做底基层
最小压实厚 度( cm) 1.5 2 3.5 4 5 7 7 9 12 2.5 3 4 5
适宜厚度 (cm) 1.5~3 2.5~4 4~6 5~8 6~10 8~12 8~12 9~15 12~15 2.5~5 3.5~6 4~7 5~8
类型 水泥稳定类 石灰稳定类 石灰粉煤灰稳定类 贫混凝土
高温气候区 气候区名称 近 30 年最热月 平均最高气温 (℃ )
1 夏炎热区 >30
2 夏热区 20~30
3 夏凉区 <20
低温气候区
1
2 冬寒区 –37.0~– 21.5
3 冬冷区 – 21.5~–9.0
4 冬温区 >–9.0
气候区名称 冬严寒区 近 30 年极端 最 低 气 温 <– 37.0 (℃ )
轻交通 压实度(%) ≥ 97 抗压强度 ( MPa) ≥0.6 ≥0.6 ≥0.5 ≥0.5
重、中交通 层位 稳定类型 压实度(%) 集料 基层 细粒土 集料 底基层 细粒土 ≥ 95 ≥0.8 ≥ 95 - ≥ 97 - ≥0.8 ≥ 95 ≥ 96 - 抗压强度 ( MPa) -
沥青混合料配合比设计
级配理论主要有最大密度理论和粒子干涉理论, 常用的是最大密度理论. (1)富勒理论 富 勒是通过提出一种理想曲线,他认为级配 曲线越接近抛物线则堆积密度越大,当矿质混合 料的级配抛物线时具有最大密度. 最大密度理想曲线可以用矿料颗粒粒径d 和 通过率P 来表示,P ,d可以用下面经验公式计算: P2=K ×d P----- 各级颗粒粒径集料的通过量(%) d------ 矿质混合料各级颗粒粒径(mm) k------- 常数
沥青路面用矿质混合料级配范围曲线
2.矿料的组成设计方法 天然或人工轧制的一种集料的级配是无法达 到某一级配范围要求的,要想获得满足一定级配 范围要求的矿质混合料,则必须采用两种或两种 以上的集料进行组配,目前矿质混合料的组成设 计方法主要有数解法(试算法和正规方程法)和图 解法,组成设计的任务就是确定组成混合料的各 种集料的比例.
当粒径 d等于最大粒径D时,集料的通过率等 于100%,即可由: 1002=K × D K=100/D 代入式P2=K ×d 得P=100(d/D)0.5 (2)泰波理论 泰波认为富勒曲线是一种理想曲线,实际集料 的级配应该允许在一定范围内波动. 将富勒曲线用一般通式表示为泰波公式: P=100(d/D)n D ----最大粒径; n-----实验指数
级配 范围 曲线 通过 量(%)
按级配理论计算出各级集料在矿质混合料的 通过百分率,以通过百分率为纵坐标绘制成曲线, 即为理论级配曲线。但由于矿料在轧制过程中的 不均匀性以及混合料配制时的误差等影响,使所 配制的混合料往往不可能与理论级配完全相符合。 因此,必须允许配料时的合成级配在适当的范围 内波动,这就是“级配范围”,绘制曲线时通常 用半对数坐标,即横坐标(即筛孔尺寸乘10或乘 别的数,让取对数后为正数)采用对数坐标,而纵 坐标用常坐标。我国现行国标(GB 50092-96) 规定,沥青路面集料的粒径选择和筛分以方孔筛 为准。
沥青混合料分类
矿料级配主要由粗集料嵌挤组成,细集料及填料 较少,设计空隙率为不小于18%的混合料。
▪ 沥青稳定碎石混合料(简称沥青碎石)
由矿料和沥青组成具有一定级配要求的混合料, 按空隙率、集料最大粒径、添加矿粉数量的多少, 分为密级配沥青碎石(ATB)、开级配沥青碎石 (OGFC表面层及ATPB基层)、半开级配沥青 碎石(AM)。
VMA=VV+VA (2)现行规程计算公式:给定两个公式(a)、(b)。
VMA VV VA
(a)
VMA
1
f sb
Ps
100
(b)
(3)新规范的计算公式-即Superpave的计算公式(b)
19
3、沥青饱和度(VFA) (1)定义:按照试验规程定义总有
VFA VA 100 VMA
(2)规程给定的计算公式:
4.堆积密度 单位体积(含物质颗粒固体及其闭口、开口孔隙 体积及颗粒间空隙体积)物质颗粒的质量。粗集 料的堆积密度包括自然堆积密度、振实密度、捣 实密度;细集料的堆积密度包括自然堆积密度、 紧装密度。
5、集料最大粒径
规程:指集料的100%都要求通过的最小的标准筛筛孔尺寸。 新的设计规范:混合料中筛孔通过率为100%的最
单位体积(含混合料实体体积与不吸收水分的内 部闭口孔隙之和)压实沥青混合料的干质量,又称 视密度,由水中重法测定(仅适用于几乎不吸水的 密实试件)。
3、沥青混合料的毛体积密度
单位体积(含混合料的实体矿物成分及不吸收水分的 闭口孔隙、能吸收水分的开口孔隙等颗粒表面轮廓线 所包围的全部毛体积)压实沥青混合料的干质量,由 表干法、蜡封法或体积法测定。 4、沥青混合料试件的沥青体积百分率 压实沥青混合料试件内沥青部分的体积占试件总体积 的百分率,以VA表示。 5、沥青混合料试件的空隙率 沥青混合料内矿料及沥青以外的空隙(不包括矿料自 身内部已被沥青封闭的孔隙)的体积占试件总体积的 百分率,以VV表示。
沥青混合料种类·分类·典型级配曲线
③ 再生沥青混合料:现场再生、场拌再生
主要内容
沥青混合料的技术性质和技术要求 沥青混合料的组成材料和配合比设计
5.1 热拌沥青混合料HMA (Hot Mix Asphalt)
5.1.1 沥青混合料的组成结构和强度形成原理 5.1.2 沥青混合料应具备的技术性质及其评价方法 5.1.3 沥青混合料组成材料的技术性质 5.1.4 热拌沥青混合料配合比设计方法
沥青混合料的分类
集料最大粒径与公称最大粒径
最大粒径:通过率为100%的最小标准筛筛孔尺寸
公称最大粒径:是指全部通过或允许少量不通过的最 小标准筛筛孔尺寸,通常比最大粒径小一个粒级
例如:混合料在16mm筛孔的通过率为100%,筛余量为0%;
在13.2mm筛孔上的筛余量小于10%,则此集料的最大粒径 为16mm,公称最大粒径为13.2mm。
开级配沥青碎石OGFC表面层
——(Open Graded Friction Course)
排水式开级配沥青碎石ATPB基层
——( Asphalt-Treated Permeable Base) 设计空隙率≥18%
排水式沥青路面
沥青混合料的分类
⑴ 按矿质混合料的级配组成分类
④ 间断级配沥青混合料 gap-graded bituminous paving mixtures(英) gap-graded asphalt mixtures(美)
② 半开级配沥青混合料 half(semi)-open-graded bituminous paving mixtures(英)
沥青碎石混合料(以AM表示)
设计空隙率在6%~12%
沥青混合料的分类
⑴ 按矿质混合料的级配组成分类
沥青混合料用集料分档的若干注意问题
沥青混合料用集料分档的若干注意问题熊道红1 胡根保1 吴淑珍2(1江西交通工程监理公司南昌330008)(2江西科力咨询监理有限公司南昌330006)摘要:沥青混合料用集料的分档,在集料正式加工之前,应根据设计图纸的沥青混合料的级配类型、沥青拌和楼的冷料仓的数量和热料仓的筛孔尺寸等因素,综合进行考虑,进行合理的分档。
关键词:道路工程;集料;加工及分档;集料级配;冷料仓和热料仓0 前言沥青混合料用集料应选择质量可靠的料源,选用合理的破碎方式,还有就是要对集料进行合理的分档;集料的分档应沥青混合料的级配类型、沥青混合料拌和楼冷料仓的数量和热料仓的筛孔尺寸等多方面的因素,集料进行合理的分档,是沥青混合料选择优良配合比和在施工过程中进行质量控制的前提;就沥青混凝土路面而言,各方面重点关注的是沥青混凝土路面早期破坏的问题,并为此花费了大量的人力和物力,做过大量的课题研究,综合考虑,沥青混凝土路面早期破坏的原因是多方面的;就我省的高等级公路沥青路面来看,沥青混凝土路面早期破坏的主要表现是水损害和车辙质量问题较严重。
过去人们往往对于沥青的性质关注的更多一些,固然,沥青对于路面低温开裂的影响是决定性的,但是对于沥青混合料的抗车辙能力和泌水效果来说,沥青混合料的级配起决定的作用;由于沥青混合料中95%为集料,因此要使沥青混合料有一个良好有级配,就要对集料进行合理的分档,同时也可以理解为各档集料在沥青混合料中进行合理的分配。
1 集料分档与备料的关系1、沥青混合料用集料的备料工作是一种有组织、有目的的活动,除了要对备料的数量进行科学的统计之外,还要对集料进行合理的分档;对沥青混合料用集料进行分档,就是根据集料的粒径进行分类,将一定跨度粒径的集料分成若干档集料;2 、集料的分档应结合沥青混合料路面各结构层设计混合料的级配类型,以确定破碎设备的筛分装置用于分档的筛网网眼尺寸。
例如以AC-25Ⅰ级配为例,其混合料中集料的公称最大粒径为25mm,而规范中要求的其混合料级配中26.5mm筛孔的通过率为95-100%,这时破碎机筛分装置的筛网中筛孔的最大尺寸肯定不能做成25mm,如做成25mm的筛孔则混合料级配在26.5mm筛孔的通过率为100%,而不是规范要求的95-100%;因此筛分装置中最大筛孔通常应在集料的公称最大粒径的基础上加大3mm(如果是Ⅱ型或AK级配则要加大3~5mm),即筛网的最大孔径为28mm,集料的最大粒径可以达到28mm;因此在对集料进行分档的时候,首先应正确区分集料的最大粒径和公称最大粒径;3、沥青混合料用集料的分档数量还应与沥青混合料拌和楼的冷料仓的数量相适应;如冷料仓的数量为5个(一般高速公路路面施工要求的沥青混合料拌和楼均为3000型以上,其冷料仓的数量至少为5个),则集料的分档数量则不能多于5档,因为从沥青混合料配合比设计方面考虑,沥青混合料级配类型多为骨架密实结构,即要求的粗骨料的用量较高,这就要求粗骨料占用的冷料仓肯定会多,如果集料分档数量较多而冷料仓的数量又有限,必定会减小沥青混合料的产量;按此原则AC-25Ⅰ级配的集料分档可以分成0-5 mm、5-11mm、11-16 mm(结合中面层设计AC-20Ⅰ级配,以上三档集料与中面层共用,另外中面层备料再增加16-23 mm一档集料)和16-28 mm四档,破碎设备的筛分装置筛孔的尺寸也按此规格进行定做加工;4、沥青混合料用集料的分档数量决定了破碎设备的筛分装置用于分档的筛网网眼尺寸,同时也决定了拌和楼冷料仓的数量,因此集料的分档数量、破碎设备筛分装置的筛网网眼尺寸和拌和楼冷料仓的数量是对立和统一协调关系,且沥青路面各结构层的设计混合料的级配类型又决定了集料的公称最大粒径,这就是集料分档与备料的主要关系;5、在理论上集料的分档越多越好,集料分档越多对于沥青混合料的级配控制是起决定性影响的,尤其是SMA和SAC级配,集料分档越多则沥青混合料的矿料级配合成曲线就容易控制,即施工中配合比就越容易控制,因此在集料的分档和沥青混合料拌和楼冷料仓的数量之间就存在矛盾,实际上在一些发达国家,沥青混合料的集料的分档已经分得很细,有的多达10档以上,沥青混合料拌和楼的冷料仓和热料仓的筛网也有相应的数量,而这确实需要经济条件的支持。
SMA沥青混合料路面特点及配合比设计说明
SMA路面特点沥青玛蹄脂碎石(SMA)是一种由沥青、纤维稳定剂、矿粉与少量的细集料组成的沥青玛蹄脂填充连续级配的粗集料骨架间隙组成一体的沥青混合料,其混合料具有以下特点:1)粗集料多在SMA的组成中,矿料是连续级配,粗集料占到70%以上,粗集料颗料之间有良好的嵌挤作用。
沥青混合料产生非常好的抵抗荷载变形的能力,即使在高温条件下,沥青玛蹄脂的粘度下降时,这种抵抗能力的影响也不会减小,因而有较强的高温抗车辙能力。
AC-13 AC-16 SMA-13 SMA-16 4.75mm通过率 38~68 34~62 20~34 20~322)矿粉和沥青用量高,采用纤维稳定剂 SMA使用矿粉高达8%~12%,沥青用量高达 5.7%~6.5%,比一般AC-13/AC-16高1%左右。
同时要使用纤维作稳定剂,由此组成的沥青玛蹄脂包裹在粗集料外表,充分填充集料间隙,在温度下降、混合料收缩变形时,玛蹄脂有较好的粘结作用,它的韧性和柔性使混合料有较好的低温变形性能,低温抗裂性能得到大大提高。
2)AC-13 AC-16 SMA-13 SMA-16 0.075mm通过率 4~8 4~8 8~12 8~123) 空隙率小 SMA混合料的部空隙率很小(3%~4%),混合料渗水很少或几乎不渗水,混合料部的水属毛细水形态,不易成为大的动力水,再加上玛蹄脂与集料的粘结力好,混合料的水稳定性也有较多改善。
同时由于密水性好,对下面的沥青层和基层有较强的保护作用和隔水作用,使路面能保持较高的整体强度和稳定性。
3) 路面外表粗糙,构造深度大 SMA一方面要求采用坚硬的、耐磨的优质石料;另一方面矿料采用连续级配,粗集料含量高,路面压实后外表形成大的孔隙,构造深度大 0.8~1.3mm,使雨天高速行车下不易产生水漂,抗滑性能提高,较好地解决了抗滑与耐久的矛盾。
同时,雨天交通不会产生大的水雾和溅水,路面噪声降低,从而可以全面提高路面的外表功能。
同时,雨天交通不会产生大的水雾和溅水,路面噪音可降低3~5dB,从而提高路面的外表功能。