年深圳市中考数学考试大纲

合集下载

2024年广东深圳市中考数学试题+答案详解

2024年广东深圳市中考数学试题+答案详解

2024年广东深圳市中考数学试题+答案详解(试题部分)说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-8,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题9—20,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分 选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1. 下列用七巧板拼成的图案中,为中心对称图形的是( )A. B. C. D. 2. 如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d3. 下列运算正确的是( )A. ()523m m −=−B. 23m n m m n ⋅=C. 33mn m n −=D. ()2211m m −=− 4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A. 12 B. 112 C. 16 D. 145. 如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A. 40︒B. 50︒C. 60︒D. 70︒6. 在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A. ①②B. ①③C. ②③D. 只有①7. 在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( )A. ()7791x y x y +=⎧⎨−=⎩B. ()7791x y x y +=⎧⎨+=⎩ C. ()7791x y x y −=⎧⎨−=⎩ D. ()7791x y x y +=⎧⎨+=⎩8. 如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为( )(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A. 22.7mB. 22.4mC. 21.2mD. 23.0m第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)9. 已知一元二次方程230x x m −+=的一个根为1,则m =______.10. 如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)11. 如图,在矩形ABCD 中,BC ,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.12. 如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0k y k x=≠上,则k =________.13. 如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CE AC=________.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14. 计算:()1012cos 45 3.1414π−⎛⎫−⋅︒+−+ ⎪⎝⎭.15. 先化简,再求值: 2221111a a a a −+⎛⎫−÷ ⎪++⎝⎭,其中 1a = 16. 据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A ,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A :28,30,40,45,48,48,48,48,48,50,50学校B :(1)(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.17.如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m,每增加一辆购物车,车身增加18. 如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.19. 为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =−+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =−+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =. ①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =−+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.20. 垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具); ②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.2024年广东深圳市中考数学试题+答案详解(答案详解)说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-8,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题9—20,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1. 下列用七巧板拼成的图案中,为中心对称图形的是()A B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2. 如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A. aB. bC. cD. d【答案】A【解析】【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A .3. 下列运算正确的是( )A. ()523m m −=−B. 23m n m m n ⋅=C. 33mn m n −=D. ()2211m m −=− 【答案】B【解析】【分析】本题考查了合并同类项,积的乘方,单项式乘以单项式,完全平方公式.根据单项式乘以单项式,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A 、()2365m m m −=≠−,故该选项不符合题意;B 、23m n m m n ⋅=,故该选项符合题意;C 、33mn m n −≠,故该选项不符合题意;D 、()2221211m m m m −=−+≠−,故该选项不符合题意;故选:B .4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( ) A. 12 B. 112 C. 16 D. 14【答案】D【解析】【分析】本题考查了概率公式.根据概率公式直接得出答案.【详解】解:二十四个节气中选一个节气,抽到的节气在夏季的有六个,则抽到的节气在夏季的概率为61244=, 故选:D . 5. 如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A. 40︒B. 50︒C. 60︒D. 70︒【答案】B【解析】 【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B .6. 在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A. ①②B. ①③C. ②③D. 只有①【答案】B【解析】 【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,, 可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF −=−ME NF ∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B .7. 在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( )A. ()7791x y x y +=⎧⎨−=⎩B. ()7791x y x y +=⎧⎨+=⎩C. ()7791x y x y −=⎧⎨−=⎩D. ()7791x y x y +=⎧⎨+=⎩【答案】A【解析】 【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x y x y +=⎧⎨−=⎩, 故选:A .8. 如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为( )(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A. 22.7mB. 22.4mC. 21.2mD. 23.0m【答案】A【解析】 【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AM AEM AEM EM∠=,,以及Rt tan AN ACN ACN CN∠=,,运用线段和差关系,即()450.33MN AN AM x x =−=−+=,再求出15.9m x =,即可作答.【详解】解:如图:延长DC 交EM 于一点G ,∵90MEF EFB CDF ∠=∠=∠=︒∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=︒∴四边形EFBM 是矩形同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒,∴()1.8 1.5m 0.3m CG =−=,5m FD EG ==∴0.3m CG MN ==∴设m GM x =,则()5m EM x =+ 在Rt tan AM AEM AEM EM∠=,, ∴1EM AM ⨯=即()5m AM x =+ 在Rt tan AN ACN ACN CN∠=,, ∴4tan 533CN x AN ︒== 即4m 3AN x = ∴()450.33MN AN AM x x =−=−+= ∴15.9m x =∴()15.9520.9m AM =+=∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=故选:A第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)9. 已知一元二次方程230x x m −+=的一个根为1,则m =______.【答案】2【解析】【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解:关于x 的一元二次方程230x x m −+=的一个根为1,1x ∴=满足一元二次方程230x x m −+=,130m ∴−+=,解得,2m =.故答案为:2.10. 如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)【答案】2(答案不唯一)【解析】【分析】本题考查了算术平方根的应用,无理数的估算.利用算术平方根的性质求得AB CD ==,1GH GJ ==,再根据无理数的估算结合GH DE CD <<,即可求解.【详解】解:∵10ABCD S =正方形,∴AB CD ==∵1GHIJ S =正方形,∴1GH GJ ==,∵34<<,即34CD <<,∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,BC ,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.【答案】4π【解析】【分析】本题考查了扇形的面积公式,解直角三角形.利用解直角三角形求得45BOE ∠=︒,45COF ∠=︒,得到90EOF ∠=︒,再利用扇形的面积公式即可求解.【详解】解:∵BC ,4AB =,∴BC =∵O 为BC 中点,∴12OB OC BC === ∵4OE =,在Rt OBE 中,cos 42OB BOE OE ∠===, ∴45BOE ∠=︒,同理45COF ∠=︒,∴180454590EOF ∠=︒−︒−︒=︒, ∴扇形EOF 的面积为29044360ππ⋅=, 故答案为:4π.12. 如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0k y k x=≠上,则k =________.【答案】8【解析】【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=, ∴43AD OD =, ∴设4AD a =,则3OD a =,∴点()34A a a ,, ∵点A 在反比例函数3y x =上, ∴343a a ⋅=, ∴12a =(负值已舍),则点232A ⎛⎫ ⎪⎝⎭,, ∴2AD =,32OD =,∴52OA ==, ∵四边形AOCB 为菱形, ∴52AB OA ==,AB CO ∥, ∴点()42B ,, ∵点B 落在反比例函数()0k y k x =≠上, ∴428k =⨯=,故答案为:8.13. 如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CE AC=________.【答案】2021【解析】 【分析】本题考查了解直角三角形、勾股定理,平行线分线段成比例,先设13AB BC x ==,根据5tan 12B ∠=,AH CB ⊥,得出512AH x BH x ==,,再分别用勾股定理AD AC ==,,故cos 41DH ADC AD ∠==,再运用解直角三角形得出41DM x =,41AM x =,代入CE MD AC AM=,化简即可作答. 【详解】解:如图,过点A 作AH CB ⊥垂足为H,∵85BD DC =,AB BC =, 设13AB BC x ==,∴85BD x DC x ==,, ∵5tan 12B ∠=,AH CB ⊥, ∴512AH BH =, ∵13AB BC x ==,∴2222169AH BH AB x +==,解得512AH x BH x ==,,∴1284DH x x x =−=,54HC x x x =−=,∴AD ==,AC ==,∴cos 41DH ADC AD ∠==, 过点C 作CM AD ⊥垂足为M ,∴cos 41DM CD ADC x =⋅∠=,41AM AD DM x =−=, ∵DE AD ⊥,CM AD ⊥,∴MC DE ∥,∴202141x CE DM AC AM ===, 故答案为:2021. 三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14. 计算:()112cos 45 3.1414π−⎛⎫−⋅︒+−+ ⎪⎝⎭. 【答案】4 【解析】【分析】本题考查特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂.先将各项化简,再算乘法,最后从左往右计算即可得【详解】解:()112cos 45 3.1414π−⎛⎫−⋅︒+−+−+ ⎪⎝⎭21142=−⨯+−+114=+ 4=.15. 先化简,再求值: 2221111a a a a −+⎛⎫−÷⎪++⎝⎭,其中 1a =【答案】11a −,2【解析】【分析】此题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序和运算法则是解题关键. 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:2221111a a a a −+⎛⎫−÷⎪++⎝⎭ =()2112111a a a a a −+⎛⎫−÷⎪+++⎝⎭=()21111a a a a −+⋅+− =11a −,当1a =时,原式2==.16. 据了解,“i深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A,B两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A:28,30,40,45,48,48,48,48,48,50,50学校B:(1)(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A,理由见解析【解析】【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【小问1详解】解:①()1283040454848484848505048.310++++++++++=; ②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=; 填表如下:【小问2详解】小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼. 17.如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案 【解析】【分析】本题考查了列代数式表达式,一元一次不等式的应用,正确掌握相关性质内容是解题的关键. 任务1:根据一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m ,且采购了n 辆购物车,L 是车身总长,即可作答.任务2:结合“已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车”,得出2.60.80.2n ≥+,再解不等式,即可作答.任务3:根据“该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次”,列式()24185100x x +−≥,再解不等式,即可作答.【详解】解:任务1:∵一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m ∴()0.80.2L n m =+任务2:依题意,∵已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车, 令2.60.80.2n ≥+, 解得:9n ≤∴一次性最多可以运输18台购物车 任务3:设x 次扶手电梯,则()5x −次直梯由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次 可列方程为:()24185100x x +−≥, 解得:53x ≥方案一:直梯3次,扶梯2次; 方案二:直梯2次,扶梯3次: 方案三:直梯1次,扶梯4次答:共有三种方案18. 如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.【答案】(1)见解析 (2)【解析】【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可. 【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =, ∴BO 垂直平分AD , ∴BH AD ⊥,AH DH =, ∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒, ∴四边形BHDE 为矩形, ∴DE BE ⊥; 【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =, ∴5AH DH BE ===,∴BH ==设O 的半径为r ,则:,OA OB r OH BH OB r ===−=−,在Rt AOH △中,由勾股定理,得:()()2225r r =+,解得:r =即:O 的半径为.19. 为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =−+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =−+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________; ②将点B '坐标代入2y ax =中,解得=a________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =−+中解得=a________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值. 【答案】(1)图见解析,214y x =; (2)方案一:①1,2m n ⎛⎫⎪⎝⎭;②24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;②24n m ;(3)a 的值为12或12−. 【解析】【分析】(1)描点,连线,再利用待定系数法求解即可; (2)根据图形写出点B '或点B 的坐标,再代入求解即可;(3)先求得()28A h k −−+,,()28B h n −++,,1C 的顶点坐标为()P h k −,,再求得1C 顶点距线段AB 的距离为()88k k +−=,得到2C 的顶点距线段AB 的距离为1082−=,得到2C 的顶点坐标为()10Q h k −+,或()6Q h k −+,,再分类求解即可.【小问1详解】解:描点,连线,函数图象如图所示,观察图象知,函数为二次函数, 设抛物线的解析式为2y ax bx c =++,由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩,∴y 与x 的关系式为214y x =; 【小问2详解】解:方案一:①∵AB m =,CD n =, ∴12D B m ''=, 此时点B '的坐标为1,2m n ⎛⎫⎪⎝⎭; 故答案为:1,2m n ⎛⎫⎪⎝⎭; ②由题意得212m a n ⎛⎫= ⎪⎝⎭,解得24n a m =, 故答案为:24nm;方案二:①∵C 点坐标为(),h k ,AB m =,CD n =,∴12DB m =, 此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭; 故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭; ②由题意得212k n a h m h k ⎛⎫+=+−+ ⎪⎝⎭,解得24na m =, 故答案为:24nm;【小问3详解】解:根据题意1C 和2C 的对称轴为x h =−,则()28A h k −−+,,()28B h n −++,,1C 的顶点坐标为()P h k −,, ∴1C 顶点距线段AB 的距离为()88k k +−=, ∴2C 的顶点距线段AB 的距离为1082−=,∴2C 的顶点坐标为()10Q h k −+,或()6Q h k −+,, 当2C 的顶点坐标为()10Q h k −+,时,()2210y a x h k =+++, 将()28A h k −−+,代入得4108a k k ++=+,解得12a =−; 当2C 的顶点坐标为()6Q h k −+,时,()226y a x h k =+++, 将()28A h k −−+,代入得468a k k ++=+,解得12a =; 综上,a 的值为12或12−. 【点睛】本题主要考查二次函数的综合应用,抛物线的平移等,理解题意,综合运用这些知识点是解题关键.20. 垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,AF =2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具); ②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.【答案】(1)1(2)AF =,理由见解析(3)①见解析;②4PE =或2. 【解析】【分析】(1)根据题意可推出AEF CEB △∽△,得到AF AEBC CE=,从而推出AE ,再根据勾股定理可求得BE ,再求得AB ;(2)根据题意可推出AED FEB ∽,得到2AE AD DEEF BF EB===,设BE a =,则2DE a =,3AB CD a ==,再利用勾股定理得到AE ,从而推出EF 、AF ,即可求得答案;(3)①分情况讨论,第一种情况,作BC 的平行线AD ,使AD BC =,连接CD ,延长BE 交AD 于点F ;第二种情况,作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AFAB =,连接DF ;第三种情况,作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ;②根据①中的三种情况讨论:第一种情况,根据题意可证得PAC △是等腰三角形,作PH AC ⊥,则AH HC =,可推出CPH CB E '∽△△,从而推出PH CH B E CE=',计算可得PH ,最后利用勾股定理即可求得PE ; 第二种情况,延长CA 、DF 交于点G ,同理可得PGC 是等腰三角形,连接PA ,可由GAF CAB ∽,结合三线合一推出PA AC ⊥,从而推出CPA CB E '∽,同第一种情况即可求得PE ;第三种情况无交点,不符合题意.【小问1详解】解:AD BC ,F 为AD 的中点,AD BC =,AF =,2CE =,AEF CEB ∴∽,2BC AD AF ===AF AEBC CE ∴=2AE =,解得1AE =,22222216BE BC CE ∴=−=−=,AB ∴===故答案为:1;【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点,∴2AD BC BF ==,90AEB ∠=︒; 又AD BC ∥,AED FEB ∴∽, ∴2AE AD DE EF BF EB===; 设BE a =,则2DE a =,AB BD =,∴23AB BD BE ED a a a ==+=+=,∴AE ===,EF =,∴AF AE EF =+=+=,AB CD =,∴3AF AF CD AB a===AF ∴=;【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD ,则四边形ABCD 为平行四边形;延长BE 交AD 于点F ,BC AD ,AEF CEB ∴∽,AF AE BC CE∴=, AD BC =,2CE AE =,12AF AE BC CE ∴==,即1122AF BC AD ==, ∴F 为AD 的中点;故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF ,故A 为BF 的中点; 同理可证明:12AB CD =, 则2BF AB AF AB CD =+==,则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ,则A 为DF 的中点, 同理可证明12AD BC =,从而DF BC =, 故四边形BCDF 是平行四边形;故如图3所示,四边形BCDF 即为所求的垂中平行四边形:②若按照图1作图,由题意可知,ACB ACP ∠=∠,四边形ABCD 是平行四边形,ACB PAC ∴∠=∠,PAC PCA ∴∠=∠,PAC ∴△是等腰三角形;过P 作PH AC ⊥于H ,则AH HC =,5BE =,212CE AE ==,5B E BE '∴==,6AE =,111()(612)9222AH HC AC AE CE ∴===+=+=, 963EH AH AE ∴=−=−=;PH AC ⊥,BE AC ⊥,CPH CB E '∴∽△△,PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===∴4PE === 若按照图2作图,延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥,GAF CAB ∴∽,1AF AG AB AC∴==, AG AC ∴=,PA AC ∴⊥;同理,CPA CB E '∽△△,6AE =,12EC =,5B E BE '==,B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,2PE ∴===, 若按照图3作图,则:没有交点,不存在PE (不符合题意)。

中考数学试卷大纲

中考数学试卷大纲

一、试卷结构1. 试卷总分:满分120分,考试时间120分钟。

2. 试卷结构:分为选择题、填空题、解答题三大块。

二、选择题(共20题,每题2分,满分40分)1. 数与代数(1)实数的运算及性质(2)一元一次方程及不等式(3)二元一次方程组(4)一元二次方程及根的判别式(5)函数及其性质2. 几何与代数(1)三角形、四边形及相似、全等(2)圆及圆的性质(3)平面直角坐标系与坐标计算(4)解析几何基础3. 统计与概率(1)平均数、中位数、众数(2)频率分布表(3)概率计算(4)随机事件三、填空题(共10题,每题3分,满分30分)1. 完成实数的运算2. 求一元一次方程的解3. 求二元一次方程组的解4. 求一元二次方程的解5. 求函数的值6. 判断三角形的性质7. 求圆的面积8. 在平面直角坐标系中求点的坐标9. 求概率10. 求平均数、中位数、众数四、解答题(共5题,每题10分,满分50分)1. 数与代数(一元二次方程、函数)题目:已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1和x2,求:(1)若x1+x2=5,求a、b、c的值;(2)若x1x2=4,求a、b、c的值。

2. 几何与代数(三角形、四边形)题目:已知在三角形ABC中,AB=AC,BC=5cm,求:(1)求三角形ABC的面积;(2)求角B的度数。

3. 统计与概率题目:某班级有30名学生,成绩如下表所示:成绩区间 | 人数——|——0-60 | 560-70 | 1070-80 | 1080-90 | 590-100 | 0求:(1)求该班级的平均成绩;(2)求该班级的中位数;(3)求该班级的众数。

4. 综合题题目:已知平面直角坐标系中,点A(2,3),点B(-1,2),求:(1)直线AB的方程;(2)点C(x,y)在直线AB上,且AC的长度为5,求点C的坐标。

5. 应用题题目:某工厂生产一批产品,每天产量为100件,成本为1000元,售价为200元。

深圳数学中考教学大纲(精选)

深圳数学中考教学大纲(精选)

深圳数学中考教学大纲(精选)深圳数学中考教学大纲深圳市2023年初中数学中考说明(教学大纲)如下:考试性质初中数学学业水平考试是义务教育阶段的终结性考试,主要目的是全面、准确地反映初中毕业生是否达到了《深圳市初中数学课程标准》所规定的课程目标要求。

考试结果既是衡量学生是否完成初中学业的标准,也是高中阶段学校招生的重要依据之一。

考试形式与试卷结构1.考试方式:闭卷,笔试。

2.考试时间:120分钟。

3.试卷满分为120分。

4.考试范围:初中数学课程中的基础内容,主要包括数与代数、图形与几何、概率与统计、综合应用。

5.试卷包括:选择题、填空题、作图题、解答题四种题型。

6.试题难易比例:容易题占60%,中等难度题占30%,较难题占10%。

考试内容1.数与代数(1)数与整式数的认识;整数;分数、小数、百分数和比例;整数和实数。

数的运算;代数式与方程式;不等式和不等式组。

(2)函数函数的概念和表示法;一次函数和二次函数;反比例函数;正比例函数。

2.图形与几何(1)空间几何体几何体及其分类;几何体的结构特征;几何体的三视图和直观图;几何体的展开图。

(2)平面图形点、线、面、体;平面图形;空间图形。

3.概率与统计(1)概率与统计初步概率的意义;概率的估计方法(列举法、排列组合法);平均数、中位数、众数、方差、极差;频数、频率;加权平均数。

(2)数据分析数据的收集、整理与描述;数据的分析。

4.综合应用综合运用数学知识和方法,解决简单的实际问题。

中考数学教学大纲要求范围中考数学教学大纲要求范围:1.代数部分:数:数的意义、分类、性质、数的整除概念;式:代数式及其含义、合并同类项、去括号与添括号法则、解一元一次方程、简易逻辑(实数、命题、充分必要条件与充要条件;量与变量:常量与变量。

2.几何部分:图形的性质:图形的性质和判定方法;图形位置关系:图形位置关系。

3.函数:函数:函数的意义、性质及表达式;一次函数、反比例函数、二次函数。

深圳中考数学分析

深圳中考数学分析

6.一元一次方程的应用 21题一般为一元一次方程的应用,(2013年没有考 查)。一般是8-9分。
一元一次方程的实际应用
不等式的实际应用
函数的实际应用
该部分内容主要考查了一元一次方程的实际应用,不等式实际应用和二次 函数最值等内容。出题形式比较灵活,考查学生理解能力。内容比较接近实际 生活。建议时间在8分钟左右。
因此作为学校,在教授学生知识的同时还要教会学生独立思考、 教会他们面对陌生题目时候解决问题的能力。从学校中看到自己的 能力,从学习中得到乐趣。
而作为学生,除了掌握基础知识以外,还要拓展自己的视野, 学会思考。能够灵活运用自己的知识去解决问题,而不是仅仅陷入 到书海题山的困境中去。学以致用,举一反三。既能节省大量的时 间精力,还能提升自己的能力。
总结
中考是一种选拨性考试,因此考试整体具有一定的难度,可以 拉开不同层次的学生距离。从近五年的数学中考试卷可以看出,试 卷整体难度属于中等偏上,具有一定的选拨性。主要注重基础知识 掌握的考查以及对知识灵活运用的能力,使得单纯的恶补式学习不 再具有优势。更多的是要求学生在掌握基础知识的前提下,多独立 思考、学会运用已知的数学工具解决未知的内容,培养思维活跃和 创新应用能力,体现出了“指挥棒”的作用。
18题近五年来主要考查了三个不同的形式。其中解分式方程和解不等式组各一次,分式的化简计算三 次。分式方程考查较为简单,简单通分即可,但要注意曾根的情况。不等式组也较为简单,但结果需取 整数解,要注意条件要求。其余三年都是化简不等式,并代入数字计算、主要考查了因式分解的相关内 容,尽管分式形式复杂,但化简却较为简单。建议5分钟左右完成。
深圳中考数学试卷分析
2012-2015
总体结构分析
中考数学试卷总分100分,时间90分钟。包括选择题、 填空题、计算、综合应用等题型。整体难度中等偏上,考查 内容广泛,基本覆盖中学三个年级的内容。考查形式灵活, 着重考查学生对基本知识的掌握和灵活运用的能力

完整版)初中数学中考考试大纲

完整版)初中数学中考考试大纲

完整版)初中数学中考考试大纲初中数学中考考试大纲一、知识与技能1、数与代数考试内容:本部分主要考察有理数、实数、二次根式、代数式、整式、因式分解、分式、方程与方程组、不等式与不等式组、函数及其表示等知识点。

要求目标:学生需要掌握有理数的概念、大小比较、加减乘除乘方运算、数的开方等基本知识;理解实数、无理数的概念,以及近似数和有效数字的概念;掌握代数式、整式的概念和基本运算法则,以及因式分解、分式、方程与方程组、不等式与不等式组等知识;理解函数的概念和表示方法,能够求解一次函数和反比例函数等问题。

2、几何考试内容:本部分主要考察平面图形的性质、三角形的性质、圆的性质、相似与全等等知识点。

要求目标:学生需要掌握平面图形的基本性质,如线段、角、多边形等;掌握三角形的性质,如三角形内角和、中线定理、角平分线定理等;掌握圆的性质,如圆心角、弧长、切线等;理解相似和全等的概念,能够判断两个图形是否相似或全等。

3、数据与统计考试内容:本部分主要考察数据的收集、整理和表示方法,以及统计分析方法等知识点。

要求目标:学生需要掌握数据的收集、整理和表示方法,如频数、频率、累计频率等;掌握统计分析方法,如均值、中位数、众数、极差、方差等;能够进行简单的数据分析和统计。

4、应用题考试内容:本部分主要考察数学知识在实际问题中的应用能力。

要求目标:学生需要能够将数学知识应用到实际问题中,解决生活中的实际问题。

例如,能够解决关于比例、利润、利率、速度等方面的实际问题。

反比例函数的意义是指两个变量之间的关系是反比例关系,即其中一个变量的值增加,另一个变量的值就会相应地减少。

例如,当一个物品的价格上涨时,人们购买该物品的数量会下降。

反比例函数的表达式通常写作y=k/x,其中k是常数。

这个表达式中,y和x分别代表两个变量的值,k是比例系数。

当x增加时,y会相应地减少,反之亦然。

反比例函数的图像是一个开口朝下的双曲线。

反比例函数也可以写成y=k/x^n的形式,其中n是正整数。

初三数学中考试卷考纲

初三数学中考试卷考纲

一、考试目的本次考试旨在检测学生对初中阶段数学知识的掌握程度,检验学生的数学思维能力、运算能力和解决问题的能力,为高中阶段的学习奠定基础。

二、考试范围1. 数与代数(1)实数:实数的概念、性质、运算;绝对值;平方根;立方根;实数的大小比较。

(2)代数式:代数式的概念、运算;单项式、多项式、分式的概念、运算;因式分解。

(3)方程与不等式:一元一次方程、一元二次方程、二元一次方程组、不等式及其解集;方程与不等式的应用。

2. 几何(1)平面几何:点、线、面、角、三角形、四边形、圆等基本概念;三角形全等、相似、勾股定理;平行四边形、矩形、菱形、正方形、圆的性质和判定。

(2)空间几何:长方体、正方体、棱柱、棱锥、球的性质和判定;三视图;空间几何问题的计算。

3. 统计与概率(1)统计:统计图表的制作、分析;平均数、中位数、众数、方差、标准差的概念及计算。

(2)概率:概率的基本概念、概率的求法;古典概型、几何概型;随机事件的独立性。

三、考试题型1. 基础题:包括选择题、填空题,主要考查学生对基本概念、性质、公式的掌握程度。

2. 应用题:包括计算题、证明题、应用题,主要考查学生的运算能力、逻辑推理能力、解决问题的能力。

3. 综合题:包括综合应用题、探究题,主要考查学生的综合运用知识的能力、创新思维能力。

四、考试时间本次考试时间为120分钟。

五、评分标准1. 基础题:每题3分,共15分。

2. 应用题:每题5分,共20分。

3. 综合题:每题10分,共30分。

总分:65分。

六、考试注意事项1. 考生在考试过程中应遵守考场纪律,保持安静,认真作答。

2. 考生在考试过程中如遇问题,应及时向监考老师求助。

3. 考生在考试结束后,应将试卷、答题卡和草稿纸交回给监考老师。

4. 考生在考试过程中应保持卷面整洁,字迹清晰。

5. 考生应认真审题,确保答题准确无误。

七、考试说明1. 本试卷严格按照《初中数学课程标准》和《中考数学考试大纲》编写。

2024年度6深圳中考数学考点知识点的总结

2024年度6深圳中考数学考点知识点的总结

2024年度深圳中考数学考点、知识点总结2024年度深圳中考的数学试卷主要包括了以下几个考点和知识点:(一)一次函数与二次函数在本次考试中,一次函数和二次函数是考试的重点。

主要涉及一次函数方程和不等式的解法、一次函数的图像与性质、一次函数与二次函数的比较与分析等方面。

例如,通过给出的问题,命题人员可能会要求学生解一元一次方程或不等式,求出方程或不等式的解集;或者要求学生通过计算和整理数据,找出一次函数的解析式并画出其图像;还可能会要求学生根据给定的一次函数与二次函数的表达式,进行比较与分析。

(二)几何与空间几何在几何与空间几何的考点中,主要包括了平行线、相交线、垂线、中线、角平分线、四边形的性质等内容。

命题人员可能通过这些内容出一些定理或题目,要求学生根据给定的条件,进行相关的证明或计算。

例如,学生可能会需要根据给定的条件,判断线段是否平行或垂直;或者计算出线段的长度;还可能需要根据给定的条件,计算出角的度数或证明两个角相等或互补。

(三)平面向量与解析几何在本次考试中,平面向量与解析几何是较难的考点。

主要内容包括向量的基本性质、向量的线性运算、向量的共线性和垂直性、平面解析几何的性质与应用等。

例如,命题人员可能会通过给定的题目,要求学生计算出向量的模、方向角或坐标;或者给出一些条件,让学生计算出向量的和、差、数量积或向量积。

(四)等差数列与等比数列在等差数列与等比数列这个考点中,主要涉及数列基本概念、数列的公式、等差数列与等比数列的性质和应用等。

例如,命题人员可能会给出一些数列的前几项,要求学生计算出数列的公式;或者给出数列的公式,让学生计算出数列的第n项或前n项和。

(五)概率与统计概率与统计也是本次考试的重点内容。

主要包括概率的基本概念、概率的计算、事件的独立与非独立性、抽样调查与统计等方面。

例如,命题人员可能会给出一些条件,要求学生计算事件的概率;或者给出一些数据,让学生进行统计和分析。

(完整版)初中数学中考考试大纲

(完整版)初中数学中考考试大纲

梯形的概念

等腰梯形的性质和判定

线段、矩形、平行四边形、三角形的中心及物理意义

运用三角形、四边形、正六边形进行镶嵌设计

7、圆
圆的有关概念

弧、弦、圆心角的关系

圆的性质

圆周角与圆心角的关系、直径所对圆周角的特征

三角形的内心与外心

切线的概念

切线与过切点的半径之间的关系

切线的判定

过圆上一点画圆的切线
图形坐标与坐标变化

用适当方式确定物体的位置

考试内容
考试
要求目标
单元
知识条目
a1
a2
a3
统计与概率
1、统计
数据的收集、整理

抽样、样本

统计图(条形图、折线图、扇形图)

众数、中位数、平均数、加权平均数

频数、频率的概念

频数分布的意义和作用

频数分布表和分布直方图

用频数分布直方图解决实际问题

(1)实世界中数量关系,具有初步的数感、符号感和抽象思维能力。这一目标主要包括能够在较复杂的层面上用数字和图表刻画现实生活中的现象,对一些数字信息作出合理解释与推断,并运用代数中的方程、不等式、函数等去刻画具体问题,建立合适的数学模型。
(2)对现实空间及图形有较丰富的认识,具体初步的空间观念和形象思维能力。这一目标包括能够通过动手操作、图形变换等多种方式探讨图形的形状、大小、位置关系、等量关系等,进行简单的图案设计、构建几何空间,并尝试用图形去从事推理活动。
(4)能够通过观察、实验、猜想、证明等数学活动过程,作出合理推理和演绎推理,能有条理地,清晰地阐述自己的观点。这一目标主要包括能够通过推理作出合理的判断与选择,尝试通过不同的方式去检验一个猜想,并能够用比较规范的逻辑推理形式表达自己的演绎推理过程。

2023年广东省深圳市中考数学真题 (解析版)

2023年广东省深圳市中考数学真题 (解析版)
1
【答案】 ##0.25
4
【解析】 【分析】根据概率公式进行计算即可.
【详解】解:随机挑选一本书共有 4 种等可能的结果,其中拿到《红星照耀中国》这本书的结果有 1 种, ∴P 1,
4
1
故答案为: .
4
【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.
12. 已知实数 a,b,满足 a b 6 , ab 7 ,则 a2b ab2 的值为______.
∴ BAD 1 BAC 35 ; 2
故答案为 35.
【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.
14. 如图,RtOAB 与 Rt△OBC 位于平面直角坐标系中,AOB BOC 30 ,BA OA ,CB OB ,
若 AB
3
,反比例函数
y
k x
k
0
恰好经过点
则 75 50 . x x5
故选 B 【点睛】本题考查分式方程的应用,理解题意准确找到等量关系是解题的关键.
9. 爬坡时坡角与水平面夹角为 ,则每爬 1m 耗能 1.025 cos J ,若某人爬了 1000m,该坡角为 30°,
则他耗能(参考数据: 3 1.732 , 2 1 .4 1 4 )( )
故选 B
【点睛】本题考查正负数的意义,属于基础题,解题的关键在于理解负数的意义.
2. 下列图形中,为轴对称的图形的是( )
A.
B.
C.
D.
【答案】D 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】解:A、不是轴对称图形,故本选项不符合题意; B、不是轴对称图形,故本选项不符合题意; C、不是轴对称图形,故本选项不符合题意; D、是轴对称图形,故本选项符合题意. 故选:D. 【点睛】本题主要考查了轴对称图形,解决问题的关键是熟练掌握轴对称图形的概念,轴对称图形概念, 一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形. 3. 深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了 320000 万吨钢材,320000 这个 数用科学记数法表示为( )

2024年全国中考数学考试大纲详解

2024年全国中考数学考试大纲详解

2024年全国中考数学考试大纲详解数学一直以来都是中考科目中的重中之重,对于考生来说,掌握数学考试大纲的内容和要求至关重要。

在2024年的全国中考数学考试中,考生将会面临怎样的题型和知识点呢?本文将对2024年全国中考数学考试大纲进行详解,以帮助考生更好地备考。

一、数与代数1. 数的运算2024年的中考数学考试将重点考查数的四则运算,包括加减乘除,并增加了较复杂的混合运算。

考生需要注意运算的优先级和法则,并能够准确地进行计算。

2. 代数式与简单方程本部分考查代数式的展开和化简,以及简单方程的解法。

考生需要熟悉代数式的基本性质和操作法则,并能够解一元一次方程和一元一次不等式。

3. 等式与不等式考生需要掌握等式和不等式的性质和解题方法,包括一元一次方程、一元一次不等式的解法,以及含有绝对值的方程和不等式的解法。

二、几何与图形1. 两角关系与直角三角形本部分考查角的度量和角的关系,以及直角三角形的性质和求解。

考生需要掌握角的度量单位和换算,熟练计算角的大小和角的关系,能够运用正弦、余弦、正切等概念解决直角三角形的相关问题。

2. 勾股定理与平面向量考生需要熟悉勾股定理的表述和应用,能够判断三边长度是否构成直角三角形,以及利用勾股定理计算未知边长。

此外,平面向量的基本概念和运算法则也是考试的重点内容。

3. 图形的性质与计算本部分考查各种图形的性质和计算方法,包括平行四边形、矩形、正方形、菱形等的特点和计算公式,以及圆的性质和相关计算。

考生需要熟练运用相关公式解决与图形相关的计算题。

三、数据与统计1. 数据的收集与整理考生需要了解数据的搜集方法和整理方式,包括样本调查、问卷调查等常用方法,并能够正确地整理数据,用表格、折线图等形式直观地展示数据结果。

2. 代表值与频数分布本部分考查代表值的计算和频数分布的分析,包括平均数、中位数、众数等的计算方法和应用,以及频数分布的制表和分析。

3. 概率的计算与应用考生需要熟悉概率的基本概念和计算方法,包括事件的概率计算、事件间的关系、互斥事件和独立事件的判断等。

广东中考考纲

广东中考考纲

广东中考考纲你好!欢迎来到广东中考考纲。

下面是我为您准备的广东中考考纲的详细内容。

一、考试性质和目的广东中考考纲是衡量学生是否达到初中毕业标准,同时也是高中阶段学校招生的重要依据。

考试目的在于测试初中毕业生在掌握基本知识、基本技能、基本方法、基本应用等方面的能力。

二、考试内容语文:1. 考试范围包括基础知识、阅读理解、语言运用、写作等。

2. 注重对文言文、现代文阅读和写作能力的考察。

3. 强调语言规范、准确、得体,注重考察学生的语言表达能力。

数学:1. 考试内容包括数与代数、空间与图形、统计与概率等。

2. 注重对问题解决能力和数学思维能力的考察。

3. 强调数学基础知识和基本技能的掌握。

英语:1. 考试内容包括词汇、语法、阅读理解、写作等。

2. 注重对听、说、读、写等综合技能的考察。

3. 强调语言运用能力和跨文化交际意识。

物理:1. 考试内容包括力学、电学、热学等基本物理知识。

2. 注重对实验操作能力和物理思维能力的考察。

3. 强调物理基础知识和基本技能的掌握。

化学:1. 考试内容包括化学基本概念和原理、元素化合物性质、实验操作等。

2. 注重对化学实验操作能力和科学探究能力的考察。

3. 强调化学基础知识和基本技能的掌握。

思想品德:1. 考试内容包括道德与法治基础知识、国情教育、心理健康教育等。

2. 注重对知识运用能力和道德判断能力的考察。

3. 强调对学科基本观点和基本方法的掌握。

三、题型示例和样题我们会在后续的时间里将具体的题型示例和样题提供给学生们参考,帮助学生们更好地备考。

四、考试形式与时间安排考试形式包括笔试和面试,时间安排会在考试前一个月向社会公布。

请学生们及时关注相关消息,做好准备。

以上就是广东中考考纲的详细内容,希望能够帮助到您。

2024年全国中考数学考试大纲解读

2024年全国中考数学考试大纲解读

2024年全国中考数学考试大纲解读《2024 年全国中考数学考试大纲解读》中考,作为学生学业生涯中的一次重要关卡,数学学科一直备受关注。

而考试大纲则是指导学生备考的重要依据。

2024 年全国中考数学考试大纲的出炉,为广大师生指明了新的方向。

接下来,让我们一同深入解读这份大纲。

首先,从整体结构来看,2024 年的中考数学大纲保持了相对的稳定性。

这对于考生和教师来说是一个积极的信号,意味着备考的大框架和重点方向没有发生根本性的改变。

但在稳定的基础上,也有一些细微的调整和优化。

在知识板块方面,代数、几何、概率与统计依然是三大核心领域。

代数部分,对函数的要求进一步提高,特别是一次函数、二次函数和反比例函数的综合应用。

这不仅要求学生能够熟练掌握函数的基本性质和图像,还需要具备运用函数解决实际问题的能力。

例如,通过建立函数模型来解决生产、销售等实际场景中的最优方案问题。

几何部分,对图形的性质和证明的考查更加注重逻辑推理和思维的严谨性。

三角形、四边形、圆等常见图形的性质和相关定理的运用依然是重点。

同时,新增了对空间几何的初步要求,培养学生的空间想象能力和几何直观。

比如,通过给出一个立体图形的三视图,要求学生还原出该立体图形,并计算相关的体积、表面积等。

概率与统计部分,强调了对数据的收集、整理、分析和解释。

学生需要能够读懂各类统计图表,从中提取关键信息,并进行数据的分析和推断。

同时,对概率的计算和应用也有更具体的要求,例如通过实验估计概率,并能运用概率知识解决简单的实际问题。

在能力要求方面,大纲突出了对数学思维能力和创新应用能力的考查。

数学思维能力包括逻辑思维、抽象思维、推理能力等。

学生需要能够从复杂的数学问题中抽丝剥茧,找到解题的关键。

创新应用能力则体现在能够运用所学的数学知识,创造性地解决新情境、新问题。

例如,给出一个新颖的数学情境,要求学生运用已有的知识和方法进行探索和解决。

对于题型分布,选择题、填空题、解答题的比例大致保持不变。

2024年中考数学考试大纲更新版

2024年中考数学考试大纲更新版

2024年中考数学考试大纲更新版中考作为学生学业生涯中的一次重要考试,数学科目一直占据着重要的地位。

为了更好地引导学生学习数学,提高数学素养,适应时代发展的需求,2024 年中考数学考试大纲进行了更新。

以下将对更新后的考试大纲进行详细解读。

一、考试目标2024 年中考数学考试旨在考查学生的数学基础知识、基本技能、基本思想和基本活动经验,以及运用所学知识分析问题和解决问题的能力。

注重考查学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,同时关注学生的创新意识和实践能力的发展。

二、考试内容1、数与代数(1)数的认识理解有理数、无理数、实数的概念,掌握它们的性质和运算。

能比较实数的大小,能用数轴上的点表示实数,会求实数的相反数、绝对值。

(2)数的运算掌握有理数的加、减、乘、除、乘方运算,以及简单的混合运算。

理解整式、分式的概念,掌握整式的加减乘除运算,以及分式的化简和运算。

能进行二次根式的化简和运算。

(3)方程与不等式能解一元一次方程、二元一次方程组、一元二次方程,会用方程解决实际问题。

能解一元一次不等式(组),并用数轴表示解集。

(4)函数理解函数的概念,能确定函数自变量的取值范围。

掌握一次函数、反比例函数、二次函数的图象和性质,能用函数解决实际问题。

2、图形与几何(1)图形的认识认识点、线、面、角、相交线与平行线,掌握三角形、四边形、圆的基本性质和相关定理。

了解视图与投影的基本知识。

(2)图形的变换掌握平移、旋转、轴对称的性质,能进行简单的图形变换。

(3)图形的相似与全等理解相似三角形、全等三角形的判定和性质,能运用它们解决问题。

(4)解直角三角形掌握锐角三角函数的概念,能运用三角函数解决与直角三角形相关的实际问题。

(5)图形与坐标理解平面直角坐标系的概念,能在坐标系中表示点的位置,会用坐标表示图形的变换。

3、统计与概率(1)数据的收集、整理与描述了解普查和抽样调查的区别,会收集、整理和分析数据,能用统计图(条形统计图、扇形统计图、折线统计图)描述数据。

深圳市中考考纲

深圳市中考考纲

深圳市中考考纲深圳市中考考纲是指为深圳市中学毕业生设定的一套考试内容和要求,旨在全面评估学生的学业水平和能力素养。

本文将详细描述深圳市中考考纲的内容,包括科目设置、知识点要求以及评分标准,并且附带举例来帮助读者更好地理解。

一、科目设置语文是深圳市中考的核心科目之一。

它包括语文综合、阅读理解和作文三个部分。

语文综合测试学生的语言综合能力,阅读理解考察学生的阅读理解和推理能力,作文则要求学生能够准确、流利地表达自己的意思。

数学是深圳市中考的另一个核心科目。

它包括数与式、方程与不等式、函数与图像、空间几何与立体几何、数据与统计五个部分。

数学考试旨在测试学生的逻辑思维能力、数学基本概念的理解以及解决实际问题的能力。

英语是深圳市中考的外语科目。

它包括听力、词汇与语法、阅读与写作三个部分。

英语考试评估学生的听、说、读、写的能力,以及对语法规则的掌握程度。

物理是深圳市中考的自然科学科目之一。

它包括力学、热学、光学、电学、现代物理五个部分。

物理考试考察学生对自然科学基本概念的理解和运用能力。

化学是深圳市中考的另一个自然科学科目。

它包括元素与化合物、化学反应、化学计算、酸碱与盐、碳化合物与官能团五个部分。

化学考试评估学生对化学基础知识的理解和解决实际问题的能力。

6.历史与地理历史与地理是深圳市中考的社会科学科目之一。

历史考试包括近现代史、古代史、民族史三个部分,地理考试包括自然地理、人文地理、地图与实践三个部分。

历史与地理考试评估学生对人类发展历程和社会地理现象的理解和分析能力。

政治是深圳市中考的另一个社会科学科目。

它包括宪政、政治制度与社会主义核心价值观、党员先进性与党的领导三个部分。

政治考试评估学生对政治基本概念的理解以及对国家政治制度和核心价值观的认识。

二、知识点要求深圳市中考考纲要求学生掌握相应科目的基本知识和技能,并能够熟练运用于实际问题的解决中。

以下是每个科目知识点的部分要求和示例:- 熟练掌握汉字的基本笔画和发音;- 能够正确运用词汇和成语,准确表达自己的思想;- 灵活运用各种修辞手法,提高文章的文采。

全国中考数学大纲2024版更新

全国中考数学大纲2024版更新

全国中考数学大纲2024版更新中考,作为学生学业生涯中的一次重要考试,其数学大纲的更新一直备受关注。

2024 版的全国中考数学大纲在众多期待中迎来了新的变化,这些变化不仅反映了教育理念的进步,也对学生的学习和教师的教学提出了新的要求。

首先,让我们来看看知识内容方面的更新。

在代数领域,函数的部分得到了进一步的深化和拓展。

函数一直是数学中的重要概念,新版大纲更加注重函数与实际问题的结合,要求学生能够运用函数知识解决生活中的各种数学问题。

例如,通过建立函数模型来分析经济增长、资源消耗等实际情况,培养学生的数学应用能力和解决实际问题的思维。

几何方面的更新也十分显著。

在传统的平面几何和立体几何基础上,增加了对于空间想象力和几何推理能力的考察。

不再仅仅局限于对定理和公式的记忆,而是更强调学生对几何图形的理解和构建能力。

比如,通过给定一些条件,让学生自己设计和构建符合要求的几何图形,并进行相关的计算和证明。

在统计与概率部分,新版大纲加大了对于数据分析和处理能力的要求。

学生需要能够从大量的数据中提取有用的信息,进行合理的分析和推断。

同时,对于概率的计算和应用也有了更深入的考察,要求学生能够理解概率的本质,并运用概率知识解决实际决策中的问题。

在数学思维能力的培养方面,2024 版大纲也有了明确的导向。

逻辑推理能力一直是数学的核心能力之一,新版大纲更加注重培养学生严谨的逻辑思维和推理过程。

通过设置一些具有挑战性的推理题目,引导学生逐步深入思考,锻炼其逻辑推理的严密性和准确性。

创新思维能力的培养在新版大纲中也得到了重视。

鼓励学生从不同的角度思考问题,提出独特的解题方法和思路。

例如,在一些综合性的问题中,不再局限于一种标准答案,而是鼓励学生发挥创造性,只要解题过程合理、逻辑清晰,都能得到认可。

为了适应这些大纲的更新,学生在学习方法上也需要做出相应的调整。

不能再满足于死记硬背公式和定理,而是要真正理解数学知识的本质和内在联系。

(完整版)年深圳市中考数学考试大纲

(完整版)年深圳市中考数学考试大纲

年深圳市中考数学考试大纲深圳市初中数学学业考试,是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称《标准》)所规定的数学毕业水平的程度,是高中阶段学校招生的重要依据之一。

一、考试命题的指导思想1.数学学业考试体现《标准》的评价理念,引导和促进数学教学全面落实《标准》所设立的课程目标,改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学业考试既重视对学生学习数学知识与技能的结果和过程的评价,也重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还重视对学生数学认识水平的评价。

3.数学学业考试命题面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题!使具有丕同韵数学认知特点,一不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

二、考试命题原则数学学科毕业考试的命题遵循以下基本原则。

1.考查内容依据《标准》,体现基础性命题突出对学生基本数学素养的评价。

试题首先关注《标准》中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法,基本概念和常用的技能。

所有试题求解过程中所涉及的知识与技能以《标准》为依据,不扩展范围与提高要求。

2.试题素材、求解方式等体现公平性数学学业考试的内容、试题素材和试卷形式对每一位学生是公平的。

试题不需要特殊背景知识也能够理解。

对于具有特殊才能和需要特殊帮助的学生,试题允许学生用各自的数学认知特征、已有的数学活动经验,来表达自己的数学才能。

制定评分标准系统时以开放的态度对待合理的、但没有预见到的答案形式,尊重不同的解答方法和表述方式。

3.试题背景具有现实性试题背景来自于学生所能理解的生活现实,符合学业所具有的数学现实和其它学科现实。

2023年广东省深圳市中考数学真题含答案解析

2023年广东省深圳市中考数学真题含答案解析

绝密★启用前2023年广东省深圳市中考数学真题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如果+10°C表示零上10度,则零下8度表示( )A. +8B. −8C. +10D. −102. 下列图形中,为轴对称的图形的是( )A. B. C. D.3. 深中通道是世界级“桥、岛、隧、水下互通”跨海集群工程,总计用了320000万吨钢材,320000这个数用科学记数法表示为( )A. 0.32×106B. 3.2×105C. 3.2×109D. 32×1084. 下表为五种运动耗氧情况,其中耗氧量的中位数是( )A. 80L/ℎB. 107.5L/ℎC. 105L/ℎD. 110L/ℎ5. 如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,则a的值为( )A. 1B. 2C. 3D. 46. 下列运算正确的是( )A. a3⋅a2=a6B. 4ab−ab=4C. (a+1)2=a2+1D. (−a3)2=a67. 如图为商场某品牌椅子的侧面图,∠DEF=120∘,DE与地面平行,∠ABD=50∘,则∠ACB=( )A. 70°B. 65°C. 60°D. 50°8. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是( )A. 75x−5=50xB. 75x=50x−5C. 75x+5=50xD. 75x=50x+59. 爬坡时坡角与水平面夹角为α,则每爬1m耗能(1.025−cosα)J,若某人爬了1000m,该坡角为30°,则他耗能(参考数据:√ 3≈1.732,√ 2≈1.414)( )A. 58JB. 159JC. 1025JD. 1732J10. 如图1,在Rt▵ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为( )B. √ 427C. 17D. 5√ 3A. 15√ 52第II卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为.12. 已知实数a,b,满足a+b=6,ab=7,则a2b+ab2的值为.13. 如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC= 20∘,则∠BAD=°.14. 如图,Rt▵OAB与Rt▵OBC位于平面直角坐标系中,∠AOB=∠BOC=30∘,BA⊥OA,(k≠0)恰好经过点C,则k=.CB⊥OB,若AB=√ 3,反比例函数y=kx15. 如图,在▵ABC 中,AB =AC ,tanB =34,点D 为BC 上一动点,连接AD ,将▵ABD 沿AD翻折得到▵ADE ,DE 交AC 于点G ,GE <DG ,且AG:CG =3:1,则S 三角形AGES三角形ADG= .三、解答题(本大题共7小题,共56.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年深圳市中考数学考试大纲深圳市初中数学学业考试,是义务教育阶段的终结性考试,目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称《标准》)所规定的数学毕业水平的程度,是高中阶段学校招生的重要依据之一。

一、考试命题的指导思想1.数学学业考试体现《标准》的评价理念,引导和促进数学教学全面落实《标准》所设立的课程目标,改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学业考试既重视对学生学习数学知识与技能的结果和过程的评价,也重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还重视对学生数学认识水平的评价。

3.数学学业考试命题面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题!使具有丕同韵数学认知特点,一不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

二、考试命题原则数学学科毕业考试的命题遵循以下基本原则。

1.考查内容依据《标准》,体现基础性命题突出对学生基本数学素养的评价。

试题首先关注《标准》中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法,基本概念和常用的技能。

所有试题求解过程中所涉及的知识与技能以《标准》为依据,不扩展范围与提高要求。

2.试题素材、求解方式等体现公平性数学学业考试的内容、试题素材和试卷形式对每一位学生是公平的。

试题不需要特殊背景知识也能够理解。

对于具有特殊才能和需要特殊帮助的学生,试题允许学生用各自的数学认知特征、已有的数学活动经验,来表达自己的数学才能。

制定评分标准系统时以开放的态度对待合理的、但没有预见到的答案形式,尊重不同的解答方法和表述方式。

3.试题背景具有现实性试题背景来自于学生所能理解的生活现实,符合学业所具有的数学现实和其它学科现实。

应用性问题的题材具有鲜明的时代特征,能够在学生的生活中找到原型。

4.试卷具备有效性数学学业考试试卷应当有效地反映学生的数学学习状况,以下几点应当特别注意:(1)关注对学生数学学习各个方面的考查,既有对学生数学学习结果的考查,也包括对学生数学学习过程的考查;既有对学生数学思维水平的考查,也包括对学生数学思维特征的考查。

(2)试卷形式以选择题、填空题、计算(求解)题、证明题、应用性问题、阅读分析题、探索性问题和开放性问题为主要题型。

(3)试题的求解过程反映《标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等,而不仅仅是记忆、模仿与熟练。

三、考试内容数学学业考试的考查内容以《标准》中的“内容标准”为基本依据。

考试方面包括:基础知识与基本技能;数学活动过程;数学思考:解决问题能力;对数学的基本认识等。

具体如下:1.基础知识与基本技能考试的主要内容:了解数产生的意义,理解代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合;能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性;正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测:了解概率的涵义,能够借助概率模型、或通过设计活动解释一些事件发生的概率。

2.“数学活动过程”考查的主要方面:数学活动过程中所表现出来的思维方式、思维水平。

对活动对象、相关知识与方法的理解深度;从事探究与交流的意识、能力和信心等。

3.“数学思考”方面的考查方面:学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;面对现实问题时,能主动尝试从数学角度、用数学思维方法去寻求解决问题的策略;能通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性等等。

4.“解决问题能力”考试的主要方面:能从数学角度提出问题、理解问题、并综合运用数学知识以解决问题;具有一定的解决问题的基本策略。

5.“对数学的基本认识”考试的主要方面:对数学内部统一性的认识(不同数学知识之问的联系、不同数学方法之间的相似性等),对数学与现实、或其他学科知识之间联系的认识等等。

四、考试形式与试卷结构数学学业考试采用书面闭卷考试的形式。

试卷结构为:全卷满分为100分,考试时间为90分钟.数与代数、空间与图形、统计与概率、实践与综合利用四个领域在试题中所占的比重与它们在教学中所占课时的百分比大致相同,数与代数约占45%,空间与图形约占35%,统计与概率约占15%,实践与综合利用约占5%。

试题题型将有如下形式:选择题、填空题、计算(求解)题、证明题、应用性问题、阅读分析题,探索性问题、开放性问题等。

试题按其难度分为容易题、中等题和难题.三种试题分值之比约为5:3:2.五、试题类型与题型示例数学学业考试的命题以《标准》为基本依据,参照《标准》中“评价建议”的要求,充分发挥各种已有题型的功能,其基本原则为以下几个方面:(1)考查内容的重心是《标准》中最基础和最核心的内容。

即对所有学生来说,在他们学习数学和应用数学解决问题过程中是最重要的、必须掌握的核心观念,重要的思想方法、基本的概念,常用的技能。

不出现“繁、偏、旧”试题。

(2)科学性与合理性,既包括它在数学方面是正确的,又包括它所描述的问题情境是合理的、而非臆造的。

(3)准确、简洁、可读性,确保试题不产生歧义。

具体表述时可以是抽象的数学语言,也可以是形象化的语言和符号;不造成文字量过多而提高题目的“难度”;试题的表达应符合初中毕业生的阅读习惯。

(4)试题的“难度”不反映在对某个具体技巧的掌握及熟练程度、或者问题本身的复杂程度上,而是反映在对学生数学思维水平(如抽象程度、多样化、逻辑性、形象化等)和对数学的理解与应用能力(如能否洞察较为深刻的数学关系、数学特征,用数学解决问题时的策略有效性等)等方面的考查上。

具体题型的命题要求如下:1.选择题与填空题这两类试题只要求学生给出问题的最终答案,并只依据学生提出的最终答案评判学生解答这类题目正确与否。

这两类试题可以用于特定基本数学事实、数学技能的考查,试题可以用多种表达方式,包括文字、图像与代数符号等陈述。

2.计算(求解)类问题这类试题的目标清晰,对解决问题过程中所需要的数学知识、方法有较明确的提示。

解题过程中学生需要做的主要活动是回忆、严格按照程序操作不出无意识错误等。

这类试题通常用于对一些数学公式、数学技能的熟悉与熟练情况的考查,这一类试题的运算种类、步骤、复杂程度均不超过《标准》的要求。

3.证明题这类试题所涉及的活动既有寻找这些数学逻辑关联的探索性活动,也有对相关数学证明“方法、证明技巧的有效应用,甚至还蕴涵对问题不同角度的理解、不同方式的表达等等。

这类试题用于考查学生逻辑推理能力、逻辑关系的寻求和把握状况、对数学证明的过程与方法的理解和掌握情况。

证明试题首先在于由条件和结论所构成的命题具有价值;其次是求解策略的空间比较大——可以通过对试题采用不同的认识角度,而获得不同的证明思路;再就是基本的证明过程应当能够反映学生对相应数学知识或方法的理解水平。

试题在表达的清晰性、准确性等方面需要注意以外,还应注意试题的“难度”不宜落实在是否能够找到那个特定的证明模式上(如辅助线、代数表达式、特殊数值)或者知道某个特定的技巧上。

另外,对于每一步的理由说明也不做要求。

4.应用题此类问题有利于考查学生数学建模的能力、对相应知识与方法的理解水平、解决问题的意识与能力,这类试题的命制原则包括以下几点:(1)问题背景是现实的,如关于资源、环境、其他学科活动、经济生活、数学游戏或故事,而不是脱离生活实际的、人为编造的情境。

(2)内容以及叙述方式是可理解的,不需要学生已经拥有一些特定的背景知识或技能(除非事先给出解释)。

(3)内涵是丰富且有价值的,即问题本身或求解过程中涉及丰富而重要的数学概念、数学思想方法。

5.阅读分析题这类试题用于评价学生认识数学、理解数学以及数学学习的能力;考查学生寻求具体对象的数学性质、对象之间的数学关系、对数学知识的理解水平以及数学方法的应用水平等;还用于考查学生获取图表所含数学信息的能力,从已有信息中做出合理推断的能力,其基本原则如下:(1)问题背景隐含重要数学概念、性质或关系,素材来源于生活、来源于数学或其他学科。

(2)问题以新的数学为对象,包括概念、法则、公式、命题等为主要对象。

问题本身或求解关注对变化对象的研究、对变化关系的理解,不以求未知量为所有研究对象。

(3)问题的挑战性落实在研究数学意义上,而不是阅读方面的障碍导致学生解答困难。

(4)通过阅读图表获得的信息应当超越借助代数运算获得的结果,用于考查学生对相应数学对象的整体把握水平,包括估算能力,要求学生做一些合理的预测和推断。

6.探索题这类试题用于考查学生的数学实践能力、探索能力,考查学生“做数学”与从事“数学化”活动的能力;评价学生从事归纳、类比、概括、推理等思维活动的水平,以及对自我数学活动过程与结论的反思能力等,其基本要求如下:(I)试题背景具有实质性意义,而不仅仅将探索对象归结为对一列数字特征的归纳。

(2)试题的求解过程体现策略多样化的特点,允许借助直觉思维、或对问题的整体把握而直接获得合理的猜测。

(3)试题中的设问能引发学生对自我思考过程、而不仅仅是对结果的反思。

(4)试题的评分标准充分考虑到多种合理性答案及评分规定,没有科学性错误。

7.开放性问题这类试题能给每一位学生提供用自己掌握的知识、熟悉的方式去表达对问题的理解的机会,用于考查学生直觉思维和发散思维的活动水平,从而能够较全面地推断学生的数学学习状况。

这类试题的命题基本要求如下:(1)问题的“开放性”落实在问题所提供的条件具有不确定,解决问题的策略多样化、不同但合理的答案个数不确定(不是仅仅指答案个数多于1)、问题结构的可改变性等方面。

(2)能使所有的学生都能够给出自己对问题的理解、解答。

合理的解答包括在数学上程度不同、在思维水平上存在差异、在表述形式上多样的答案。

(3)问题本身或求解过程中涉及丰富而重要的数学概念、数学思想方法:有利于学生从事有价值的数学活动——观察、实验、猜测、验证、推理等。

相关文档
最新文档