反比例图像及性质
函数及其图象反比例函数反比例函数的图象和性质
2023函数及其图象反比例函数反比例函数的图象和性质•反比例函数概述•反比例函数的图象特征•反比例函数的性质•反比例函数的应用目•反比例函数与其他数学内容的联系•研究反比例函数的实验与数值模拟录01反比例函数概述形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
定义当$k > 0$时,图象分布在第一、三象限,且在每个象限内$y$随$x$的增大而减小;当$k < 0$时,图象分布在第二、四象限,且在每个象限内$y$随$x$的增大而增大。
性质定义与性质描述生活中常见的数量关系例如,当两个变量成反比例关系时,可以用反比例函数来描述它们之间的关系。
例如,路程一定时,速度与时间成反比;物体重量一定时,浮力与排开液体的体积成反比等。
数学中基本概念之间的联系反比例函数与正比例函数、一次函数、二次函数等有密切的联系,研究反比例函数有助于理解这些基本概念之间的联系与区别。
反比例函数的重要性描述自然现象和社会现象许多自然现象和社会现象中都存在反比例关系,例如物理学中的万有引力定律、电学中的欧姆定律等。
研究反比例函数可以描述这些现象,并帮助人们更好地理解它们。
数学应用在数学中,反比例函数与其他函数、方程、不等式等都有密切的联系。
研究反比例函数可以帮助人们更好地理解这些概念,并为解决实际问题提供更好的数学工具。
研究反比例函数的意义与发展02反比例函数的图象特征中心对称反比例函数图象以原点为中心对称。
双曲线反比例函数图象表现为双曲线,两支曲线永远不会相交。
形状特征水平位置当反比例函数解析式中的常数为正数时,图象在第一、三象限;当常数为负数时,图象在第二、四象限。
垂直位置由于反比例函数的图象关于原点对称,因此当常数为正数时,图象向右上方倾斜;当常数为负数时,图象向右下方倾斜。
位置特征当自变量x增大时,函数值y会减小;当自变量x减小时,函数值y会增大。
当|x|增大时,|y|会减小;当|x|减小时,|y|会增大。
反比例函数的图像和性质
A S1 B
A. B. C. D.
S1 S1 S3 S1
= < < >
S2 S2 S1 S2
= S3 < S3 < S2 >S3
C
o
S2 S3 A1 B1 C1
x
7.如图,过平面直角坐标系中的x轴上的整数 点1、2、3、4、5作x轴的垂线,分别交反比例函数 D、E作y轴的垂线。则图中阴影部分的面积是___.
1 4.如图在坐标系中,直线y=x+ 2
k与ห้องสมุดไป่ตู้
4.如图,点A、C是反比例函数
的图
像上的任意两点,过点A作x轴的垂线,过点C 作y轴的垂线,连接OA、OC,设Rt△OAB和 Rt△OCD(O为坐标原点)的面积分别是M和N, y 则M、N的大小关系是( ) A.M>N B.M<N C.M=N D.M和N的大小关系不能确定.
S1
A
B
o
S2
x
C
D
1 5. .如图, 在 y ( x > 0 )的图像上有三点 A , B , C , x 经过三点分别向 x 轴引垂线 , 交 x 轴于 A1 , B1 , C 1 三点 , 边结 OA , OB , OC , 记 OAA 1 , OBB 1 , OCC 1的 面积分别为 S 1 , S 2 , S 3 , 则有 __ .
3 2
5 D. 2
y A D C O B
x
例1.如图:一次函数y=ax+b的图象与 k 反比例函数y= x 交于M (2,m) 、N (1,-4)两点。(1)求反比例函数和一次 函数的解析式;(2)根据图象写出反比 例函数的值大于一次函数 y 的值的x的取值范围。
考点05 反比例函数的图像和性质(解析版)
考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。
反比例函数的图象与性质定
奇偶性
反比例函数是奇函数,因为对于所 有 x,都有 f(-x) = -f(x)。
无界性
由于反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象在 x = 0 处无 界。
反比例函数的性质
01
02
03
分母不为零
反比例函数的分母不能为 零,因此其定义域为 x ≠ 0。
无界性
反比例函数的值域为 y ≠ 0 和 y ≠ -∞,因此其图象 在 x = 0 处无界。
当$x<0$时,反比例函数的图象位于 第三象限,与直线$y=kx+b$相交于 一点,这一点也是它们的切点。
与二次函数的关系
二次函数是形如 $y=ax^2+bx+c$的函数,其 中$a, b, c$是常数且$a neq 0$
。
反比例函数的图象是一个双曲 线,分布在第一和第三象限。
二次函数的图象是一个抛物线 ,可以开口向上或向下。
反比例函数的图象与性质
目 录
• 反比例函数概述 • 反比例函数的图象特点 • 反比例函数的性质分析 • 反比例函数的应用 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数定义
反比例函数的值域
反比例函数是一种数学函数,其定义 为 f(x) = k/x,其中 k 是常数且 k ≠ 0。
磁场强度与电流
在电磁学中,磁场强度与电流之间的关系可以用反比例函数 描述,通过分析反比例函数的特性,可以研究电磁感应和电 磁波的传播。
与其他数学知识的结合
代数方程
反比例函数可以与其他代数方程 结合,用于解决代数问题,例如 求解代数方程的根或解决代数不 等式问题。
反比例函数的图像和性质ppt课件
7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
反比例函数的性质及图像
反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性。
反比例函数图像:
具体性质:
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和
一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
26.1.2反比例函数图像与性质
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
自变量取值范围
自变量 $x$ 的取值范围
在反比例函数中,自变量 $x$ 可以取任何实数,除了使分母为零的值,即 $x neq 0$。
渐近线与交点
反比例函数的图像无限接近但不与坐 标轴相交,即坐标轴是反比例函数图 像的渐近线。
反比例函数的图像关于原点对称,因 此它不会与坐标轴产生交点。
对称性特点
反比例函数的图像关于原点对称,即如果点$(x, y)$在反比例函数的图像上,那 么点$(-x, -y)$也在反比例函数的图像上。
反比例函数的图像还关于直线$y = x$和$y = -x$对称,即如果点$(x, y)$在反比 例函数的图像上,那么点$(y, x)$和$(-y, -x)$也在反比例函数的图像上。
经济学中的供需关系
02
在经济学中,价格和需求量之间的关系往往可以用反比例函数
来表示。
工程学中的压力与体积关系
03
在气体或液体中,压力和体积之间的关系可以用反比例函数来
表示。
05
拓展:复合反比例函数简 介及图像性质探讨
复合反比例函数定义及表达式
定义
复合反比例函数是由两个或多个反比 例函数相乘或相加得到的函数。
反比例函数的性质
当 $k < 0$ 时,双曲线的两支分 别位于第二、四象限,在每一象 限内,$y$ 随 $x$ 的增大而增大 。
典型例题解析
例题1
解析
已知反比例函数 $y = frac{m}{x}$ 的图像经过点 $A(2,3)$,求 $m$ 的值。
函数及其图象反比例函数反比例函数的图象和性质
反比例函数图像的变换规律
伸缩变换
当k值变化时,反比例函数的图像 会沿着x轴或y轴方向伸缩。当k增 大时,图像会向原点靠近;当k减 小时,图像会远离原点。
平移变换
当反比例函数沿x轴或y轴平移时 ,其图像也会相应地沿x轴或y轴 方向移动。
03
反比例函数的性质
反比例函数的单调性
递减性
当$k > 0$时,反比例函数在$(\infty,0)$和$(0,+\infty)$上单调递 减。
溶质溶解度
在溶质溶解度中,溶解度 与温度也成反比关系,即 温度越高,溶解度越低。
反比例函数在经济问题中的应用
供需关系
在市场经济中,供需关系 呈反比关系,即供应量越 大,需求量越小;反之亦 然。
货币流通速度
在货币流通中,货币流通 速度与货币供应量也成反 比关系,即货币供应量越 大,货币流通速度越慢。
热力学中的气体定律
在热力学中,气体的压强与体积也成反比关系,即压强越大,体积 越小。
反比例函数在化学问题中的应用
01
02
03
化学反应速率
在化学反应中,反应速率 与反应物的浓度成反比关 系,即浓度越高,反应速 率越快。
化学平衡
在化学平衡中,反应物的 转化率与反应温度成反比 关系,即温度越高,转化 率越低。
04
反比例函数的图像是双 曲线。
反比例函数的应用场景
在物理学中,反比例函数可以用来描述一些物理量之间的关系,例如电 流与电阻之间的关系可以表示为 $I = \frac{V}{R}$。
在化学中,反比例函数可以用来描述一些化学反应速率与反应物浓度之 间的关系。
在经济学中,反比例函数可以用来描述一些经济现象之间的关系,例如 需求与价格之间的关系可以表示为 $D = \frac{N \times P}{M}$。
反比例函数的图像与性质 课件
反比例函数图像的特点
探索反比例函数图像的形状和特征。
反比例函数的运算和应用
学习如何进行反比例函数的运算,并了解其在 实际问题中Байду номын сангаас应用。
参考资料
1 参考书目
- 反比例函数的进一步学习
2 参考链接
- 更多关于反比例函数的信息
反比例函数的图像与性质
欢迎来到本课件,我们将介绍反比例函数的图像和性质。了解什么是反比例 函数及其表示方法。
什么是反比例函数
定义
反比例函数是一种数学函数关系,当其中一个变量的值增大时,另一个变量的值相应地减小。
表示方法
通常用y=k/x来表示,其中k是非零实数。
反比例函数的图像
性质
反比例函数的图像呈现出一个下凹的曲线,且经过 第一象限和第三象限。
比例线性关系
反比例函数的图像与比例函数的图像之间存在线性 关系。
比例函数的应用
1
实际问题
反比例函数可以用于解决实际问题,例
参考例题
2
如时间和速度之间的关系。
我们将提供一些参考例题,以加深对反 比例函数的理解和应用。
总结
反比例函数的定义和性质
了解反比例函数是如何定义的以及其特点。
反比例函数的几何意义
图像特点
图像的特点是有两条渐近线,即x轴和y轴,它们分 别称为垂直渐近线和水平渐近线。
反比例函数的几何意义
1 越来越快地接近x轴和y轴
2 与比例函数的区别
随着x值的增大或减小,函数的值会越来越接 近y轴或x轴。
相比之下,比例函数的图像是通过原点的直 线。
反比例函数的运算
乘除法反转
当两个变量成反比例关系时,乘积保持不变。
反比例函数的图象和性质课件
函数值的无限性
01
由于x不能为0,所以y的值是无限 的,即反比例函数图像上存在无穷 多个点。
02
在每一个象限内,随着x的增大或 减小,y的值会趋近于无穷大或无 穷小。
函数值的单调性
当k>0时,函数在(0, +∞)区间内单调 递减,在(-∞, 0)区间内也单调递减。
当k<0时,函数在(0, +∞)区间内单调递 增,在(-∞, 0)区间内也单调递增。
反比例函数的定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 k 是 常数。
反比例函数的性质
反比例函数的图象是双曲线,当 k > 0 时,双曲线的两支 分别位于第一、第三象限;当 k < 0 时,双曲线的两支分 别位于第二、第四象限。
反比例函数的单调性
在各自象限内,反比例函数是单调递减的。
反比例函数的图象和性质课件
目录
• 反比例函数概述 • 反比例函数的图像性质 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数是指函数形式为$f(x) = frac{k}{x}$(其中$k neq 0$)的函数。
当$k > 0$时,反比例函数的图像分布在 第一象限和第三象限;当$k < 0$时,图 像分布在第二象限和第四象限。
经济问题
在经济学中,反比例函数可以用 于描述商品价格与市场需求之间 的关系,通过分析反比例函数的 特性,可以预测市场价格的变动
趋势。
在物理中的应用
磁场问题
在电磁学中,磁场与电流之间的 关系可以用反比例函数描述,通 过分析反比例函数的特性,可以 解决与磁场和电流相关的问题。
第十四讲反比例函数的图像和性质
选择合适坐标系
为了清晰地展示反比例函 数的图像,需要选择合适 的坐标系,通常使用笛卡 尔坐标系。
绘制函数图像
在坐标系中,通过计算不 同 $x$ 值对应的 $y$ 值 ,可以绘制出反比例函数 的图像。
图像变化趋势及拐点分析
变化趋势
当 $x$ 从负无穷增加到 0 时,反比例函数的值 $y$ 会从负无穷增加到负无穷 大;当 $x$ 从 0 增加到正无穷时,反比例函数的值 $y$ 会从正无穷大减小到 正无穷小。因此,反比例函数图像在坐标系中呈现双曲线形状。
图像特征
反比例函数的图像是以原点为对称中 心的两条曲线,当 $k > 0$ 时,图像 位于第一、三象限;当 $k < 0$ 时, 图像位于第二、四象限。
渐近线
反比例函数的图像无限接近于但永不 相交于 $x$ 轴和 $y$ 轴,这两条轴 是反比例函数的渐近线。
单调性
在每一象限内,随着 $x$ 的增大(或
03
与指数函数、对数函数关系
反比例函数与指数函数、对数函数在图像和性质上都有显著区别,一般
不会混淆。但在某些特定条件下,它们之间可能存在一定的联系或转化
关系。
02
反比例函数图像绘制与特点
坐标系中绘制反比例函数图像
01
02
03
确定函数表达式
首先确定反比例函数的表 达式,例如 $y = frac{k}{x}$(其中 $k neq 0$)。
定义
形如 $y = frac{k}{x}$($k$ 为常 数且 $k neq 0$)的函数称为反 比例函数。
表示方法
反比例函数通常用 $y = frac{k}{x}$ 或 $xy = k$($k$ 为 常数且 $k neq 0$)来表示,其 中 $x$ 是自变量,$y$ 是因变量 。
八年级数学反比例函数的图解和性质
声速
声速与频率和介质有关,在一定 介质中,声速与频率成反比关系。
磁场
在磁场中,磁感应强度与电流成 正比,与导线长度成反比,这是
电磁感应现象的基础。
在经济中的应用
供需关系
01
在市场经济中,商品的价格与供应量成反比关系,当需求量一
定时,供应量增加会导致价格下降。
投资回报
02
投资回报率与投资额成反比关系,当风险一定时,投资额越大,
中心对称
分布在第二和第四象限
由于k的正负性,反比例函数的图像分 布在第二和第四象限。
反比例函数的图像关于原点中心对称。
反比例函数图像的变换
k值变化
改变k的值会影响反比例函 数图像的形状和位置。
x轴和y轴的变换
通过伸缩x轴和y轴,可以 改变反比例函数图像的形 状。
图像的旋转
通过旋转反比例函数图像, 可以观察其在不同角度下 的形态。
01
02
03
确定函数表达式
首先确定反比例函数的表
达式,例如$y
=
frac{k}{x}$(其中k为常
数)。
ห้องสมุดไป่ตู้
确定坐标轴
在平面直角坐标系中,选 择适当的x和y轴范围。
绘制图像
根据反比例函数的表达式, 在坐标系中逐点绘制函数 图像。
反比例函数图像的特性
无限接近x轴和y轴
反比例函数的图像会无限接近x轴和y 轴,但不会与它们相交。
反比例函数可以看作是幂函数的一种特殊情况,即当n=-1时 的幂函数。因此,反比例函数与幂函数在性质上有一定的相 似性,例如它们的导数都与自身有关。
THANKS FOR WATCHING
感谢您的观看
反比例函数图象及性质
反比例函数图象及性质【知识点】定义:一般的,如果两个变量x ,y 之间的关系可以表示成(k 为常数,k≠0,x≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
表达式:y*x=-1,y=x^(-1)*k ,y=kx^-1(k 为常数(k≠0),x 不等于0)函数的图像:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.函数的性质:Y 与x 的变化:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y 随x 的增大而减小; 当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y 随x 的增大而增大。
因为在(k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。
面积:在一个反比例函数图像上任取两点,过点分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为|k|, 反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则QOWM 的面积为|k|,则连接该矩形的对角线即连接OM,则RT △OMQ 的面积=½|k|。
对称性:类型一:函数性质,比较大小例1.如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数xy 1=的图象上,那么y 1与y 2间的关系是( ) A. y 2<y 1<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>0 例2.对于函数3x ky x+=(k >0)有以下四个结论: ①这是y 关于x 的反比例函数;②当x >0时,y 的值随着x 的增大而减小; ③函数图象与x 轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是 。
反比例函数的图象和性质课件
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系
反比例函数的图像和性质
18.3 反比例函数的图像和性质
(2)
函数 解析式 定义域 图像形状
正比例函数
y=kx ( k≠0 ) 一切实数 直线
位 置
反比例函数
y=k x ( k是常数,k≠0 )
不为零的一切实数
k>0 性质
k<0 性质
一三 象限
增 减 y随x的增大而增大 性 位 置
二四 象限
9 3k 1、若反比例函数 y 的图像位于第二、四象限, x
k>3 则k的取值范围是_________.
2a 3 2、已知反比例函数 y 的图像在每一象限内, x 3
y随x增大而减小,则a_____________. 2
k 1 3、若反比例函数 y 的图像上两点 M ( x1 , y1 ) 、 x N ( x2 , y2 ) ,且当 x1 x2 0 时,y1 y2 ,则k的取
位 置 增 减 性 位 置 增 减 性
正比例函数
y=kx ( k≠0 ) 一切实数 直线 一三 象限
反比例函数
y=k x ( k是常数,k≠0 )
不为零的一切实数 双曲线 一三象限
y随x的增大而增大 y随x的增大而减小
二四 象限 二四象限
k<0 性质
y随x的增大而减小 y随x的增大而增大
练习册:18.3(2) 一课一练: 18.3(2)
下列函数中,其图像位于第一、三象限的 有 ⑴、⑵、⑶、(6) ; 在其图像所在的每一个象限内,y 的值随着 x 的增大而增大的有 ⑷ 、(5) .
10 1 y x
0.3 2 y x
1 3 y 2x
7 4 y xΒιβλιοθήκη 5 y k 1 x
第1节 反比例函数的图像和性质
第二十六章反比例函数第一节反比例函数的图像和性质一、课标导航二、核心纲领1.反比例函数⑴定义:一般地,形如kyx=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.注:①自变量x在分母上,指数为1.②比例系数k≠0.③自变量x的取值为一切非零实数,函数值的取值范围是y≠0.④反比例函数的其他形式:xy=k(k≠0)或y=kx-1(k≠0).⑵图像:反比例函数的图像是双曲线,也称双曲线kyx=(k≠0)⑶性质(如下表所示)注:⑴y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件.⑵kyx=(k为常数,k≠0)中自变量x≠0,函数值y≠0,所以双曲线不经过原点,两个分支逐渐靠近坐标轴,但是永远不与坐标轴相交.2.待定系数法求反比例函数的解析式只需图像上一个点的坐标即可求出k.3.反比例函数的图像的对称性⑴中心对称:对称中心是原点.⑵轴对称:对称轴是直线y=x和直线y=—x.4.k的几何意义(如下表所示)5.数学思想⑴数形结合;⑵分类讨论.本节重点讲解:一个定义,一个性质,一个对称性,一个几何意义.三、全能突破基础演练1.如果y 是m 的反比例函数,m 是x 的正比例函数,那么y 是x 的( )A. 反比例函数B. 正比例函数C.一次函数D. 反比例或正比例函数 2.若反比例函数22(21)m y m -=-的图像在第二、四象限,则m 的值是( )A.-1或1B.小于12的任意实数 C.-1 D.不能确定 3.如图26-1-1所示,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图像上.若点A 的坐标为(-2,2)则k 的值为( )A. 1B.-3C.4D.1或-34.若函数1mm y x-=为反比例函数,则m =______.5.三个反比例函数y 1,y 2,y 3的图像的一部分如图26-1-2所示,则k 1,k 2,k 3的大小关系为______.6. 反比例函数2k y x-=的图像一个分支经过第一象限,对于给出的下列说法: ①常数k 的取值范围是k >2;②另一个分支在第三象限;③在函数图像上取点A (a 1,b 1)和点B (a 2,b 2),当a 1>a 2时,则b 1<b 2;④在函数图像的某一分支上取点A (a 1,b 1)和点B (a 2,b 2),当a 1>a 2时,则b 1<b 2; ⑤函数的图像是中心对称图形但不是轴对称图形. ⑥一元二次方程x 2—(2k —1)x +k 2—1=0无实数根. 其中正确的是______(在横线上填出正确的序号)7.已知y =y 1+y 2,而y 1与x +1成反比例,y 2与x 2成正比例,并且x =1时,y =2;x =0时,y =2. 求y 与x 的函数关系式.3y图26-1-18.如图26-1-3所示,定义:若双曲线kyx=(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线kyx=(k>0)的对径.⑴求双曲线1yx=的对径;⑵若双曲线kyx=(k>0)的对径为k的值;⑶仿照上述定义,定义双曲线kyx=(k<0)的对径.能力提升9.已知二次函数y=ax2+bx+c的图像如图26-1-4所示,那么一次函数y=bx+c和反比例函数ayx=在同一平面直角坐标系中的图像大致是()10.下列选项中,阴影部分面积最小的是()BACD11.根据图26-1-5(a )所示的程序,得到了y 与x 的函数图像如图26-1-5(b ),过点M 作PQ ∥x 轴交图像于点P 、Q ,连接OP 、OQ .则以下结论:①x <0时,2y x=;②△OPQ 的面积为定值;③x >0时,y 随x 的增大而增大;④MQ =2PM ;⑤∠POQ 可以等于90°. 其中正确的结论是( )A.①②④B.②④⑤C.③④⑤D.②③⑤12.⑴正比例函数y =k 1x (k 1≠0)和反比例函数2k y x=(k 2≠0)的一个交点为(1,-2),则另一个交点为______.(2)直线y=ax (a )0)与双曲线y=x3交于A ()11,y x 、B ()22,y x 两点,则122134y x y x -= .13.如图26-1-6所示,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数()0>=k xky 的图像上与正方形的一个交点,若图中阴影部分的面积等于9,则这个反比例函数的解析式为 .(a )(b )图26-1-5A14. 如图26-1-7所示,点A 、B 是函数y=x 与y=x1的图像的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ABCD 的面积为 .15. 如图26-1-8所示,已知双曲线()0>=k xky 经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若△OBC 的面积为6,则k= .16. 如图26-1-9所示,正方形OABC 的面积是4,点B 在反比例函数()0,0>>=x k xky 的图像上.若点R 是该反比例函数图像上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S=m (m 为常数,且0<m<4)时,反比例函数解析式为 ,点R 的坐标是 (用含m 的代数式表示).17. 如图26-1-10所示,在平行四边形AOBC 中,对角线交与点E ,双曲线()0>=k xky 经过A 、E 两点,若平行四边形AOBC 的面积为18,则k = .18. 如图26-1-11所示,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (-2,0)作直线l交AO 于D ,交AB 于E ,点E 在某反比例函数图像上,当△ADE 和△DCO 的面积相等时,那么该反比例函数解析式为 . 19.(1)两个反比例函数xy x y 63==、在第一象限内的图像如图26-1-12所示,点321P P P 、、、…、2013P 在反比例函数xy 6=的图像上,它们的横坐标分别是321x x x 、、、…、2013x ,纵坐标分别是1、3、5、…共2013个连续奇数,过点分别作y 轴的平行线与的图像交点依次是()111,y x Q 、()222,y x Q 、()333,y x Q 、…、()201320132013,y x Q ,则2013y = .(2)如图26-1-13所示,在函数()08>=x xy 的图像上有点321P P P 、、、…、n P 、1+n P ,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点321P P P 、、、…、n P 、1+n P 分别作x 轴、y 轴的垂线段,如图所示,将图中阴影部分的面积从左至右依次记为321S S S 、、、…、n S ,则1S ,n S .(用含n 的代数式表示)20.(1)①如图26-1-14(a )所示,一个正方形的一个顶点在函数()01>=x xy 的图像上,则点1P 的坐标是( , ).②如图26-1-14(b )所示,若有两个正方形的顶点1P 、2P 都在函数()01>=x xy 的图像上,则点2P 的坐标是( , ).(2)如图26-1-14(c )所示,若将两个正方形改为两个等腰直角三角形,直角顶点在函数()04>=x xy 的图像上,斜边1OA 、21A A 都在x 轴上, ①求点的坐标;②求点2P 的坐标.(3)如图26-1-14(d )所示,若有两个等边三角形的顶点都在函数()034>=x xy 的图像上,点1A 、1A 在x 轴上,直接写出点2P 的坐标.21.(1)探究:如图26-1-15(a )所示,已知△ABC 和△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)应用:①如图26-1-15(b )所示,点M 、N 在反比例函数()0>=k xky 图像上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E 、F ,试证明:MN ∥EF .②若①中其它条件不变,只改变点M 、N 的位置,如图26-1-15(c )所示,请判断MN 与EF 是否平行,直接写出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 x=1 时,3yk=34k34xk3xk34k122414411k1kkk11k111 yy1y1yxy11x12x2x222yyyyxxyxx33x333
y是yx是y的是yx是的y一x是的x一x的次的一次一一函函次次次数数函函函数数数
变量t与v之间的关系可以表示成 : t 1262
v
做一做
工程中的数学
某机械厂加工一批零件,每小时加工的数量和 所需的加工时间如下表:
工效 x 时间 y
10 20 30 40 50 60 6 3 2 1.5 1.2 1
x y 60
y 60 x
“行家”看门道
1.由上面的问题中我们得到这样的三个函数,你能指 出自变量和函数吗?
(2)求当y=4时x的值.
解:(1)设y与x的函数关系式为:y k
∵当x=3时,y=-6 ∴ 6 k x 1
31
∴ k=-12
∴
y
12 x 1
例2:已知y=y1-2y2,y1与x成反比例,y2与x2成 正比例,且当x=-1时,y=-5,当x=1时,y=1,求y 与x的函数关系式.
6
已知函数 y = (m-3)x2-|m| 是反比例函数,则
m = ___ 。
-3
【待定系数法求反比例函数的表达式】
例1:已知y是x的反比例函数,当x=2时,y=6 (1)写出y与x的函数关系式; (2)求当x=4时,y的值.
变式:y是x-1的反比例函数,当x=2时,y=-6.
(1)写出y与x的函数关系式.
3.y是x的反比例函数,下表给出了x与y的一些值:
x -3
-2 -1
1 2
-4 1
… 2…
y2 1 3
2
-4
1 2
-2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
4 .近视眼镜的度数y(度)与镜片焦距x(米)成反
比例,已知400度近视眼镜镜片的焦距为0.25
及时巩固
将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
【课堂练习】
1.y是x2成反比例,当x=3时,y=4. (1)写出y与x的函数关系式. (2)求当y=1.5时x的值.
2.已知函y=m+n,其中m与x成正比例, n与x成反比例,且当x=1时,y=4; x=2时y=5. (1)求y与x的函数关系式. (2)当x=4时,求y的值.
第二十六章 反比例函数
做一做
物理与数学
欧姆定律
我们知道,电流I,电阻R,电压U之间满足关系式
U=IR.当U=220V时. (1)你能用含有R的代数式表示I吗?
I 220
(2)利用写出的关系式完成下表:
R
R/Ω 20 40 60 80 100
I/A 11 5.5 3.67 2.75
2.2
k1 1
k2
1
2
k1 k2
(A) y = X+85(B) y = 23+x 7
(C)xy = 5 (D) y =
判断一个等式为反比例
x
x2
⑶
已已(1)函知知自数函函变,数数要量两的y个指= 条数xm件为是-是7:-1反正;x比比-1 =例例1x函函数数,,则则
m m
= =
__8_ ;
___ 。
(2)自变量y系=数3不xm为-70.
1.当m= 1 时,关于x的函数 y=(m+1)xm2-2是反比例函数?
{ 分析:
m2-2=-1
m+1≠0
{m=±1
即
m≠-1
已知y 1与 1 成反比例,且当x 1时y 4,求y与x x2
的函数表达式,并判断是哪类函数?
解:由题意知 y y 11
kk 1
kkxx 22
当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么?
做一做
运动中的数学
行程问题中的函数关系
京沪高速公路全长约为 1262km,汽车沿京沪高速公路从 上海驶往北京,汽车行完全程所 需的时间t(h)与行驶的平均速 度v(km/h)之间 有怎样的关系? 变量t是v的函数吗?为什么?
米,则眼镜度数y与镜片焦距x之间的函数关 系式是___y__1_0_0____。
x
5.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
已知y y1 y2,其中y1与x成反比例,且比例系数
是k1; y2与x2成正比例,且比例系数是k2,若x 1
时, y 0,则k1与k2的关系是
解解::由由yy
yy11
yy22
yy
kk11 xx
kk22xx
2
解:由由x=y-1时y,1 y=0y2
0
xy=k的形式.
下列函数中哪些是反比例函数?并说出它的k。哪些是一次函数?
y = 3x-1
y = 2x
y
=
3 2x
y=
1 x
y
5
=
x
3y1 x
0.4 x
y
x 2
xy
2.
xy 2 y 2 x1
y 1 2x2
反比例函数 一次函数
【现场提问】
⑵ 在下列函数中,y是x的反比例函数的是( C )
I 220 t 1262 .
R
v
y 60 x
2.上面的函数关系式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y=xk (k是常数,k≠0)的函数称为反比
例函数,其中x是自变量,y是函数. 有时反比例函数
4.也反写比成例y函=数kx的-1或自变量的取值范围是不为0的全体实数